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ABSTRACT

Small scale experiments involving water flows are used
'to provide mean flow and turbulehce field data for LMFBR
outlet.plenum flows. Measurements»are pefformed at Reynolds
Number (Re) values of 33000 and 70000 in a 1/15-scale FETF
geometry and at Re = 35000 in a 3/80-scale CRBR géometry.
The experimentai behavior is prediéted using two different
turbulence model computer programs, TEACH-T and VARR-II. It
is found that the qualitative nature of the flow field
Within the plenum depends stfongly upon the distribution of
the mean inlet velocity field, upon the degree of inlet turbu-
lence, and upon the turbulence momentum exchange model used
in the calculations. It is found in the FFTF geometry that
the TEACH-T prediétions are better than that of VARR-II, and
in the CRBR geometry neither codes provides a good prediction
of the observed behavior. |

From the sensitivity analysis, it 1is found that the pro-
duction and dissipation of turbulence are the dominant terms
in the transbort equations for turbulent kinetic energy and
turbulent energy dissipation rate, and the diffusion terms
are relatively small. From the same study a new set of empiri-
cal constants for the turbulence model is evolved for the

prediction of plenum flows.
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CHAPTER 1

INTRODUCTION

In the 1iquid metal-cooled fast breeder reactor (LMFBR),"_
sodium is the coolant fhap removes heat from the reactor core, |
Since sodium is a good heat transfer medium and has a low
heat capacity, the temperature difference betwéen the inlet
and outlet of the core is much greéter than that of the current
design light water reactor (LWR). A typical temperature rise
is approximately 300°F. During a reactor scram, with or with-
out flow'coastdbwﬁ, the cold sodium will 1issue from the reactor
core, and will mix with the hot sodium that had previously
filled the reactor outlet plenum. Predicting the transient
thermal response of the sodium in the outlet plenum is an im-
portant problem, since this transient will dictate the thermal
fatigué'environment for the outlet nozzles, instrument trees,

" and other mechanical componeﬁts.which will be exposed to the
reactor coolant flow. |

A detailed analytical treatment of the coolant miking
in the outlet plenum is hampered by the complex nature of the
resulting turbuient flow. The Navier-Stokes equation.cannot
be solved numerically because of the small scale of turbulence,
and duelto the limited storage capacity and speed of existing
computers,. Therefore, most problems in turbulent flow are
solved by usling the time-averaged Navier-Stokes equation (or
Reynolds equation). Due to the nonlinéarity'of the Navier-
Stokes equations, one additional term, known as the Reynolds

stress, appears in the Reynolds equation. Much of the attention
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has been concentrated on how to model this stress 1in terms of
known quantities. This 1is the so-called turbulence model

approach. In general, the LMFBR outlet plenum will display

a recirculating flow pattern. The simplest models (e.g.,v

Prandti;s mixing length theory) have been found to be inade-
quate in providing accurate prédictions'of this behavior. |
Therefore, current design work.has adopted the use of a two-
equation turbulence model. This decision is based on the need
for accuracy with reasonably short computing times.

(1)

In this work,two compufer-codes, namely TEACH-T and
VARR-II(Z), are used. "TEACH-T 1s a steady-state two-dimensional
code which models turbulent kinetic energy and turbulent
energy diésipation rate as two additional dependent variables.
VARR-II 1is a time-depéndent two-=dimensional thermal-hydfaulic
code; Different from TEACH;T, it solves transport equations
for turbulent kinetic energy and turbulent viscqsity. In
addition, an energy conservation equatlon 1s incorporated into
the code for temperature prediction, and it provides a buoyant

force feedback to the momentum equation. The code TEACH-T

has peen modified to calculate flows in the reactor plenum

geometry, and used to gederate predictions for the experimental‘

part of this work. Tbe code VARR-II is cdrrently in use as a
design tool in the Clinch River Breeder Reactor Program. Its
predictions have not been verified experimentally in the flow
geometry of interest. It is also being used 1n this work to
predict the glow'in an experimental test cell.

In the experimental part of thls work, a small scale



‘ Cartesian geometry test model of a diametrical section of the:
prototypic outlet plenum geometries are used The experiments
consist of measurements of velocity, turbulent kinetic energy,
and Reynolds stresses in the two perpendicular directions by a
Laser Doppler Anemometer. These data are compared to pre-
dictions of the behavior of the experiment by each of the two-
equation turbulence model codes. |

In order to providé some ratlional explanation of the two-
equation model, a survey of existing turbulence models 1s
included in Chapter 2. ‘Chapter 3 describes the analytical
model used in the VARR-II”and TEACH-T. A detalled description
of experimental apparatus'is in Chapter 4, The rest of the

chapters discuss the results.



CHAPTER 2

_ REVIEW OF LITERATURE

Most fluid problems encountered in the real world are
turbulent. Turbulence is characterized by its 1rregularity,
high diffusivity, and dissipative nature. The design engineer
demands high heat output from his heat exchanger which requires
a high mass flow rate, and therefore, entalls a high Reynolds
number and turbulent flow. Flows in heat exchangers, gas
furnaces, turbines, etc., are all turbulent to take advantage
- of the highly diffusive (strongly mixed) nature of the turbu-
lence. Therefore, a good prediction of the mean turbulent
fluid behavior, such as pressure drop, velocity distribution,
bahd heat flux is of great value to the designer.

Although turbulent flows exhibit randomness, we have no
doubt that they still obey.thetNavier-Stokes equatién and con-
tinuity equation, . Since the number of unknowns 1s exactly
equal to the number of equations, and since computer methods
of solving thesé differential equations_of fluid dynamics are
well advanced even for three-dimensional time-dependent flow,
in principle we should be able tt.solve it. Unfortunateiy, some
oq the important processes of turbulent phenomena take place
in small eddies of the order of a millimeter in size, while
the whole domain of the flow fleld might extend to meters or
kilometers. A fine mesh to allow an accurate description of a
turbulent fiow would definitely exceed the existing computer
storage by many orders of magnitude, to say nothing of the

computer time.



Fortunately,'there is no neeo to'predict all of the
details of turbulent motione. vGenerally, we are concerned
wiﬁh its time-averaged effects. This escapes the requirement
of an exceseively fine-mesh grid, unavoidable for the Navier-
Stokes equation approach, because the time-averaged properties
of a turbulent fluid vary much more slowly than do the time~
dependent ones. Therefore, it 1is entirely possible to solve
the time-averaged Navier-Stokes equatioh for most.engineering
problems with today's computers,

The transport equation for momentum, known as Reynolds
equation, 1s derived (in Appendix A) from'the Navier-Stokes
equation by suitable averaging procedures. Due to the non-
linearity of the Navier-Stokes equation, the resulting equation
contains a new unknown correlation (Reynolds stresses) which
must be replaced by functions of the model variables. This 1s
the well-known closure problem. The "turbﬁlence model" approach
has been invented to solve this problem, |

The following section gives a detalled description

of some existing turbulence models.

2.1 Survey of Existing Turbulence Models

All of the turbulence models have a common goal i.e., to
calculate the Reynolds stresses which appear in .the momentum
equation. The models are customarily classified in order by
reference to the number of diffefential equations that are solved
beyond those governing the transport equation of mean velocities,

temperature, and concentrations.



2.1.1 Zero Equation Models

The models of this group relate the turbulent shear
stress (or Reynolds stress) ﬁniquely to the mean flowAproperties
at each location. Since they require only algebralc expressions,
these éimple models have enjoyed much popularity.

All_éf,the zero equation models use the Boussinesqg concep?t
of eddy viscosity, i.e., |

TV = -v, U
urrw th

where v is ﬁhe ﬁurbulent -kinematic viscésity.

Tne task ié thus redﬁced to‘determining the v¢. The most
popular method used by researchers 1s Prahdtl's mixing length
,hypothesis€3)

In 1925, Prandtl proposed that turbulent shear stresses
and velocity gradients are related by formulas of the same
type as forilaminar fluids. The effective (or turbulént)
viscosity entering the formula 1s proportional to the product
of the local density, a local turbulence length scale, and a‘ 
local velocity of a random motion; the random velocity is

proportional to the length scale multiplied by a local

velocity gradient, i.e;,

oU
Uy I

_pU 'V |

Mg =PAVrandom
aU

A\ = —

random dy

_ ,2]3U| au
hence - pU'V' = p& Iay 337



The length scale &, known as Prandtl's mixing length,
is proportional to the distance of a nearby wall, or the
width of thevregion of the turbulent shear flow.

| For many boundary-layer flows, Préndtl's mixing lengtn
theory_gi§es remarkable results, However, the constants
involved must vary with the problem considered. This lack of
universality is an indicatioh that this model fails to describe
some important features of the turbulent flows.

As mentioned above, the algebralc models are based upon
the assumption that turbulent shear stresses are uniquely
dependent on the local.mean field, 1i.e., the generation and
dissipation of turbulent energy are in balance everywhere, and
the convectlion and diffusion of turbulent energy are 1lgnored.
Such models might be expected to be realistic only when the
tufbulence is influenced by thé local properties of the
velocity field or changes only slowly in the direction of the-
flow. In many cases (e.g., recirculating flows(u)) turbu-
lence is not in local equilibrium with its immediate neighbor-
hood, but depends on processes and events which happen at a
- considerable distance from the point in question, i.e., the
convection and diffuéibn of turbulence are significant for
such flows,. in such a situation, we must consider the transport

of the turbulence by means of differentlal equations.

2.1.2 One Equation Model

2.1.2.1 Transport Equation for Turbulent Kinetic Energy

Since turbulence 1is characterized by 1ts random velocity
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(5) and Prandtl( ) independently

and length Scale, Kolmogorov
proposed the use of a transport equatioﬁ for turbulent kinetic
energy (derived in Appendix A) to describe the random veloclty
scale. Prandtl retained his assumption that the'length scale

could be taken as proportional to the distance from wall, They
both adopted the eddy viscosity concept,and vy 1is proposed to be
Ve = Cu K L

The quality of the prediction of this.model depends, of
course, on the appropriate prescription of the iength scale.
But whenever the diffusion and éonvection of turbulence play a
significant role, the prediction is expected to be better than
zero equation model,.

(7)

Bradshaw et al, have proposed a different equation for
eddy viscosity. They postulated that the turbulent shear stress

is proportional to the»turbulent kinétic energy, thus

T = BpkK
where B is supposedly a universal constant.

This model also needs to incorporate a length scale ex-
pression for the dissipation terms. They applied the model to
a turbulent boundary level near a wall and obtained good agree-
ment with experimental data. For many flows this assumption is
unrealistic, since the shear stress may be zero whlle K is
finite as in the case of a Jet.

2.1.2.2 Transport Equation for Eddy Viscosity
(8)

Nee and Kovasznay have proposed a transport equation

for eddy viscosity 1tself, based on a phenomenological theory



of turbulence. A length scale distribution 1s also needed as
input. 'They were sﬁccessful in making predictions in the
turbulent wall boundary layer.

All the models discussed so far have necessitated the use
of an algebfaic length scale‘specirication, and experience has
shown that this may vary with the boundary conditlons. There
is little hope of achleving universality for these length

scales, unless they are also solved by transport equations.

2.1.3 Two<=Equatlon Models

As a fluctuating phenomenon, turbulence 1s characterized
by its random velocity and iength scale. Hence, if we want to
describe the turbulence closure in terms of two parameters, the
turbulent kinetic energy and length scale are appropriate ones,
Thils leads to the two-equation ﬁurbulence model approach.

In a two-equation model, the selection of the main
variables is a matter of convenience as long as the turbulence
kinetic energy and length scale can bé represented by the two
chosen variables. Many pairs of variables are sultable, the
criteria being the éimplicity of the governing equation and its
assoclated boundary conditions. A turbulent kinetic energy
equation 1s incorporated in éll the models, However, the second
model-equation governs either the length scale, dissipation,

turbulent vorticity, or the frequency.

2.1.3.1 K - ¢ Model

A form of a K~ ¢ Model was first proposed by Harlow and

Nakayama,( 9)and then pursued by researchers at the Imperlal
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College (1 ), The turbulent energy dilssipation rate;e , 1is

defined as v( an/axJ)2. The differential equation for e can
be derived easily from the Navier-Stokes equation (see Appendix
A). This model has éhown great success for 1arge variety of

flows and will be discussed in detail in Chapter 3.

2.1.3.2 X = K& Model

‘Rodi and Spalding(loﬂ using Rotta's(ll)equation for &
derived the differential equation for K& . The equations

fpr K and K& are

oK

Usx

c

3U,2 3/2
By) = CgK

+ CB vtk(

bs Cgs C

where C s» Cgpo ok,'cK2

, and CKQ are constants.

This model has reported great success in predlcting the
behavior of free jets, mixing layers, plane jets, and radial
jets. DBecuase of a lack of universality, no further progress

has been made.,

2.1.3.3 K - g Model
(12)

Stuhmiller using a heuristic argument about turbulence
derived the differential equations for turbulent kinetic
energy, K and eddy viscoslty, o. This model is adopted in the

computer code VARR-II and is discussed in Chapter 3.
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All the models discussed here use the Boussihesq formula
to relate the turbulent shear stress to the local velocity
gradient., There are engineering problems for which this
formula is not adequate. For example, in an annulus having
one rough and one smooth wall, the shear stress is often
finite when the velocity gradient is zero, and there is a sig-
nificant region of flow in which the shearvstress and velocity
gradient have opposite signs. These fallures naturally lead

to multi-equation models,.

2.1.4 Multi-Equation Model (Reyholds Stress Model)

The mdst direct wa& to determine U'V' is, of course, to
solve a transport equation for this quantity. It is expected
that the use of the Reynolds stress model will increase the
universality pf the prediction methods, because in contrast
to the above method, it 1s unhecessary to introduce an approx-
imate shear stress reiation, whose vélidity is in question for
certain flow conditions, However , the Reynolds stress equation
(derived 1in Appendix A) involves new unknowns, such as triple
correlations and pre;sure—velocity correlations. These
quantities areé either difficult to measure or hard to simulate.
Since this model 1s still in an early stage, we will not go
into further details,

As discussed above, a good turbulence model 1s universal
and is‘not too complex to use. Universality implies that a
single set of empiricél constants or functions inserted into
the equations provides close simulations of all varieties of flows.

Complexity 1s measured by the number of differential equations
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which the model contains, and the nﬁmber of the empirical
constants and fﬁnction8~which are requiredvto complete them,
Now it should be clear fhat‘the main obstacles tb model
de§eldpment’are ﬁhé_difficuity of selecting fheAset of
differeﬁtial equafions that.afé capéble of providiqg universal-
ity, and then the difficuity'of providing, from experimé%ts and

knowledge, the required constants and functilons.
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CHAPTER 3

DESCRIPTION OF THE ANALYTICAL MODEL
| ADOPTED IN THE STUDY

One maJor task Of'this study‘is to select appropriate
turoulence model codes, g nerate predictions, and compare them
with the experimental results

There are two codes used in this investlgation They are

"discussed in the following two sections.

3 1l TEACH-T Code

TEACH- T is a steady state two-dimensional two-equation
turbulence model code( l). It was developed by the staff in
the Mechanical Engineering Department at the Imperical College

of Science and Technology in England.

3.1.1 Basic Assumgtions

Generally, - turbulence is nonisotropic and three-dimension-
al, and thus turbulenoe'perameters haye directional properties.
Any desoription of turbulence by scalar parameters implies an
isotropy of the mean flow properties. Therefore, in a two- |
equation turbulenoe model, the nonisotropy of the turbulence
can only be'dependent upon.the nonisotropy of the mean flow

field, usually through an eddy viscosity, v On the basis of

£
the above discussion, the Reynolds stresses can be expressed as

oU ou .

TIOT = 2 i
U] = S K6y - vt(sfg— + 3§%)

where the first term on the right‘hand side has been added in

order to make the equation applicable to homogeneous and isotropic
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turbulence, With this formulation, the equations of motion
will retain their original form with a variable viscosity.

'From dimensional analysis, the turbulent viscosity, vt,.is

related to turbulence kinetic energy, K, and a length scale,
L, by
1/2

Ve = CUK L

where Cu is supposédly a constant,

3.1.2 Model'Equations

The quantitiles K and € serve as the model variables. As
stated in section 2.1.3 these are not the only possible varia-
bles, and in fact many other pairs of variables are more attrac-
tive. The criterion of the selection ;s just the simplicity
Qf the governing equations and assoclated boundary conditions.

The TEACH-T éode has adopted the K-€¢ turbulence model,
first proposed by Harlow and NaKayama( 9). The reason for this
selection lies partly in the relative ease with which the.
exact equations for K and € can be derived and partly in the
fact that e appears directly as an unknown in the equation for
K. |

The derivation of the turbulence kinetic energy equation

is included in Appendix A.. The resulting equation follows:

U
9K oK _ _ 3 4 . A v T — 3
5t * Yk 3x. T 7 o3x, O URUiUL Yo PR - UiUE o
| K K K
aU! U} 2
-v 1 1 9_ ¥ )

Xy %Xy Xy

The most disappointing feature'it exhibits, which is common to
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all turbulence equations is that 1t contains terms‘iﬁvolving

" an unknowﬁ correlation of the veloclty and pressure, and there-
. fore cénnot be solved. "The physical meaning of the individual
terms 1s easily recognized as convection, diffusion, genera-
.tion; and dissipation;'

The generation term poses very few problems, since 1t
contains only the produéts'of Reynolds stresses and veloclty
gradients. They can be measured experimentally or found by
calculation. TheAphysical.meaning of this term is also easily
ﬁnderétood. The mean flow perfofms work on the turbuleht
éddies, and thus energy is transferred from the mean motion
into the fluctuating motion. |

Towsend(l3)-has proposed an energy cascade process in
turbulent flows, by which energy is trahsferred from the big
eddies to the small eddies. At the end of the cascade, the
viscous stresses perform defdrmation work against the fluctua-'
ting strain rate, and all the energy 1is dissipated into heat.
Thé last term descéibes'this process.

The diffusion'terms are the most difficult ones to tackle.
The triple correlation,-%—5%L ﬁ;ﬁ;ﬁ? , represents the energy
transport by the turbulent eddies, ;nd the pressure-velocity
correlation repreSents the'transport of energy'by pressure
fluctuations. The last process is-not yet properly understbod
and its'measuremenf is hampered by severe difficulties(u ).

The ﬁriple correlafibn can be measured, but two-equation theory

is not advanced enough to model it. The escape 1is to recognize

that both terms do nqt generate or absorb turbulence energy,
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~and act only as agents:to bhangé the spatial distribution of

the energy.  This pfoces$ is timilar;ih nature to laminar
diffusion, and.it.isvsuggestive to model it by a second order

 diffusion equation with a dlffusion coefficient that is re-

lated to the turbulent viscosity, i.'.,

FT) = 2 (=t 2 g

i
k 9k 9%y

- G T

Thus, the resulting equation for turbulence kinetic energy 1is

DK 3 Ve o 2

= ( K) + G -~ ¢
Dt axk ok Bxk |
. ol U
= -—_,‘—i— .__. ___J_
where G = - Uin % SV G ot
- J 9%
an an
e = v, W)
X %k
‘0, 1s a model constant.

.k

Algebraic manipulation of the Navlier-Stokes equation
yields a transport équation for the turbulence energy dissi-

pation rate (see Appendix A for a derivation).

oU oU,;] U/ aU) 23Ul
xk ?xk axl P 1 ] i Bxk
2rpy
AL St Sad SN Tt G-
axk X axk axkaxl
au!
3 2v B! k
- e (Uge' +-5= 5 570)
axk k p x1 axl
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_2v.Ur ,BUi a2 U’i +v2 a2 ( 3Ui)2
k axl- axlaxk axﬁ axl

None of the terms on the right hand side of the equation

are accessible to measurement. According to Launder(u ), at

a high Reynolds number the equation can be simplified to

\

De o1 3 Yt 2e
p 99X o_. 9X

Dt k % %%

" where Gé Cl’ and C, are model constants.

The physical meaning of these terms 1s easily recognized as

convection, diffusion, production, and decay.

3.1.3 Model Constants

In the transport equations for K and € , several empirical
constants still need to be determined. Launder et al.(1 )
obtained the value of 02 from the decay of grid turbulence,

Cu and C, from near wall turbulence, and O and 0. from an

1
optimization of theory and data. The recommended values are

C o] o

2 k €

0.09 1.44 1.92 1.0 1.3

Now the only remaining problems are a solution algorithm
and boundary conditions. These are quite lengthy and are
described in detall in Appendix C. .

The TEACH-T code has been applied to many turbulent flow
problems, including recirculating flow, free shear flow, pipe

flow, and boundary layer flow. The agreement with experimental
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data 1s generally very good,

- 3.2 VARR-II Code

VARR II is a time-dependent two-dimensional thermal-

: ‘hydraulic code(2 ).‘ It solves turbulence kinetic energy and
iturbulent viscosity equations | Hence, it is a two-equatlon
turbulencn model code. In addition, an'energy conservation
equation is included to account for small density variations
due to temperature changes, and in this way, it provides a
buoyantAforce feedback into the momentum equation. Thisvcode‘
uas'developed by Science Applications Inc. for the Westing-~

vhouse Advanced Reactor Division to aild in the design of the

LMFBR outlet plenum. .

3 2.1 Basic Assumptions

Stuhmiller (12 used a plausible explanation of the turbu-
lence transport phenomena to derive the two turbulence model
equations. Hlis arguﬁents may be summarized as follows., In
a'fully developed turbulent'flow, fluctuations exist on every
snatial scale from the largest allowed.by the geometry of the
boundaries to the smallest allowed by molecular viscosity.
However, -1t 1s often possible to distinguish two spatial regimes;
one that -is primarily responsible for the diffusivity of the
flow, and a second for the viscous dissipation of energy.
Based on these assumptions, the turbulence spectrum may be
simplified to one in which there are only two eddy sizes: the
production scale, which interacts stronglv with the mean flow

by transferring energy from the mean motion to the large eddies,



and fhe dissipation scale, which represents the small scale
motion leading ultimately toAthe éreation of heat., Since only
large eddles have direét importance to the mean flow, a single
wavenumber of the turbuience frequency spectrum 1s considered.
Physical interpretation 6f the Iinteraction with other wave-
numbers is made so that the equation of motion for the fluctu-
ating quantities can be linearized. From the dynamics of the
simulated fluctuation, thé equations of turbulence‘kinetic
energy, turbulent viscosity, and Newtonian stress-strain are
derived. |

Different from'othér work, the closure of the equations
for the fluctuatingAquéntities, rather than their correlations,
leads to the introduction of new parameters and reveals several

interconnections between measurable quantities.

3.2.2 Model Eguations

The final form of the equations for mean motion, Uy,
turbulence kinetic energy, q, and turbulent viscosity, 9, is

as follows:
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3.2.3 Model Constants

The first section has described briefly the development
of a two-equation turbulence model of turbulent flow, which
infroduces four empirical constants: either the set Yqis Yé,

1> 1°
ments on the decay of turbulence, a consideration of near-

Y3 and y, or r, a, T a They are determined from experi-

wall turbulence, of turbulent pipe flow, and of boundary-
layer flow,
The répommended values are-
r | . a Fl ‘ oy
1.5 0.045 0.75 0.01125

Finally, the description of the numerical solution algo-

rithm and boundary conditions is found 1n Appendix B.

20
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The author has applied the model»to‘turbulent pipé flow
and turbulent'Wake'flow; the agreement 1s good except near
a solid wall. Butiﬁhis code has not been tested against'enough
data, and the free péfametéfs are also just tentatlve values.
Hénce,‘more testing 1is urgently needed, and the experiments
in this wdrk are'aimed at supporting thls code.

The code TEACH-T has been modified to calculate flows
in the reactor plenum geometry, and uéed to generate predic-
tions for the experimental part of this work. The code
VARR-II 18 currently in use as a design tool in the Clinch
River Breeder Reactor Program. Its predictions have not been
-yerified -experimentally in the flow geometry of interest . -
It is also being used in this work to predict the flow in
an expeéerimental test cell. Thus, by intercomparison of the
results from these two competing turbulence'modgl codes and
the observed experimental data, one may identify sources of
_error in the predictions and make appropriate improvemeﬁts

in the turbulence models for the outlet plenum application.
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CHAPTER 4

DESCRIPTION OF THE EXPERIMENTAL APPARATUS

This chapter describes the hydraulic facilities and

instruments used in the experiments.

4,1 Hydraulic Facilities

A schematic diagram of the hydraulic loop is shown 1n
Fig. 4.1. The 50 gallon aluminum tank 1is filled with distilled
water. All the pipes, valves, and fittings are made of copper
or brass to prevent corrosion;v Polystyrene latex particles
with sizes between 0.46u and 0.54u are added to the water to.
ipcrease the intensity of the scattered light. A 1 HP pump and.
a 5 HP pump are connected in parallel to deliver the flow. In
order to increése the Reynolds numbers, a heat exchanger 1s
included in the loop to increase the temperature. To measure
flow rates, two different flowmeters are used in order to assure
the accuracy of the flowmeter readings. Flow rates ranging from
0.7 to 37.8 GPM can be obtained.

A variable geometry outlet plenum test section which can
simulate two reactor cases, namely those of the Fast Flux Test
Facility (FFTF) and the Clinch River Breeder Reactor (CRBR), has
been fabricated. It 1s composed of one 2" thick machined
aluminum piece and two 1" thick plexiglass faceplates which when
bolted together define the rectangular internal geometry shown in
Fig. 4.2. By moving the internal plexiglass blocks it can change
from a 1/15-scale FFTF geometry to a 3/80-scale CRBR geometry,

and vice versa.
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4,2 Instrumentation

A complete 11st of the instruments for the experiments is
given in Table 4,1, The functions of the individual instruments
‘are described in the following sections. A detalled discussion

of the Laser Doppler Anemometer is found in Appendix D,

4.2.1 Optical System(1¥

The optical arrangement for the experiments, a two channel
reference beam mode, is shown in Fig. 4.3. The laser beam from
a Spectra-Physics Model 164 2 watt Argon Laser éhters axially
into the DISA Model 55L83 Beam Splitter and Modular section
through a small window. It then passes through a beam splitting
prlsm which splits the beam 1n either a 50/50 or 90/10 intensity
ratlo, One beam passes through a Bragg cell, where 1t is
diffracted and 1s shifted in frequency by *+ 4LOMHz depending on
the orientation of the Bragg cell with respect to the incident
laser beam, It then passes through a neutral density filter which
1s continuously adjustable between 0% and iOO% transmission.
This‘shifted beam then passes through a DISA 55L85 Two-Chénnel
section which further splits the beam, Three beams come out
of this two-channel section. They enter the DISA Model 55L87
beam separator which focusses the beam to a polnt within the
flow channel with a 30 cm focal length lens, The two DISA
Model 55L12 photomultipliers are aligned with the two reference
(shifted) beams to pick up the signal, Each photomultiplier
is powered from its own high voltage supply. The anode currents
of the photomultipliers are monitored by two Simpson current

meters.
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The laser, optical uhit, and photomultiplier are mounted
on the aluminum plate shown in Fig. 4.4, The plate 1s supported
. by a table whose carriage provides three dimensional travel of
the entire system. The measufing poiht is p&sitioned<within
tﬁe flow channel by moving the cérfiage containing the laser,

optical unit, and photomultipliers as an integral unit.

4.,2.2 Signal Processing System

The signal from the photomultiplier 1is downshifted electron-
ically by either a TSI Model 985 Frequency Shifter or DISA
Model 55L70 Contrél Unit. The amount of frequeﬁcy downshift
is adjustable and can be selected to fit the best tracking
rénge of the signal processor. Then the signal is fed into
either the DISA Model 55L20 Signal Pfocessor or the TSI Model
980 S;gnal Processor. Both trackers contain a frequency lock
loop which can track the Doppler‘signal continuously and
provide an elécﬁric analog of the instantaneous Doppler fre-
quency of the flow velocity. |

The analog outputs'of each ﬁracker are connected to the
DISA Model 52B25 Turbulence Processor which makes the cross-
correlation of the two velocity components.

An HP Model 1413 osclilloscope monitors the output of the
preamplifier. This 18 very helpful during optical alignment
to optimize the signal and to provide a constant check on the

quality of the Doppler signal.

4.2.3 Signal Recording System

Two digital voltmeters and two True RMS Voltmeters (with
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integrating circuits) are connected to the output of the
tréckervto obtain‘the'average voltage and rms voltage respect-
ively. These voltages coffespopd'tb;the average'veloéity and
the rms vglocity-in'the flow..

One more digital voltmeter is connected to thélTurbulencé
P:ocessor to get the value of thé tWo-combonent voltage cross=<
éorrelation,-which in turn corresponds to the Reynolds étress.

The complete layout of the instrumentation is shown in

Fig. U4.3.



Déscription of Equipment

Unit

Argon Laser
Laser Exciter
Optical Unit
Photomultiplier

High Voltage
Supplier.

' Anode Current
Meter

LDA Control Unit

LDA Frequency
Shifter

Doppler Signal
Processor

Doppler Signal
Processor :

" Turbulence Processor
Digital Voltmeter
Digital Voltmeter
RMS Véltmeter

Oscilloscope

Table N.i

Manufacturer

Spectra-Physics

Spectra-Physics
DISA
DISA

Bailrd-Atomic

: .Simpson'

DISA-
TSI
DISA
TSI
DISA
TSI

Hewlett-Packard

DISA

Hewlett-Packard

Model No.
164
265
55L88

55L12
312A

N/A

55L70
985
55L22
980
52B25
1076
34564

55D35
141B
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CHAPTER 5

DISCUSSION OF EXPERIMENTAL RESULTS AND
COMPUTER CODE PREDICTIONS

5.1 'De8cription of Experiments

Water flow tests were performed with Cartesian geometry
1/15—scale-model of FFTF geometry and 3/80-scale model of
CRBR geometry as shown in Fig. 4.2. A summary of tests for
which comparisons will be made 1is given in Table 5.1. The
Reynolds number 1is defined with respecﬁ to the inlet duct
width and inlet floﬁ rate. The normal inlet condition implies
that no inlet blockage arise to resbape the flow distribution.
In the distorted case,a partial inlet blockage is used to
proQide a velocity distribution which has a maximum near the
outside edge of the inlet orifice. The experlmental errors
are typically 3 percent for the mean velocity, 7 percent for
the turbulent kinetic energy, and 20 percent for the Reynolds
stress (see Appendix F for error analysis). The data reduction
method 1s included in Appendix E. The reduced data are tabu-

lated in Appendix G.

5.2 Computer Code Calculations

For the computer :prediction, the inlet velocity distri-
bution 1is provided by theé experimental data. Inlet turbulence
parameters, such aé turbulent kinetic energy, turbulent
energy dissipation rate, and turbulent kinematic viscosity,
elther are matched to the experimental data or are buiit-in

values in.the codes. Uniform mesh in both dlrections 1s used
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to improve numerical stabilify and accuracy. Due to the mesh
size and geometry of the test section,lthe minimum mesh
points requirements are 18 x 26 and 14 x 20 for FFTF and CRBR
geometry, respectively (see Figs.G.1l and G.2). The number of
mesh points‘could be increased to improve the accuracy, but
they are limited by computer storage cépacity and computing
time. A typical computation time for FFTF geometry at IBM
360/65 computer 1s 20 and 180 minutes for TEACH-T and VARR-II

respectively.

5.3 'Comparison of Code Predictions with Experimental Data

5.3.1 FFTF_Geometry

The measured and predicted velocity field data are shown
in Figs.5.1 through 5.22 for the FFTF geometry. In each of the
velocity maps the local velocities are normalized to the
maximim inlet velocity. It 1s not surprising that all the
figures show thé recirculating flow pattern, which is consistent
with flow visualizatioh during the experiment in which a
torroidél flow pattern 1s observed.

It is seen from the data that bofh the measured and pre-
dicted flow fields depend strongly on the inlet flow conditions,

such as the velocity distribution and turbulence parameters.

5.3.1.1 FFTF Geometry, Re=33,000, Normal Inlet Velocity
: Di ib e

From Figs. 5.1 to 5.3, it 1is seen that both codes
predict velocity flelds with inlet Jjets which persist spatilally

with greater momentum than are observed experimentally.
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.Similarly the predicted vortex centers are significantly dis-

placed from the observed vortex location and the predlicted mean
velocity values near the wali boundary are greater than those
observed experimentally. The predicted éhape of the vélocity
contours near the top wall is also different from experiment. The
agreement with the experiment of the TEACH-T prediction 1s gen-
erally superior to tﬁat of VARR-II prediction. This 1s thougbt to
be so because the former calculations are performed by matching
fhe turbulent kinetic energy values to those obtained from the
experiment. If is seen in Fig. 5.4 that the turbulent kinetilc
energy prediction by TEACH-T agrees reasonably well at most po-
sitions with experimental values (i.e., within the same order of
magnitude) and those bredicted by VARR-II are generally lower than
the measured values by as much as an order of magnitude, typl-
cally. From Fig. 5.5, it is seen that the Reynolds stress ag-
reement is poorer for both éodes than is that for the turbulent
kinetic energy. This 1is thought to occur because in neither cal-
culation are the inlet Reynolds stress value matched to the ex-
perimental values. The generally better agreement of the TEACH-T
pred;ction reflects the value of specifying accurately the inlet
velocity and turbulent kinetic energy, while the VARR-II calcu-
lation employs built-in turbulent kinetlc energy and turbulent

kinematic viscosity functilons.

5.3.1.2 FFTF Geometry, Re=70,000 Normal Inlet Velocity
Distributlon Case

The measured and predicted velocity and turbulent
field data are shown in Figs. 5.6 through 5.14. It 1s seen
from Figs. 5.6 through 5.8 that the velocity field comparison
between TEACH-T, VARR-II, and the experiment 1s reasonably
good reflecting the expected improvement 1in turbulence model

prediction at high Reynolds number. As in the case of Re=33,000
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the calculation tends to predict different shape and higher

velocities of near-wall flows and with the overall vortex shape
being distorted from that observed experimentally. In Figs. 5.11
and 5,12, a Series of calculations 1is presented which 1s 1denti-
cal to the cases of Figs. 5.7 and 5.8 except that the inlet
turbulence parameters are matched with the experimental data.

It is seen that the mean flow fileld predictions are virtually
;dentical in all cases. In the TEACH-T case the overall predlc-:
tions of the turbulent kinetic energy and Reynolds stress fields
are improved by matching the 1nlet turbulent energy dissipation
rate. In the VARR-II case the mean veloclty, turbulent kinetic
energy and Reynolds stress field are almost unaffected by matqhing
the inlet turbulence parameters, and the quallty of the predic-
tion 1s generally poorer than that by TEACH-T. The inability of
both codes to predict'the near-wall veloclties 1is thought to be
due to use of an insufficient number of mesh points to resolve
the important details of turbulence and the failure of all the
turbulence models to describe the non-isotropic turbulent flow
close to. the wall.

It is seen in Fig. 5.9 that the measured turbulent kinetic
energy 1is quite uniform over the entire flow field except near
the inlet Jet reglon. Hence, one expects that the diffusion of
the turbulent kinetic energy is relatively small, Code predic-
tions confirm this argument. In the later sensitivity analysis
(Section 5.4), when we change the value of diffusion coefficlents,
the velocity fields are seen to remain'almost unchanged. This
also indicates that the diffusion terms in the transport equ-
tions are small compared to other terms. The TEACH-T code also

indicates that convection 1s
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not a small term compared to generatlon and dissipation,
“but the local equilibrihm of generation and dissipation 1is
seen to -be not a bad assumption for most parts of the flow
region.

From ﬁhe experimental data 1t is also suggested that
the Reynolds stress 1s proportional to the local mean flow
speed. Hence, a test 1s made in Section 5.3.1.4 to check
" the adequacy of this conclusion.

5.3.1.3 FFTF Geometry, Re=70,000, Distorted Inlet Velocilty
Distribution Case

| The qualitative dependence of the observed and predicted
flow .flelds. on -the. inlet mean veloéity distribution 1is shown
in Figs. 5.15 through 5.17. In this case the inlet flow rate
is maintained at Re=70,000; however, a partial inlet flow
blockage 1s used to provide a velocity distribution which has
a maximum near the outside édée of the inlet duct. Thils
results in a mean fipw map which 1s dualitatively different
from that observed in the previous cases. The maln flow 1s
observed to split into two pafts, 6ne of which passes through
the éenter portioh.of the plenum, and another of which reaches
the top wall and forms a rotating secondary flow. This is due
to the high shear stress above the inlet orifice which results
in rapid entrainment of inlet fluid in the main plenum flow.
The high near-wall velocity causes this secondary flow to
move counter-clockwise as with the main flow,

It 1s notable that both codes are barely able to predict

the qualitative features of this flow, and neither code 1s
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successful 1p'describ1ng'the experimentally observed flow
field 1in detail, particularly in fegard to the location and
rate of circulation of the secondary flow vorﬁex. Unfortu-
nately, in this case, thelinlet velocity and turbulent
parameters measurements are not detailed enough to calculate
the turbulent energy dissipation rate and turbulent viscosity.
. Conseqqently, no exactly matched predictions can be presented
here. However, comparison of experimental data and predictions
suggests that a lower value for the dissipatioﬁ rate should
apply. Hence, the TEACH-T code 1s rerun for a new dissipation
rate. The resulting veloclty fileld is shown in Fig., 5.18.
It 1is seen that the predictions of velocity field are of some-
what better guality in terms of magnitude but the second vorﬁex
disappears., This is duefté the low 1inlet dissipation rate
which causes the 1hlet Jet to persist with greater momentum
than in the previous case. . In the later sensitivity analysis,
an effort is made to adjust the inlet turbulence parameters,
and to use the best set of empirical constants, but all the
predictions are unable to reproduce the exberimental results.

As with the previous cases, the diffusion of turbulent
kinetic energy i1s small, Reynolds stress is proportional to
the local velocity, and the TEACH-T prediction of the turbulence
parameters is much'more successful than that of VARR-II.

The importance of thils case 1lies in the fact that the
qualitative nature of the mean flow field 1s stfongly depend-
ent not only upon the inlet mean velocity fleld but also the

inlet turbulence parameters.
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5.3.1.4 Zero-Equation Model

In a separate calculation, a simple Feynolds stress
relationship U'V' = C|I_Jj2 rather than a two-equation model
is used in TEACH-T, where C is the average value of proportion-
al constants between Reynolds stress and square of mean flow
speed in the measured flow field. The resulting velocity
maps are shown in Figs. 5.21 and 5.22 for normal and distorted
inlet velocity distribution respectively. It is seen that the
simple model yields results which are apbroximately equivalent
in quality to those obtained from two-equation models (see
Figs. 5.11 and 5.16) except the overestimation of near-wall
velocities. The results are weakly sensitive to the value of
C. This iﬁdicates that the turbulence model used to describe
the turbulent momentum transfers within the flow may be less
important than an accurate knowledge of the detalled inlet

mean flow f;eld.

5.3.2 CRBR Geometry

Data similar to those obtained in the 1/15-scale FFTF
test cell have also been obtained for steady state water flows
in a 3/80-8cale CRBR outlet plenum geometry. In this geometry,
the inlet orifice is much wider and thé chimney penetrates
much deeper into the plenum than in the FFTF case, so thaf
relative to the 1nlet duct the outlet.plenum 1s much shorter
and narrower than in the FFTF case. Because of the wilder
inlet orifice, the maximum attainable Reynolds number decreases

to 35,000, As with FFTF geometry, normal and distorted inlet

il



mean veiocity distributions were investigatéd; Due to uncer-
tainties 1n the accuracy of the measured data, the distorted
mean flow distribution case 1s removed from this section

and is included in Appendix H. The striking featurevof the
distorted inlet flow distribution case 1s that both codes

are unable to predict the mean flow anywhere qualitatively.

5.3.2.1 CRBR Geometry, Re=35,000, Normal Inlet Velocity
Distributlion Case

The measured‘and'predicted velocity flelds are shown
in Figs. 5.23 through 5.25. Because of the shorter distance
betweeh the inlet orifice and the top wall, the 1inlet jet
moves perpendicularly upward and turns only in the vicinity
of the wall, while in the FFTF case the mean flow is able
to follow streamlines very nicely from the entrance to the
exit in a fashion as would be predicted by intuition.

This greater mean flow chaos 1s seen in the comparison
of the measured flow field to the TEACH-T and VARR-II pre-
"dictions. It 1s seen in the lower half of the plenum that
the measurements and code predictions agree reasonably well,
While in the upper half of the plenum, both codes do not have
good agreement with the measurement.

Due to the large discrepancy in the prediction of the
mean flow fileld with the normal inlet flow distribution,
TEACH-T 1is rerun with the mesh size reduced by half. The
resulting velocity distribution is shown in Fig. 5.28.

Comparing to Fig. 5.24, it is concluded that reducing

the mesh size does not improve the quality of the result.
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It is seen from Fig. 5.26 that the turbulent kinetic
energy increases very rapidly as inlet jet approaches the
top wall. This region is characterized by conversion of mean
flow kinetic energy into stagnation pfessure, and turbulent
kinetic energy at a rate exceeding that of dissipation. It
would be expected that the pressure and veloclty correlation
would be large in this region and would have a complicated
spatial variation, although a measurement of this quantity 1is
unavailable. These phenomena result in complex turbulence
transport processes, In addition, because of more tortuous
fldw path in the CRBR geometry, the number of significant

length-scale determining the nature of the flow in any region

of the plenum would be greater than in the FFTF case; the

magnitude and complexity of each term in the turbulent trans-

port equations would be increased greatly as well as the degree of

departure from turbulent'isotropy. The net result is that the
closure assumptions for the turbulence models examined here
are too simple to describe adequately the compIicéted nature
of the CRBR flow fileld.

Several investigators used either a lumped parameter
approach(15’16)b(iie., the outlet plenum is divided into
several characteristic regions), or zero-equation models(l7)
to study the transient thermal behavior in the outlet plenum.
They all have found that the predictions for the CRBR geometry
are of poorer quality than thgse of the FFTF geometry. This

also confirms that flows in the CRBR geometry are too compli-

cated for avallable models to treat with reasonable accuracy.
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5.4 Sensitivity Study

Due to the unsaﬁiéfactory results predicted by both
the TEACH-T and VARR-II models, a sensitivity study of the
empirical constants was judged to be the next step to improve
the results of'the computer céde»predictions. For convenience,

the turbulence trahsport equations for both codes are reported

here:
TEACH-T:
| v 3U,  aU
By, oy K B (LB ey G i re
at K 9Xy aXp' oy Xy t aXJ 3X,
§.E+U' € ..__a..(_.\.’._._a_e) +Clvt€ (.&...32&)&
ot K 93Xy Xy g, Xy K Xy 93X, 3Xy
( e
- C. (=
2'
where v, = CuK /e and Cu » Cy» Cy, Og, 0_ are model
constants, '
VARR-II:
U U 2
) 3q g i K,2 9 2q (2q)
+ U ( + =)+ sy To - - o
ot K 3Xp. 2 Xy 39X, Xy Xy o
_3_0_+U_3_0_ 02(301 +8UK)2+ g -—a-I'O 29
] K 23 K 4q BXK 3Xi o] BXK axK
3.
o ) J (4
~-— sy Q0 57 & - da,4q
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where T, T, a, and a, are model constants.
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Since the running time for VARR—lI is extremely long, sensl-
tivity analyses have been concentrated on the TEACH-T model.
From the'comparison of two pairs of'transport equations, it
is seen that some of the parameters in the TEACH-T model
_apply also to VARR II model ‘

The TEACH-T model has five free parameters in the trans-
port equations-for K and €. It was declded to change each at
a time in order to examine the changes 1in computed results
especially in the mean velocity and turbulent kinetic energy

fields.

5.4.1. Case of FFTF Geometry with Normal Inlet Velocity
' Distribution

A FFTF test run with normal inlet ‘velocity distrivbution ~
and a Reynolds number of 70000 was selected as a starting
case, A complete list of the range of variables examined in
the. sensitivity study -is shown in Table 5. 2

As discussed before, the diffusion terms are expected to
make a small contribution to the turbulence transport processes.,
‘It is seen from Table 5.2 that the velocity field is 1ndeed
insensitive to the change of diffusion parameters ox and o, ,
although the turbulent kineticienergy field does change sig-
nificantly ae theSe parameters change. Increasing the value of.
Cy which results in an increase of turbulent viscosity or
momentum exchange 1is seen to improve the predicted and measured
velocity field agreement, but the turbulent kinetlc energy is
~also increased relative to the experimental'results. Hence

a second energy dissipation parameter, C2, is decreased to



42

increase the turbulent kinetic energy dissipation rate and
move the turbuleht kinetic energy back to the origlanl value
without changing too much the magnitude of the velocity field.
From many tests, the best values of these parameters are found

to be Cy = 0.25 and C,=0.16, where all the other variables

2
are unchaged. The predicted velocity distributlon and turbu-
lent kinetic energy distribution are shown in Figs.fS. 29 and
5, 30, As is seen from these Flgures, the quality of the
predictions 1is improved by these changes. The data of Appendix
I shows the calculated velocity and turbulent kinetic energy
fields for the cases examined.

5.4.2 Case of FFTF Geométry with Distorted Inlet. Velocity
Distribution

The next step is to apply this new set of parameters to
the case of FFTF geometry with distorted inlet velocity distri-
bution. Because of complicated'turbulent transport phenomena
we are unable to reproduce the experimentally-observed double
Qortex velocity distribution, although the quality of the
turbulent kinefic energy distribution prediction 1is 1mproved.

Due to the resource limitations, no CRBR and VARR-II
cases have been tested. But for ﬁhe VARR-II model,by comparlng
and manipulating the transport equations, the turbulence
equation parameters are found to be related to corresponding

turbulence parameters in the TEACH-T model as follows: I =

1ok, o = Cu/u, and oy = C, (2-q2)/u. The improved values of
these parameters are I = 1.0, a = 0.00625, and @, = 0.025 which

are different from the values recommended by the authors of
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the model: r = 1.5, @ = 0,045, a; = 0.01125,

5.5 Summary |

It is found that the Qualitéﬁive nature of the flow fleld
within the plenum depends‘sfrongly upon the distribution of
mean inlet yélocity field, upon the values of the inlet turbu-
lence pérame;ers, and upon ﬁhe turbulence momentum exchange
model used 1in the célculations. It 1s found in ﬁhe FFTF
géome;ry thét the TEACHgT.predictions are better thaﬁ tﬁat of
VARR—II,‘and in the CRBR geometry neither codes provides a
good prediction of.fhe:ébServéd béhaVior. _

From the sensitivity aﬁalysis, it ;s found that the
production and dissipation of turbulence are the dominant
terms in the transport-equations for_turbulenﬁ kinetic energy
and turbulent energy dissipation rate, and the diffusion terms
are felatively small; A new set of empirical constants 1is

evolved from the study for the prediction of plenum fiows;

5.6 Explanation of Discrepancies

Since this'1s probably the first attempt to compare the
turbulence model codés prediction with large scale recircu-
lating flow experimental data, some discrepancies are expected}
Efforts are made to outline the possible reasons why the two-l
equation turbulence modelsvfail to glve good predictions in
terms of eifher compafison of predictions and experiments,
or of pther similar types of flows. Among the important |

reasons for these discrepancies are the following:
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The present closure does not take account of the
intermittent nature of the turbulence (i.e., in
some regions the flows can alternate in time between

being laminar or turbulent) which independent
' (18) |

shows to be present in the outer
edge regions of the jet. A eimilar jet 1s found 1n .
the plenum which could exhiblt the same behavior
although the measurement is beyond our capability.
The everagiﬁg of the equation of motion, which is an
essential part of the present'approach, tends to
smooth out this time dependence. The validity of
the concepts of turbulent kihetic energy and Reynolds
stress 1s qQuestionable when a flow field is alter-
nating between laminar and turbulent since the sta-
tistical ensemble in terms of which these paremeters
are defined is not unique. Hence, it 1s possible
that this intermittency effect will introduce some

disagreements'between predictions and measurements.

Due to the small velocity in che central region of

the recirculating flow,-ic 1s possible that relaminar-
izetion could occur in this region. Hence, the
aCcuracy'of the turbulence transport equations to
describe the momentum transport in this region is

questionable. .
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In the present models, the closure assumption
implies that a single length scéle will suffice
to represent motion of all the eddies with
different sizes and shapes. From Chapter 3, the
appropriate length scales are seen to be K3/2/e
and 0/K1/2 for TEACH-T and VARR-II, respectively.
Yet in rééirculating flows the dimensions of
turbulent eddies are much different in.different
directions aﬁd their shapes will alter appreclably
during their lifetime. A multi-length scale
closure in turbulence modeling is necessary to

describe adequately this process,.

In the calculated prediction, two dimensional
flows are assumed to exist, But the f16w5'iﬁ the
test section are actually three-dimensional. Al-
though thé:transverse boundary layer 1s calculated
to be sméll; the presence of the walls tends to
change the flow‘pattern and turbulent energy
transport processes, Hence, some disagreements

are expected to arise from this..source.

In the CRBR case, the region close to the top
Wall is characterized by conversion of momentum
and turbulent kinetic energy into spagnation
pressure. Consequently, the velocity and pressure

correlation U'P' would be expected to be large and
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the diffusion of turbulent kinetic energy would

also be significant., The experimental results

indicate the existence of large gradients of

‘turbulent kinetic energy in that region which

confirms'this argument. But the parameter U'P' is
generally not avallable for measurement ahd_hence,

the modeiing of this term is difficult and inadequate.

So whenever the U'P' value is significant, the

accuracy of the prediction 1s expected to be

questionabie;

As flow.moves close toAthe wall, the degree of
dépértﬁfé‘fféﬁ‘isotrOpy increases., The present
models are inadequate to aescribe turbulent frans-
port phénoﬁéna in the ﬁear—wall region because the
fldw there 1s mucﬁ more complicated than in the

far field. The large disagreement of mean flow and
turbtilence parameters field supports this finding.

Hence, the highly anisotropic flow near a solid wall

- 18 not described adequately by a two-equation model.



- Table 5.1 List of Test Runs

Geometry 'FFTF CRBR.
Re 133,000 70,000 35,000
Inlet ‘ , B
Velocity NORMAL ' NORMAL DISTORTED NORMAL DISTORTED
Distribution ' ‘ '
5.16, 5.2h,
5.2 5.7, 5.1] .28 .2
TEACH ’ 5.18 5 ’ H
. 5.29
Fig.NO .}
5.8,
VARR 5.3 v 5.17 5.25 H.3

Lh



Table 5.2 List of Test Cases in Sensitivity Analysis
C o O¢ C C Velocit Turbulent
M K 1 2 y Kinetic Energy
ORIGINAL 0.09 1.0 1.3 1.44 1.92 N/A N/A
0.18 - -
TEST D-Moderate I-Moderate
' 0.27 1.0 1.3 1.44 1.92 - D- -
CASE 9 , D Modera@e I-Moderate
0.90 D-Moderate I-Moderate
0.5 -
TEST 5 . No D-Small
CASE 0.09 0.1 1.3 1.44 1.92 I-Small D-Moderate
1.5 No I-Small
TEST 0.65 No D-Moderate
CASE 0.09 1.0 2.60 1.44 1.92 D-Small I-Moderate
3.90 D-Small I-Moderate
TEST 2.88 I-Moderate D-Large
CASE 0.09 1.0 1.3 4,32 1.92 I-Moderate D-Large
‘ ' Different
0‘72 Flow Pattern | I-laree
TEST 0,96 I-Moderate D-Large
CASE 0.03 1.0 1.3 1.44 0.64 I-Moderate D-Large
Difterent
3.84 Flow Pattern | I-Large
FINAL
RESULT 0.25 1.0 1.3 1.44 1.60 N/A N/A

Note: D or I means that
original set of free parameters

prediction 1s decreased or increased relative to prediction by

8t
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'CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

. From the FFTF'case having normai iniet flow conditiony
it is seen that good agreement is obtaiﬁed between the
'measurements and the TEACH-T‘prediction. The inferior quality
of the VARR-II predictibns of the turbulence quantities is
attributable to use bf'a poorly.tested turbulence model, and

use of built-in-raﬁher than experimental ihlet ﬁurbulence

parémeters. |

By contrast,in the CRBRFgeometry 1t 1s seen that the
turbulence model calculations are much less accurate than in
- the FFTF.case in the prediction of mean flow fields. The
predictions of turbulence quantlties flelds are hopelessly
~poor. The cause fof this(may be due_t6 the fact that in CRBR
geometry, the tortuous flow path increases'the complexity of
the turbulenpé model -equatlons as well as the degree of
departure fme 1sopropy. The'net result 1s that the‘closure'
assumptions for the turbulence models. examined are t oo simple
to deséribe adequately the complicated nature of fhe_CRBR
flow field. |

From the sensitivity analysis, it is found that the
production and dissipation of turbulence are the domlnant
terms in the transport equatlons for turbulent kilnetic
energy.and turbulent energy dissipation rate over the whole

flow field except near the inlet Jet region, and the diffusion
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terms are relatively small. From the same study a new set
of empirical constants for the turbulence model is evolved
for the prediction of plenum flows,

Thé inability of either program to predict the nature -
of the flow under distorted inlet conditions indicates that
the choice of a turbulence model 1s not as important as an
accurate knowledge of inlet velocity and turbulence fields.
It also implies thaf models such as those used in this study
should be used with great caution in situationé in which
abrupt changes in shape arise or in which strong mean flow
gradients are imposed. Within these limitations, codes of the
type~ﬁsed in this work can provide predictions which are use-

ful for design purposes,.

6.2 Recommendatlons

6.2.1 Turbulence: Models

Further research work is needed to incorporate the
intermittency, relaminarization, and multi-length scale
effects into the turbulence model eguations or to develop a

calculation strategy to compensate for these effects.

6.2.2 Experiments

For future work mdre measuring points in the 1inlet
orifice are necessary in order to calculate accurately the
turbulent energy dissipation rate or turbulent viscosity

for the computer input.
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APPENDIX A
‘TRANSPORT EQUATIONS FOR MOMENTUM, TURBULENT
KINETIC ENERGY, AND TURBULENT ENERGY DISSIPATION RATE

We assume that'the Navier—Stokes‘equation is a valid
description for turbulent and incompressible flulds., Accord-
ingly, the derivations here are based on thé following set of

equations (in tensor form):

Ny +u, %Y - gy -1 3B+ Vi) (A.1)
3% X, P BX, 3%, 3%,
3U

k ) .
s-x—-=’0 ' (A,2)
%, |

where UJ is the velocity component, gJis the externally
applied bbdy acceleration, P is the pressure, and vils the

molecular kinematic wviscosity.

1.1 Transport Equations for Momentum

In describing a turbulent flow in mathematical terms,
it is convenlient to separate it into a mean motlon and a
fluctuating motion. Herice the field variables, UJ and P.j can
be expressed as |

9]

[}
c
+
(=

g Uyt 0y
+ P! (A.3)

"
|

Py

so that, by definition, the time-average of all quantilties
describing the fluctuations are equal to zero:

T =0, =0 = (A.4)

Upon introducing relations A.3 into Eq. A.1l and forming
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By definition, the turbulent kinetic energy, K, is

defined as K= (1/2) Ui2. Tensor contraction of the indices

i and § yields the transport equation for the turbulent

kinetic energy:

d

A B, . 1
9K - . oK _ ) — ——— i
L4 [Po=—d = o ( X'U/ +._.ﬁT?T) _T0Gr
3 Kax, X, . k p k 17k 8x,
’ 1 —
Pt N 3U1) e 1,2 .2 (A.9)
"X X 2V ax2 i
k k K

1.3 'Tranéport kquation for the Tﬁfbulence Energy Dissipation
Rate
Taking the derivative of Eq. A.7 fof Ui with respect to
xl,‘multiplying4throuéhout.by 2\J3Ui/3x1 énd forming averages,
we get the transport equation for the turbulence energy ' a

dissipation ratef

; ; T au! ,2U
3¢ . T _@e ) -2van( ?Ui 3U K+ an BUi )= 29U 3—1'83 "
t k xk axk Bxl _axl’ axi axk k xl xl xk
T T 207 2 U7
oUi aU1 23Uk 9”1 |2 2.0 3-1i.2
-2V - 2(v )T+ (==)
axk axl axl axkaxl axE axl
3 2v aP' 3k
- == (Ute + = )
oX, " Ty p 9xy 3x (A.10)

Where the turbuience energy dissipation rate, e, is

defined as

aU' BUi
€ = v(‘——)( J) .
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APPENDIX B
DESCRIPTION OF THE VARR-II CODE

The detailed structure of the code is described 1n the

1(2). Here we state briefly the solgtion

VARR-II user's manua
algorithm in VARR-II, and changes which have been made in order

to run VARR-II on an IBM computer.

1. Equations of Motion

In Varr-II, the g - ¢ (identical to K - o) two equation

(12)

model 1is adopted Six differential equations are solved

by this code in cycllndrical coordinates:

(p-p_. )
oU 1 9 .2 d - dP 0 -
ST tE VY 5y Uw'- -3t T & RX(U)
dr ,0 ) ? U
+ 'a—r,[(-f,-) ﬁ-(ru)] + 'a—z[(O) 5;—] (B.1)
W 1 9y 2yl =38, EE:EQ_B - RZ (W)
ot r or 3z . 92 o} gz
1 d oW ) oW
for sl o) gpl bl (o) 57l (B.2)

g 4,1 2 2 =
TR (rUq) + g-(Wq) = +20 (S1J)

12

L Do) 381+ 2i(o) AN 4 o0 (B.3)

+ r{

2
(rUs) + z2(Wo) = +-2-(S1J) + T(0/Q)F

o8]
tjQ
lo

+ L
r

QO

r

3 _
20(ro) 3] + ()33} - 1y (—23) (3 52(ro)

2(a/0)] + 520(a) 52(a/0)]}- ala/o)o (B.4)
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3L+l _3 v 2 = 1 2 I

5t 7 3r VD) * (WD) = 0Q 4 rl(ryolgyl
3 31

* gl (o) 55 ) (8.5)

1 3,y . AW _

T oV gz =0 (B.6)
| | 2
2Uy2 , (W2 au , w2 , v2

where SIJ=(33)° + ()" * (172) (57 + 550 ¢ 2

In the above equations, U and W are mean velocities, P
is the pressure normal;zed by the reference density, o 1s

the density of the fluid, e 1is the reference density, By

and gy are components of gravitational acceleration, RX .and

'RZ are the model reslstance terms, g is the turbulence kinetic.
energy, 0 is the turbulence kinematic viscosity, and I 1s the
specific internal energy. YT is the reciprocal of the turbulent
Prandtl number, and -CQ 1s the amount of heat transfer‘from

an obstacle subregion to the surrounding fluid. The constants
a, 'y and T

1
ing the decay of 1sotropilc turbulence, turbulent pipe flow,

are parameters whose values were chosen by consider-

and turbulent wakes,

2. Analysis

2.1 Finite Difference Formualtion

The finife difference mesh for numerically solving thé
above equations consists of a rectangular cell with edges 6x
and 6Y. Flulid prbpertiés are located at the cell positions
shown in Fig. B.1. The velécities are defined at the middle of
the cell faces to facilitate the finite difference formulation,

The complete finite difference equations can be found in
the VARR-II usef's manual., Except for the treatment of the

convection terms, tﬁe equations can be easily derived. Due
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1

to a stability problem, the authors adopt the donof cell

approach to treat the convection terms. For inssance,

'cohsider the following one diménsional equation,‘

3Q 3 -
3t taw (V9 =0

Using central differencing in space and forward differencing

in time, the finite difference equatibn is (see Fig. B.2)

@G - QD/st = - [Up(Qy ¥ Q)02 - Up @y + @y )/20/6x

1 " . -

89 °

. We now assume that U and UL are greater than zero,'and '

that fluid with a velocity UR or UL carries the property Qi

or Qi_l'respectively. The new formulation under the donor

cell approach is’

. .n+l n
Y -8 B% - Yia U, U >0
- 8t T dx R* "L
Similarly, for Up, U <O we have
n+l n
Q 7= 9y UpQyyr- UrYy
(37 6x U U. <0

R? "L
These can be put into a general form that encompasses both

cases,
,n+ n
-1 L Qi

= - (1728x)[Ug(Qy + Qup) *+ o, |Ug| (Q4-Q44y) -
UL(Qy_1+Q4) - o |Up] (93 1= 9y)J

0t

If ax equals 0 or 1, the above form reduces to the
central difference or donor cell methods respectively. In
genéral, the donor cell treatment improves the numerical

stability and convergence rate.
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2.2 Solution Procedures

The velocities computed from Eq.'s B.1l and B.2 will not,

in general, satisfy the continuity equation (Eq. B.6). VARR-II

19)

adopts the simplified Marker-and-Cell (SMAC) method The

continuity constraint is 1mposed by adjusting the cell pressure.
U L,V U
or 9z r°

is negative corresponding to a net flow of mass into the cell,

For example, if the divergence of a cell, V-D

the cell pressure is increased to counteract the inflow. Like-
wise, when there is a net flow out of the cell, the cell
pressure is decreased to draw the flow back., Because there is
one pressure variable for each cell, the divergence for each
cell can be driven to zero in this way. However, the
pressure adjustment must be done iteratively, since the adjust-
ment in one cell will affect its neighbvors.

The new cell pressure is Pij + 6P, and the new veloc-
itles are
ik — Uy * (17 8x)8P 6t
(B.7)

11,k —> U1, - (17 6x)OF ot

1k —> Wy g+ (1/82)8P st

E = <o <

1,k-1—> W - (1/ 82)6P8t

1,k-1 T
6P = - BD/8t , where 8=-3-8.[ (1, sx)2 4 (1, sa)2) (B.8)

Eq. B.8 1s derived by substituting the right side of Eq.
B.7 into the divergence condition, Eq. B.6, and solving for §P.
The term B, is a relaxation factor.

The convergence rate will be improved by using this relax-

ation factor., B, 1s usually bounded between 1.2 and 2.0.
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2.3 Boundary Conditions

Four types of boundary conditions can be simulated in

'VARR-II.

2.3.1 Rigid Boundary Conditions

Following the example in Fig. B.3(a), if the left
boundary is to be a rigid free-slip wall, then the normal
velocity there must be zero and the tangential velocity should
have no.normal gradient, 1.e., Ul,k = 0, and‘wl’k = w2’k.

If the left boundary is a no-slip rigid wall, then the
tangential velociﬁy component at the wall should also be

= 0, and W = W

zero, 1.,e,, U 1,k

1,k 2,k*

2.3.2 Continuative Boundary Conditions

This boundary condition allows for an outflow of fluid.
For a top wall with a free-slip wall boundary condition, as
shown 1in Fig, B.3(b), the outside tangential velocities are

U = U and U = U

i,k+2 i,k+l i-1,k+2 1-1,k+1°
wall boundary condition, the opposite signs are used. The

For the no-slip

normal velocity is determined by satisfying the divergence

free condition in the unit cell.

2.3.3 Periodic Boundary Conditions

The periodic boundary conditlion allows the setting up of
a mesh boundary configuration that approximates an infinitly
long mesh in which perlodic flows exist one after another., It
is shown in Fig. B.3(¢c). This boundary condition is very useful

for calculating fully developed flows.
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2.3.4 Derived Boundary Conditibns

This 5oundary cqndition insures the correct turbulent:
shear stress at the wall when the mesh size is too large to
properly resolve the vélocity distribution near the wall., Thils
is done by analytiéally prescfibing a iogarithmic velocity pro-
' file between thé computational céll next to‘thé wall and the

: *
wall itself. This profile is: W = U¥ (A 1n'-%* + B), where

equation can‘be‘put into ﬁhe'following form:

A 1n(U*x/v ) + B

, and A and B are universal constants. The above

LU
An iteration scheme determines U¥, W, g and 0.
The complete solution séheme in VARR-II 1s shown in Fig.
B.4, One calculational cycle 1s cémposed of four steps:
(1) Compute'guesses for the new veloéities for the entire
mesh from Eq.!s'B.l and B.2 whidh involve only the
valﬁes at previous'timés.
(2) Matdh the boundary conditions and adjust the new
velocities to satisfy the_contihuity equation (Eq.B.S)
by making apprqpriate changes in the cell pressures. '
In the itefatioh, eaéhvcell is considered successively
and -1s given a pressure change that drives 1its velocity
divergence to zero,
(3) When convergence has been achieved, the velocity and
présSure fields are used to compute the furbulent
kinetic energy, kinematic viscosity, and internal energy.
(4) Finally, all of the field properties are at the advanced

time level and are used as the starting values for the



next cycle.

3. Changes made in VARR-II'_

The original version of VARR-II was developed to run on

a CDC 7600 computer. The Westinghouse Advanced Reactor
' (20)

Division has méde'sevéral small modifications . The

changes discussed'below‘are from the Westinghouse version of
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the code. Due to the different assembly language and plotting

subroutines used by different-computer'facilities, the fcllow-

- ing changes were made in order to run VARR-II on an IBM

computer:

(1)
(2)

(3)

(4)

(5)

An overlay structure was removed, due to the large
active memory of the IBi machine.
All the plotting subroutines were removed, and a new

routine was inserted.

‘An assembly language subroutine, BITPIC, for bit manip-

ulation was removed; and apprOpriate actions were
taken to ensure the correctness of the remaining
statements.

All of the seven-character names were reduced to six by

. removing either the first or the last character.

. Programming errors in the derived boundary condition

were corrected,

The correctness of the new version was tested by running

a sample problem. -
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i,k
k+% T
Pik
Qi,‘k‘ ’
k —> 1. —>U; k.
Ul—l,k i,k
%1k
- |
Wi, k-1
i-% i i+3

Fig. B.1 A typlical cell showing the
locations of the principle

varlables
UL UR
. > - . —> . .
Q-1 | Q; . Q41

Fig, B.2 A typical cell showing the donor
cell treatment of the convection
terms :



e

95

,.

o : |
4 ' .
IL—i .'T | | Y8
- 4, .=0.0 |
: £k | FREE-SLIP. |
L _i— EA f o o
¥ N |
|”"-—"i/f——;f~\\ NO—SLIP: Ui?l.zﬁ, . | U o
—1 i1 [

(a) RIGID BOUNDARY-LEFT WALL

1 _l_
. (c) PERIODIC BOUNDARY-TOP AND BOTTOM
We yao ' U*(r+1)
- - : f T
— - ... " —_ W. 3
. -r : | ¢ 1+1,k+?
. 1 U, —
1—1?k+ i, k+2 "U*(r+I]
. V4
lcelie ) - T I U;( r+l ]
L | Y |
. -
Ui-l,k+1 i, k+1 '
|
Wi,k _.l
(b) CONTINUATIVE BOUNDARY |
- TOP WALL (d) DERIVED BOUNDARY CONDITION
: : - RIGHT WALL '

Fig. B.3 Details of VARR-II Boundary Conditions
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APPENDIX C
DESCRIPTION OF THE TEACH-T CODE

The- TEACH-T code(‘l )was developed in the Mechanical Engin-
eering Department at the -Imperial College of Science and Tech-

nology in England.

1. Equation of -Motion

This code adopts a K-¢ two-equation turbulence model.

Four differential equations are solved by the code:

3 8. OV e 3P ]
ax.(pUjUi) - ox, (M3x, T pUiUi)'- x, O (€.1)
3, o
i .
3 5 , Yt 2K 5
U,s= pK—-‘——(———x—)- utG+oe =0 (C.3)
Jaij axJ oy %, |
" u C.€ 2
3 8, _t 3¢ B .
Uy 3% Pe-5x. (T ax,) ~ Tk M9 Yl T=0 (c.W)
J J e J
U, U,
where - PUJUS = M, ( —;3 + 3;1)
_ 2
ut = Cuo K< /€
3U U, U
G = (_i.+_11)_.._l

In the above equatlons, Ui is the mean velocity, P is the
mean pressure, P 1s the density of the fluid, K 1s the turbulent
kinetic energy, € is the turbulent energy disspation rate, u is

the viscosity, is the turbulence viscosity, and Oys 0 Cq,

He

C,, and Cu are constants determined by experiments.

2
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2. Analysis.

2.1 Finite Difference Formulation(2l)

In the previous section, all of ‘the differentlal equations
except the contindity equation can be expressed 1n terms of the
following general transport equaticn in cyclindrical coordi—-
nates- o | ‘> .

o Lo (oTU8) + g (orVE) - 5 (FTED) - (T D]

-8, =0 _' o . ‘ ‘ (C.5)

The finite difference grid is shown in Fig. C.1l. Scalar
quantities are defined at. the intersections of grid lines, and
the velocities are defined at'control volume boundaries (dashed
lines) . | |

A finite difference equation for the ‘scalar ﬂ is obtained
by integrating Eq C.5 over the control volume, and then by
using Gauss's theorem to replace volume integrals by surface -

integrals., The resulting equation is

n g, '
5 [( prU@ - rT )E - (prUﬂ - rF ) Jdr +

E | ,
jw[( prvg - rF%%)NA- (prvg - rr ) ]dx - 5- ng = 0, (C.6).

Assume that the net x-direction convection and diffusion
of # through the control volume are given by

where
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0 when FE>}DE
agp = -2Fg when Fo< 'DE_
Dp-Fp | when -DES Fo¢ Dy
| Fg = ! AE/zé'DE = Tghp/8%g
‘The ﬁerms ﬁg,‘AE,‘and Ig stand for the mass flux, cross-

sectlonal area, and average exchange coefficient at the bound-
ary respectively. | - ‘

,'The above scheme ié a hybrid of central and upwind'(donor
cell) difference schemes, Aé |F/D| 1is less than or greater than
uhityﬁ it reduces to central or upwind difference schemes
respectively. This hybrid scheme has the advantage of being
more accurate and stable over a wide range of F/D.

The resultant difference equation from Eq.'s C.6 and C.7

3 . _
is_apﬂp = nenfat S

: where"i'is a sSumnation over all nelghbors, and
)

The treatment of the momentum equation 1s essentilally the
same as the above, The control volume for the velocities.are,
of course, displaced from those of #. Interpolation is some-
times neéessary to obtain velocities, densitles, viScositiés,
etc. The differéncé equations are,

a Uy, = ;anun + A (By-P ) + S,

b
V.= aV_+ AS(PS—Pp) + S

ap p rin'n v

where Su and Sv are integral source terms, that are discussed

in Seec. 2.2.1 below.
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Finally, the finite difference equation for the continuity

equation is

( PUA)L = (PUA), + (PVA), - (PVA)g = 0

2.2 Treatment of Source Terms
2.2.1 Momentum

In the momentum equation, the source terms are
d

_ 8 1 3 U .
Su X (u Hers ax) T o\ oerr Br)’ and

o8, 1 5 3V v
Sy = 3% (u Herr ax) T r(ru eff'ﬁF) = Merr T2

The integral source terms in Eq. C.6 can be simply derived

by integrating the above equatlion over the control volume,.

2.2.2 Turbulence Kinetlic Energy

The source term in the K equation is,

G + C.pe

S Mg D

K

- aU 2 v, 2 | 2 U , av,2
= [( (3;9 + ( Y] + (Br + ax) + Cpee
The integral source can be calculated by.assuming that

the source term is uniform over the control volume, 1i.e.,

C
5 5.4V = - 5 (uG - CyPE)AV = S [c,p( ”°§ ) - M Gldv
\' \% t
ST DLbK_ +C
P 2
= o #* = :
where b cpCDOprGV/“ , C = utGGV, and

K; is the previous value of Kp.

2.2.3 Turbulence Kinetic Energy Dissipation Rate

The source terms in the equation are,

2
S¢g = Cie—x— ¢ K
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Aséuming S, 1is uniform ‘over the control volume, the

integral source term is-

. 5’ ' utGe C2pé?‘ '
VSEdV = ‘Cl T "X )av

~be + C.

pe*d8V
Where b~ -C. -

2.3 Boundary Conditions

Fig. C.2 illustrates the boundary conditions discussed

below,

2.3.1 Velocity
In order to assure thé cofrect shear stress onvthe wall,
the shear stress i$ ca1culéted as
a1
Pp(Cu CD)qu%(Up- Us)

s - :
ut

where pr E(Kp + Kw)/2

ut =2 1n (Ey+)
X . 101
K= 0.4, E=9.793, y = p(CuC)4 K 2 yp/u
_ .pw
For. laminar flow (y+<ll.63), a laminar law 1s employed:
T < - up Y
-y

°p
The usual shear'force;expression is suppressed by setting

aoutside = 0.
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2.3.2 Turbulent Kinetic Energy

Calculation of G is altered by
uo( AU 4 V24 o ‘
Svyt( et ax) dV‘""Ts (Up'Us)d V/yp

where Ts, US and Up are nearby average values,
Contributions from the outside are suppressed by setting

aoutside = 0.

2.3.3 Turbulent Energy Dissipation Rate
The finite difference equation at theé near wall node is
replaced by a log-law based relétidn:

374 3/2
€ = (CIJCD) KD .

p
CD K y

p

In order to utilize the above formulation, the source coeffi-
clents are replaced by,

b =-109 ¢ = 103%

2.4 The Solution Procedures

The solution technique is a series of guess and correct
operations, First, the guessed pressures P¥ and velocities
U¥ and V¥ (which may be initial guesses, or values from the
previous cycle) are substituted into the momentum equations.
This yields an intermediate U¥ and V¥, 1In general, these
velocities will not satisfy the continuity equation.

The pressures are then adjusted to satisfy continuity.
The relations between velocities and pressures are |

8Uw
= * e ————— -
U, = UX + B(Pw-Pp)(P'w PI),
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where P' 1s the pressure correction,
The velocity and pressure relations can be deduced from the
" momentum equation as

I an ) AW
o(P. - P - b
w (P- P5) ap~

Substituting this into the momentum equation, we obtain

= l '
(aj, - ®) P} IaP' o +M +C,

p n
= #* - * #* - *
where Mp (pU*A) (pU* A)p + (pV¥A) (pV*A)
S, = b Up +C
aw = Py Dw AW
a = I a .
P, N

Once the P' field has been obtained, it 1s a straight--
forward matter to update'the pressures and velocities, 1In
general, it 1s not necessary td Satisfy the continuity equa-
tion for each cycle, since tﬁe subsequent calculation for @
(e.g., K,e ) will affect the velocities. The procedures adopted
by_TEACH-T are, for each cycle, U, V, K and €, iterated
three times, and P five times. The convergence criterion
is that resldual sources for mass and veloclties are below
certain values,

This solution algorithm obviates the need to approach
the steady state via the time evolution of the flow, as is
required by the conventional method (such as the SMAC method
in VARR-II). In the plenum considered in thnis work, the
computation time for TEACH-T is approximately one order of

magnitude less than that of VARR-II.
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Fig. C.1 Finite Différence Grid

for TEACH-T
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APPENDIX D
~ LASER DOPPLER ANEMOMETER

Introduction’ ‘ : | :

The'Laser'Doppler Anemometer (LCA) was developed in

by Yeh and Cummins(22 ) who first demonstrated that the

Doppier shift of'light scattered by moving particles could

be detected by heterodyning the scattered light with a laser

source on a photocell. Since then, a tremendous effort-has

been

‘made by many researchers around the world toward making

the LDA a reliable fluidiﬁelocity measuring instrument.

wire

The major advantages of the LDA over conventional hot

or pitot tube probes are:

1. -Thé measurement 1is performed with laser:beams;

no probes“disturb the flow,.’

- 2. The measuring (or scattering) volume 1s very

small, which allows a high spatial resolgtion.

3. No calibration,of the equipment is required.

4. The fluid veibcity is linearly‘proportional to

the Dopbler shift.
5. The diredtionél sensiﬁivity 1s ideal for two or

three-dimensional measurements.

Principle of the Laser Doppler Anemometer

106

If a 'source of sound or electromagnetic waves of constant

frequency 1s put 1nto,motion,‘a fixed observer will receive a

different frequency. This is the well-known Doppler effect.
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A similar phenomenon 1is also observed Qhen the source is
fixed but the wave 1s scattered by a moving body before reach-
ing a fixed observer. The Doppler shift of an electromagnetlc
wave 1s usually very small compared to the source frequency
and very difficult to detect. Conventional 1light sources have
a bandwidth larger than the Doppler shift and this change 1in
frequency could not be detected in the broad signal. It is
the introduction of the lasef that permits the measurement of
a Doppler shift at optical frequencies The laser 1is a source
monochromatic light with a very small paridwidth. For example,
a single axial mode of the He-Ne laser operatlng at 6328 R
(f“'loluﬂz) has a bandwidth of 10 Hz. The Doopler shift 1s
usually larger than one KlloHertz. Although this is still
small compared to the source frequency, it is large compared
to the source bandwidth and thus is detectable with a hetero-
dyne technlique.

As illustrated in Fig. D.l, light incident on a scatter-
ing particle 1s scattered at a different wave number. If 51
and 55 are the wave numbers of the incident and scattered
light respectively, the difference in wave number 1is given
by K = K, - K.

If U is the velocity vector of the scattering particle,

the frequency shift between incident and scattered light as
(23)

seen by a fixed observer 1is
_ . . - _l_ ~ ~
WD = 2nfD = K+~U, or fD Aig.(Ki - Ks) (D.1)

where Ai is the wavelength of the incident beam, and Ki and
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~

KS are unit vectors.

Note that the Doppler shift is linearly proportional to
the component of velocity in the direction of U o(ﬁi - is).
This result permits us to measure components of velocity in
any direction by properly orienting the difference vector,
(%i-ﬁs). Secondly, the LDA has an ambiguity of the flow direc-
tion, i.e., the LDA system is unable to distinguish whether
the velocity is pdsitive or negative, Unless a frequency
shift deviceAis used, the LDA will gilve erroneous results
for small 5nd possibly reverse flows,

The Doppler shift can be detected by a square law
detector, such as photomultiplier or photodiede. Considering
the reference beam system shown in Fig. D.2, the two l{ght

beams may be represented by

El Elosin 2nfot‘

2 = Ezp

The output cufrent, 1, 1s proportional to the square of

. E sin 2ﬂ(fo + fD)t

the total electric field incident on it:
2
ia (El + E2)

2 2

10

2 2

= E sin waot + 520 sin 2w(fo + fD)t

+ E10E20E°°S 2nf_t - cos 211(2fo + fD)J

D

Since the detector cannot follow freguencies greater than
several hundred megahertz, terms in the expansion involving

by f +°f and 2fO + £ will give rise only to a D.C;

o* "o D» p
current proportional to the time average of those terms., If
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fD is below the frequency cutoff of the detector, there will

be a signal

2 2
E + E . \
10 . 20 + LlOEzocos 2wat

ia

‘The first term is the D.C. current and the second term
is the A.C. or.Doppler current. In order to know the veloc;ty,
a proper frequency analysis instrument (such as spectrum
analyzer, frequency tracker, or frequency counter) may be used

to determine the Doppler frequency.

3. Modes of Operation

There are several different optical arrangements for the
experimenter. The two most popular schemes are discussed

here,

3.1 Reference Beam Mode

As shown in Fig. D.2, the 1hcident light 1is first split
into two beams. After passing through the focusing lens,
they intersect within the fluid to form the measuring volume,
A photodetector is.aligned with the reference beam to pick up
the signal. In order to reduce the intensity of the reference
beam and optimize the signal, a neutral density filter must
be used,

This mode 1s preferred for measurement in flows with

high particle concentrations.

3.2 Dual Scatter (or Fringe) Mode

In the dual scatter mode, two beams intersect to form

the fringes illustrated in Fig. D.3. The Doppler frequency
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is shown to bé proportional to the rate at which fringes are
crossed_by the scattering particles. Note that thils result

is identical to Eq. D.1. Consequently, the Doppler shift is
independent of the direction of detection. The immediate
advantage of this result is that scattered light can be collect-
ed over a wide solid angle with relatively low intensity
scattered 1light. In general, this mode requires a low

particle concentration for a good signal to noise ratio.

b, Limitations on Accuracy

The Laser Doppler Anemometer provides an abéolute measure-~
ment of velocity and does not require any calibratlon. Its
frequency ana spatial resolution are éxcellent. Also, this
technique allows the scattering volume to be easily'positioned
in the flow channel by traversing the optical components. In
spife of these ad?éntages over other types of anemometers,

the LDA still has many limitations.

4,1 Frequency Broadening

The term “frequehcy broadening" refers to the filnite
width of the frequency probabilit& density distribution of
the optical signals resulting from effects other than the
variation of local velocity with time., There are several
contributions to the frequency broadening, and these are

subdivided into three different classes for discussion.
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4.1.1 Finite Transit Time Broadening

A typical signal generated- by a particle passing through
the-measuring volume is shown in Fig D.4. The small size of
the measuring volume and the finite velocity of the scattering
particles result in a finite signal burst, Since the ooherent
information only exists for a time interval AT, it limits
~the resolution of the magnitude of the local velocity varia—‘
tions with-time. :If an electronic data processing system 1is
‘used, 1t gilves notAonly the signal frequency'but also theA
envelope,of the signal bursti From detailed frequency
analysis(zu) it can be deduced that the finite spectnal width,

’

§f, 1is inverseley proportional to the duration}”Ar)”ile,,“ L

dm pr
since A1 = 5 T —f
Sf A _1
f N
- pr

wnere dm is the fringe spacing, and pr is the number of fringes
in the measuring volume. From the above equation, it 1is
concluded that in order to ensure this broadening is less than

1%, N must be greater than 100, ,

pf

4.1.2 Broadening due to Optical Imperfections

- From Eq. D.1, the Doppler frequency is

f:.l_p_.(K

5y - Ks).

i
Due to the finite size of the laser beam, imperfections of the

optical components, and possible optical alignment errors, the
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jl-(Ki- Ks ) term will not be uniform over the transit time

of partlcles.

4.1.3 Broadening Due to Spatial Variations in Velocity

If a velocity gradient exists over the finite éize of the
meaéuring volume, particles crossing the control volume at
different positiohs will have different veloclties. These
velocity differences cannot be distinguished from velocity
variations with time, and have to be considered as a broaden-

ing; This can be represented by

8f, 1 30
£ vay [axd 8%
where §x 1s the dimension of the scattering volume perpendicu-

iar to the direction of the velocity gradient measurement.

4.2 Veloeity Biasing

The number of particles which arrive having a particular
velocity is, in genéral, dependent on the velocity. If the
particle distribution is uniform in space, the rate of
particles arriving in the scattering volume will be higher for
fast particles (c¢f. a high volume flow rate for fast particles).
Consequently, the average value of the measured velocity
component will tend to be higher than thé statistical mean
value. The degree of bilasing depends not only on the signal
processors used, but also on the averaging mode employed. For
example, consider two‘different averaging modes for the fre«

quency tracker:
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Mode 1 - the analog voltage is integrated over all time,
no matter whether the Doppler signal is present
or not. |

Mode 2 - the analog voltage 1s integrated only over the

time that the Doppler signal 1is present.

It is no surprise tﬁat these two modes give different
dverage values, and mode 2 tends to give better results.
Unfortunately, most of the commercial trackers adopt the first
scheme. The ideal signal processor for decreasing the
vélocity blasing is the random sampling circuit, i.e., it
observes the scattering volume at random instants of time, so
that there 1s an equal probability to detect elther fast or

slow particles.

4,3 Random Phase Fluctuation due to Many Scattering Particles

So far only the signal produced by single particle has
been discussed. While more than one particle is in the volume,
not only the signal amplitude changes, but also the phase
dhanges abruptlyu?s&br'example, in Fig. D.5(a) there is only
one particle in the volume, and the Doppler current is given by

Acos(w.t + 6) particle in volume

. a{ D |

0 particle not in volume

Considering Fig. D.5(b), there are two particles in the volume
which entered at diffetrent times. The Doppler current is

given by
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(A cos (th + Wl), particle 1 in volume

A cos (th'4 wl) + A cos (th + wz), Both particles
S C in volume

iba (= ?A cos (th + P)

§inw1+sinw2

where y = tan~t

cosy, +cosy,

| A cos (th + w2), particle 2 in volume.

As shown in the figure,'each of the abrupt changes of
phase amounts to an'anomalous zero crossing. A tracker cannot
distingulsh these crossings from velocity fluctuétions.

The second example of a phase fluctuation is shown in
Fig. D.5(c). There are two particles with different velocities

which entered at the same time. The output is given by

ipe A cos (let) + A cos (wDZt)

mn w
A D ' . D
(——i—f—_g) t cos (

2 2

2A cos

The first term gives a frequency proportional to the mean velo-
city. The second term 1s an envelope of the signal. As shown
in the figure, extra zero crossings will be detected as

velocity fluctuations,.
In summary, a phase fluctuation will result from
(a) a velocity difference across the control volume,
(6) a particle population change in the control volume, and
(¢) a Doppler envelope croséing a zero, even when

particles are present.
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5. Optimization of the Doppler Signal

Some optimization procedures are followed to improve the
signal to noise ratio, and to increase the accuracy of the

measurement.,

5.1 Laser Power Requirements

When light strikes a particle, it scatters . in every
diréction.' The.resulting distribution depends on several
factors such as the'properties of the light (e.g., wave-
length), and the properties of the scattering particles
(e.g., size, shape, refractive index). The intensity of
light scattered backward is about three ordérs of magnitude
less than the'intensity of light scattered forward. Since
only part of the total 1asef power scattered by a partilecle
is collected by the photomultiplier and several photons per
unit time are requiréd to insure a good signal, the laser
power requirement varies w;th the scattering direction. For
forward scattering, the suggested laser power(26) is .05mw/
(m/sec). For back&ard scattering, the requirement is a
thousand times greater, In this experiment, a 2 Watt laser 1s

used, and is well above this limit for flows of water.

5.2 Optical Path Length Difference

The requirement here 1s that the optical path length
difference of the two beams should be zero or differ by integral
multiple of 2L, where L 1s the laser resonator cavity length.

In practice, the commercially available integrated optical unit

1s designed so that the difference will cause only a small
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decrease in the amplitude of the signal. For the DISA Optic
Unit with a two-channel section, the path length difference
is about 5.7 cm, and is small compared to the 1 m. laser

cavity length.

5.3 Measuring Volume

As discussed in section 4.1, a small scattering volume
is desirable for high spatial resolution and to minimize
broadening due to velocity gradients. But a small scattering
volume can cause a larée transit time broadening. Hence, |
there exists an optimum size for minimum broadening. The
measuring volume can be adjustedlby changing the focal lengtn
of the lens or -the beam separation distance. -In ﬁractice,'
- as long as one.percent spatial résolution and 100 fringe iines

are assured, no optimization 1is necessary.

5.4 Scattering Particles

Since the scattered light comes from the interaction of
the laser beam with the particles suspended on the fluid, it
is very important to choose the particle properly for accurate
results. In this experiment, polystyrene latex paﬁticles are

used.

5.4.1 Relative Density of the Particles and the Fluild

The LDA system measures the particle yelocity in the
fluid instead of fluid velocity itself. It is very important
to know whether -the particles:suspended in the fluid will j
follow the fluid. It has been shown(27) that particles with

a density close to that of the fluid will follow the fluild
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within a broad velocity range;‘ In thls experiment, poly-
styrene latex particles with density of 1.05 are used, which is

very close to the density of water.

- 5.4.2 Particle Concentration

As discussed in section 4.3, if several particles are
simultaneously baésing through the meésuring Volume, the
mixed signal will léad_ﬁo less accurate résﬁlts in the fringe'
modé. Thus the best cqncentration i1s that which results 1n
only bne~particle‘being within the measuring volume at any
time. This condition can be obtained by properly seeding the
fluid and adjusting the'size of measuring volume, In contrast,
the reference beam mode uSually;réquires a high particle

.concentration in order to gct a better signal to noise ratio.

5.4.3 Rarticle Size

-In the fringe mode, 1f the size of the particles 1is
'larger.fhan the fringe spacing, then no signal can be detected.
In pract;ce, the size of the particles snould be smaller than
one quarter of a fringe spacing. But the size should not be
too small, because the scattering intensity decreases with the
areé of the partic;es. In this experiment, polystyrene latex

partiéles with size ranging from 0.46 to 0.54 micron are used.

L]
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INCIDENT
BEAM

u

SCATTERING
PARTICLE

SCATTERED
BEAM

Fig. D.1 Frequency Shift for Light Scattered
.from a Moving Particle
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NEUTRAL

DENSITY
FILTER
: PHOTOMULTIPLIER
LASER [}
. BEAM
SPLITTER
- REFERENCE BEAM MODE
==
| LASER [} " h
BEAM ' " PHOTOMULTIPLIER

' SPLITTER

DUAL SCATTER (FRINGE) MODE

- Fig. D.2 Modes of Operation
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BEAM 1/ , |

BEAM 2

Fié. D.4 Typical Doppler Signal from Photomﬁltiplier
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(b)

'Fig. D.5 a)
b)

c)

Signal generated by passage of
single particle in steady, uniform flow

Signal generated by two particles :
which entered the flow at different times

Signal generated by two particles having
different velocitiles
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APPENDIX E
DATA REDUCTION

1. Average Velocities, Root Mean Square Velocities, and
Reynolds Stresses |
From Eq. D.1 in Appendix b, the Doppler (or frequency)
shift is

_ -—1.- . A ) . ~
fp= % UKy - Kg)
It can be shown that when two intersecting beams are used, thils

vector equation can be rewritten as

s = D} (E.1)
2siné6
‘ | “_”“___.,__,~r—~———"~—"—"”"’”‘ﬁ"j_”-"—””'h—
where U = the component—of-Jocal flow velocity which 1s"
___‘__‘__,.,__._‘—-—-——‘M .
normal to the bisector of the beam intersection
angle,
® = the half angle of the beam intersection,
A=

the wavelength of iaser light.

In this experiment, A = 5145 x 10710 m, and © = 4.047° , hence,

U (m/sec) = 3.645x1073 £ (KHz).

D

1.1 Average Velocity

Since analog output of the tracker 1s linearly proportional

to the Doppler frequency in the range selected, and since 10

Volts correSpondS to the maximum frequency, fMAX’ in that range,

the average velocity can be expressed as
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Vv, -V

= -3, X shift
U (m/sec) 3.645 x 10 x [ 10 ] x fMAX (KHz)
= 3.645 x 10d x (v - v ) x f i
Lo . X shift MAX (KHz) (E.2)
'where,Vx = the average analog voltage reading in the
digital voltmeter .
' Vehift = the voltage corresponding to the shifted

frequency.

1.2 Root Mean Square Velocity

From Eq., 2, the rms velocity is simply

| T - — -
U'Z(m(sec)s %So Ur2dt = 3.645 g—ioﬁi_x fax (KHZ) xqty_fﬂwﬂ___e__,__

T

e
[

1.3 Reynolds Stress
‘The velocity Cross-correlation can be expressed as

UiU&(mz/sec2) = [(3.645x107") x x V1] [(3.645 x 1074 o

XMAX
. |
x V'] =1.329 x 10077 x f

x f. x V!

x f yuax * Vx'y

yMAX xMAX

where subscripts x and y stand for velocity components in

the x and y directions respectively.

'The Reynolds stress 1s given simply as - OU£U§.

2. Reynolds Numbers

The Reynolds number of the test cell is based on the
inlet geometry and average inlet velocity.

'
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FFTEF Geometry

_— . 20 Lo |
Flow Rate (GPM) Area (m“) X UINLET(m/sec) X

.01585 x 10° (6PM/m3sec)
= M6.02(x'UINLEi(m/sec)..
§r UINLET(m/séc) = .02173 x Flow Rate (GRM)
The Reynolds‘numbér is defiped as
Re _°Yrnper?

U

where D, hydraullc diameter, is defined with respect

to inlet duct width.

At 110°F, Re = 1909 x Flow Rate (GPM)

CRBR Geometry

" Similarly, UINLET and Re in the CRBR geometry are

U (m/sec) = 0.01087 x Flow Rate (GPM)

INLET
At 110°F, Re

1248 x Flow Rate. (GPM)
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APPENDIX F
ERROR ANALYSIS

The purpdse‘of thié appendix is to estimate the errors
in the velocitles, root meah'square velocities, turbulent
kineticAenergies, ahdldouble velocity cofrelatiohs from the
qncertainties in the LDA measurement technidue aﬁd the

| accuracy of the instrument.

1. General ‘Principle

Since the errors come from many sources, the method of

(28)

compounding errors suggested by Wilson was used here.

Suppose that the fiﬁalvresult, y, 1s related to the

e
e e
PRSI

e

components, Xi, by the relation
MpOlletiv=, 2=y =

¢

Y ='F(X1,X2,...Xn)

'VWhere F is a known functional form. The small variation in

Xy will alter y by the amount
ay = 2 ax, + 2 ax, + .t 3= ax,
: oX 2 ' n
1
: n
= 1 & ax,
1= i *

The square of the error will be

(ay)2 = = %E %%-'dxi ax,
i,j771 J

If the components dxl, dX2,..., an are independently distri-
buted and symmetrical with respeét to positive and negative
values, then the products, dXi dxJ (1#3), will vanish on the

average so that



H This may also be written in terms of the variance, o, as

n o ‘ :
o2 = 1 (fg})z Oi2 (F.1)
i=1 bt A
2. ' Calculation of the Error in Velocity

The velocity 1s calculated by the expressibn

- £ 2
V= i (F.2)
where f = the Doppler shift
"X = the wavelength of laser light
® = the half angle of the beam intersection

Hence, there are three quantities, f, A, and 6 which will
make a«contributidn'to the errors. The error in A 1s
negligibly small. The errors associated with f and 6 are

discussed below.

2.1 Error due to the Uncertainty in 6

The uncertainty in 6 comes from the following sources:
1. the beam separation distance

2. the focal length of the optical lens

Factor one, the accuracy of the beam separation distance was
Judged to be 1% which results in a 1% error in 9o .
Factor two, the error in the focal length of the optical

lens was Jjudged to be very small..

126
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In Eq. F.2, differentiate V with respect to O:

3 - _r xcoso /2sin®s | (F:3)

From Eq. F.1, the error (normalized by the velocity) is

1

8V.2 2 AB (2
2 G 07 = (gang)
o482

where tan 6 6 (6= 4.047° in this experiment)

2.2 Error Due to the Uncertainty in f
The uncertainty in the frequency comes from the following

sources:

1. the accuracy of the frequency tracker
2. the accufacy of the digital voltmeter

3. the accuracy of the frequency shifter

4. signal broadening

5. phase fluctuations.

6. velocity bilasing

Factor one, the overall accuracy of the tracker as specified

by the manufacturer is 1% of the full scale deflection. For

this experiment, the measured frequency was close to 40% of

the -full scale reading, hence the accuracy is 2.5%.

Factor two, the accuracy of the digital voltmeter is 0.1%. It

is small compared to other errors, and thus will be neglected

in the calculation.
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For factor three, “the manufacturers”do not specify the
accuracy of thei" frequency shifter it involves both
frequency upshifting and downshifting and errors might occur
during.these processes. A.l% error 1s assigned for this
factor..A | | | R |

Factor four,‘signal broadening, is discussed in Appendix D.
Slnce the average frequency (or voltage) was obtained by
taking the time average of the Doppler signal, the values
-Shouid-oe very accurate and not be affected‘byvbroadening.
Factors five and six, phase fluctuations and velocity
biasing, are also discussed 1n Appendix D. These errors
depend 0n>the_part;cu1ar_sepup of the experiment; e.g., the
concentration of the scattering particles; only very delicate
experliments can‘determine the magnitude of this error. But
these two factors;were Judged.to haVe_small contribution, and
a 1% total error 1is assigned to these-factors. |

In Eq. F.2, differentiate V with respect to f:

v o oA 1
f 2 sin 6 (F.5)
Hence the error is

L v (2 2 g My

L vz G erpT =y () (F.6)

where 1 = all six factors discussed above.

2.3 Other Errors'

In the above sections, only errors assoclated with Eq. F.2"

were discussed. The other possible errors are listed here:
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1. Position efrofs, 1.e., thé measuring points are
-not exactly the-dgsired poSitiqns. In this experi-
ment the test seetion 1s relatively‘large compared
" to the measuring volume, hence this error 1is
judged to be neglibly Small.
2. Erros in fhe measurement angle, i.e., the laser
beam 1s nét perpendicular to the test sectilon,
so that the measuped velocity component 1s not
the COrrebt one., A 1% error in velocity 1s

_assigned to thils factor.

‘ 2.4 Sample Calculation for the Error in the Velocity

The tofal error for the veiocity'measurement can be
calculated by combining Eqs. F.1, F.M; F.5 and other errors
from the previous sections: - .

A2 . A%2 . I ALy2 . (Ae)2

(.01)° + (.025)° + (.01)? ¥ (.01)2 + (.01)°

0.001025

\')
= = 3.2%

Hence, the error in the velocity meaéurement is 3.2%.

3. Calculation of the Error in the Koot Mean Square Velocity

The root mean square velocity 1s calculated by an express-

ion similar to that for the velccity:

f

= _rmsi :
Vx‘ms 2sine _ (F.7)
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where fr is the fluctuating component of the Doppler

ms

frequency. Thg errors 1in Vrms are alsoofrom frms and 6,

3.1 Error due to the Uncertainty in 8

Since the soufce,of the error is the same as that for

the velocity, we can use Ed) F.4 for v :

1 ,Vrms, 2 A8 2 :
rms" R ' .

\'

3.2- Error due to the Uncertainty in ffmé
Thé unﬁértainty domes from the folloWing sources:
'l. The accuracy of ﬁhe frequency trackér
2. The Accuracy -of the RMS voltmeter ' ;
3. Signal broadening ‘
"u.-Phase fluctuétions'
Factor oné is'discussed'in sectioh 2.2. ‘The accuracy
is 2.5%. |
Factor two, the accuracy ofAthe RMS volﬁmeter, 1s specified
by the manufécturef to be 2%, for ffequencies belo& 10 KHz
which 1s the ubper bound for water flows,
Factor three, signal broadening is, no longer small. Silnce
it 1s difficult to separate it from the much larger broaden-
ing due to the turbulent fluctuatlions, an error of 1% 1is
assigned to thils factor,
- Factor four, ‘phase fluctuations, is also very difficult to

determine. An error of 1% is assigned to thils factor.
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Hence, the total error is

1 3V | Af 2
Y ) : %
rms rms,1 . o o ‘:rms

Sample Calculation for the Error in the Root Mean
Square Velocity : : A
The total‘error is'calcuiated by combining Egs. F.8 and
F.é: h 4
AV - Afrms,i,2
- ( rms)2 = (Ae)2 b (B2
v A Y i frms
_ rms : ‘ ,
= (.01)2 + (.025)2 + (.02)2 + (.01)2 + (.01)2
= 0.,001325
AV ' o
rms - _
7 3.6%
rms
Hence, the error in the root mean‘SQUare veloclty measurement
is 3.6%.
4, Calculation of the Error in the Turbulent Xinetic Energy

The turbulent kinetic energy, K, is calculated with

the expression

=L
K =3 (U

2 2y - i T
rms T Vrms ) v , (F.10)

where U and V. are the root mean square values of the

rms rms

velocity'components’U and V respectively.

The error comes from the following two sources:

1. Eq. F.10 should include all three velocity fluctuation

components, i.e.,l(E%?(Urms2 + Vrm52 + wrmsz>



132

Since no measurement was made of,wrms, and since

wrms was not in the main fioW'direction, the

neglect of this term was judged to have approkimately
5% error. |

2. Accuracy of U @04 Vo, From Section 3.3, these

s ms "’

were determined to be 3.6%. In Eq. F.10, differ-

entiate K with respect to U, and Vems®

Ly 2’ oy

, =
BUrms rms avrm rms

s -

Henée, the error (normalized by the turbulent kinetic energy) is

0
=
n
mM
~~
(o
]
3
(/]
S~

2 2
Urps? (AUrms)

(Urm52 * Vrmsz)

+ (Vrms) (AVI'mS

[
=
m

AU AV
= (__EEE)Z + (_7225)2

5 it u, .=V
rms rms

rms rms

In this measurement, Ur was very close to Vrm so U

1S ° rms
to simplify the

ms

is assumed to be approximately equal to Vrms

analysis,

The total error in turbulent kinetic energy 1is the sum
of parts one and two above:

2552 = (L036)2 + (.036) + (.05)°



133

= 0.,005092
K
K - 701%

Hence, the error in the turbulent kinetlc energy is 7.1%.

5. Calculation of the Error in the Velocity Correlation
The velocity correlation 1s represented by U'V', The

error comes from the following four sources:
1. Errors in U' and V!
2. The accuracy of the turbulence processor
3. The accuracy of the digital voltmeter

4y, Errors in visual reading

In the first factor, since the errors assocliated with U' and

V' are not expected to be correlated,'they will not make a
contribution to the error in the velocity correlation measurement.
Factor two, thé accuracy of the turbulencé processor which |
does the multiplicatlon, 1s specified by the manufacturer as

2% + 10 mV., Since a constant calibration was used, the

possible + 10 1V electronlc drift error was elimilnated.

Factor three, the accuracy of the digital voltmeter, is
negligibly smail.

Factor four, the visual reading error, is common to visually
recorded data 1f the reading is not a constant. Although an
integrating circuit with a 30 second time constant was used, the
feading of the digltal voltmeter was still not a gonstant.

For the experiments, a‘visual averagling method was used. Since
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the fluctuation was typically 20%, this value is assumed to.

be the error,
Hence, the total efror in the velocity correlation measurement

is 20%.
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- APPENDIX G
- TABULATION OF DATA.
The reduced'data from the experiments 1s presented in
Tables G.1. through G.4. The measufementllocations are sho&n‘
in Figs. G.1 and G.2 for the FFTF and CRBR geometries,

4respectively{
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Table G.1

. FFTF Geometry, Re=70,000, Normal
"‘Inlet Mean Flow.Distrilbution

. Location U V- Urms  Vrms u've K
( I,J) (m/sec) (m/sep)*(m/sgc) (m/secc) (;O'3m2/se02) (m?/sec2)
4,2 867 .12l 371 260 1.97 .103
2uju 778 WML .336 0 .250  2.62 - 0.878
24,6 .619  .608 311,250 4.59 .0798
24,8 442 675 297 .250 4,26 L0755
24,10 .265 645 .263  .250 2.29 ~.0714
24,12 .19 .53 ,255 232 2.62 10.593
24,14 -,0177  .380 ° .255  .213 2.62 L0552
24,16  -.276 .256 © .234 195 0 .. .04e2
22,2 1.079  .0519 .37  .269 1.50 0962
22,4 920 .321  .340  .269 7.015 .0938
22,6 .584  .M9T  .329  .260 5.05 .0878
22,8 .ho7 571 ;297 .260 6.36 .0778
éz,lo 177 552 276 .297 7.015 .0821
22,12 0 Loy 265 .287  5.05 L0765
22,14 -.195  .219  .265  .250 7.015  .0665
22,16 © -.499 = .0797  .237  .195 4,39 L0470
20,2~ 1.150°  .0575  .40O7  .297 1.50 127
20,4 .849  .256  .371  .287  11.305 110
20,6  .478  .358  .318 = .269 8.065 .0868.
20,8 159 LML 276 .250 347 L0694
20,10 0 423 .255  .297 5,12 .0764
20,12 -.092  .219  .276  .306 4.13 0849
20,14 -.29k .108 297  .250 6.10 ~.0755
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14,16

Location u \') Urms Vrms ’ 'Y' . g
(1,J) (m/sec) (m/sec) (m/sec) (m/sec) (10'.3m2/sec'2) (m2/sec2)
20,16  -.672 . .0056  .230 ..204 4.0 L0472
18,2 1.274 L0519 ko7 .352  -2.29 145
18,4 849 .163 ;3M7 .297. - 21.30 .104
18,6 478 219 .290 .24l 10.80 0711
18,8 159 284 255 .185 2.29 L0496
18,10 -.127 311 248 195 2.62 L0496
18,12 -.389 .  .284 230 .232 2.95 .0533
18,14  -.548  .163 219 .232 5.57 .0509
18,16 -.718  .0148  .205  .185 4.855 .0382
16,2 1.486  .063  .478  .408 -5.57 197
16,4 1,150 108 25 362 36,44 155
16,6 .563  .0871 .301  .232 13.42 .0721
16,8 251 117 234 148 1.97 .0383
16,10 -.088  .163  .216  .152 2.29 .0348
16,12 -.h21 191 234,213 4,916 .050
16,14  -,619 108 .248 - .241 4.916 .0597
16,16  -.814 .020 .198  .204 4,916 0404
14,2 1.698 -.022  .601  .510 46.53 311
14,4 .938 .0315 425 .352 47.14 .152
14,6 478 022 .255  .195 I,068 .0514
14,8 .156 .033 212 137 " .0319
14,10 -.177  .0612 .212  .148 2.816 .0335
14,12 -.538  .0630 - .226 195 5.25 L0416
1414 -.796 .0389  .212 .232 5.12 .0L9oy
_.945 -.0185  .205  .213 4,20 .04 38
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. v K
g (mgsec) (m/lec> <§52291’<X§§Zc>(10—3m2/se02><¢2/sec2>
12,2 1.840  .0148  .708  .575 63.79 416
12,4 938 -.0408  .495 426 61.17 .214
12,6 .42 -,106  .248  .195 5.77 L0496
12,8 .230  -.050  .2i6  .13S 2.816 .0330
12,10 =-.106 ,0056 .219  .148 2.03 0351
12,12 -.393  .0148  .290  .176 2.685 .0576
12,14 -.637 0241 .318  .204 2.49 L0715
12,16 -.828-  .0148  .354  ,185 6.097 .0798
10,2 1.886 -.022  .814  .575 80.35 496
10,4 870  -.124 566  .436 67.225 .255
10,6 .386  -.208  .251 185 3.28 .0487
10,8 .287 .191 248,158 3.60 .0431
10,10 -.0354 -.128 202 .139 .979 .030
10,12 ~-.333 0723 .269  .163 3.28 0495
10,14 - -.686 -.020  .297 .176 6.23 0597
10,16 -.899 -.0185  .304  .158 5.31 .0587
8,6 .357 .208 241,213 6.75 .0517
8,8 198 -.282  .234  ,195 4.78 L0462
6,10 -.0318 -.226  .241  .152 2.624 L0405
8,12 -.315 -.152  .262  .158 3.28 L0467
8,14 -.616 -.0093  .333  .148 6.88 L0663
8,16 -.934 .089  .283  .195 7.87 .0590
7,16 -.899  .256  .283  .185 9.51 0572
7.5,2 1.843 .02 .885  .649 91.15 .602
7.5,3 1.153 ,07h2  .814  ,593  110.225 .507
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P )

TV K

H?E?gion (m/gec)‘(m/Zec) (mysec) (n/508) (10-3n2/sec?) (n?/sec?)
7.5,4  .552 . 0519  .637  .473 62.28 .315
6,6 265 -.059  .230  .195 5.70 L0454
6,8 0637 -.208. & .230  .232 5.05 .0533
6,00 -.120 --.245 ..248 .195  3.866 L0496
6,12 -.287 5;152 .265 176 | 3.08 .0507
6,14 -.492 L0742  .283  .158 5.38 .0525
6,16 . =157 515 .290. 152 12.07 .0536
6,17 - -1.005 1.029 290 222 13.24 | .0668
5,6 237 -.0686 .24k .195 4.916 .0487
5,8 0142 -,226 241 222 b,72 .0537
5,10  -.191 -.245 = 244  .213 3.866 .0525
5,12 . -.350 -.182  .248  .176 2.89 .0462
5,04  -.531  .0538  .276  .204 W72 0589
5,06  -.563  .515  .297 167 5.097 0581
5,17  -.350  .921  .311 156 §.72 0609
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o o Table G.2°
FFTF Geometry, -Re=70,000, Distorted
Inlet Mean Flow Distribution

Location U \'A Urms Vrms. g'g' , , K ,
(1,J) (m/sec) (m/sec) (m/sec) (ms/sec) (107°m“/sec”) (m°/sec®)

24,2 .338 .166 - .338 234 | -.642 .0847
24 , 4 374 285 .338  .261  -1.28 .0914
24,6 417,388 .338  .270 ~0 . .0938
24,8 .313 406 .303  .270 0 0824
24,10  .182  .388  .249  .252 - 642 .0629
24,12 L0784  .315 L2148  .307 ~1.284 L0443
24,14 -.0712  .216 .21k 198 -.963 .0425
24,16  -.267 Jd42 0 232 L207 -2.25 .0483
22,2 MTH 099 .356  .2-8 642 .105
22,4 552 .189 - .374  .306 _2.89 17
22,6 .509  .219  .374 - .315 3.85 120
22,8 .313 - .207  .321  .288 7.06 .0930
22,10 _ .153  ,0991  .267  .243 257 .0653
22,12 0534 - .0631 .249 216 | ng L0545
22,14 -.157 009 .249  .189 2.57 .0490
22,16 -.470 -.0451  .232  ,189 -.321 NITYE
20,2 417,153 .356  .306 -5.78 110
20,4 .509  .225  .392  .288  -3.85 118
20,6 4,‘.u104 - .279  .356  .306 7.06 1,110
20,8 267 180  .321  .306 9.63 .0983
20,10 .0997  .00901 .267 .234 .62 0631
20,12 -.00356 -.0487 249  .216 2.57 .0545

20,14 -.178 -.0901  .249  .180 4,49 L0473
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.196

Location .U v Urms Vrms U'V; . ZK' 5
| (I,J) (m/sec) (m/sec) (m/sec) (m/sec) (10 3m/sec) (m/sec)
20,16 - 552 Sk .24y ~.180 3.21 0473
18,2 994 L0519  .313. 216 2.56 0723
18,4 .920 © .200 313 .225 7.96 L0743
18,6 . .520 .27k .285 .207  8.99 0620
18,8 .180  .311  .274 234 2.25 L0649
18,10 -.0991 .330  .256  .225 3.31 0581
18,12 _.230  .219 256 252 2.25 L0645
16,14 -.357  .108°  .253  .234 b .49 .0594
18,16 -.559 ;;09?6 .278 216 5,46 .0620.
16,2 463 .00901 .338 .216  -5.136 .0806
16,4 .883  .157 = .37h  .252 642 102
16,6 399 .189  .285  .216 3.85 L0640
r6,8.. .107 256  .285  .189 1.926 .0585
16,10 -.142 .225 .285 ;198 +5.136 _.0603
16,12 -.274 115 .249 .216 2.57 .0545
16,14  -.484  .117 214 162 2.57 .0360
16,16 -.627  .027  .21h .14 2.57 0332
14,2 .695  -.112 .303 .234 =7.70 0733
14,4 873 .00901 .356  .252 14.765 0953
14,6 274 L0252 .232  .180 2,57 L0430
14,8 142 .0631  .249  .126 1.60 .0390
14,10 -.125  .0991 .267  .180 2.89 .0519
14,12 -.317  .110  .249 180 2.57 0473
14,14  -.U463 L0451 249 .l62 3.85 0442
14,16 -.673  .00901 .135 2.57 .0283
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o —6—0\—]-'. K
Location U ' Urms = Vrms

(I,J) (m/sec) (m/sec) (m/sec)(m/sec) (1073n°/sec?) (m°/sec?)

12,2 ~ .623  -.0775 .321  .261 . -1.80 .0855
12,4 816  -.0379 .338 .252  1.ul .0891
12,6 .232 00901 .214 153 770 0346
12,8 L0677 L0649 .232 J144 1.80 : .0372
12,10 -.232 0991 .249 162 2.89 . .0442
12,1é -.346 .123 232 -.216  2.50 .0502
12,14 -.452 0469  .232  .189 5.39 Louu7
12,16  -.655 . .0180  .214  .1hk 3.852 .0332
10,2 516 -.0631  .303  .261 2.696 ,0800
10,4 .873  -.0811  .392  .270 4,30 113
10,6 .256 .0108  .214 117 1.03 .0297
10,8 0606  .03@6  .232  .126 1.156 0348
10,10 -.128 .0811. .232  .153 2.05 " .0385
10,12 -.331 .0901  .249  .153 2.25 '..ouza
10,14 -.464 L0847  .249  .162 3.40 L0442
10,16  -.695 L0775  .249 . .135 2.12 0402
8,6 .235 00901 .232 .14y 1.93 .0372
8,8 125  -,0270 249 171 1.54 L0457
8,10 -.0499 -.00361 .249  .171 578 L0457
8,12 -.232 L0451 ,249 171 2,50 L0457
8,14  -.4BU 126 232 .126 4.75 .0348
8,16 -.787  .186  .232  .14H 2.89 0372
7.5,2 .37T4 -.0559  .338  .234 7.70 .0847
7.5,3 .563 -.0811  .374  .270 -16.05 .106

7.5,4 .976 -.0631 410 261 -23.75 .118



143

« o e K
Location U '/ " Urms vems 5 5 5 5
(I,J) (m/sec) (m/sec) (m/sec)(m/sec) (107 °m"/sec”) (m~/sec™)

6,6 271 - .O4S1  .232  .135  1.22 .0359
6,8 0784 0 232 .71 1.86  .0H15
6,10 -.0891 -.0631 -"éug 71 .3852 ,0us7
6,12 -.196 = -.0451  ,267  .162 1.28 0488
6,14  -.346  .108  .249  .144 - 2.89 L0415
6,16  -.591 - 496 249 162 6.42 L0L42
6,17 .- -.784 1,009 .232  .180 4,17 0430
5,6 178  ?0168 214,180 ©.706 L0391
5,8 .0178  .00901 .214  .189 .770 ~ L0407
5,10 _.142  -.00901 .232  .180 1.48 . .0430
5,12 -.249  -.0451  .249  .189 1.80 0490
5,14 -.356 © .115 249,198 2.4u ~.0507
5,16 _.367 487  .338  .216 2.82 ~.0806

5,17 = -.153 .856 .338 .279 770 .0963
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- Table G.3
CRBR Geometry, Re=35,000, Normal Inlet Mean Flow
Distributilon _
ocation U \'f Urms Vrms v ’ K
(I,J)  (m/sec) (m/sec) (m/sec) (m/sec) (10‘3m2/sec2)(m2/se02)
19,2 478 0315 .336  .121 -1.18 .0637
19,4 .363 . .528  .292  .380 -1.51 115
19,6 292 .575 274 454 -1.51 141
19,8 ° .150 .324 221 426 -2.165 115
19,10  .0265  .4i5 .195  .389 ~5.45 L0947
19,12 -.221 .389 168 315 -4.79 .0638
18,2 .858 .0093  ..425 015 +.131 .090
18,4 699 .0519  .354  .148 +.459 .0736
18,6 433 - .139  .292  .278 +1 .44 ..0813
18,8 195 260 .221  .306 +2.92 0712
18,10 -.0bk 241 186 .287 +3.41 0585
18,12  -.380 158 177,260 +1.77 .0493
16,2 1.053  .046 Wby2 232 +1.676 .125
16,4 752 204 .389  .352 +11.18 .138
16,6 380 .204 .301  .343 +12.83 .104
16,8 .265 167 .230 334 +9.55 0821
16,10  -.310 074 195,297 +9.216 0629
16,12 -,681 -.074 .186 .306 +8 .24 ;osuo
14,2 .999 .0556  .495  ,L64 +17 .06 .230
14,4 716 167 425 426 +22.00 .181
14,6 166 .185  .301  .371 +15,44 .114
14,8 -.0973  .111 212 334 +9.185 .0782
14,10 -.433 -.0093 .,203  .297 +11.15 L0647
14,12 -.840 -.093 195 .269 +9.185 .0551
12,2 1.229  ,0371  .531 .519 +28.68 276
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Location U | v Urms Vrms g'g" 2 2K 5
(I,J) (m/sec) (m/sec) (m/sec) (m/sec) (107°m°/sec”)(m”/sec )

12,4 .663 111 433 .45k +36,55 197
12,6 .0973 - .0185 2837 .352 +19.81 .102
12,9 -.416 -.037. 195 .278 . + 9.65 L0576
12,11 -.734 -.074 212 .260 +11.62 7 .0562
12,13 -.911 -.037  .195  .156 472 L0311
10.5,2  1.336  .0927  .619  .556 +30.79  .346
10.5,3 - .964 .130 584 519 +42.90 .305
10.5,4. 646 148 460 556 +45.22. 260
10.5,5 310 . .0927  .354 s © +40.97 162
©10.5,6 .0265 0 .248 408 +27.15 114
10,9 _.363  -.0371 .186  .222 + 5.06 0420

10,11 ' -.681  -.00927 .195  .297 + 7.84 .0629
10,13 -.858 0 177 167 +2.59 .0296
8,9  -.301  .0185 .186  .222 +6.20 0420
8,11 -.681 0556  .195  .222 + 8,166  .0437
8,12 = -.840  ,0927 .173 222 +5.976 - .0398
8,13  -.946 L0556 .159 167 + 3,48 .0266
7,12 -.770 .260 .212 . .250 +10.80 .0539
7,03 -1.123  .371  .248 241 +5.22  .0597
6,9  -.133 .0556 195 315 + 5.45 .0686
6,11~ -.433 .260' 248,260 + 8.40 | L064Y
6,12  -.504 1501 .248 .260 + 7.74 L0644
6,13 -.310 1,010 265 .241 + 5.12 .0643
5,12 -.292 - .334 265  .315 - 1.78 .0849
b.72 .0704

5,13 “9239 .185 .230 .297 -
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Urms Vrms u'v! K

bLocation U v _ 2. .
D (see) (m/sec) (m/sec)(m/sec) (1073m%/sec®)(m®/sec®).
4,9 .115 - L0742 .42 .24l + 1,84 .0391
4,11 -.150  .111  .212 . .24 - 1.12 .0516



Table G.4

CRBR Geometry, Re=35,000, Distorted

Inlet Mean Flow Distribution
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Location U \ Urms Vrms GV ko
(1,J) (m/sec) - (m/sec) (m/sec)(m/sec) (10-3m2/sec?) (m2/sec?)
19,2 255  -.046 265 .24 919 0643
19,4 251 .161  .248 250 +1.24 0620
19,6 .234 297 248 297 -.722 L0747
19,8 .163 .399 212,297 -2.03 0665
19,10 .0743 . .399  .195 .315 -2.03 .0686
19,12 -.156 .269 177 241 -3.67 .04 45
18,12 .340 - .0093  .336  .352 +2.23 119

. 18,4 .357 .083 .318  .315 +.262 .100
18,6 .340 .195  ,283  .315 +1.24 .0897
18,8 225  .139  .248 241 +2.23 .0597
18,10 .0566 .139 195 . .204 +4.,855 0397
18,12 -.333 .0278  .186 | .185 " +6.82 L0344
16,2 375  -.0278  .318 . .352 +5.64 113
16,4 .340 0278  .318 = .352 +1.37 .113
16,6 .340 .0278  .318 334 -.262 .106
16,8 .216 .0093  .301  .324 +5.64 L0979
16,10  -.0495 -.0278  .230  .315 9.246 0761
. 16,12 -.280 L0742 .230  .204 5.15 .0U72
14,2 251 0278 .265  .111 656 L0414
14,4 198 121 283 .334 -.328 .0957
14,6 .287 .0927  .318  .371 -4.59 .119
14,8 .198 .0093  .283  .278 10.50 .0787:
14,10 -.191 L0649 .248  .278 10.50 .0693
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Location. u v Urms  Vrms -3_2 2 }2{ 2
(1,d) (m/sec) (m/sec) (m/sec)(m/sec) (10 °m"/sec”) (m /sec )
14,12 -.563 | -.121 .230 222 10.19 .0512
12,2 340 0 354,352 1.94 125
12,4 .322 -.0649 .336  .315 2.59 106
12,6 -~ .340 - -.102 .301  .297 —2.00 .0892-
12,9 -.209 _.083  .212  .222 8.50 L0473
12,11' -.545 -.139  .230  .204 12.415 L0472
12,13 -.846 ~.083  .212 .185‘ 4.39 .0397

10.5,2 163 0 .371  .334 3.94 125

10.5,3  .172 0.  .354. .352 3.2 125

10.5,4  .163  -.0278 .336  .352 1.635 . .119

10.5,5  .198  -.0556  .354  .371 -4 .26 131

10.5,6 L340 -.0278 .336  .352 -8.20 119

10.5,7 534 -.0278 .336 .2u ~6.56 .0855
10,9 -.315 -.121  .195  .185 6.56 .0361
10,11  -.580 .-.083 .230 . .241 9.185  .0555
10,13 -.775  -.0556 .212  .148 3.9 .0335

§,9 -.315  -.07H2 .195 = .167 4 .59 .0329
§,1 -.580  -.020 .195 .185 7.87 0361
8,12 -,722 .00927 .195  .185 9.185 0361
8,13 -.846 o .212  .185 5.25 0397
7,12 -.704 232, 212 = .185 11.51 ,0397
7,13 -1.04 334 212 167 7.87. 0365
7,9 -.315  -.0185 .195' .185 5.57 .0361
7,11 -.527 0927 .212  .222 9.51 0473
6,9 .-.191 0464 195  .204 3.15 .0397
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ocation U | ' Urms  Vrms . - ‘ K
(1,J) . (m/sec) (m/sec) (m/sec) (m/sec) (10'3m2/se02) (m2/se02)
6,11 -.386 .213 .21 222 7.25 L0473
6,12 421 1399 248 222 7.90 L0554
6,13 -.191 - .881  .301  .260 5.935 .0789
5,12 _.191  .250  .212  .204 -2.26 .0433
5,13 ~.156  .145  .230  .z222 -.391 .0512
4,9 .0566- ,0093  .133 111 525 0150
4,11 -.129 . A77 0 L241 .360

.0834

ouLT
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APPENDIX H

CRBR GEOMETRY, Re=35,000, DISTORTED
INLET VELOCITY DISTRIBUTION CASE

In Figs. H.l through H.5 CRBR flow data are shown for
the case with‘a partial inlet flow blockage which re§ults in
a distorted inlet velocity distributlon. The‘striking feature
is that nelther code 1is able to predict the meaﬁ‘flow anywhere ;
qualitatively except‘in the vicinity of the oulet orifice.
. Both codes prédiét thaﬁ there is a stagnant flow,régign in the
upper baftaof the'plenum'and that the inlet jet is unable to
feaph the top wall:' Ié’contradicts the measured mean flow
field, As stated In section 5.3.2,'the highly complex turbu-
lent transport processes in the CRBR geometry which results in
great diffigultieé to predictiﬁhe mean‘flow‘field even in the
‘normal inlet veldcity'distributioh case. Hence, iﬁ a highly
4 chaotlc mean.fiow field 1in CRBRzgeometry, the computer codes

fail completely._r
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, APPENDIX I
DATA OF SENSITIVITY ANALYSIS

The results of sensitivity analysis of five free parameters
in TEACH-T model for case of FFTF-geémetry with normal inlet
velocity distribution are shown in Figs. I.1 through I.24. The
resulting best set of parameters‘ishapplied to distorted inlet
Qelocity digtributioh case with different combination of inlet
turbulent kinetic energy diésipation rates. They are shown 1n
Figs. I1.25 through I.33. Finally, the results of sensitivity
analysis of two pérameters,ox.and O for the distorted inlet
velocity disﬁribution case are shOWn in Figé. I.34 through

I.40. .
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Fig. 1.25 TEACH-T Prediction with -Inlet Turbulent Energy"
Dissipation Rates, 0.8, 1.13, and 1.18, FFIF
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Fig. I.27 TEACH-T Prediction with Inlet Turbulent Energy =
Dissipation Rates, 0.3, 1.0, and 1.7, FFTF Geometry,
Re=70,000, Distorted Inlet Velocity Distribution
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Fig. I.28 TEACH-T Prediction with Inlet Turbulent Energy
Dissipation Rates, 0.2, 0.2, and 1.0, FFTF Geometry,
Re=70,000, Distorted Inlet Velocity Distribution
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Fig. I.29 TEACH-T Pfediction with Inlet Turbulent Energy
Dissipation Rates, 0.1, 0.1, and 0.1, FFTF Geometry,
Re=70,000, Distorted Inlet Velocity Distribution
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Fig. I1.30 TEACH-T Prediction with Inlet Turbulent Energy _
Dissipation Rates, 0.3, 0.5, and 0.7, FFTF Geometry,
Re=70,000, Distorted Inlet Velocity Distribution




~189

t / - - s - - - - - - ~ ~ -
i / s - - - - - - -
/ / / v - - - - - ~ ~ NN \
i { / / , - - ~ - ~ \ \ \
| )
| / v y , ~ - - - < N \ \ |
: \
l / / / / - - R > ) ‘ l
[ I Voo
- ‘ |
: : - N N\ \ \ \ \
o . / y -
S AR A y
‘ ~ N \ \ ! t

; | |
I \ | | | | , \ \ \ \5 ] !
}
. . \ | | ]
i | i
i } , ' i l A :.
) ‘. : ]
. ‘ \ \ \". } ; i
R R T < 0
[ A T A o
| ] 1 \ ' | o
BRENES o
/ i i ! [
{
IR . e o
/ / / i | | ’.O o o
i
—_— - - / / d '
[ :
i\ - - , !
; !
! !
B |

P OO

Fig. I.31 TEACH-T Predietion with Inlet Turbulent Energy
Dissipation Rates, 0.5, 0.6, and 0.7, FFTF Geometry,
Re=70,000, Distorted Inlet Velocity Distribution
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Fig. I.32 TEACH-T Prediction with Inlet Turbulent Energy
Dissipation Rates, 0.5, 0.5, and 1.0, FFTF Geometry,
'Re=70,000, Distorted Inlet Veloclty Distribution



e R S 191

i ’ -~ -~ - - — — —— ~
- ! / Ve / o — — ~- -~ ~ ~ ~ N
. - - -~ ~ ~. \

| / / - - -
A
] / / / p - - - - ~ > * A '
- ~ N N \ \ Y !

I h
l ‘ ’ | / / , - ~ \ \ \\ \l l
- . N N \ | \l ]

| o Lo
I T R o
| !
! i ! {
[ T R R T oy
| ! | | ‘ ! ' | '
;1e =
/ / / / ! \ ' ' i"* o ©
- /, , / ' \ \ / t i
g ,
- - -~ / i I .
iL - r
i .
!
. i

Fig. I1.33 TEACH-T Prediction with Inlet Turbulent Energy
Dissipation Rates, 0.4, 0,7, and 1.0, FFTF Geometry,
Re=70,000, Distorted Inlet Veloclty Distribution
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Fig. I.37 TEACH-T Prediction witho_=0.65, FFTF Geometry,
Re=70,000, Distorted Inlet Velocity Distribution
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Fig. I.39 TEACH-T Prediction with ok=3.9,'FFTF GEometry,
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