

256
8.26.77
UC-71c Plus
UK-
Germany

Sh. 1350 ORNL/TM-4716

Cerium-Promoted Dissolution of PuO₂ and PuO₂—UO₂ in Nitric Acid

D. E. Horner
D. J. Crouse
J. C. Mailen

MASTER

~~APPLIED TECHNOLOGY~~

Any further distribution by any holder of this document or of the data therein to third parties representing foreign interests, foreign governments, foreign companies and foreign subsidiaries or foreign divisions of U.S. companies should be coordinated with the Director, Division of Reactor Research and Development, Energy Research and Development Administration.

This document is
PUBLICLY RELEASABLE
Dave Hamrin, ORNL
Authorizing Official
Date 3-23-2011

~~Released Per Announcement in Energy
Research Abstracts. Distribution Limited
to Participants in the LAMER Program.
Others request from TIC.~~

OAK RIDGE NATIONAL LABORATORY
OPERATED BY UNION CARBIDE CORPORATION FOR THE ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION

Printed in the United States of America. Available from
the Energy Research and Development Administration,
Technical Information Center
P. O. Box 62, Oak Ridge, Tennessee 37830
Price: Printed Copy \$4.00; Microfiche \$3.00

4.50

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the Energy Research and Development Administration/United States Nuclear Regulatory Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

ORNL/TM-4716
Dist. Category UC-79c

Contract No. W-7405-eng-26

CHEMICAL TECHNOLOGY DIVISION

CERIUM-PROMOTED DISSOLUTION OF PuO_2 AND $\text{PuO}_2\text{--UO}_2$ IN NITRIC ACID

D. E. Horner, D. J. Crouse, and J. C. Mailen

Manuscript Completed - June 1977

Date Published - August 1977

NOTICE
This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Energy Research and Development Administration, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

This document is
PUBLICLY RELEASEABLE
Dave Hamrin, ORNL
Authorizing Official
Date 3-23-2011

Prepared by the
OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee 37830
operated by
UNION CARBIDE CORPORATION
for the
ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION

MASTER

~~Released For Announcement in Energy
Research Abstracts. Distribution Limited
to Participants in the EMER Program.
Others request from TIC.~~

TABLE OF CONTENTS

	Page
	v
ABSTRACT	
1. INTRODUCTION	1
2. REAGENTS AND EXPERIMENTAL PROCEDURE	2
3. TESTS WITH UNIRRADIATED PuO_2 MICROSPHERES	7
3.1 Dissolution in Nitric Acid	7
3.2 Effect of Ce^{3+} on Dissolution in Nitric Acid	7
3.3 Effect of Ce^{4+} on Dissolution in Nitric Acid	9
3.3.1 Effect of nitric acid concentration on dissolution with Ce^{4+}	10
3.3.2 Instantaneous dissolution rate as a function of Ce^{4+} concentration	12
3.3.3 Effect of temperature on the instantaneous dissolution rate	12
3.3.4 Plutonium-cerium valence changes during dissolution	14
3.3.5 Solution potential as an indicator of dissolver effectiveness	16
3.4 Tests with Other Oxidants	16
3.4.1 Peroxydisulfate and others	16
3.4.2 Ozonized-oxygen	18
3.5 Total Dissolution Tests	19
4. TESTS WITH UNIRRADIATED PuO_2-UO_2 PELLET RESIDUES	22
4.1 Precipitation of Plutonium from Dissolver Solutions	27
5. EFFECT OF RUTHENIUM ON Ce^{4+} -PROMOTED PuO_2 DISSOLUTION	27
6. CORROSION TESTS	30
7. DISSOLUTION TESTS WITH IRRADIATED UO_2-PuO_2	30
8. REFERENCES	34

ABSTRACT

Several experiments were run to determine the feasibility of using cerium as an alternative to fluoride in promoting rapid dissolution of difficultly soluble PuO_2 in nitric acid. Results show that Ce^{4+} , but not Ce^{3+} , promotes dissolution with a maximum rate in boiling 4 M HNO_3 . Other strong oxidants, including ozone, permanganate, and persulfate, were tested but were shown to be ineffective. During dissolution, the Ce^{4+} is reduced to Ce^{3+} , which must be reoxidized electrolytically or with ozone. Ruthenium also reduces the Ce^{4+} catalytically, being oxidized to the volatile RuO_4 . Thus successful application to dissolution of irradiated fuel residues would require modification of the equipment or procedures in such a way as to encourage complete volatilization of ruthenium from the dissolver system. However, application of this method to the treatment of plutonium appears promising.

1. INTRODUCTION

In the advanced reactor technology, mixed plutonia-urania (nominally 20 to 25% PuO_2 --balance UO_2) fuels will probably be used initially in liquid metal cooled fast breeder reactors (LMFBRs). After irradiation, the fuel elements will undergo a mechanical subdivision followed by complete dissolution in nitric acid prior to a Purex solvent extraction reprocessing step. PuO_2 dissolves in HNO_3 at an extremely slow rate; solid solutions of PuO_2 -- UO_2 dissolve much faster. Among the factors affecting the formation of solid solutions and hence the ease of dissolution are: (1) the method of fuel fabrication (i.e., whether mechanically blended oxides, co-precipitated oxides, or sol gel oxides), (2) the degree of sintering and temperature prior to irradiation, and (3) the irradiation level. Studies at ORNL have shown that the combination of high burnup levels and high temperatures prevailing in most parts of the fuel elements can produce a homogeneous solid solution and thus, in general, more readily soluble material. However, at the cooler outer portions of the fuel rods, initial nonhomogeneity of the fuel oxides may result in material that is difficult to dissolve ("difficultly soluble material.") As a result of this and possibly other factors, after dissolution of most of the spent fuel elements, residues composed of difficultly soluble PuO_2 , with small amounts of UO_2 , and more refractory fission-product metals, such as ruthenium, are obtained. Dissolution of these residues at a practicably fast rate requires the presence of small amounts of a dissolution promotor such as fluoride. The effectiveness of fluoride has been known for a long time, but if it is not subsequently complexed or

removed, it has the disadvantage of causing rapid equipment corrosion and complicating the ultimate disposal of Purex process wastes.

Other studies offering possible alternatives¹⁻³ have shown that cerium (some of which is already present as a fission product) may be useful as a promotor for dissolution in dilute nitric acid (Sect. 6). Besides the advantage of not being a foreign material, cerium does not complex components in the process streams and may be less corrosive than fluoride. For processing LMFBR fuels, the use of a promotor would be restricted to a small, secondary dissolver for completely dissolving the difficultly soluble residues. The output stream from this dissolver would then be combined with that from the primary dissolver prior to solvent extraction.

This report describes the results of recent tests made at ORNL (1) to define the process variables affecting dissolution of PuO_2 using cerium, and (2) to evaluate this promotor for use in reprocessing LMFBR fuels and/or processing nonirradiated scrap materials containing PuO_2 . Application in the latter situation appears most promising. Application to irradiated LMFBR processing, however, would depend on developing a practicable way, if possible, of quantitatively removing ruthenium prior to or during the dissolution step.

Most of the results described in this report have been previously reported in progress reports.¹

2. REAGENTS AND EXPERIMENTAL PROCEDURE

Most of the dissolution tests were made using a composite batch of PuO_2 microspheres composed of several batches originally prepared at ORNL. This batch of microspheres was prepared by the sol-gel technique,

steam dried at 150 to 200°C with 1-hr holds at 250 and 400°C, followed by steam calcining at 1150°C. Final densification was made in argon-4% hydrogen with a 2-hr hold at 800°C and a 4-hr hold at 1150°C. For better size-uniformity, the spheres were screened with -80 + 100 mesh screens (149- to 177- μ) and composited for use. Some typical (average of several different batches) physical and chemical properties are the following:

Bulk density, g/cc: 11.0 (about 95% of the theoretical value of 11.6 g/cc).

Pore volume, cc/g: 0.0023.

Surface area, m^2/g : 0.0120.

Oxygen, wt %: 12.0 (11.8 theoretical).

Carbon, ppm: 77.

Other chemical impurities in the original $\text{Pu}(\text{NO}_3)_4$ solution used to make the microspheres included very small amounts of iron, vanadium, and uranium. The effect of these impurities on dissolution was assumed to be negligible. Studies with dissolution of pellets made by Uriarte and Rainey^{2b} showed that the oxide density is a very important factor affecting the dissolution rate with the rate increasing with decreasing density. This relationship must also be true for the very dense microspheres because their dissolution in nitric acid without a promotor was very slow ($<10^{-4}$ mg $\text{cm}^{-2}\text{min}^{-1}$).

A three-necked Pyrex flask fitted with a reflux condenser, thermometer, and sampling tube with a porous frit filter was used for these tests. A weighed (1-g) representative sample of the microspheres when added to 150 ml of boiling acid was taken as the initial time; filtered duplicate samples of the solution were then taken at appropriate time

intervals. The average values of the duplicate determinations of the gross alpha activities were subsequently plotted versus the dissolution time on linear scales. In most cases, straight lines could be drawn through the points with only a small scatter, indicating that the dissolution rate dA/dt , where A = activity of plutonium in solution, was constant during the time span of the experiment. Also, since <20% of the original amount of PuO_2 was dissolved (which much less than this in most cases), the change in surface area during the dissolution could be neglected for purposes of calculating the instantaneous dissolution rate (IDR). Under these conditions, the IDR was defined and calculated by the following equation:

$$\text{IDR (mg Pu cm}^{-2} \text{ min}^{-1}) = \frac{mv}{swa} = 1.2 \times 10^{-8} \text{ m ,} \quad (1)$$

where (under standardized conditions)

m = slope of line,

v = dissolver solution volume (150 ml),

s = initial specific surface area ($0.012 \text{ m}^2/\text{g}$),

w = weight of sample taken (about 1 g),

a = specific activity of the plutonium (analytically determined to be 1.03×10^8 counts per minute per milligram of plutonium).

The IDR in terms of mg of $\text{PuO}_2 \text{ cm}^{-2} \text{ min}^{-1}$ would be obtained by

dividing Eq. (1) by 0.882; the IDRs reported, however, are in milligrams of plutonium per square centimeter per minute. Although some of the plots extrapolated to the origin as they should, many intercepted the ordinate or abscissa near the origin. Two conceivable situations considered to explain this intercept with the ordinate include (1) the presence of a

small amount of "fines" (smaller size particles that might have adhered to larger particles and thus have escaped separation in the screening procedure) that would be expected to have a faster dissolution rate because of the much greater total surface than the original microspheres, and (2) the inclusion of ^{241}Am alpha activity in the gross alpha determinations. Neither of these conditions, however, were shown to account for the ordinate intercept problem. In tests of the first case, a 1-g sample of PuO_2 microspheres was pre-dissolved in boiling 8 M HNO_3 for 1 hr to completely dissolve any fines that might have been present. The remaining larger particles were then subjected to the standard dissolution procedure. The slope of the curve and the IDR with and without pre-dissolution, however, were essentially the same.

In the second case involving ^{241}Am , it was shown in one dissolution test that when gross alpha activities and the alpha activivites of plutonium only (excluding Am activity) were plotted, the resultant straight lines had the same extrapolated intercept with the ordinate. Also, the differences between the two slopes was exactly equal to the differences in specific activities, resulting in identical calculated IDR values (Fig. 1). For simplicity's sake, we continued to use the gross alpha activities and corresponding specific activity in all calculations rather than using the plutonium-alpha determinations.

Although the intercept problem was not solved, the slopes of the lines should still represent correctly the change in activity with respect to time, dA/dt , on which the IDR calculations are based.

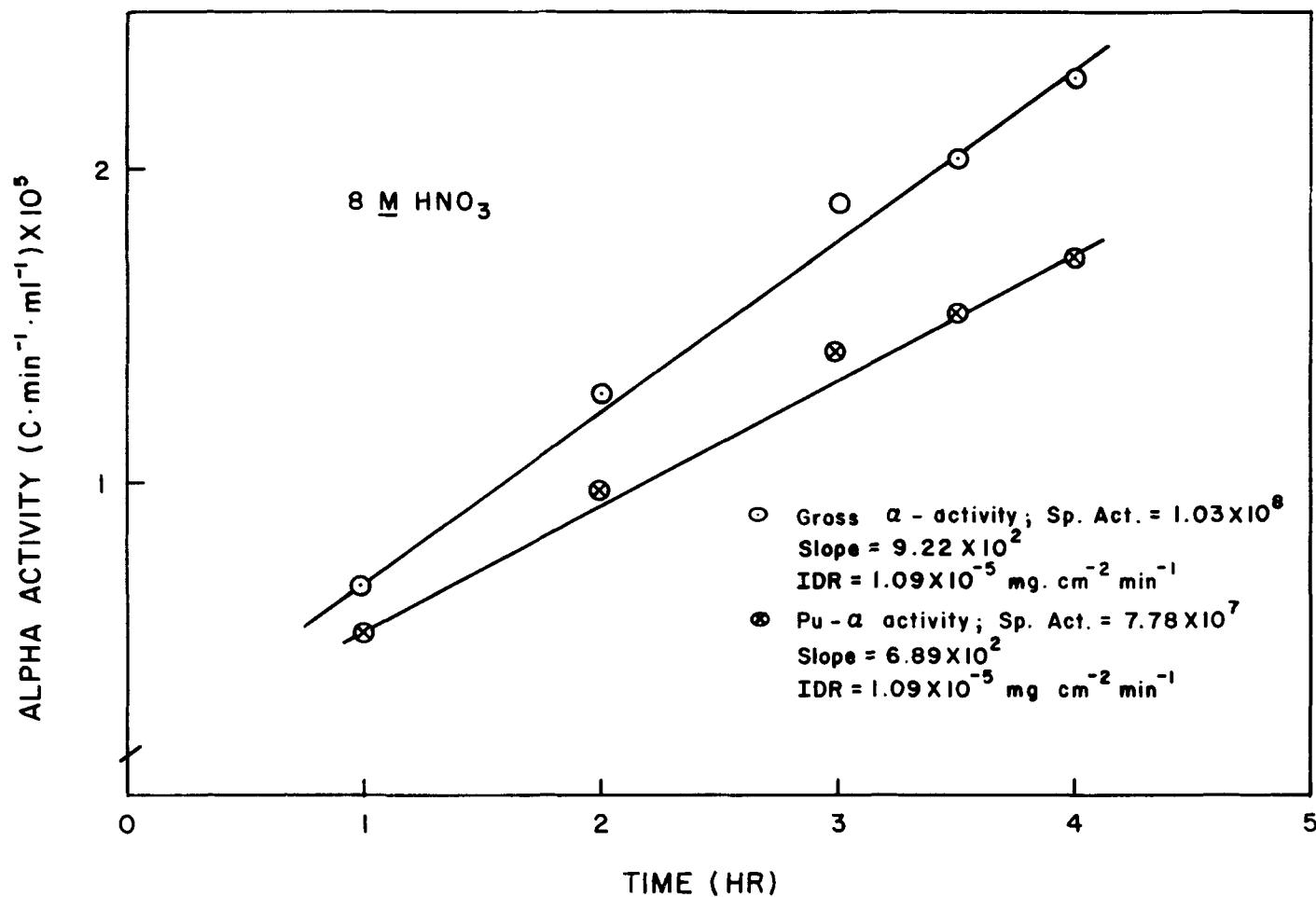


Fig. 1. Dissolution of PuO₂ microspheres in 8M HNO₃ - Comparison of IDR's based on gross alpha and plutonium alpha activities.

3. TESTS WITH UNIRRADIATED PuO_2 MICROSPHERES

3.1 Dissolution in Nitric Acid

Without the presence of a dissolution promotor such as fluoride or cerium, high-fired PuO_2 (even in its most soluble form) is only very slowly ($<10^{-4}$ mg $\text{cm}^{-2} \text{min}^{-1}$) soluble in nitric acid solutions. Many previous studies have shown the dissolution rate depends markedly on the physical state of the PuO_2 oxide, particularly as this is determined by the preparation method. As an example, the present tests using very dense PuO_2 microspheres resulted in quite different dissolution properties in nitric acid than previous tests by Uriarte and Rainey^{2b} with PuO_2 fuel pellets. In their studies, the dissolution rate increased with the fourth power of the HNO_3 concentration between 7 and 14 M HNO_3 . By contrast, with the microspheres, an increase in the nitric acid concentration between 2 and 16 M resulted in only a relatively small increase in the dissolution rate (Fig. 2). The reason for this large difference in acid solubility between the two forms of oxides is not known, but it may involve the difference in oxide densities.

Figure 2 further indicates that with the microspheres similar results were obtained with increasing nitric acid solutions (initially containing 0.1 M Ce^{3+}).

3.2 Effect of Ce^{3+} on Dissolution in Nitric Acid

The addition of either Ce^{3+} or Ce^{4+} has been reported to promote dissolution of PuO_2 in azeotropic nitric acid.³ These results were confirmed in tests using both PuO_2 microspheres and residues left after initial dissolution of UO_2 - PuO_2 mixed oxides. The present tests, however, indicate that the promotion effect in concentrated HNO_3 was probably due to

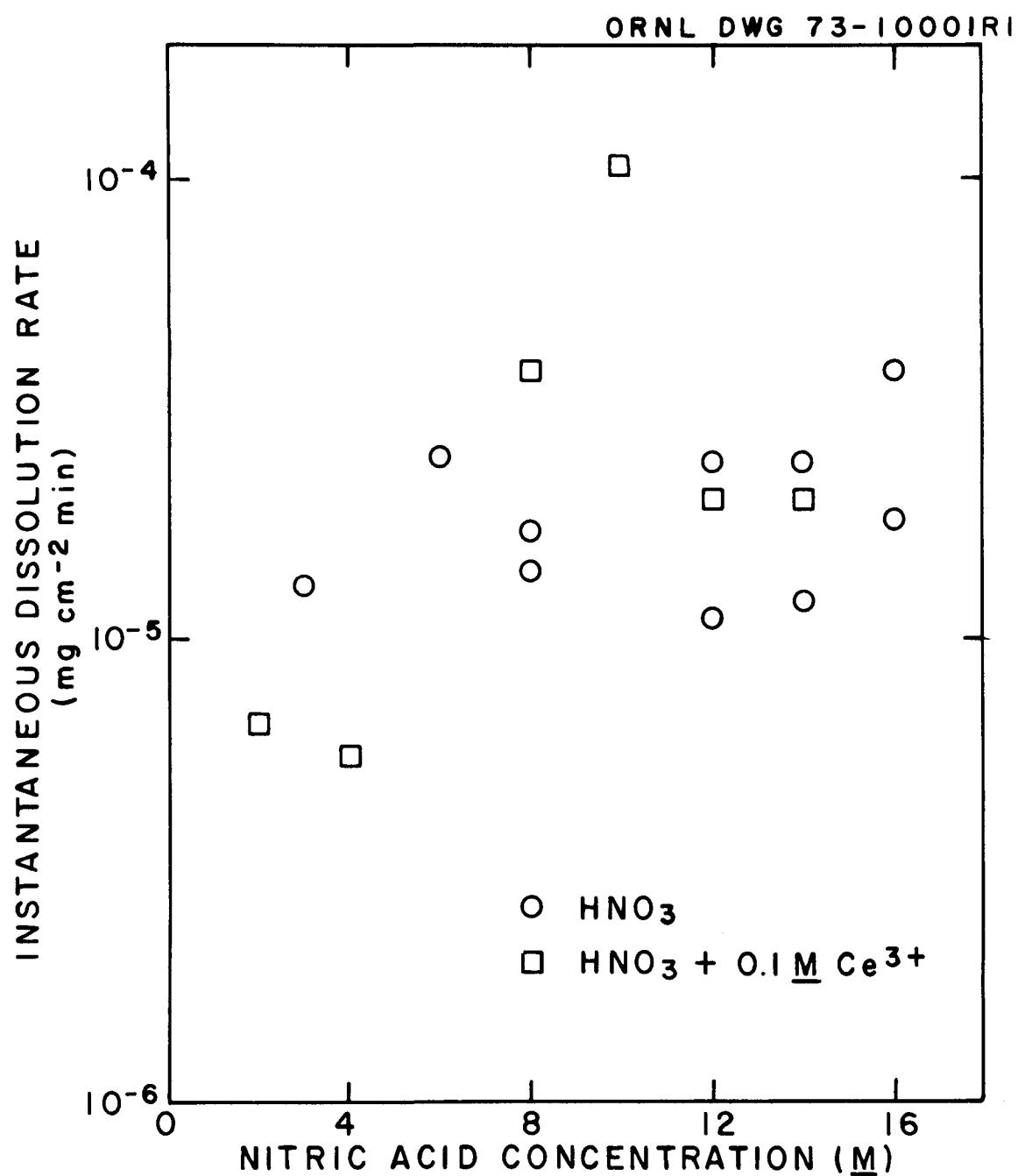


Fig. 2. Effect of nitric acid concentration and the presence of Ce^{3+} on the plutonium dissolution rate.

oxidation of a portion of the Ce^{3+} to Ce^{4+} by the boiling HNO_3 , rather than to the Ce^{3+} per se. The equilibrium amount of cerium oxidized was determined in separate tests to be only 1.3% in 5 hr with boiling 12 M HNO_3 and 35% in 5 hr with boiling 16 M HNO_3 . These results qualitatively explain why dissolution promotion initially with 0.1 M Ce^{3+} did not occur even up to 14 M HNO_3 using the microspheres; 16 M HNO_3 with Ce^{3+} was not run but would not be expected to result in appreciable promotion of the microsphere dissolution because the equilibrium fraction of Ce^{4+} would be too low. However, for the much more easily soluble residues remaining after pre-dissolving mixed $\text{PuO}_2\text{-UO}_2$ oxide as unirradiated pellets in 8 M HNO_3 , much smaller amounts of Ce^{4+} promoted dissolution in HNO_3 , even as dilute as 8 M (see Sect. 4.).

3.3 Effect of Ce^{4+} on Dissolution in Nitric Acid

In sharp contrast to results with Ce^{3+} , the presence of Ce^{4+} in HNO_3 increases the IDR over that for HNO_3 alone by several orders of magnitude. The mechanism responsible for this promotion of the dissolution rate by Ce^{4+} was not determined in these studies. The quantitative oxidation of Pu^{4+} by the Ce^{4+} readily occurs and may increase the promotion although it may not be a necessary part of the mechanism. That this Pu^{4+} oxidation may not be necessary is confirmed by results of recent tests made by Tallent with ThO_2 whose dissolution rate in nitric acid was promoted to a small degree by Ce^{4+} ; this result suggests by analogy that oxidation may not be necessary in dissolution of PuO_2 and UO_2 . However, oxidation

may enhance the promotion effect for PuO_2 dissolution in the following way. The ionic diameter of the Ce^{4+} cation is very close to that of Pu^{4+} (0.90 \AA° vs 0.92 \AA°),⁴ whereas both Ce^{3+} and PuO_2^{2+} have greater ionic diameters. With this situation, it can be postulated that the mechanism involves simple replacement of Pu^{4+} with Ce^{4+} in the crystal lattice, oxidation of Pu^{4+} to PuO_2^{2+} which then breaks open the surface lattice as these larger ions are released into the solution. Further work is needed to determine the mechanism of dissolution. Our primary purpose in this study was to develop a process to ensure total dissolution in a practical time interval. For this, knowledge of the effect on dissolution of the process variables, including the Ce^{4+} and HNO_3 concentrations, temperature, etc. are essential. Results of our tests to determine these effects are described below.

3.3.1 Effect of nitric acid concentration on dissolution with Ce^{4+}

In the presence of Ce^{4+} , the effect of changing the initial HNO_3 concentration is very large. Batch tests showed that between 2 and 4 M HNO_3 , the IDR increased and then rapidly decreased as the acidity increased from 4 to 16 M , resulting in a maximum rate at about 4 M HNO_3 (Fig. 3). Thus at 4 M HNO_3 with 0.1 M Ce^{4+} , the IDR ($3.3 \times 10^{-2} \text{ mg cm}^{-2} \text{ min}^{-1}$) was about a factor of 200 greater than that at 16 M HNO_3 ($1.6 \times 10^{-4} \text{ mg cm}^{-2} \text{ min}^{-1}$). Even at 16 M HNO_3 , (with 0.1 M Ce^{4+}), the IDR is about a factor of 5 greater than that for 16 M HNO_3 when used alone (about $3 \times 10^{-5} \text{ mg cm}^{-2} \text{ min}^{-1}$). The reason for the maximum at 4 M HNO_3 is unknown but must occur as a result of two opposing factors affecting the dissolution rate. Again, further work designed to understand the mechanism involved is desirable.

ORNL-DWG 75-1035

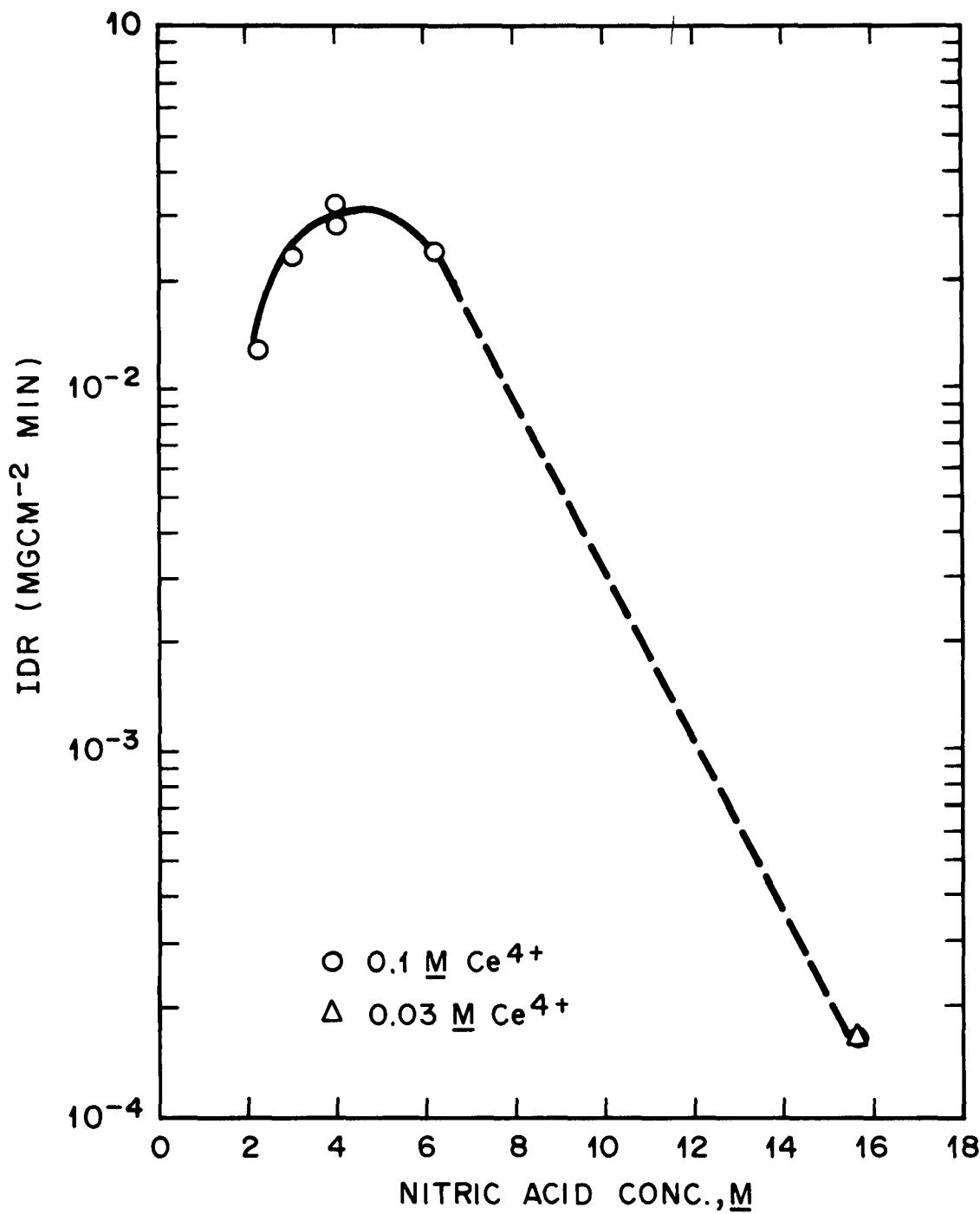


Fig. 3. IDR of PuO₂ at various concentration of HNO₃ containing Ce⁴⁺ at boiling temperatures.

ORNL DWG 77-283

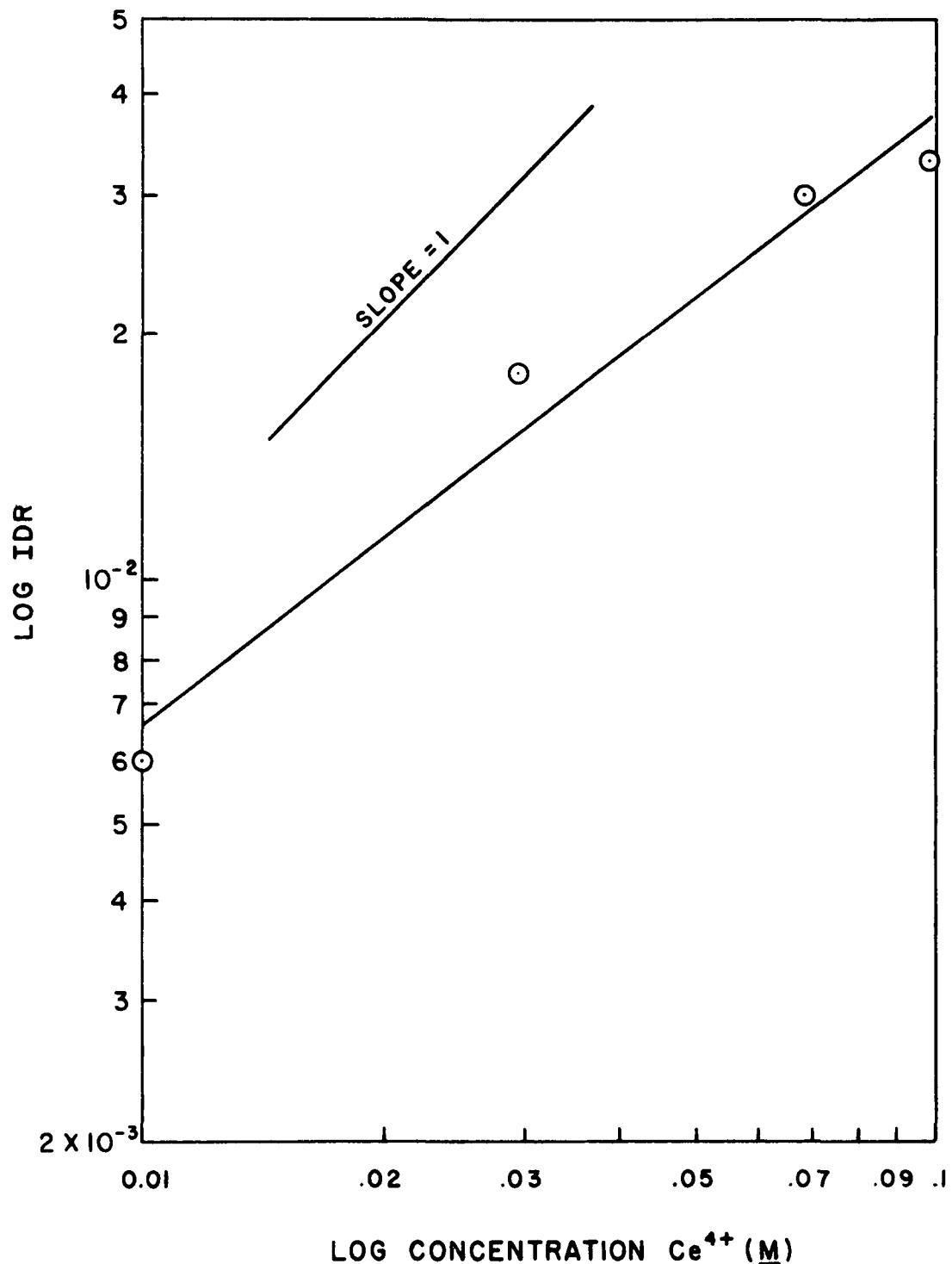


Fig. 4. Instantaneous dissolution rate as a function of the initial Ce^{4+} concentration in 4M HNO_3 .

3.3.2 Instantaneous dissolution rate as a function of Ce⁴⁺ concentration

Consistent with the law of Mass Action for a component in a chemical system, an increase in the Ce⁴⁺ concentration increases the rate of reaction (dissolution assuming the redox reaction of Sect. 3.3.4 is a necessary part of the mechanism). This increase is mainly proportional to the initial Ce⁴⁺ concentration for the low Ce⁴⁺ concentration but less than proportional at higher concentration. A log-log plot of the IDR vs the Ce⁴⁺ concentration gives a slope = 1 for the data at the lower concentration (Fig. 4). This suggests that the order of reaction with respect to Ce⁴⁺, at least at low concentrations, is one and thus could involve the formation of PuO₂⁺ in the dissolution mechanism. If present, the PuO₂⁺ would rapidly disproportionate to Pu⁴⁺ and PuO₂²⁺. At the higher concentration, the dissolution rate may be limited by a factor or factors related to the limited surface area of the solid (Fig. 5), which would account for the decrease in the rate at higher Ce⁴⁺ concentrations.

In any case, these results suggest that in any practical application, a relatively low steady-state concentration of Ce⁴⁺ would be used; however, see Sect. 3.3.4 for the importance of a high Ce⁴⁺/Ce³⁺ ratio.

3.3.3 Effect of temperature on the instantaneous dissolution rate

As might be expected, the rate of dissolution increases with increasing temperature. As a result, the boiling temperature is recommended for process uses. When the log of IDR is plotted versus the reciprocal of the absolute temperature, 1/T, a least-squares fit straight line was drawn (Fig. 5).

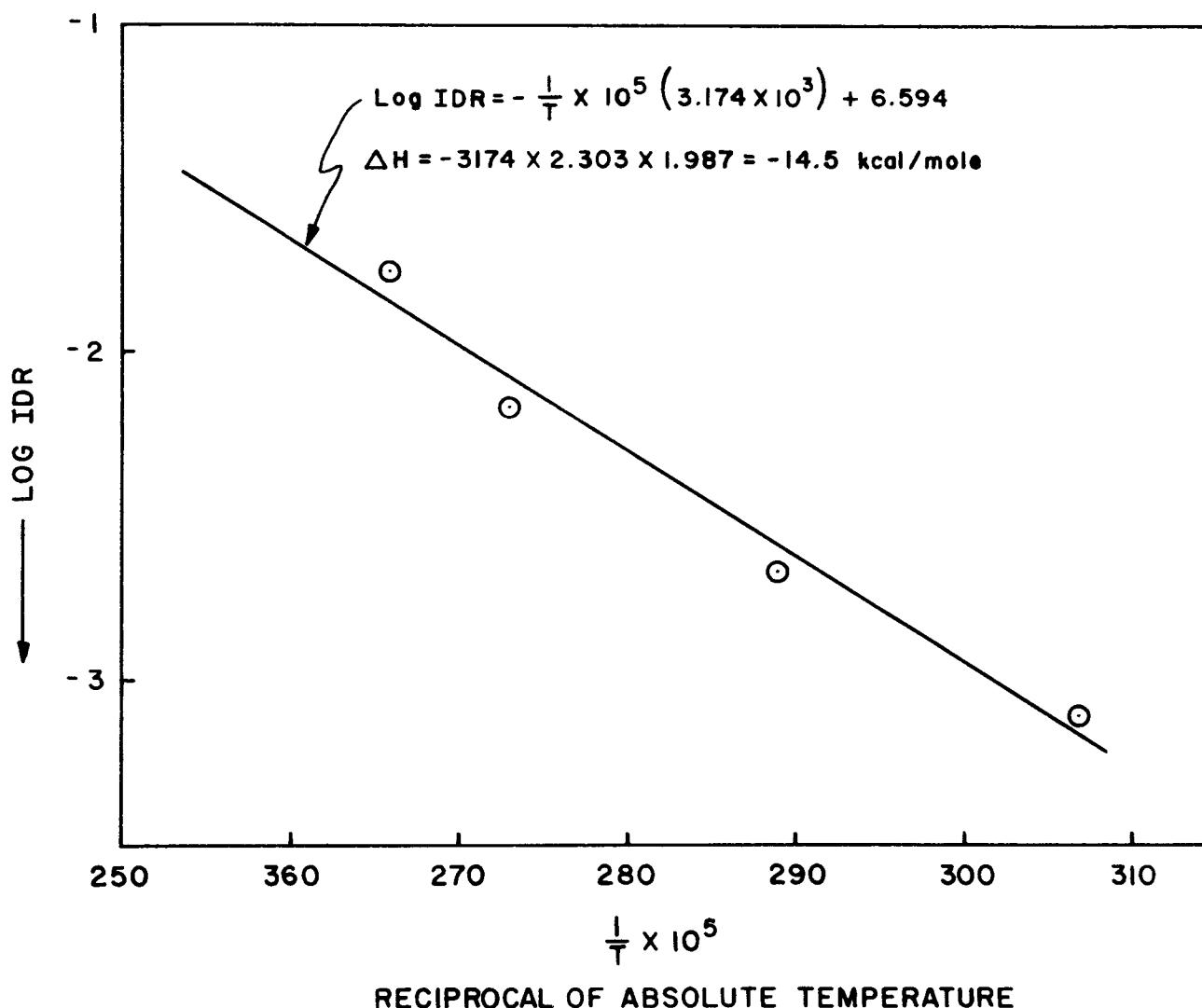


Fig. 5. Instantaneous dissolution rate as a function of temperature
(4M HNO₃ - 0.1M Ce⁴⁺).

The equation of this line is

$$\log \text{IDR} = -3.174 \times 10^8 + 6.594, \quad (2)$$

from which a value of -14.5 kcal/mol was calculated for the activation energy. This value agrees closely with that obtained from dissolution of PuO_2 in HNO_3 -HF and in HI which suggests that there may be a fundamental, basic mechanism common to all of these dissolvents.⁵

3.3.4 Plutonium-cerium valence changes during dissolution

The valence changes of plutonium and cerium during an extended dissolution of PuO_2 microspheres in 4 M HNO_3 --0.03 M Ce^{4+} were followed spectrophotometrically. The tests showed that the Ce^{4+} oxidized the Pu^{4+} to Pu^{6+} (PuO_2^{2+}) as the PuO_2 was dissolved, with the stoichiometric amount of 2 moles of Ce^{4+} per mole of Pu^{4+} being required. However, Fig. 6 shows that the dissolution rate was high only as long as the Ce^{4+} concentration was greater than the Ce^{3+} concentration ($\text{Ce}^{4+}/\text{Ce}^{3+} > 1$) for the microspheres. These results indicate that the $\text{Ce}^{4+}/\text{Ce}^{3+}$ ratio, as well as the Ce^{4+} concentration, is an important rate-determining factor. This was confirmed by results of a second series of batch tests in which the initial ratio of $\text{Ce}^{4+}/\text{Ce}^{3+}$ was varied by holding the initial concentration of Ce^{4+} constant at 0.03 M and varying the Ce^{3+} concentration over the range of 0 to 0.12 M . At the lowest $\text{Ce}^{4+}/\text{Ce}^{3+}$ ratio of 0.25, the IDR for PuO_2 microspheres was lower by a factor of about 28 than that where initially no Ce^{3+} was present. These results show that, for an efficient dissolution rate, the ratio of $\text{Ce}^{4+}/\text{Ce}^{3+}$ should be kept high by continuous reoxidation of Ce^{3+} to Ce^{4+} . This most likely would be accomplished in a small secondary dissolver in a circuit with oxidation by ozone or an electrolytic oxidation cell.

ORNL DWG. 73-3930

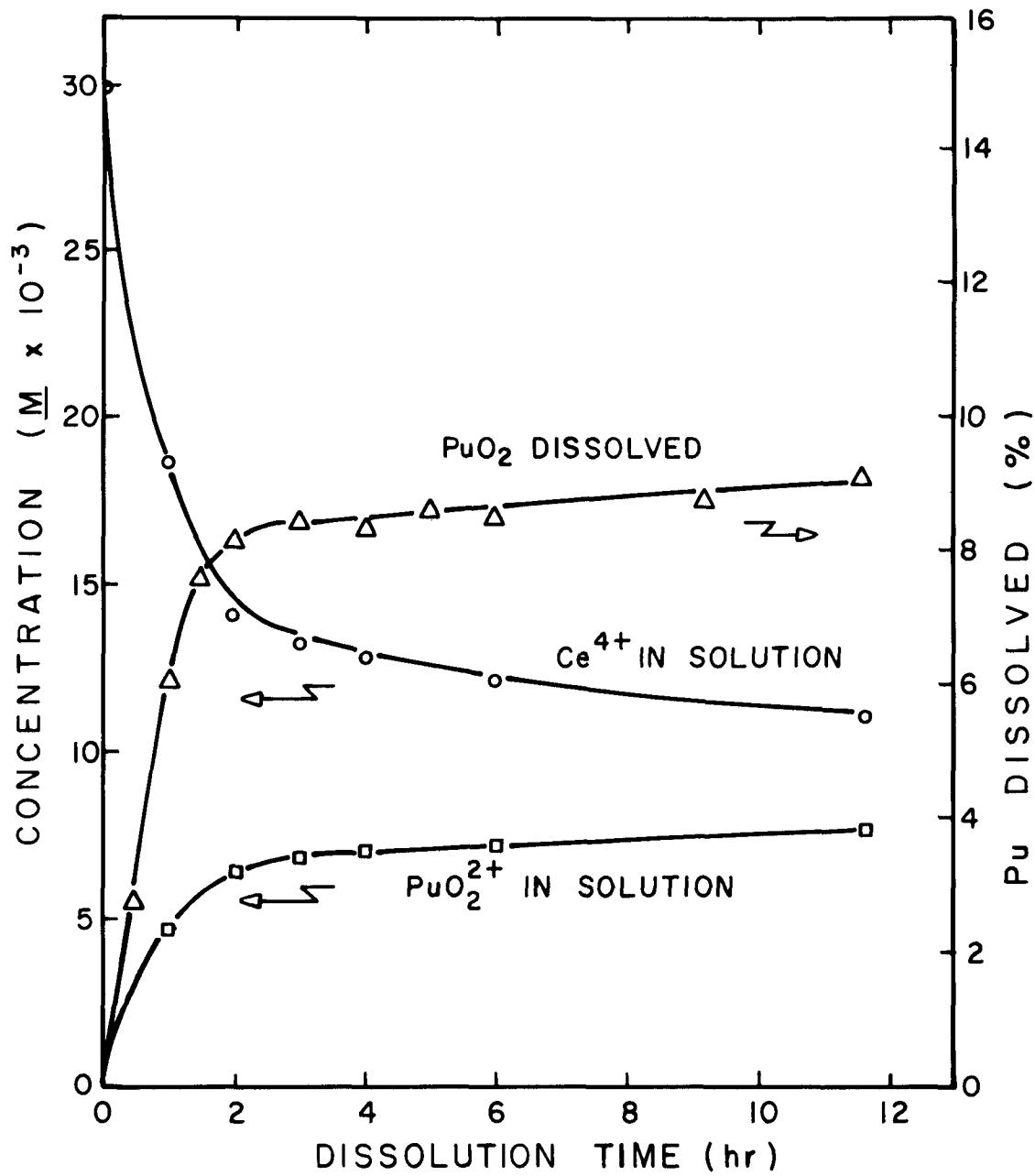


Fig. 6. Changes in Ce^{4+} and Pu_2^{2+} concentrations with dissolution time. Conditions: 3 g of PuO_2 dissolved in 150 ml of boiling 4 M HNO_3 --0.03 M $(\text{NH}_4)_2\text{Ce}(\text{NO}_3)_6$.

3.3.5 Solution potential as an indicator of dissolver effectiveness

The fact that the $\text{Ce}^{4+}/\text{Ce}^{3+}$ ratio appears to be important for efficient dissolution suggests that the electrical potential, as a measure of this redox ratio, may be a good indicator of dissolver effectiveness (at least with cerium). As an example, in the dissolution tests discussed in Sect. 3.3.4, the potentials decreased from a value of about 1.45 V for a 0.03 M Ce^{4+} solution containing no Ce^{3+} to 1.34 V for a 0.03 M Ce^{4+} -- 0.12 M Ce^{3+} solution (Fig. 7). Over this range of $\text{Ce}^{4+}/\text{Ce}^{3+}$ ratios, the IDR decreased by about a factor of 28. These results suggested that a potential of at least 1.38 V would be needed for a practicable dissolution rate for PuO_2 microspheres. This potential corresponds to an approximate $\text{Ce}^{4+}/\text{Ce}^{3+}$ ratio of 1 in 4 M HNO_3 and shows that a lower ratio, competition by Ce^{3+} with Ce^{4+} is too high for effective attack of the PuO_2 . The effect with actual difficultly soluble fuel residues qualitatively should be the same although the minimum effective potential may be lower.

3.4 Tests with Other Oxidants

3.4.1 Peroxydisulfate and others

We have also tried to correlate the potential of a 4 M HNO_3 dissolver solution containing the strong oxidant, persulfate (catalyzed with Ag^+), with its possible ability to enhance the dissolution rate. The potential of a freshly made 4 M HNO_3 -- 0.03 M $\text{S}_2\text{O}_8^{2-}$ solution was measured to be about 1.2 V; the IDR with the PuO_2 microspheres in 4 M HNO_3 -- 0.1 M $\text{S}_2\text{O}_8^{2-}$ (0.01 M Ag^+) was only about $1.4 \text{ mg cm}^{-2} \text{ min}^{-1}$, or no higher than that for 4 M HNO_3 alone. The standard oxidation potential of $\text{S}_2\text{O}_8^{2-}$

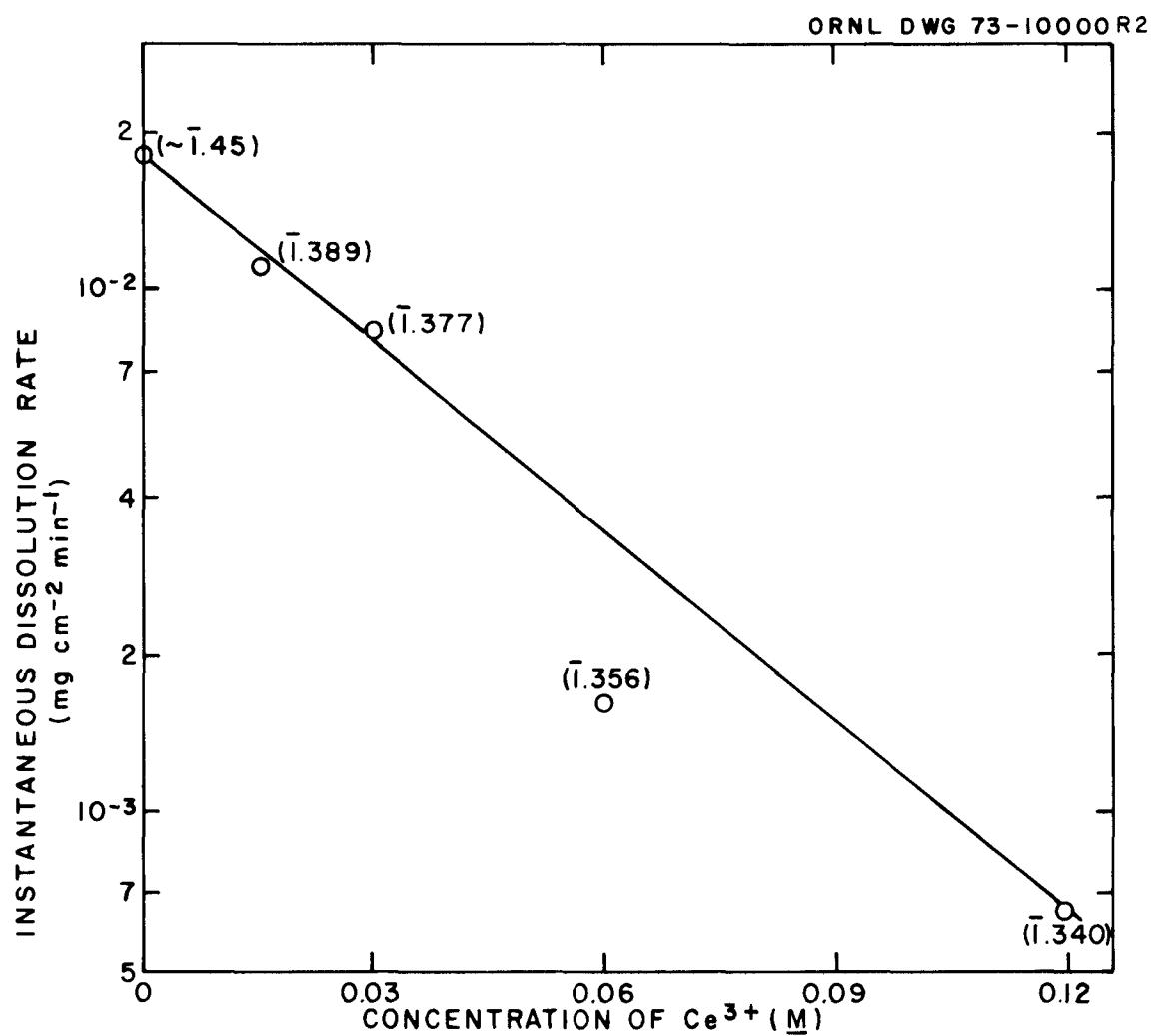


Fig. 7. Effect of Ce^{3+} concentration on the instantaneous dissolution rate of PuO_2 microspheres in boiling 4 M HNO_3 containing 0.03 M Ce^{4+} . The numbers in parentheses show the solution emf (platinum vs saturated calomel) at 25°C.

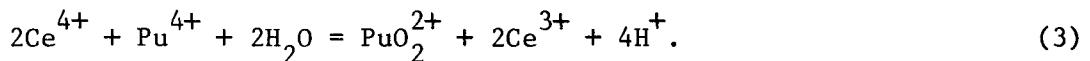
shows it is a stronger oxidant than Ce^{4+} - Ce^{3+} . (This can be demonstrated in a 4 M HNO_3 solution at room temperature by the fact that Ce^{3+} , in the presence of $\text{S}_2\text{O}_8^{2-}$, is partially oxidized to Ce^{4+} , as evidenced by the solution turning yellow.) The low potential and failure of the silver-catalyzed persulfate to increase the dissolution rate could possibly be due to the chemical instability of $\text{S}_2\text{O}_8^{2-}$ in hot acidic solutions. Even at room temperature, a solution of $\text{S}_2\text{O}_8^{2-}$ in a 4 M HNO_3 after standing overnight had a potential of about 1.13 V, compared to 1.20 V for a freshly made solution; this decrease in potential also indicated instability.

Other oxidants in 4 M HNO_3 , such as 0.1 M permanganate and 0.1 M dichromate, were ineffective as dissolution promoters (IDR's were $< 10^{-4}$ mg $\text{cm}^{-2} \text{min}^{-1}$). A comparison of their standard electrode potential shows that dichromate is a weaker oxidant than persulfate while permanganate is stronger, but both of these oxidants have a high enough standard oxidation potential to oxidize Pu^{4+} to PuO_2^{2+} .

The failure of these very strong oxidants to enhance dissolution indicates again that the oxidation of Pu^{4+} to PuO_2^{2+} is not the complete mechanism of promotion and may, in fact, be only incidental.

3.4.2 Ozonized-oxygen

To further test the premise that ability to oxidize Pu^{4+} to PuO_2^{2+} alone is the basic mechanism for dissolution promotion, the strong oxidant, ozone, was tested. Uriarte and Rainey observed a small beneficial effect using ozone to dissolve PuO_2 pellets in 2 M HNO_3 , but not at a higher concentration (7-14 M).^{2b} Our tests however, with ozone


using 2, 4, and 6 M HNO₃ showed no significant increase in the dissolution rate for PuO₂ microspheres over that for nitric acid alone. In these tests, 200 ml of ozonized-oxygen per minute was bubbled through the solution while the PuO₂ microspheres were stirred. The temperature of the solution was maintained at 87°C. The rate of oxidation with ozone in this manner undoubtedly would be limited by its low solubility in solution at atmospheric pressure. Because of this, we could not be sure that ozone would fail to promote dissolution under more favorable conditions. Future tests should be made at greater than atmospheric pressure to make the test conclusive.

Use of ozone at atmospheric pressure to oxidize Ce³⁺ to Ce⁴⁺ in solution resulted in effective dissolution promotion. For example, ozone was bubbled through an 8 M HNO₃ solution containing 0.2 M Ce³⁺ for about 12 hr, resulting in conversion of all the Ce³⁺ to Ce⁴⁺. In a subsequent dissolution test, ozone was bubbled through a 2 M HNO₃ dissolver solution initially containing 0.05 M Ce³⁺ and PuO₂ microspheres. Over a 3-hr interval, the dissolution rate continuously increased as the Ce³⁺ was oxidized to Ce⁴⁺. This result shows the necessity of having cerium present for promotion of dissolution by oxidation and also basically demonstrates how ozone could be used as an oxidizing agent for continuous Ce⁴⁺ regeneration during the dissolution.

3.5 Total Dissolution Tests

Several extended tests were made (1) to determine if the rate might change significantly during total dissolution, and (2) to be sure that the promotion effect of the Ce⁴⁺ did not suddenly cease for some reason

(e.g., as has been reported in catalyzed reactions in which the catalyst is poisoned). In these tests, approximately 1-g samples of the microspheres were dissolved in an initial volume of 150 ml of 4 M HNO_3 --0.1 M Ce^{4+} while numerous solution samples were taken over a total time period of 18 hr. The accumulated total plutonium in solution was calculated for each sample time increment, with which a graph of the logarithm of the undissolved fraction of PuO_2 was plotted as a function of the dissolution time (Fig. 8). The final residue remaining after 18 hr was filtered and then dissolved completely in 8 M HNO_3 --0.1 M HF. Analysis of this solution showed it represented 10% of the original weight of the microspheres. Although there was appreciable scatter, a straight line could be drawn through the points, which can be interpreted to mean that the dissolution rate was essentially first order with respect to undissolved plutonium during at least 90% of dissolution. A second test gave similar results. The calculated mole ratio in these tests was approximately four or about twice the stoichiometric amount of Ce^{4+} necessary to oxidize all of the Pu^{4+} to PuO_2^{2+} . Spectrophotometric examinations of the final dissolver solution showed that all of the plutonium in solution was Pu^{6+} (PuO_2^{2+}). This result, in addition to the results reported in the previous tests (Sect. 3.3.4), shows that the reaction in solutions during dissolution can be represented by the equation expected for this redox system:

ORNL DWG. 73-3927

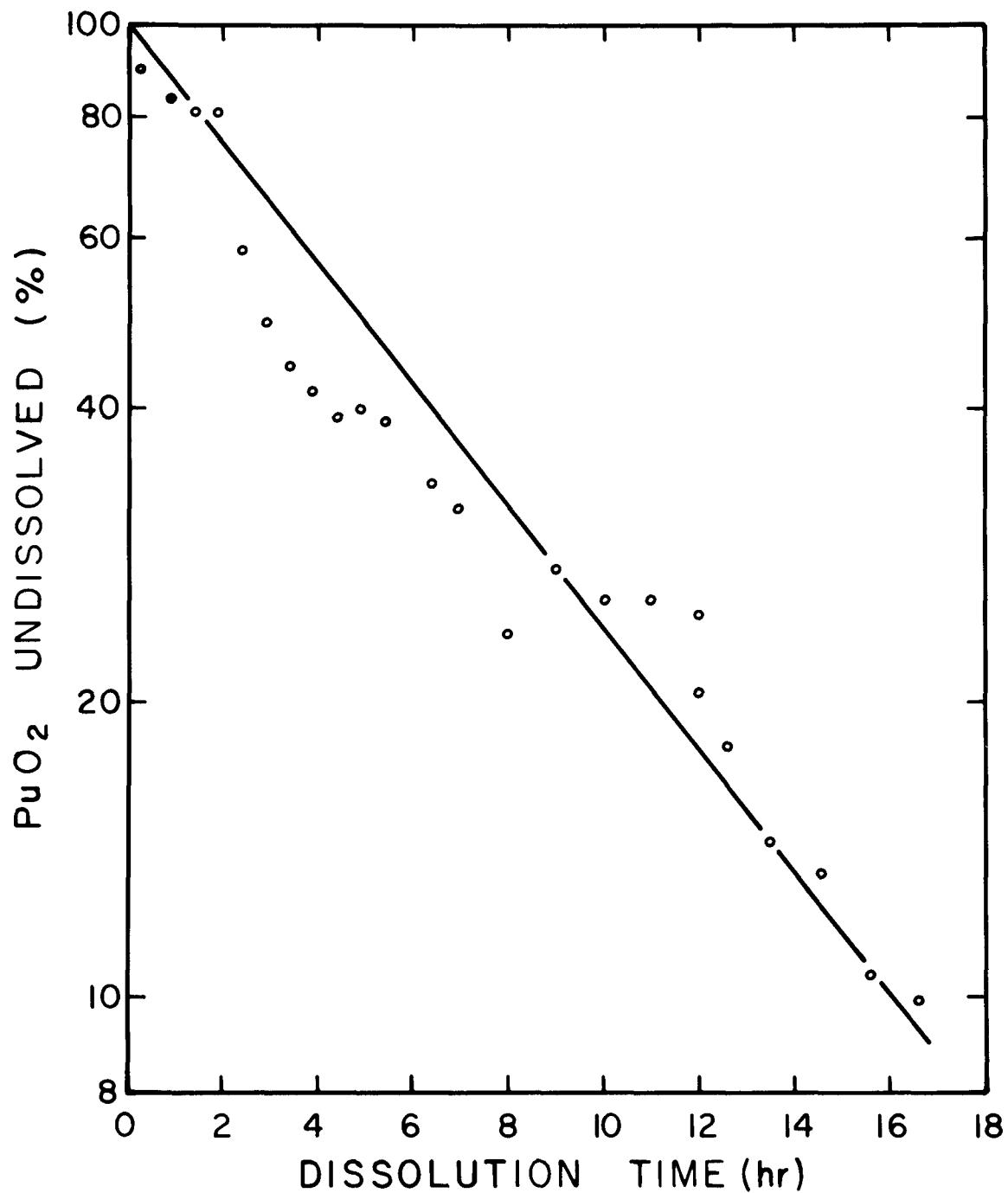


Fig. 8. Rate of dissolution of PuO_2 microspheres. Conditions: 1 g of PuO_2 dissolved in 150 ml of boiling 4 M HNO_3 --0.1 M $(\text{NH}_4)_2\text{Ce}(\text{NO}_3)_6$.

At the conclusion of each test, the calculated mole ratio of $\text{Ce}^{4+}/\text{Ce}^{3+}$ was about 1, or at about the minimum ratio as shown previously for effective dissolution of these microspheres.

4. TESTS WITH UNIRRADIATED $\text{PuO}_2\text{-UO}_2$ PELLET RESIDUES

Additional dissolution tests were made using the residue that remained after dissolving a batch of unirradiated nonhomogeneous 75% UO_2 --25% PuO_2 fuel pellets for 6 hr in boiling 10 M HNO_3 . The residue, which contained about 15% of the original plutonium before dissolution, had an approximate composition of 75% PuO_2 --25% UO_2 . Samples of this residue were then tested by dissolution in the various solutions shown in Table 1, and the comparative dissolution rate was calculated in mg of plutonium per minute per gram of residue or in the percent of plutonium dissolved.

These residues, because of their different physical properties (which included a greater surface area and a lower density), were more easily dissolved than the microspheres. However, consistent with the results of the microsphere tests, the general order of promotion effectiveness, as measured by the rate of dissolution, was $\text{HF} > \text{Ce}^{4+} > \text{Ce}^{3+} = \text{HNO}_3$ alone. For example, dissolution with 8.4 M HNO_3 --0.05 M HF resulted in 100% solubility of the plutonium within 0.5 hr while with 4.2 M HNO_3 --0.05 M Ce^{4+} , 100% dissolution required 1.5 hr (Table 1). In other tests, comparison of the rate with and without Ce^{3+} initially present shows that with Ce^{3+} the rates are a factor of 4 to 5 greater in 12 and 16 M HNO_3 than in the same concentrations of HNO_3 alone. The small amounts of Ce^{4+} formed with these HNO_3 concentrations (as shown in Sect. 3.2) undoubtedly promoted the dissolution; however,

Table 1. Dissolution of Unirradiated $\text{PuO}_2\text{-UO}_2$ Pellet Residues

Dissolver solution	Time (hr)	Dissolution rate (mg/min/g residue)	Plutonium dissolved (%)
12 <u>M</u> HNO_3	-	0.105	-
12 <u>M</u> HNO_3 --0.05 <u>M</u> Ce^{3+}	-	0.480	-
16 <u>M</u> HNO_3	-	0.164	-
16 <u>M</u> HNO_3 --0.05 <u>M</u> Ce^{3+}		0.704	-
8.4 <u>M</u> HNO_3 --0.05 <u>M</u> HF	0.5		100
4.2 <u>M</u> HNO_3 --0.05 <u>M</u> Ce^{4+}	1.5		100
8.2 <u>M</u> HNO_3 --0.03 <u>M</u> Ce^{3+}	3.5	0.140	4.6
8.6 <u>M</u> HNO_3	3.5	0.0737	2.0

comparison of these results with those for dissolution of the PuO_2 microspheres shows that the soluble residues require a much lower ratio of $\text{Ce}^{4+}/\text{Ce}^{3+}$ than that required for promotion of the microspheres. In the tests with 8 M HNO_3 (both with and without 0.03 M Ce^{3+}), the factor of about 2 in the dissolution rate (in 3.5 hr) may not be significant.

The difference between the use of Ce^{3+} vs Ce^{4+} was confirmed by J. H. Goode^{1g} in another series of tests with unirradiated, but heat-treated, UO_2 - PuO_2 pellet residues. Samples of these plutonium-rich residues were leached three times, for a total of 10 hr, in 4 M HNO_3 --0.05 M Ce^{4+} or 4 M HNO_3 --0.05 M Ce^{3+} . In 4 hr with the Ce^{4+} , only 0.014% of the total plutonium remained undissolved, while with the Ce^{3+} , about 2% remained undissolved. At the end of 10 hr (with Ce^{4+}) no residue was found; but with Ce^{3+} , 0.12% (Fig. 9) of the total plutonium remained undissolved.

Since boron may be used as an internal neutron poison in the dissolution step in the process for these fuels, another set of dissolution tests was made to determine if the presence of this material might either affect the dissolution rate and/or cause precipitation. In these tests, 0.3 M boron (added as H_3BO_3) was used during the initial dissolution of easily soluble oxides in unirradiated pellets (75% UO_2 --25% PuO_2) in 4 M HNO_3 --0.05 M Ce^{4+} . The dissolution rate of plutonium was not affected; however, the dissolution rate for uranium was about a factor of 2.5 greater with boron than without (Table 2). No evidence exists that indicates the formation of insoluble boron complexes under these conditions.

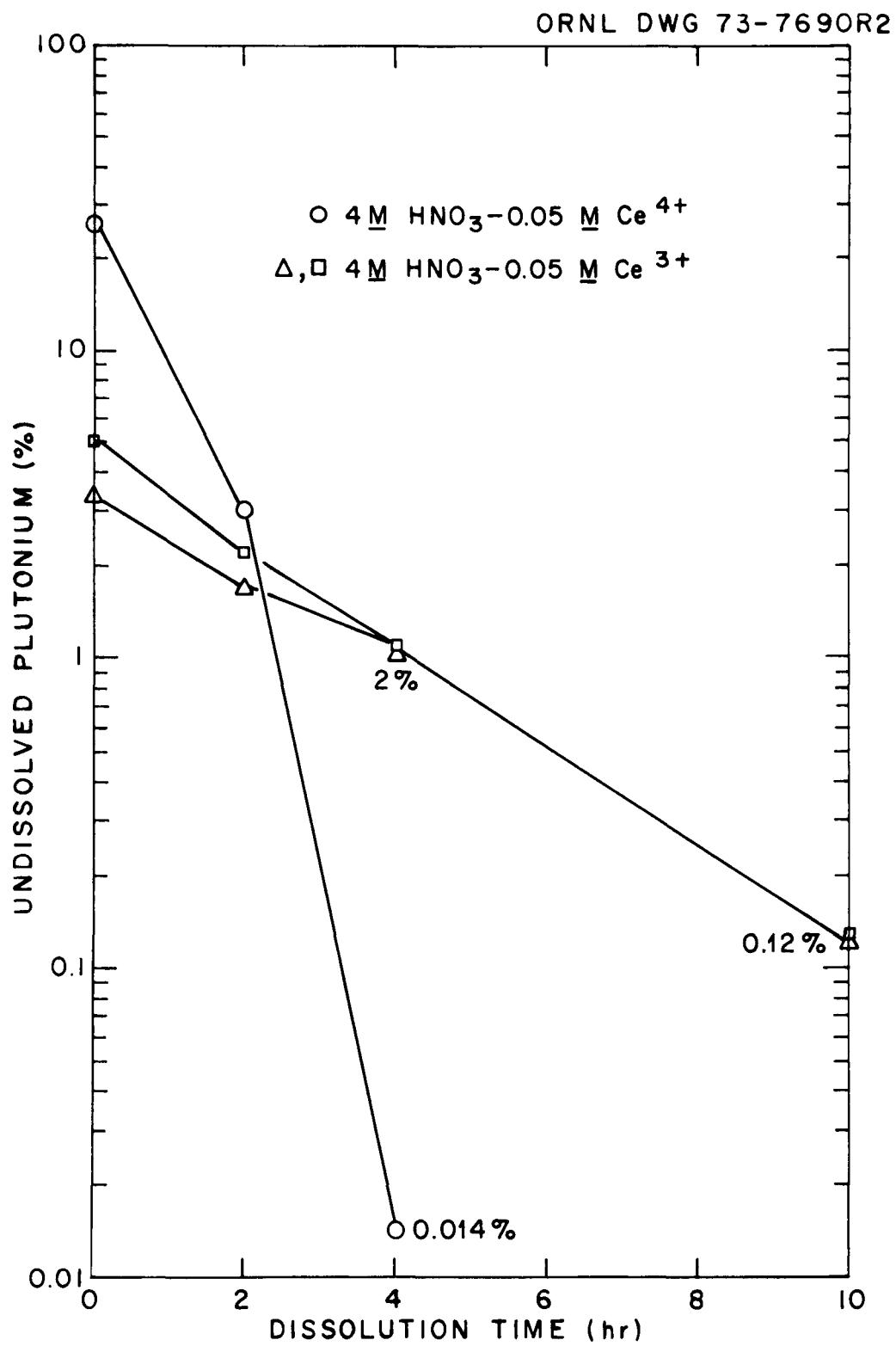


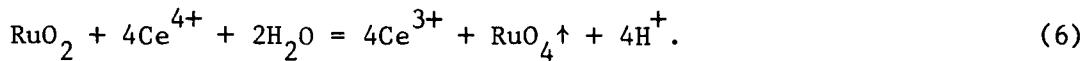
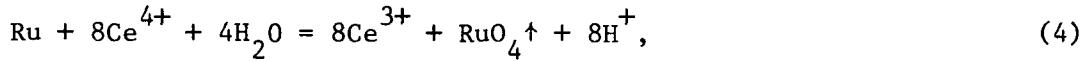
Fig. 9. Dissolution of PuO_2 residues from pellets.

Table 2. Effect of boric acid on dissolution of UO_2 and PuO_2 in unirradiated fuel pellets

Additive	Dissolution rate (mg/min/g residue)	
	Uranium	Plutonium
None	0.14	5.72
0.3 <u>M</u> H_3BO_3	0.32	5.93

4.1 Precipitation of Plutonium from Dissolver Solutions

In some of the dissolution tests, small amounts of a dark precipitate formed. Subsequent tests with varying plutonium and HNO_3 concentrations indicated insoluble plutonium compounds were being formed primarily at an acidity of 1 M HNO_3 . Other tests involving extended dissolution in 4 M HNO_3 with 0.1 M Ce^{4+} produced by (1) ozone oxidation of Ce^{3+} (no precipitation), and by (2) addition of $(NH_4)_2Ce(NO_3)_6$ (precipitation) indicated that NH_4^+ ion, but not the Ce^{4+} ion, is involved in the precipitated compound of plutonium. These results suggest that >1 M HNO_3 should be used, particularly if $(NH_4)_2Ce(NO_3)_6$ is used as a source of Ce^{4+} .



5. EFFECT OF RUTHENIUM ON Ce^{4+} -PROMOTED PuO_2 DISSOLUTION

In contrast to the results of tests with unirradiated PuO_2 , the use of Ce^{4+} in dissolution tests with irradiated fuels containing PuO_2 (Sect. 7.) were not successful in most cases. In these latter tests, it was clear that failure was due to the rapid reduction of the Ce^{4+} to Ce^{3+} , which had been previously shown to be ineffective. In a search for the cause of the reduction (besides that due to possible radiolytic

reduction), we considered the effect of the major nitric acid-insoluble fission products on the reduction of Ce^{4+} . Of these (molybdenum, noble metals, and ruthenium) the last fission product, ruthenium, appeared to be a likely possibility. Subsequent tests made with nonradioactive ruthenium showed that this fission product was probably responsible for total Ce^{4+} reduction and hence failure of the irradiated fuel residue tests; tests with molybdenum and a representative noble metal were negative.

In the tests, 60 mg of ruthenium metal was first plated on a platinum wire gauze by electrolytic reduction of a solution of RuCl_3 in dilute H_2SO_4 . Introduction of the ruthenium-plated gauze into 300 ml of 0.051 M solution of Ce^{4+} in 4 M HNO_3 (subsequently heated to about 88°C) resulted in evolution of a gas (most likely O_2) and a change in the color of the solution from yellow-orange to green. Subsequent titration of the solution showed that 89% of the original amount of Ce^{4+} had been reduced. When a portion of this solution was then heated to boiling in a reflux condenser (while being sparged with argon gas), a black material formed both in the solution and on the inner condenser walls, indicating volatility. This insoluble black material (probably RuO_2) resulted from decomposition of volatile RuO_4 . Part of this material subsequently dropped back into the boiling solution to be reoxidized. The ease of decomposition of the RuO_4 was also demonstrated by the formation of the black RuO_2 on the underside of a cover glass over a portion of the solution which had not been heated but which had remained at room temperature. A sample of the remaining solution after about 0.5 hr of refluxing was titrated and shown to contain <1% of the original amount of Ce^{4+} .

The probable reactions that occurred can be represented by the equations:

With these types of reactions, a cyclic mechanism is possible whereby ruthenium can be alternately oxidized and reduced, resulting in a continuous catalytic reduction of all Ce^{4+} by only a very small amount of ruthenium. That this kind of catalytic mechanism was probably occurring in these tests is supported by the fact that the final Ce^{4+} concentration in the solution was much lower than the theoretical concentration of 0.0352 N calculated by assuming the reaction shown in Eq. (4). These results also explain why all of the Ce^{4+} was reduced in dissolution tests with residues from irradiated fuel pellets but why no problem occurred in tests using unirradiated PuO_2 (where fission product ruthenium was not present). See Sect. 3.

These results lead to the conclusion that the use of Ce^{4+} as a dissolution promotor for difficultly soluble irradiated fuel residues would not be feasible unless some way could be found to remove all of the ruthenium prior to or during the dissolution. Application of this method, however, to unirradiated scrap PuO_2 , in which no ruthenium would be present, appears to be promising.

6. CORROSION TESTS

Specimens of stainless steels, titanium, and tantalum were exposed to boiling 4 M HNO_3 --0.1 M Ce^{4+} dissolver solutions to determine the corrosion rates. Both 304 and 316 stainless steels were attacked, resulting in the reduction of the Ce^{4+} to Ce^{3+} ; consequently, frequent replacement of the solution was necessary. The calculated corrosion rates were in the range 6 to 11 mils/month. Other workers also have observed rapid corrosion of stainless steel in Ce^{4+} solutions.^{3,6} Titanium and tantalum showed no evidence of attack (no loss in weight or visible surface changes) over a total exposure period of 34 days. In these tests, the solutions were kept at the boiling temperature about 25% of the time. These results definitely show that stainless steel containment equipment would be unsuitable, but the titanium or tantalum would be satisfactory.

7. DISSOLUTION TESTS WITH IRRADIATED UO_2 - PuO_2

In these tests made by J. H. Goode, the oxide used was an 80% UO_2 --20% PuO_2 fuel from a NUMEC fuel rod irradiated in EBR-2 to about 33,000 MWd/ton. The oxide was a mechanically blended (ball-milled for 2 hr) mixture of coprecipitated $(\text{U}_{0.5}\text{--}\text{Pu}_{0.5})\text{O}_2$ with UO_2 . The mixture was pressed and sintered into pellets of 91.7% theoretical density. The sintering cycle consisted of 4 hr of heating, 4 hr of firing at 1625°C, and 4 hr of cooling in a N_2 --6% H_2 atmosphere. Dissolution tests made over a period of 8 hr showed there was essentially no difference in dissolution rate using both 8 and 10 M HNO_3 alone or with 0.05 M Ce^{3+}

(Fig. 10). With a similar batch of oxide, but unirradiated, dissolution in 8 M HNO_3 alone always resulted in a much higher fraction of undissolved plutonium than was the case with irradiated fuel. Similar dissolution results for the UO_2 are shown in Fig. 11. Thus these results confirm that Ce^{3+} in dilute HNO_3 (e.g., <12 M) does not promote dissolution, but irradiation obviously greatly improves the dissolution rate.

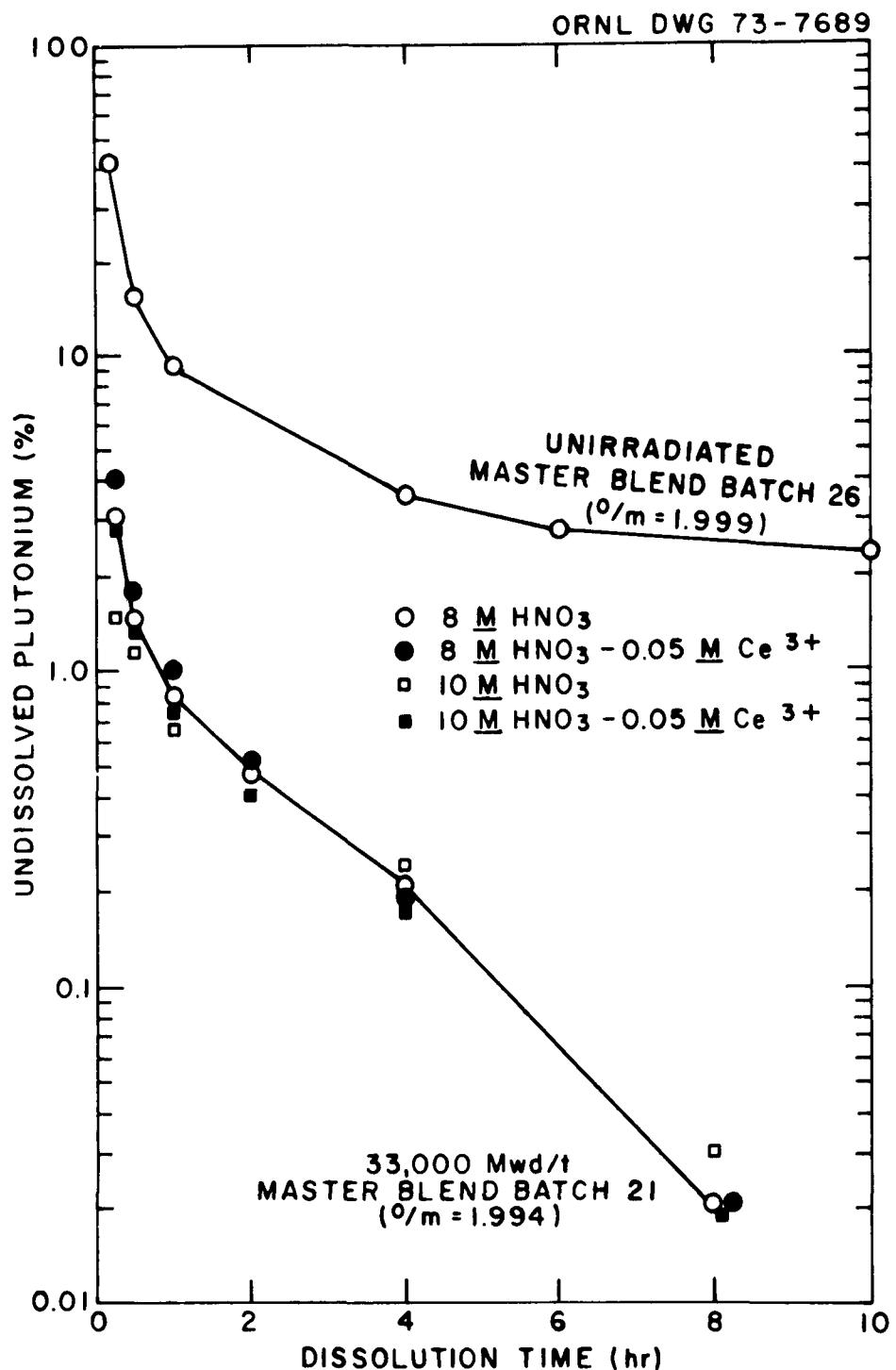


Fig. 10. Dissolution of plutonium from NUMEC "master-blend" 80% UO₂--20% PuO₂ with nitric acid and nitric acid containing Ce³⁺.

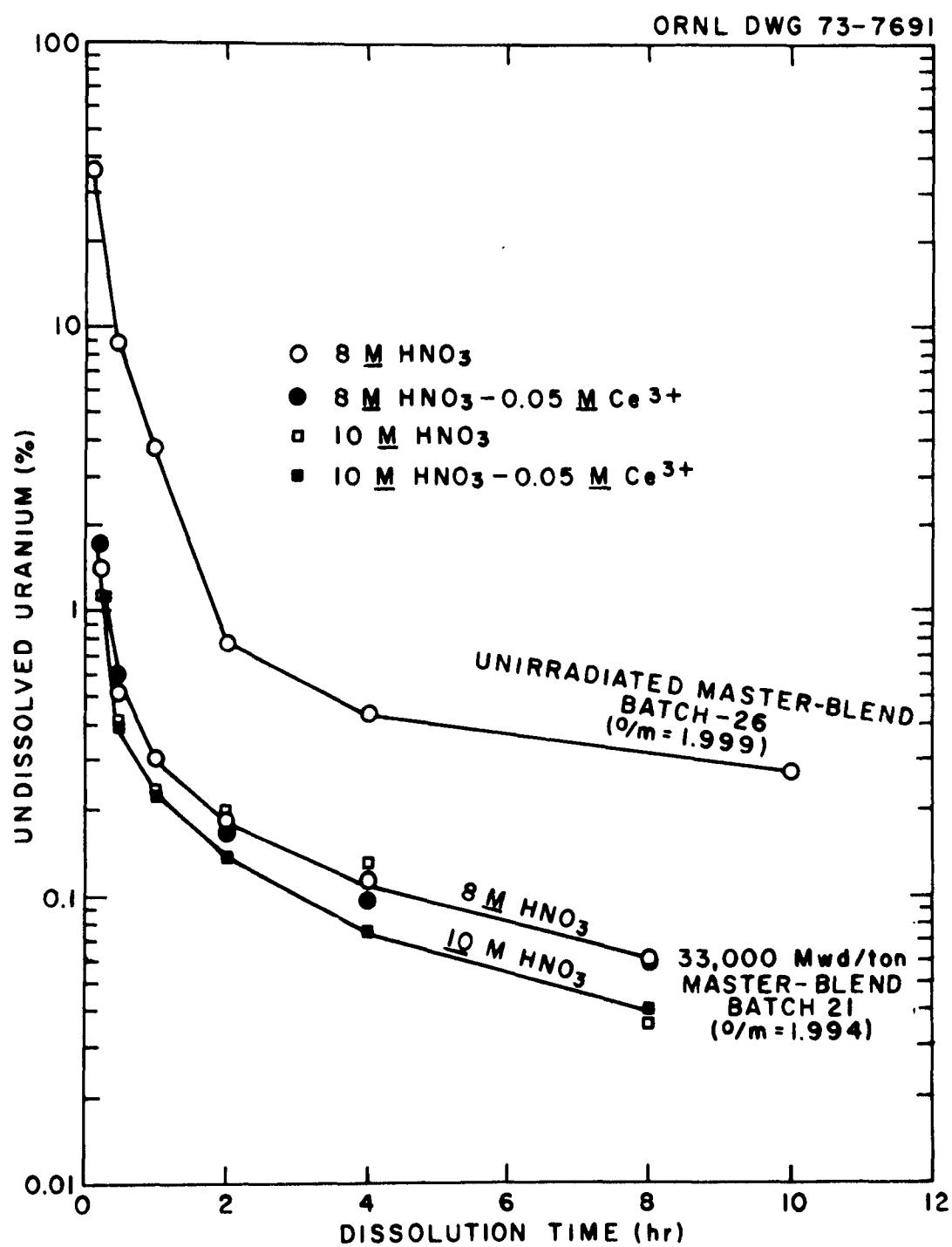


Fig. 11. Dissolution of uranium from NUMEC "master-blend" 80% UO₂--20% PuO₂ with nitric acid and nitric acid containing Ce³⁺.

8. ACKNOWLEDGMENTS

Most of the laboratory work described in this report was performed by R. L. Hickey under the supervision of F. A. Kappelmann. The plutonium analyses were made by the ORNL Analytical Chemistry Division under the supervision of J. H. Cooper; the spectrophotometer plutonium analyses were run by D. A. Costanzo.

9. REFERENCES

1. (a) W. E. Unger et al., Aqueous Fuel Reprocessing Quarterly Report for Period Ending December 31, 1972, ORNL/TM-4141, p. 17 (April 1973).
(b) Ibid., March 31, 1973, ORNL/TM-4240, pp. 18-21 (June 1973).
(c) Ibid., June 30, 1973, ORNL/TM-4301, pp. 14-21 (August 1973).
(d) Ibid., September 30, 1973, ORNL/TM-4394, pp. 13-20 (February 1974).
(e) Ibid., December 31, 1973, ORNL/TM-4488, pp. 9-17 (June 1974).
(f) Ibid., March 31, 1974, ORNL/TM-4587, pp. 13-16 (September 1974).
(g) C. D. Scott et al., Chemical Development Sect. B Semiannu. Prog. Rep. Mar. 1 to Aug. 31, 1973, ORNL/TM-4370, Part II, pp. 8-24 (March 1974).
2. (a) A. S. Wilson, "Method of Dissolving Plutonium Dioxide in Nitric Acid Using Cerium Ions," U. S. Patent 3,005,682 (Oct. 24, 1961).
(b) A. L. Uriarte and R. H. Rainey, Dissolution of High Density UO₂, PuO₂, and UO₂-PuO₂ Pellets in Inorganic Acids, ORNL-3695 (April 1965).
3. R. E. Lerch, Corrosion of Stainless Steel in Solutions of Cerium(IV)-Nitric Acid, BNWL-CC-1646 (1968).
4. M. C. Day, Jr. and J. Selbin, Theoretical Inorganic Chemistry, p. 5, Reinhold, N.Y., 1962.
5. O. K. Tallent, Oak Ridge National Laboratory, personal communication, September, 1976.
6. A. B. McIntosh and F. E. Evans, "The Effect of Metal Species Present in Irradiated Fuel Elements on the Corrosion of Stainless Steel in Nitric Acid," Proceedings of the U.N. International Conference Peaceful Uses of Atomic Energy, 2nd Geneva, 1958, vol. 17, pp. 206-15 (1958).

ORNL/TM-4716
Dist. Category UC-79c

INTERNAL DISTRIBUTION

1.	M. Bender	48.	R. H. Rainey
2.	M. R. Bennett	49.	W. F. Schaffer, Jr.
3.	R. E. Blanco	50.	C. D. Scott
4.	J. O. Blomeke	51.	R. G. Stacy
5.	W. D. Bond	52.	M. J. Stephenson
6.	B. F. Bottenfield	53.	W. G. Stockdale
7.	R. E. Brooksbank	54.	O. K. Tallent
8.	K. B. Brown	55.	D. B. Trauger
9-18.	W. D. Burch	56.	W. E. Unger
19.	G. I. Cathers	57.	V. C. A. Vaughn
20.	J. M. Chandler	58.	B. L. Vondra
21.	W. E. Clark	59.	C. D. Watson
22.	L. T. Corbin	60.	T. D. Welch
23.	D. J. Crouse	61.	B. S. Weil
24.	F. L. Culler	62.	R. G. Wymer
25.	M. J. Feldman	63.	O. O. Yarbro
26.	D. E. Ferguson	64.	S. Beard (Consultant)
27.	J. H. Goode	65.	L. Burris, Jr. (Consultant)
28.	N. R. Grant	66.	A. B. Carson (Consultant)
29.	W. S. Groenier	67.	E. L. Gaden (Consultant)
30.	D. C. Hampson	68.	C. H. Ice (Consultant)
31.	B. A. Hannaford	69.	W. H. Lewis (Consultant)
32.	W. D. Holland	70.	R. B. Richards (Consultant)
33-37.	D. E. Horner	71.	A. Schneider (Consultant)
38.	A. R. Irvine	72.	M. J. Szulinski (Consultant)
39.	J. Q. Kirkman	73.	J. S. Theilacker (Consultant)
40.	J. A. Klein	74.	A. K. Williams (Consultant)
41.	B. E. Lewis	75-76.	Central Research Library
42.	J. C. Mailen	77.	ORNL - Y-12 Technical Library Document Reference Section
43.	A. P. Malinauskas	78-86.	Laboratory Records
44.	L. E. McNeese	87.	Laboratory Records, ORNL RC
45.	E. L. Nicholson	88.	ORNL Patent Office
46.	F. L. Peishel		
47.	H. Postma		

EXTERNAL DISTRIBUTION

- 89. Director, Reactor Division, ERDA, ORO
- 90-91. Director, Division of Nuclear Fuel Cycle and Production, ERDA, Washington, D.C. 20014
- 92-93. Director, Division of Reactor Research and Development, ERDA, Washington, D.C. 20014
- 94. Research and Technical Support Division, ERDA, ORO
- 95-346. Given distribution as shown in TID-4500 under UC-79c - Fuel Recycle category