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ABSTRACT

Convolution and deconvolution operations is by all
means a very important aspect of SSI analysis since it
influences the input to the seismic analysis. This paper
documents some of the convolution/deconvolution pro-
cedures which have been implemented into the DIGES
code. The 1-D propagation of shear and dilatational
waves in typical layered configurations involving a stack
of layers overlying a rock is treated by DIGES in a sim-
ilar fashion to that of available codes, e.g. CARES,
SHAKE. For certain configurations, however, there is
no need to perform such analyses since the correspond-
ing solutions can be obtained in analytic form. Typical
cases involve deposits which can be modeled by a uni-
form halfspace or simple layered halfspaces. For such
cases DIGES uses closed-form solutions. These so-
lutions are given for one as well as two dimensional
deconvolution. The type&of waves considered include P,
SV and SH waves. The non-vertical incidence is given
special attention since deconvolution can be defined dif-
ferently depending on the problem of interest. For all
wave cases considered, corresponding transfer functions
are presented in closed-form. Transient solutions are
obtained in the frequency domain. Finally, a variety
of forms are considered for representing the free field
motion both in terms of deterministic as well as prob-
abilistic representations. These include (a) acceleration
time histories, (b) tesponse spectra (c) Fourier spectra
and (d) cross-spectral densities.
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1.0 INTRODUCTION

1.1 Problem Definition The need to develop
acceptable floor response spectra has been an ongoing
process. Such spectra are affiliated with seismic loads
that the structure is subjected to and they represent the
prediction of the response of various elevations within
the structure that in turn can be utilized to predict the
response of sensitive equipment resting on a particular
elevation. These seismic loads are conventionally ex-
pressed in the form of design response spectra for a
number of reasons.

Consequently, the development of computational
schemes which can incorporate the information or as-
sessment pertaining to the seismic load and, in conjunc-
tion with the dynamic characteristics of the structure,
predict the elevation spectral responses has been the fo-
cus of earthquake response prediction. The definition of
the seismic load, which determines the theoretical basis
of the link between excitation and response, has been
deduced from both deterministic as well as stochastic
models.

On one hand, the deterministic approaches seek to
assess the elevation response due to a prescribed ground
excitation or dynamic load on the structure itself. On
the other hand, the stochastic approaches attempt to
define the floor response to an anticipated ground exci-
tation that belongs to a family of earthquakes which in
turn is described by farget response or power spectra.




Within the stochastic processes, however, the statis-
tics that accompany the definition of the ground excita-
tion are usually carried over to the floor response with
an ensewnble of realizations of the stochastic process that
defines the ground excitation. This simulation of earth-
quakes procedure that attempts to match the statistics
of the target spectrum has been used extensively both
by directly linking the target response spectrum to
an artificial earthquake or by implementing the con-
straint of the power spectral density function of the
ground motion. The latter earthquake simulation pro-
cess, more sophisticated in nature, maiches some of the
statistics of the target spectrum with realizations (sam-
ple earthquakes) deduced from the power spectrum of
the stochastic process.

The direct link between a stochastic characteriza-
tion of the ground excitation and the stochastic floor
response has received less attention. Through this pro-
cess, the statistical properties of an anticipated family
of earthquakes, expressed in its power spectrum, are

transferred to the structure of deterministically defined

dynamic properties.

1.2 DIGES Proflle

The present effort has been undertaken so that an
efficient theoretical/computational tool can be devised
such that seismic problems of concern to the regulatory
agencies can be effectively treated. In this study,
the direct link between the input excitation and the
output response in the stochastic sense is explored.
This dimension of the seismic analysis, along with the
earthquake simulation procedures and the deterministic
seismic and dynamic response of the structure, define
the DIGES coinputational domain.

Figure 1. The physical system

Figure 1 depicts the physical system whose response
to the action of dynamic loads is sought. Participating
in the generic physical system are the superstructure,
which is the focus of the resulting response, the founda-
tion and the soil medium the foundation/superstructure
is resting on. Further, the different dynamic loads that
can excite the physical system are shown. The overall
description of DIGES can be seen in Figure 2 where the
general capabilities are listed.
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Figure 2. Overall description of DIGES

According to Fig. 2, analyses of both stochastic and
deterministic nature can be undertaken. While in the
deterministic analysis the consideration of dynamic su-
perstructure loads has been implemented (an important
element of dynamic analysis) alongside with the classical
treatment of defined ground motion, the stochastic anal-
ysis mode incorporates both the earthquake simulation
and the direct transferring of stochastic properties.

The stochastic mode, which implements both the
simulation and the direct stochastic transferring) seeks
to evaluate elevation response spectra induced by ground
excitations that can be defined as both target response
spectra or cross-spectral densities of the stochastic pro-
cess describing the excitation.

The direct stochastic mode determines the cross
spectral density matrix of the response [Qy'(w)] for a
stochastic process with cross spectral density ® x(w)].
For a statistic process that defines the free field in terms
of target response spectra, a consistent cross spectral
matrix is formed and eventually transferted to the
elevation. The simulation seeks the elevation response
spectra through by utilizing statistical properties of the
responses at the same elevation due to an ensemble
of ground accelerations whose response spectra match
the target spectrum over some of its statistic properties.
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As shown, both simulation procedures are implemented
(one leads to ground motions from a response spectrum
theough its power spectrum and the other to ground
motions directly from the response spectrum).

2. FREE-FIELD EARTHQUAKE

A free-field earthquake may be in the form of
a response spectrum, power spectrum or
time varying acceleration.

Response Spectra to Power Spectra

The response spectrum characterizing the free-field
motion RSi(w,&) is known for the frequency range
of interest. This spectrum could also be called target
Response Spectrum. Assume that the power spec-
trum consistent with the target response spectrum is
®4(w, A) where {z\} is a vector of parameters that are
specific of the power spectrum. These parameters de-
fine the shape of the analytical expression of the psd
and they are unknown until the consistency between the
power and the response spectra is achieved. Over the
years, several closed form expressions that can describe
the power specirum of earthquake ground accelerations
have been proposed. Some of these PSD forms are listed
below:
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Earthquake Simulation

If the simulation option is selected to transfer
the free-field earthquake to the structure it is implied
that an ensemble of generated earthquakes will be trans-
ferced by utilizing the Transfer Function of the system
H(w) according to the relationship

Fy(w) = H(w) F (w) (1)

where Fp(w) and Fy(u)) are the Fourier expansions of
the input and output respectively.

The artificial earthquakes can be generated from
cither a pOWer or a response spectrum character-
izing the free-field stochastic process.

PSD Based Ground Accel. Simulation

A time history g(t) of an artificial acceleration can
be generated from the form

g(t) = ZZ vV ®a (wi) Awcos (wit + ¢;)
(2)
where, w; = 1Aw Aw = %}‘ while wy is a

cutoff frequency above which the power spectrum is
assumed to vanish, IN is the number of uniform
frequency increments, {¢,} is a vector of random phase
angles uniformly distributed between 0 and 27 (different
choices of the vector of random phase angles will lead
to a different simulated earthquake that has both the
mean and the autocorrelation of the stochastic process
described by the PSD of the stochastic free-field),
@a(w) is the power spectiral density of the process
and (%) is a modulating function that introduces the
nonstationarity in the generated record. It should be

noted that the simulated earthquake g(t) is periodic

with a period To = -%%

Simulation Based on Response Spectra

Simulated earthquakes that belong to the family
represented by the target response spectrum can assume
the form,

N
=¢(t)Y_Ci(w)sin(wit +¢:) (3]
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whete C;(w) is the amplitudes of the i contributing

sinusoid while @; and () are the same as above.
When the complete ensemble of generated earth-

quakes has been transferred to the structure, the re-

sponse of the systeiu at any d.o.f. can be then seen
as a single Response Spectrum which is deduced from
the average of the ensembie of response spectra each
deterministic process will provide,

Y 7=1 RSy (wi,¢)

n
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along with the statistical properties of the ensemble of
amplifications at every specified frequency wj, [m+0'] *
RS(w;) where o is the number of standard deviations
from the mean.

3. FOUNDATIONINPUT MOTIONS

The foundation input motion represents the re-
sponse of the rigid and massless foundation to the

free-field motion. Generally, the response of the foun-.

dation depends on its geometry, the properties of the
interacting soil and the nature of the impinging seismic
waves. A scattering transfer function H(w) links the
free-field motion Ug with the foundation input motion
Ug

Ug = H(w)US (5)
Described below are three different approaches that are

extensively utilized in determining the foundation input
motion:

a. Free-fleld applied directly

This case represents early stages of seismic analyses
of building foundation systems according to which the
criteria motion was directly applied at the bottom of
the soil springs and it reflects primarily cases involving
surface foundations.

= [
H(w)z. |- - - (6)
o]

where [I] and [0] are {3 x 3] unit and null matrices
respectively.

b. Convolution/Deconvolution

In this case the foundation input motion is the
free-field motion at some depth, depending on the char-
acteristics of the embedded foundation. The free-field
motion at a given depth is obtained through convolu-
tion or deconvolution depending on whether or not the

critetia motion is treated as an outcrop motion or a
surface (or near surface for very soft top layers) motion.

[Hr (w)]
Hw)=| --- (7)
(0]

Convolution in Uniform Soil Deposits
Inclined SH-wave

Figure 3 depicts the incidence of an inclined SH
wave propagating in a uniform soil deposit. The dis-
placement vector associated with such wave is of the
form

u(r,w,t) = Aetk(rop—cit)y (8)
where
p = sindfiy + cosBiy = propagation vector
d = i3 = direction of particle motion
T = Z111 + T2t = position vector
A, k, ¢, are the amplitude, wavenumber and phase

velocity respectively

The requirement that the surface is free of traction
yields that the reflected wave is in phase with the
incident wave. The total displacement is then

u3 (21, z2;w,t) = 2Acosage’(FLoind—cit)  (g)

wT2
cosl

ag =
Cs
Thus, the transfer function between the displace-
ment (or acceleration) at a depth zz = —h and its
counterpart at the surface is expressed in the form

u3 (21, —hjw,t)

H(w) - u3 (3190;“’7”

(10)

= cosap

ap = YR osh
Cs
Inclined P-waves
From the incidence of an inclined P-wave (seen in
Fig. 4) and the condition that the surface is traction-
free, the displacement vectors associated with the vari-
ous waves have as follows:

Incident P-wave:

(w1 uz us]T = Aj [sinf cosf O]T etk(rep1—cpt)




Reflected P-wave:

[u1 ua ua]T = A3 [sind — cosd O]T etk(ropz—cpt)

Reflected SV-wave:

[ur w2 u;]T = A3 [cosfy sinby O}T etko(reps—c.t)

Cp, Cs P and SV wave velocity respectively
Ay, 42,43 Wave amplitudes
P1,D2,P3 propagation vectors of incident P,

reflected P and reflected SV -wave
while, sinfy = i’,ﬁe- ko = sk and s = ?—

The amplitudes A7, 42 and
relation

A3 satisfy the

A+2ucos?@ —susin26p| [q1] _
—usin20  —spcos2bg | | q2|

_ [A +2uc0320] (11)
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where q1 = %{- qQ2 = %% and A\, & are the Lame
constants of the halfspace.

The total displacement due to the incident and
reflected waves is simply the superposition of the three
displacement vectors. Based on the above relations
various transfer functions of interest can be deduced.
Specifically, the transfer function between the horizontal
and the vertical displacement at the free-surface will be
of the form

Yiflze=0 _ (1 4 q1) sin8 + gzcosby
Ugl|z;=0 (1 — q1) cos@ + q2sindo

(12)

The transfer function between the vertical displace-
ment at a depth h fromhe free surface and the vertical
displacement at the surface is of the form

Ulzg=—h
U2||z3=0

(e""’L -q e‘“”) cosf + qze‘“' sinby

(1 — q1) cosf + gz2sinby

(13)

Similarly, the transfer function between the hori-
zontal displacement at a depth h and the horizontal
displacement at the surface takes the form

Ulllzg=-h _
Uyjlzz=0 N
(e"i“L + q1'L) sinf + qze'% cosfy
(1 + q1) sin8 + gacosby (14)
where ap = %cos@ and a, = %coseo l;epre-

sent dimensionless frequencies for P and SV waves
tespectively.

For vertical incidence (§ = 0) the transfer function
matrix reduces to a single relationship between the
vertical displacement at a depth h and the vertical
displacement at the free surface, specifically,

YUazg=~h
Hlza=h cosal ol =—
U2||z3=0 L

Inclined SH-wave in Soil Deposit Overly-
ing a Rock Formation

In such formation, Figure 5, the halfspace repre-
sents the rock underlying the soil. Thus, the transfer
functions will represent relations between the base rock
(outcropping) motion and the motion in the soil de-
posit. The displacement vectors induced by the various
waves involved have as follows:

Incident SH-wave:

1 i -
ug ) — Ale:k(rtpg ¢s,Rt)

Reflected SH at interface:

ugz) — Azeik(rom;cs,nt)

Refracted SH across interface:

'
ug';) = Aj eik(r op1 ~cs,st)

Reflected SH-wave at surface:

7
u(34) = Ajeiko(r om —cs,st)

where,

CS,R+C5,S SH-wave velocities in the rock and
soil respectively

r, r :  position vectors WRT coordinate systems
P1, -y P4 propagation vectors

Ay,.., A3 : wave amplitudes

k,ko wave numbers

Ry, LR shear moduli of soil and rock respéctively




Continuity of total stresses 793 and total displace-
ments U3 across the interface yields,

Ar] _As[1—gq 14+4q]| [ eo#
{Az}—_z—{l-*-q 1—q||eton| (19)
where,

35 pcosh . c .
g = BRZ2IES = 9B ingy = 53 5ing

cs,_gcoaeuﬁ CS,S CS,R

Based on the above relations the following transfer
functions can be deduced:

motion at depth x; = -h

Hl (w) =

motion at sur face

_1 (¢ 4 e~ion)

2

motion at depth ::'2 = -h

H; (w) =

motion at inter face
eldh 4 g—ian

eiCH | e—i0H

motion at depth :clz =-h

Hi(w) = - -
() at inter face (no top soil)
eiah + e—iah
(1 —g)eion + (1 + q)etan
Considering that the rock is sufficiently stiff, the latter
transfer function represents the relation between the
motion at depth h and the outcropping motion. One

should further note that the following relations hold
between the transfer functions above:

H] (w) Hf' () = B} (w) Hf () =1

H (w)H{' (w) #1

The three amplitudes_ A1 , Az and A3 are related
with two equations. The third equation requited to
completely define them depends on the selected input
to the system. For example, if the outcropping motion
Uye"“‘" is known then 4; = %Ug and the system is
completely defined.

c: Kinematic Interaction

In the case of foundation input motion which incor-
porates kinematic interaction effects due to the scatter-
ing of the seismic waves by the rigid foundation, H (w)

is a [6 x 3] frequency dependent matrix containing the
scattering coefficients which depend on the types of seis-
mic waves considered, the properties of the underlying
medium and the geometry of the foundation itself.

Htransl (u.))
Hw =] --- (16)
H, ot (W)
When kinematic interaction is considered, the

3z3 H,otni submatrix in H{w) is no longer a null
matrix. Specifically, it contains scattering coefficients
relating the rocking and torsional motion of the foun-
dation due to the horizontal and vertical components of
the free-field motion Ug.

The dependency of the foundation input motion
on the geometry of the massless foundation and the
interface condition with the soil, on the properties and
the stratigraphy of the underlying soil and on the nature
of waves leads to a complex problem. While in the
generic complex configuration techniques in boundary
integral or finite element methods need to be employed,
for surface foundations with simple geometries (circular
or rectangular) that rest on uniform halfspaces and are
subjected to the action of plane waves analytical closed-
form expressions of the scattering coeflicients have been
deduced by various researchers (Ref. 7, 8, 11).

Specifically, for a rectangular foundation
(2ax2b) resting on a half space and subjected to
an incident nonvertical wave with propagation in the
x1 direction and vertical angle of incidence fy (an-
gle between the normal to the propagation and the
horizontal) which leads to apparent surface velocity
C, = velocity of propagation

cosfy
= P, S or Rayleigh depending on the nature of waves),

the scattering functions are in the form,

(velocity of propagation

sing
e}
Rzlza = Rzgzl =0

3 (ainﬁ — cos 5)

Rzltl = Rzztz = R2323 =

Rz;;zz = ;E ,8
_ —3az sinf3
Feres = T 908 (%3

where, @ = dimension normal to propagation and

B = & Similarly, for a circular foundation of radius
a

r:

~ cosf3 )




Rzl’! = Rzzzz = stzg = / FCOS;J.d/J.

q':13:3 - RZZZL =0

3
—~162
Rz;g:z = ;1737/; Fcosudu

I
= / Tpsinpdu
0

where, 1 = %—fandﬁz%tandf—\/l—
For the circular case Luco (9) has deduced the ﬁrst
approximation in the form

Rnta =

sinf3 32
Rzlzl = Rzzzz = Rzaza ~ _IH___ ~1-— _é_
3 (.n'nﬂ
g\ B

Rase; = 2Rzpz5 = —

t 12

9.8

Fig. 4. Uniform Soil: P-Wave Incidence

— cosﬁ) =~ -8 -

it should be noted that when the interface condition
is not relazed there exists an additional rocking scatter-
ing function Rz,z; = 0 which for surface foundations
is small and for practical purposes can be ignored.

K

Fig. 5. Soil Overlying Rock: SH-waves
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| Fig. 8. Description of the SSI problem




4. Numerical Examples and Summary

In the previous section a scattering matrix H(w)
has been formed that allows the transferring of the
free-field motion to the foundation. In addressing the
applicability of the three different approaches the fol-
lowing points are raised:

0 The direct application of the free-field motion on
the foundation results in only translational com-
ponents of the foundation motion regardless the
soil stratigraphy, wave-type and the position of the
foundation depthwise.

0 The convolution/deconvolution approach does
incorporate the stratigraphy by including the out-
crop motion, the wave-type and the position of
the foundation mat but it fails to introduce any
torsional components on the foundation.

0 The kinematic interaction approach incorpo-
rates the wave-type, the foundation geometry, the
soil deposit stratigraphy (analytic closed-form solu-
tions are possible only for uniform halfspace), and
allows the torsional and rocking effects to appear
in the lower half of the scattering matrix. For the
simple model of a surface foundation resting on a
halfspace and subjected to a nonvertically incident
SH-wave, the differences between the convolution
approach and the kinematic interaction extend even
to the upper part of the scattering matrix. Appar-
ently, the translational components of the free-field
motion are altered for the kinematic interaction by

the matrix coefficient 5%&.

In order to address the basic SSI problem which
is defined as the transferring of a free-field motion
(expressed in the form of a response or power spectrum)
to a location on the structure, a simple siructural model
has been adopted (stick model on the foundation with
a 6-dof mass) and subjected to various nonvertically
incident waves, Fig. 6. Assuming that the free-field
motion is a cross-spectral density matrix ®y(w), the
relation -

8, (w) = B (@F2: (W) E* (@)T  (17)
leads to the cross-spectral density of the response
$,(w). The diagonal elements of ®;(w) are the
power spectra of the particle motion in the free-field
and the off-diagonal represent the cross-correlation of
the motion in the three directions. For a free-field tno-
tion represented by a response spectrum, say Reg. 1.60,
a compatible power spectrum is generated and trans-
ferred to the structure through Eqn (17). The response
power spectrum is finally converted to a compatible
response spectrum.

Incident SH-wave

The response spectra at the mass point of Fig. 6
are evaluated for incident SH-waves at different angles
8y (05 = 90° represent vertical incidence and 4, = (¢
indicates surface SH waves). The input is a Reg. 1.60
response spectrum (single direction of particle motion)
while the output response spectra include a translational
component along 3 (Fig. 7) and a torsional component
IR;,z,5 due to the kinematic interaction {Fig. 8).

Spectral Damping = 2 percent
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Fig. 7. Translational RS at Mass Point
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Fig. 8. Torsional RS at Mass Point




Incident P-wave

The same model is subjected to a P-wave impinging
at different angles. Along with the vertical (Fig. 9)
and horizontal component {Fig. 10), a rocking response
spectrum about axis Ty (Fig. L1) is evaluated.

Spectral Damping = 2 percent
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Fig. 9. Vertical RS (inclined P-wave)
Spectral Damping = 2 percent
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Fig. 10. Horiz. RS (inclined P-wave)
Spectral Damping = 2 percent
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Fig. 11. Rocking RS (inclined P-wave)
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