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Objectives Background
West Virginia University will Recovery from naturally fractured,

implement procedures for a fractal tight-gas reservoirs is controlled by the
analysis of fractures in reservoirs. This fracture network.l  Reliable character-

procedure will be applied to fracture ization of the actual fracture network in
networks in outcrops and to fractures the reservoir is severely limited. The
intersecting horizontal boreholes. The location and orientation of fractures
parameters resulting from this analysis intersecting the borehole can be
will be used to generate Synthetic determined, but the length of these

fracture networks with the same fractal fractures cannot be unambiguously
characteristics as the real networks. determined.  Fracture networks can be
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determined for outcrops, but there is
little reason to believe that the network
in the reservoir should be identical
because of the differences in stresses and
history. Seismic techniques do provide
some large scale (resolution of tens or
hundreds of feet) information about the
fracture density and average fracture
orientation, although there is some
controversy about interpretation of the
multi-component surface seismic data,
especially regarding which layer is being
probed.

Furthermore, independent of the
assumption of fractal behavior, it is
known that typical fractures in the

second set
fractures of the first set.2
commonly observed in real fracture
networks from outcrop studies, for
example 92% of the secondary fractures
in the MWX outcrop (Fig. 1) satisfy this
criterion.3 Imposing this constraint upon
the secondary fractures increases the
visual similarity between our networks

should begin and end at
This effect is

and the real network over simulated
networks from other fractal modeling
schemes.4

Because of the lack of detailed
information about the actual fracture
network, modeling methods must
represent the porosity and permeability
associated with the fracture network, as
accurately as possible with very little

apriori information. Three rather
different types of approaches have been
used: i) dual porosity simulations,

ii)'stochastic’ modeling of fracture
networks, and iii) fractal modeling of
fracture networks. The dual porosity
approach is a natural extension of the
gridding schemes - widely wused in

describing reservoirs, however in
assuming mesoscopic scale (tens or
hundreds of feet) averages of fracture
porosities and permeabilities, they may
be smoothing the very heterogeneities
which control the recovery. This may
limit reliability for strongly anisotropic
fracturing. That is, even if fractures are
located randomly throughout the grid-
block so that an average porosity may be
sensible, the conductivity of similar
fractures differ widely invalidating
assumptions of an average permeability.
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Figure 1 Outcrop Fractures at MWX site.
Shows the primdry fractures
(set 1) and the secondary
fractures (set 2).

Stochastic models which assume a
variety of probability distributions of
fracture characteristics have been used
with some success in modeling fracture
networks.5-7 The advantage of these
stochastic models over the dual porosity
simulations is that real fracture hetero-
geneities are included in the modeling
process. On the other hand these
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stochastic models need information about
all features of the actual fracture
network to provide the most accurate
modeling. In the highest level (most
accurate) model for each set of fractures
with a given orientation, one needs to
determine the probability distribution of
i) the location of independent fractures
ii) the location of fracture clusters or
swarms iii) locations of fractures within
clusters, iv) cluster lengths, v) fracture
lengths, vi) fracture apertures, and vii)
fracture orientations. The less reliable
the information determining these
probability distributions; the less reliable
the fracture network. Reliable infor-
mation about many aspects of the real
fracture network is impossible to
determine; the assumption of self-similar
fractal behavior (if valid) enables us to
predict features of one aspect of the
distribution from other aspects of the
distribution; i.e. 1), ii), and iii) result
from the box-counting along the borehole
which, in turn, predicts features of the
distributions for iv), v), and vi) for self-
similar fractal networks.

Aspects of fractal geometry have
been applied to mimic the heterogeneity
associated with layering in real reser-
voirs for a number of years. In these
cases, the variation in permeability with
height at the borehole was found to obey
fractal statistics,8 and the correlations
implicit in fractal geometries allowed
them to interpolate between the known
permeabilities at the borehole in such a
way that results from flow models
agreed with analyses of production logs
and tracer breakthrough.?® Examples in
the open literature reporting the use of
fractal geostatistics to treat naturally
fractured reservoirs are less common.4.10

If a set of natural fractures is described
by a self-similar fractal geometry, the
self-similar, scale invariance of the
fracture network implies relationships
among the fracture distribution, and the
various length scales: clustering or
fracture correlation, fracture aperture,
and fracture length. Therefore, if
fracture networks obey a self-similar
fractal geometry, borehole déta, locating
orientational sets of fractures, will enable
a determination of the fractal dimension
and ‘'lacunarity’. This "along with
relatively generic information about the
typical aperture size and length of
fractures,! will allow us to produce a
self-similar fractal network. The
clustering occurs naturally in the fractal
network because of the correlations
inherent in fractal geometries. The
fractal parts of the aperture size and
length distributions (even the fracture
shape distributions) should be the same
as the fractal parts of the fracture
location vs. scale distributions.

In the sections following this
introduction, we will i) present 'fractal’
analysis of the MWX site, using the box-
counting procedurel!,12; jj) review
evidence testing the fractal nature of
fracture distributions and discuss the
advantages of using our ‘'fractal’ analysis
over a stochastic analysis; 1iii) present an
efficient algorithm for producing a self-
similar fracture networks which mimic
the real MWX outcrop fracture network.

Project Description-Fractal Analysis

Illustrative Example Before
analyzing the MWX outcrop (Fig. 1), one
must understand the box-counting
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in our method for generating the
fracture networks. As discussed later in
this section, the box-counting procedlire
automatically reproduces the random
aspects of the distribution of fractures
in addition to reproducing the clustering
obvious in Fig, 1.

For a simple example of the box-
counting procedure consider the
distribution of fractures intersecting a
length of borehole. To determine the
fractal dimension as well as the range of
size scales over which the distribution is
fractal, one covers the array of fractures
by successively smaller and smaller
rulers (one-dimensional ‘'boxes'), and
then one counts the number of 'boxes' or
rulers covering one or more fractures. If
the distribution has a fractal dimension
D¢ over a range of sizes, then

N=A(a)Df, (1)

where N is the number of rulers which
cover fractures, the constant A is called
the lacunarity,and the scale A determines
the length of the rulers (L/A). If one
covers the 24 fractures in Fig. (2) by a
ruler of length L , (shown at the bottom
of Fig. 2) one ruler covers the fractures;
with two ruler of length L/2 (near the
bottom of Fig. 2) both cover fractures;
with four rulers of length L/4 all 4 cover
fractures, but with 8 rulers of length L/8
only 6 cover fractures. This is continued
down to 128 rulers of length L/128 as
shown in Table 1.

il L l T

Figure 2a
borehole.

Fractures intersecting

Figure 2b  The lower half of the figure
shows the fractures in Fig. 2a with the
scale rulers 'covering' the set of fractures
from a ruler of length L, proceeding
upwards to rulers of length L/64 just
below the fractures. The top half shows
the same set of 'covering' rulers of length
L/128. The rulers are left-justified so
that the fractures at the right-end of the
ruler are covered by the ruler.

Table I
Ruler Length # of Rulers
Covered
L/A N
L 1
L/2 2
L/4 4
L/8 6
L/16 8
L/32 13
L/64 17
, L/128 24
L/256 24
L/1024 24

2 Since there are only 24 fractures, at
scales

smaller than L/128, there will
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only be 24 rulers covering fractures. A
log-log plot of the box-counting for Fig. 2
is shown below

190

19
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A

Figure 3 Fractal Plot for Fig. 2.

The fractal relationship is given by the
solid line N= 2.12 A%-5, except at large
and small scales for the reasons that
follow. At small A, (coarse scales L, L/2
and L/4), N equals the number of rulers
(N = A) because all the rulers cover
fractures; in later sections, we refer to
this as the initial covering regime. At
very large A, (very fine scales L/256 and
L/1024), only 24 rulers are covered
because there are only 24 fractures and
there is no more detail in the fracture
pattern, so that the box-counting 'cuts-
off' or ‘saturates' at 24, Therefore, for
this fracture pattern, the pattern is
fractal between the initial covering and
cutoff regimes (over the range of scales A
= § to 128) with a fractal dimension of
1.5 and a lacunarity of 2.12. The ruler
counting of this one-dimensional slice of
the two-dimensional fracture network
gives an exponent D; - 1, i.e. the actual

2d fractal dimension minus one.

Before we continue, it should be
pointed out that this fracture pattern
was generated by our algorithm to have

a lacunarity of 2.12 and a fractal
dimension of 0.5 over the range of scales
from L/8 to L/128. The algorithm which
generated this pattern is described and
used in a following section.

It is important to realize that if the
distribution of fractures in Fig. 2 were
completely random (i.e., if there were no
clustering of fractures), the points from
the box-counting would obey a linear
relationship ( N = A ) up to cutoff. That is,
on the average, each box would contain
one fracture up to the total number of
fractures (in this case N . = 24); at finer

scales, the one fracture would randomly
occupy one of the smaller boxes.
However, because of clustering, groups of
fractures are closer together than
average. Therefore, when box-counting,
the linear regime ends before N = N .

and one enters the 'fractal’ or clustering
regime where some boxes are empty and
others have several fractures much closer
together than average. The box-counting
provides a routine procedure for
characterizing (and, thus, for reproducing)
this clustering.

Results

MWX Outcrop First the primary
set of fractures in Fig. 1 was analyzed. A
series of eight lines (boreholes) of length
L were drawn through the set of primary
fractures, and the box-counting
procedure was used on each of these
boreholes. The results for the number of
boxes covering fractures vs. the scale A is
shown in Fig. 4. The initial covering
regime persisted until scale 16. The
cutoff regime began at scale 80. In-
between the data are well represented
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by the fractal power law N = 4.9 A0-425
indicating a fractal dimension D¢ = 1.43.
It should be noted that scales
intermediate to the simple doubling rule,

= 21, (used in Figs. 2 & 3 and Table 1)
were used to provide more data in the
fractal regime.
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Figure 4. For the primary fractures,

the box-counting from the 'boreholes’ on
the MWX outcrop (Fig. 1), shows the
initial covering (the linear increase, N =
A, up to the clustering or fractal regime),
the fractal regime, and the cutoff regime.

The secondary set of fractures in
Fig. 1 were analyzed in the same way. A
series lines of length L, perpendicular to
these secondary fractures, were drawn
through the secondary fractures, the box
counting was performed and the values
N( A ) were averaged. Fig. 5 shows the
plot of N vs. A and shows that for these
secondary fractures the initial covering
regime persists until scale 6 and that the
cutoff regime begins at scale 40. In-
between the number of rulers obeys the
fractal power law N = 3.47 A0.343

indicating a fractal dimension Dy = 1.34.
Again, intermediate scales were used in
the fractal regime to provide more data
in the fractal regime.
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Figure 5. For the secondary fractures,
the box-counting from the 'boreholes' on
the MWX outcrop (Fig.1),shows the initial
covering (the characteristic linear regime),
the fractal regime, and the cutoff regime.

To determine the length distribu-
tion from the data provided by M.
McKoy,3 we plotted the total number of
fractures with lengths greater than a
given length L, N(L), vs. L. It should be
noted that this total number N(L) with
lengths £ >L is the integral of the number
density of fractures n(£) with length £

integrated from L =L up to the one
fracture of maximum length , i.e.
Lmax

N(L):Lfnu) df . This graph of the data
is shown in Fig. 6. It is convincingly fit

by the characteristic exponential cutoff
for the greatest lengths (L>14), and by a
fractal power law for the smallest
lengths (4<L.<14). For a self-similar fractal
fracture network, the number density
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should be given by n(L)=n £ "Pf so that
the total number should be given by
N(L)=f’D—f L1-Df 11 Therefore, the data are

consistent with a fractal dimension
D¢=1.48.
1000 =7 r——
3 This graph shows a linear fit for 3
i fracture length's in the range ?
| 4->14, and an exponential cut-off 1
L in the range 14->96. ;
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Figure 6. The number of fractures N(L)
with lengths greater than L plotted
against L. This shows the exponential
cutoff for the larger lengths and the
fractal regime for the smaller lengths.

These data do not decide
unambiguously whether or not the
clustering regime is rigorously fractal.
That is, these data do not unambiguously
favor a strictly power law regime (i.e.

fractal behavior) between the linear,
initial covering regime and cutoff.
However, the power law assumption

used to draw the lines does represent a
good fit to the box-counting data.
Therefore, at worst, by assuming that the
intermediate regime is fractal, we may
be merely providing a good approximation
to the data. If the assumption of fractal
clustering only provides a good
approximation to the true clustering, our

simulated fracture networks will
represent a good approximation to the
actual fracture network, which is all that
is necessary. .

On the other hand, it is encouraging
that the power laws from the box
counting and length distributions are all
consistent with the same fractal
dimension, Df=1.4+0.1, to within a realistic
uncertainty from the data fitting. This
equality of fractal dimensions from all
length measures is the hallmark of self-
similar fracture networks.

A program to carry out the box-
counting procedure and return the
fractal dimension and lacunarity has
been developed in order to process
multiple sets of data from various
boreholes. To test these programs as
well as the routines for simulating the
fracture networks, numerous trial runs

have been performed to analyze the
"borehole fractures” from simulated
networks.

Are Fractures Fractal? There is
evidence that real fracture networks are
fractal both in outcrops where Barton
and others found a fractal dimension of
D¢=1.55, for different fracture systems,l3
as well as from underground data in the
Fanay-Augeres uranium mine!® where
they found a varying fractal dimension.
The variation in their fractal dimension
may result from use of too great a range
of socales. As we saw for very large
scales, all the rulers are covered so their
finding a 'fractal dimension' of 2 at large
scales is not surprising. Similarly, at
very small scales one approaches a limit
where the number of ‘'boxes’ covered
equals the number of fractures so the
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fractal dimension approaches 1; this
may be an artifact of the neglect of small
aperture fractures (micro-cracks which
may be significant in determining
number at their 0.005 meter scale).

The length of the fractures has
been found to be fractal,!4 and the shape
of the fractures has also been deter-
mined to be fractall5-17,  This suggests
that all features of the fractures may be
fractal: distributions of i) centers, ii)
lengths, iii)widths, and iv) shapes. The
evidence that the shapes are fractal
suggests that porosities and permea-
bilities may also obey fractal statistics.
If all geometrical aspects of the fracture
distribution are fractal with the same
fractal dimension, the fracture distri-
bution is self-similar. This may seem to
be a very unusual occurrence, but in fact
many examples of development (or
growth) which occur in random media
(like the development of fractures in
stressed rock formations) have a self-
similar geometry. The first level of our
geostatistical modeling will assume a
self-similar fractal geometry for the
fracture distribution.  Higher levels of
our geostatistical modeling could use
actual measurements to determine the
fractal distribution of (e.g.) the fracture
widths.

Fracture Generation
Here, we describe the implementation
and design of an algorithm developed to
generate a fracture network in 2-
dimensions. The primary assumption in
our model is that the network geometry
is fractal - i.e. has a self-similar or scale
invariant geometry. Using this infor-
mation we have developed a program to
generate complete 2-d fracture outcrop

Algorithm

networks using only the lacunarity,
fractal dimension, initial covering, and
cutoff parameters obtained from MWX
data.

In the broadest sense the program
performs 2 tasks :

(1) Generates a horizontal fracture set.
(2) Generates a secondary fracture set con-
sistent with the fracture set in (1)

To generate the primary fracture set the
program first generates a 1-dimensional

fracture set along a left-justified line
14 } =
E]M
v
¢ 10|
r
1
i
¢ 8
a
{ L]
‘ —
r [[12 fractare tocations |
I3 - /
i 4 -
¢
i
o -
.} 2 -
. |-
19 12 14 16 18 20
korizontal position (arbitrary units) m
Figure 7. 1-d fracture generation
output. The data are represented

graphically by a series of small line
segments in the x direction.

perpendicular to this fracture set, Fig. 7.
This is accomplished by a procedure, the
first step of which initializes the first row

9




in the 2-dimensional ruler array L{jk],
where i labels the scale and k labels the
ruler. If a fracture is covered by a ruler,
then the value of the array for this
specific ruler is 1. Conversely, an empty
ruler site is given the value O.

Having initialized the L[1,i] array
the procedure then divides each ruler
into two new rulers and randomly
chooses one of these 2 new rulers in
L[2,k] for each of the covered rulers in
L[1,i] and assigns this ruler a value of 1
while giving the other ruler a value of 0.
The remaining rulers are randomly
assigned fractures according to the
distribution. This proceeds to finer and
finer scale until saturation is reached.

Continuing with the generation of
the primary fracture set, the program
assigns a length to each fracture site
according to the length distribution
shown in Fig.6. Once the length of a
fractureis chosen, the exact location of the
origin (x=0) along the fracture is chosen
randomly. The result is shown in Fig. 8.
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Figure 8. Lengths are assigned to the

initial fracture set.

Having assigned lengths, the program
will step forward by a specified amount

in the x-direction (along the fractures).
If any fractures have ended during the
step, new fracture assignments must be
made to maintain the distribution. To
guarantee that the new fracture assign-
ments produce a fractal distribution, we
must reverse the ruler doubling process
and re-assign fractures that have crossed
the specified grid point to half as many
rulers used in the final step of the initial
1-d fracture generation process. The un-
occupied fracture sites are then assigned
new fractures following the same
procedure described for the initial

fracture generation. The procedure
continues stepping along in the x-
direction until the full region is
characterized.
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Figure 9. Primary Fractures-Simulated
The resulting output is given in Fig. 9
and can be compared with the MWX
primary fractures shown in Fig. 1. The
parameters used were those determined
from: the MWX outcrop using the box
counting procedures described earlier.

To generate the secondary fracture
set we first generate a fracture
distribution along each of the horizontal
fractures.
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Starting in the upper left hand
corner of Fig. 9 and proceeding
downward, the program produces a

fractal distribution (using a parameter
set determined from the vertical fracture
data) along the first fracture in the data
set. In our model we assume that
vertical fractures can only begin or end
along a horizontal fracture. In this case,
we need only find the next horizontal
fracture below each vertical fracture site
to determine the fracture endpoint and
therefore its length.
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Fig. 10. MWX 2-d Fracture Outcrop Data
Conclusions & Future Work

To model the fracture outcrop
networks occurring in naturally
fractured tight-gas reservoirs we have
taken an approach that incorporates:

A) Fractal Analysis of Available Data:
we characterized the MWX fracture

data using four parameters (for the
distribution of both horizontal and
vertical fractures): i) Lacunarity, ii)
Fractal Dimension, iii) Initial Covering

Scale, and iv) Cutoff - determined
from the distribution of fracture
lengths.

B) Fracture Generation:
we generate self-similar fracture
networks using data from 1.) with an
algorithm that incorporates fractal
geostatistics.

From our work we have found that there
are several advantages in an approach
that uses fractal statistics:

i)  The networks produced by our model
appear to be in agreement with
actual fracture networks but do not
require extensive a-priori knowledge
of the network. Using data from
isolated borehole sites we can
generate entire networks with an
algorithm that assumes a self-similar
or scale invariant geometry.

ii) We are able to generate horizontal and
vertical fractures separately
(although not independently) using
distinct parameter sets in each case.
The fractures can then be analyzed
and combined later to produce
complete self-consistent networks.

iii) Since the data is generated using a
statistical approach, the algorithms
require relatively little computer
time to produce complete networks

iv) Evidence suggests that real fracture
networks obey fractal statistics.

The characterization and analysis of the

network data produced by our
algorithms is not yet complete. By
varying other parameters such as
gridsize, fracture length, and the
horizontal/vertical . . orientation of
fractures, we believe that it will be
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possible to generate fracture distribution 11.
patterns that are ‘optimally similar' in

the fractal/statistical sense - to real 12.
fracture networks occurring in nature.

We are in the process of analyzing 13.
the distribution of fractures along
horizontal boreholes in the Austin Chalk
and fracture lengths from nearby 14.
outcrops. The results from this analysis
will be wused to generate simulated 15.

fracture networks.
16.
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