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ABSTRACT

We are developing MP-TOUGH2 for exploiting massively parallel computers. The
goals of this effort are to (1) create a data-parallel subsurface transport code for solving
larger problems than currently practical on workstations, (2) write portable code that can
take advantage of scalability to run on machines with more processors, and (3) minimize
the necessity for additional validation and verification of the resulting code. The initial
strategy we have followed is to focus on optimizing the generic and time-consuming task
of linear equation solution while leaving the bulk of TOUGH?2 unmodified. In so doing,
we have implemented a massively parallel direct solver (MPDS) that takes advantage of
the banded structure of TOUGH2 Jacobian matrices. We have compared timings of the
iterative conjugate gradient solvers DSLUBC, DSLUCS, and DSLUGM written in
Fortran77 for the front end with the MPDS which uses the data parallel unit. The MPDS
shows good performance relative to the iterative conjugate gradient solvers on our free-
convection test problem. The robust direct solution provided by MPDS can be used to
(1) check on the veracity of a given iterative conjugate gradient solution, or (2) be used
on certain problems where iterative solvers fail to converge.

INTRODUCTION

One of the current challenges of scientific computing is the development of
simulation codes that exploit massively parallel computers. Massively parallel computers
have more than 1000 processors and are generally designed as single-instruction multiple
data (SIMD) machines. Such computers can produce results faster and more efficiently
using data-parallel methods supported by languages such as Fortran 90, where the same
operations can be performed simultaneously on large arrays. Furthermore, Fortran 90
code is flexible because the same source code can be ported to other massively parallel
computers with little or no modification. Given adequate memory resources, the
maximum size of a tractable simulation problem scales with the number of processors on
the available machine.

The promise of power and flexibility that data-parallel coding and massively
parallel computers can theoretically bring to bear on simulation work must be tempered
by the reality of the significant amounts of time and resources required to develop new
simulation codes or rewrite existing codes. In the meantime, serial workstations and
personal computers will become yet faster and cheaper, decreasing the potential return on
investment in recoding. In addition, simulation codes such as TOUGH?2 have received
years of use and validation which have led to wide acceptance among users. New and
rewritten code needs to be verified and validated and there is always considerable and
justifiable resistance among users (and their customers) to use new codes.




The compelling potential of data-parallel coding coupled with the reality of scarce
resources and uncertain return on investment has guided our initial development efforts.
The strategy we have chosen to begin development of MP-TOUGH2, a massively-
parallel version of TOUGH?2, involves identifying time-consuming generic operations in
TOUGH2 and exploiting optimized code to perform these tasks. The majority of
computational effort in moderate- and large-size TOUGH2 problems goes to the solution
of the system of linear equations involving a large, sparse, banded Jacobian matrix at
each Newtonian iteration. This generic and time-consuming task is therefore the focus of
our initial efforts.

In this report, we discuss our implementation of a massively parallel direct solver
(MPDS) for the linear equation solution in TOUGH2. We use the 4096-processor
MasPar MP-2204 at Lawrence Berkeley Laboratory, which consists of a front-end DEC
Alpha 3000/300x and a 64 x 64 processor element array, also called the data-parallel unit
(DPU). In keeping with the goal of minimizing recoding, we implemented MPDS as
Fortran90 code that uses the DPU but is called from TOUGH2 compiled in Fortran77 on
the front end. We compare timings of a two-dimensional natural convection test problem
solved with MPDS running on the DPU and the same problem solved with iterative
conjugate gradient solvers (Moridis and Pruess, 1995) running on the front end. We will
show that the direct solver MPDS is competitive with the iterative conjugate gradient
solvers on the test problem.

LINEAR EQUATION SOLUTION WITH MPDS

TOUGH2 generates a large and sparse banded Jacobian matrix at each Newtonian
iteration which defines a set of linear equations to be solved for the changes in primary
variables. Specifically, the equations
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are solved where R,(® is the residual for conservation of component x in gridblock #n, k
is the time step index, x are the primary variables, and p is the index for the Newtonian
iterations (Pruess, 1987; 1991). In a problem with NEL gridblocks and NEQ equations
per gridblock, the Jacobian matrix {9R,®*+1/3x; } is of order N = NEL x NEQ. It is this
linear equation solution that consumes the majority of computation time for any
moderate- or large-size TOUGH2 simulation.

We have implemented a banded direct solver provided to us by MasPar that takes
advantage of library routines optimized for the DPU on the MP-2204. The MPDS is
written in Fortran90 and uses the DPU. Meanwhile MP-TOUGH?2 is compiled in
Fortran77 to run on the DecAlpha 3000/300x front end, calling the Fortran90 MPDS for
linear equation solution. In this way, neither TOUGH?2 nor the iterative conjugate
gradient solvers has been modified except for adding the option of calling the MPDS.

For simplicity in discussing the MPDS, we write the linear matrix equation (1) in
the idealized form Ax = b, where A is the Jacobian matrix of order N, x is the vector
containing the changes in primary variables, and b is the vector of residuals. The MPDS
works by decomposing A into L{ower) and U(pper) where A =L U and then solving L (U
x) = b. This decomposition and solution can be applied to any general matrix A. The
Jacobian matrix in TOUGH?2 is sparse and banded, with its non-zero elements near the




main diagonal, i.e. a(i,j) = O for abs(i - j) > m, where the bandwidth is 2m + 1. One can
take advantage of this structure and modify the matrix storage scheme to achieve greater
efficiency on a serial machine if m < N/3 (Dongarra et al., 1979). On a parallel SIMD
machine with distributed memory, we can get parallel computation from the linear
algebra library routines (MasPar Mathematics Library, 1993) by modifying the band
storage scheme so that the non-zeroes in the band are submatrices of order Ng, where N g
is called the slab width. Each submatrix is distributed across the processors with one
matrix element per processor. We choose Ny = 64 to optimize the mapping of the
submatrices to the MP-2204 which has processor elements laid out on a 64 x 64 grid.
The slab width parameter is generally chosen to match the processor array on the target
machine, thus ensuring scalability for larger problems running on larger machines. The
solve time depends on problem-dependent parameters mcludmg the matrix order and the
bandwidth as well as the submatrix size.

RESULTS

The test problem used in this study is the Elder pure thermal convection problem
(Elder, 1967). For generality, we use the TOUGH2 equation of state module EOS3 for
water, air, and heat, although this particular problem is a single-phase flow problem. In
prior work we used EOS7 and adapted the problem to pure solutal convection with a salt
source at the top (Oldenburg and Pruess, 1994). Whether solutal or thermal convection is
considered, the large maximum density change (20%) makes this a strongly coupled flow
problem. Elder's actual laboratory apparatus was a Hele-Shaw cell 5 cm by 20 cm, but
we use a two-dimensional porous medium with physical dimensions and parameters
scaled for similarity to Elder's work. These parameters are presented in Table 1. Note
that we have used heat capacity of zero for the matrix rock for similarity to pure solutal
convection. The domain, boundary conditions, and coarsest discretization (60 x 32) for
the problem are presented in Fig. 1. The flow and temperature fields at t = 2 yrs. are
shown in Fig. 2. For a more complete discussion and analysis of the Elder free
convection problems, see Oldenburg and Pruess (1994, 1995).

We have used 3 discretizations for the calculation time comparison of the various
solvers. These were 60 x 32 gridblocks, 84 x 40 gridblocks, and 128 x 64 gridblocks in
the Y- and Z-directions, respectively; NX is always 1 in this two-dimensional problem.
With three equations per gridblock, these discretizations give rise to Jacobian matrices of
order (N) equal to 5760, 10080, and 24576, respectively. Non-zero elements of the
Jacobian matrix occur in bands of width 197, 245, and 389, for the three discretizations.

Given the many ways one can time multi-processor computations, we chose a
simple method that we felt would make sense to users experienced with serial
workstations. The timings presented are calculation times, as obtained by the TOUGH2
subroutine SECOND, divided by the number of linear equation solutions performed.
Thus the time is an average time for one Newtonian iteration including the small
overhead from other subroutines such as MULTI and EOS, among others. Timings of the
solution of the Elder problem with three different two-dimensional discretizations are
presented in Fig. 3.

We see in Fig. 3 that the MPDS running on the DPU is faster than the conjugate
gradient solver DSLUGM running on the DecAlpha 3000/300x front end for all three
discretizations. The performance of DSLUGM on this test problem degrades sharply as
the order of the Jacobian matrix increases. The MPDS is about 30% slower than the
conjugate gradient solvers DSLUBC and DSLUCS for the largest example problem. It is




important to emphasize that MPDS is a direct solver and is inherently more robust than
iterative solvers. As such, it will be valuable as a tool to check upon the veracity of a
given conjugate gradient solution, and may prove indispensible for certain difficult
problems where the iterative conjugate gradient solvers may converge poorly.

Among the limitations of the MPDS on the MP-2204 are the memory restrictions
of 64 kbytes per processor, and a 64 x 64 processor array. This memory limit affects
calculation speed based upon both the bandwidth and the order of the matrix for a given
problem. Another limitation is the relatively slow double-precision floating point
operation on the MasPar processors. Communication between memory and processors is
another factor affecting speed in parellel computing. For example, each processor
element on the MP-2204 has its own local memory and sharing data between processors
or between processors and the front end requires communication that can take
considerable time. Nevertheless, the maximum size problem MPDS can handle will scale
with the machine. MPDS will require no recoding to run larger problems on machines
with more processors.

CONCILUSIONS

Guided by the considerable potential benefits and risks of developing a massively
parallel subsurface simulation code, we have initiated development of a massively
parallel version of TOUGH2 called MP-TOUGH2. We implemented the massively
parallel direct solver MPDS to perform the generic and time-consuming task of linear
equation solution in MP-TOUGH2. In this initial code, the essentially unmodified
TOUGH2 is compiled in Fortran77 and runs on the front end. This code calls the MPDS
which is written and compiled in Fortran90 and uses the DPU. We tested the MPDS on a
strongly coupled two-dimensional pure thermal convection problem. Comparison of
calculation times shows the MPDS to be competitive with the iterative conjugate gradient
solvers on the front end. Because MPDS is a direct solver, it will be useful for
establishing correct solutions and verifying conjugate gradient solver solutions. In
addition, it may find application in solving problems where the iterative solvers coverge
slowly, or fail. Future work will focus on testing and improving the MPDS as well as
targeting other TOUGH?2 tasks where data-parallelism can be exploited.
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Nomenclature

C heat capacity Jkg-1°C -1

g gravitational acceleration ms -2

k permeability m?2

K thermal conductivity Js-1m-1°C-I
Ng slab width

R residual kg



NSNS

time years
temperature C
X-coordinate m
Y-coordinate m
Z-coordinate (positive upward) m

Greek symbols

u dynamic viscosity kgm-1s-1

¢ porosity -

p density kgm-3

Subscripts and superscripts

k time step index

n grid block index

p Newtonian iteration index
K mass components
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Table 1. Parameters for the Elder (1967) pure thermal convection

problem.
symbol quantity - value units
¢ porosity A -
k permeability 121x10°10 m?
u viscosity (T7=20°C) 1.0x 103 Pas
K thermal conductivity 1.49 Jkg-ls-1m1
c heat capacity of rock 0. Jkg-t°C-l
g gravity 9.81 ms2
To initial temperature  12. C
T=12.C
o
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Figure 1. Domain and boundary conditions for the Elder pure
thermal convection problem with the 60 x 32 gridblock mesh.
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Figure 2. Flow and temperature field for the Elder pure thermal
convection problem at ¢ = 2 yrs. '
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Figure 3. Calculation time plotted against N, the order of the

? Jacobian matrix, for three conjugate gradient solvers (DSLUBC,
DSLUCS, DSLUGM) and for the massively parallel direct solver
(MPDS).




