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ABSTRACT
Two new solvers are discussed. LUBAND, the first routine is a direct solver for banded systems and is based on a
LU decomposition with partial pivoting and row interchange. BCGSTB, the second routine, is a Preconditioned
Conjugate Gradient (PCG) solver with improved speed and convergence characteristics. Bandwidth minimization
and gridblock ordering schemes are also introduced into TOUGH2 to improve speed and accuracy.

Introduction

Most of the computational work in the numerical simulations of fluid and heat flows in
permeable media arises from the solution of large systems of linear equations Ax =b, where A
is a banded matrix of order N, x is the vector of the unknowns, and b the right-hand side. These
are solved using either direct or iterative methods. The most reliable (and often the simplest)
solvers are based on direct methods. The robustness of direct solvers comes at the expense of
large storage requirements and execution times. Iterative techniques exhibit problem-specific
performance and lack the generality, predictability and reliability of direct solvers. These
disadvantages are outweighed by their low computer memory requirements and their substantial
speed especially in the solution of very large matrices.

In TOUGH?2 the matrix A is a Jacobian with certain consistent characteristics. In systems
with regular geometry, A has a known block structure with well defined sparsity patterns. In
general, A matrices arising in TOUGH2 simulations are non-symmetric with typically no
diagonal dominance. Although A can be positive definite in regular systems with homogeneous
property distributions, it usually is not, and ill-conditioning is expected in realistic heterogeneous
large systems. Due to the fact that A is a Jacobian, the elements of A in a single row may vary
by several orders of magnitude. In TOUGH2 simulations it is possible to encounter a large
number of zeros on the main diagonal of A, making central S = NBpivoting impossible and
resulting in very ill-conditioned matrices. TOUGH?2 creates matrices which are among the most
challenging, with all the features that cause most iterative techniques to fail. In addition, the
general-purpose nature of TOUGH?2 means that different matrix characteristics may arise for
different types of problems. This explains the past heavy reliance of TOUGH?2 on the direct
solver MA28 [Duff, 1977].

The LUBAND Solver

LUBAND is a direct solver intended to replace the MA28 solver currently used in the
TOUGH?2 family of codes. It is derived from routines in the LAPACK [1993] package, which
have been enhanced and extensively modified to conform to the TOUGH2 architecture. It is
based on a LU decomposition with partial pivoting and row interchange, and allows the solution
of systems with a large number of zeros on the main diagonal. Unlike MA28 (which is a general
solver), LUBAND is a banded matrix solver, and as such it capitalizes on the significantly lower
and well defined memory requirements of these solvers. A pseudo-banded matrix structure is
automatically created by LUBAND for systems with irregular grids.

Although LUBAND can be applied without any problem in the current TOUGH?2
version, a new MESHMAKER routine was also developed to minimize the bandwidth of matrix

A and maximize the benefits of LUBAND. This was prompted by the heavy penalty which non-




optimization of the bandwidth exacts. Defining work W as the number of multiplications and
divisions necessary to convert the full matrix to an upper triangular form and to perform back
substitution, Price and Coats [1974] showed that for direct solvers

We NM* and S=NB (1)

and S is the minimum storage requirement, N is the order of the matrix and M its half-
bandwidth, the full bandwidth B being

B=2M+1. | 2)

The form of the matrix depends upon the ordering of equations. For a given problem size N,
work and storage are minimized when M is minimized. If I, J, K are the number of
subdivisions in the x-, y- and z-directions respectively, the shortest half-bandwidth is M = JK
when I>J> K. This is called standard ordering [Aziz and Settari, 1979], and the resulting
matrices are banded. As W increases with the square of A/, it is obvious that the penalty for non-
optimization of the ordering of equations may be substantial. Note that it is possible to use the
new MESHMAKER with MA28. _

A further substantial improvement was added to the new MESHMAKER, which features
as an option the implementation of the Alternating Diagonal Scheme (D4) for gridblock ordering.
D4 is a direct solution technique belonging to the matrix-banding class, which derives its benefits
from the numbering of the grid points. More details can be found in Price and Coats [1974). D4
ordering partitions the matrix into four distinct entities. This structure allows forward
elimination through the equations in the lower half of A, which zeroes all original entries in the
lower left quadrant of A and transforms it into a null matrix, while creating non-zero entries in
the submatrix A;y in the lower right quadrant of A. The submatrix Ay is of order N/2, and
allows the calculation of the lower half of x, from which the upper half is obtained by simple
substitution. Depending on the grid geometry, D4 makes possible execution speed improvement
by a factor ranging between a minimum of 2 and a maximum of 5.85 [Price and Coats, 1974]
over standard ordering. Moreover, it reduces storage requirements by a factor of 2.

LUBAND makes possible the solution of large multi-dimensional problems. The
maximum benefits of LUBAND are realized when used within the context of D4, i.e. to solve the
submatrix Arp. However, D4 can only be used with regular grids. Although it is theoretically

possible to solve A;p using MA28, the user is strongly advised against for two reasons: the
uncertainty over the storage requirements of MA28 and the known rapid deterioration of the
MAZ28 performance as the matrix fill-in increases (e.g. in 3-D problems). The user has also the
option of solving A;y using the package of Preconditioned Conjugate Gradient (PCG) solvers
available in TOUGH2 [Moridis and Pruess, 1995].

The BCGSTB Solver

BCGSTB, the second solver, belongs to the PCG family, and complements T2CG1
[Moridis and Pruess, 1995], the existing suite of iterative solvers in TOUGH2. It was developed
based on the BICGSTAB(®) algorithm [Sleijpen and Fokkema, 1993}, which is a recent extension
of the more traditional BICGSTAB algorithm of van der Vorst [1992]. It was developed to
address the problem of irregular convergence behavior of the PCG solvers in T2CG1 in
situations where the iterations are started close to the solution (e.g. when approaching steady
state). This is a weakness which afflicts most PCG solvers, and may lead to severe residual
cancellation and errors in the solution. BiCGSTAB() alleviates the irregular (oscillatory)
convergence common to the Bi-Conjugate Gradient (Bi-CG) [Fletcher, 1976] and Conjugate
Gradient Squared (CGS) [Sonneveld, 1989] methods in T2CG1, thus improving the speed of




convergence. Finally, it alleviates potential stagnation or even breakdown problems which may
be encountered in traditional BiCGSTAB. According to Sleijpen and Fokkema [1993],
BiCGSTAB() combines the speed of Bi-CG with the monotonic residual reduction in the
Generalized Minimum Residual (GMRES) method, while being faster than both. Theoretical
analysis of the underlying concepts also indicates that the BICGSTAB(Q) algorithm is especially
well-suited to the solution of very large (i.e. N > 50 000) problems [van der Vorst , 1992].

BCGSTB uses the Boeing-Harwell matrix storage scheme of TOUGH?2, and has the same
architecture as the other routines in T2CG1l. It uses a modified LU decomposition for
preconditioning, as well as JLU and MILU preconditioners with various levels of fill. Its
memory requirements increase linearly with the order 2 of the Minimal Residual polynomial. For
0 =4, it requires twice the memory of Bi-CG or CGS, which is half the GMRES requirement.

Examples

The solvers were tested in four test problems. Test problem 1 involves a laboratory
convection cell experiment. A porous medium consisting of glass beads fills the annular region
between the two vertical concentric cylinders. Application of heat generates a thermal buoyancy
force, giving rise to the development of convection cells. This problem has been discussed in
detail by Moridis and Pruess [1992). The EOS1 module is used. The domain consists of 16x26
= 416 gridblocks in (r,z), with NK = 1 and NEQ = 2, resulting in a total of N = 832 equations.

Test problem 2 examines flow as it reaches steady state in a simple two-dimensional
model of a heterogeneous porous medium. The basic computational grid is composed of 80 x
120 = 9600 grid blocks in (x,y). Impermeable obstacles with lengths uniformly distributed in the
range of 2 - 4 m are placed in the domain. These blocks are removed from the mesh, leaving a
total of 8003 grid blocks. EOS1 is used, and NK = NEQ = 1. Moridis and Pruess [1995] present
a thorough discussion of the problem.

Test problem 3 describes the WIPP (Waste Isolation Pilot Plant) repository, which is
planned for the disposal of transuranic wastes. It is located in a bedded salt formation, is brine
saturated and consists of a large number of beds with thin interbeds. The layer permeabilities
vary by four or five orders of magnitude. The purpose of the mode] is to evaluate effects of gas
generation and two-phase flow on repository performance within a complex stratigraphy. The
simulated domain consists of 1200 elements in a 2-D vertical grid. EOS3 is used in this
isothermal (NK = NEQ = 2) problem, which results in a total of N = 2400 equations. More
details can be found in Moridis and Pruess [1995].

Test problem 4 describes the TEVES (Thermal Enhanced Vapor Extraction System)
process, which is designed to .extract solvents and chemicals contained in the Chemical Waste
Landfill at Sandia National Laboratories. In this process the ground is electrically heated, and
boreholes at the center of the heated zone are maintained at a vacuum to draw air and vaporized
contaminants into the borehole and to a subsequent treatment facility. The 3-D grid consists of
1300 gridblocks. EOS3 is used (NK = 2, NEQ = 3), and N = 3900 equations are solved
Additional information can be found in Morzdzs and Pruess [1995].

Results and Conclusions ,
The results are presented in Tables 1 through 4 and Figures 1 and 2. In all the

simulations a modified LDU preconditioner was used with no fill-up of the resulting LU

preconditioned matrices. The following conclusions can be drawn:

(1) The LUBAND routine is a fast and efficient solver with modest memory requirements,

and can solve large problems previously untractable with the MA28 solver.

(2)  Bandwidth minimization significantly improves the LUBAND performance.

3) Coupling D4 with LUBAND increases the solver speed by at least a factor of 2, and

makes it competitive with iterative solvers in small and medium-sized matrices. However, the

speed advantage of the PCG solvers becomes apparent in three-dimensional problems.




4) BCGSTB is very competitive, and outperforms the T2CG1 iterative solvers in almost all
cases. There seems to be no measurable difference in performance forf =2 and = 4.

)] BCGSTB does not exhibit oscillatory behavior, and does not suffer from instability as it
approaches the steady-state condition.
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Table 1. Solver Performance in Test Problem 1
Number of Equations: 832 (2-D) Apple Macintosh QUADRA 800
Number Newtonian Maximum Minimum CPU Time
SOLVER of Af's Iterations Nee Ncea - (sec)
MA28 26 91 - - 331
DSLUBC 26 91 31 2 321
DSLUCS 26 91 35 2 295
DSLUGM 26 91 41 11 299
LUBAND 26 91 - - 246
LUBAND/D4 26 91 - - 98
BCGSTB(2) 26 91 36 4 301
BCGSTB®4) 26 91 32 8 300
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Table 2. Solver Performance in Test Problem 2 -

Number of Equations: 8,003 (2-D) IBM RS/6000 370
Number | Newtonian | Maximum | Minimum | CPU Time
SOLVER of Ar's Iterations Ncg Nq_; (sec)
MA?28 Could not solve the problem due to insufficient memory.
DSLUBC 10 17 225 172 158
DSLUCS 10 17 173 154 86
| DSLUGM 10 19 316 810 379
LUBAND 10 17 - - 55
LUBAND/D4 10 17 - - 26
BCGSTB(2) 10 17 64 16 40
BCGSTB#4) 10 17 64 24 33
Table 3. Solver Performance in Test Problem 3
Number of Equations: 2400 (2-D) IBM RS/6000 370
Number | Newtonian | Maximum Minimum CPU Time
SOLVER of Ar's Iterations Ncg Ncg (sec)
MA28 97 521 - - 450
DSLUBC 102 554 45 9 593
DSLUCS 110 594 45 6 408
DSLUGM 125 673 179 8 478
LUBAND 97 521 - - 946
LUBAND(opt) 97 521 - - 376 .
LUBAND/D4 97 521 - - 168
BCGSTB(2) 106 531 40 4 388
BCGSTB4) 104 529 40 8 399
Table 4. Solver Performance in Test Problem 4
Number of Equations: 3,900 (3-D) IBM RS/6000 370 v
Number | Newtonian | Maximum Minimum CPU Time
SOLVER of Ar's Iterations Ncg Nce (sec)
MAZ28 Could not solve the problem due to insufficient mer-rgry.
DSLUBC 50 249 36 8 619
DSLUCS 50 239 20 4 462
DSLUGM 50 250 28 7 451
LUBAND 50 232 - - 6412
LUBAND(opt) 50 232 - - 4228
LUBAND/D4 50 232 - - 1683
BCGSTB(2) 50 236 16 8 439
BCGSTB@4) 50 235 32 8 453
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Figure 1. CG solver performance in the first Newtonian iteration of the 10th timestep in Test

Problem 2.
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Figure 2. CG solver performance in the first Newtonian iteration of the 50th timestep in Test
Problem 2.




