

CONF-760519--2

BNWL SA 5538

SIMULTANEOUS AEROSOL SIZE DISTRIBUTIONS AND
TURBIDITY MEASUREMENTS OVER A METROPOLITAN AREA

BY

A. J. Alkezweeny

and

N. S. Laulainen

Battelle
Pacific Northwest Laboratories
Richland, Washington 99352

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Energy Research and Development Administration, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

MASTER

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

Beg

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

SIMULTANEOUS AEROSOL SIZE DISTRIBUTIONS AND TURBIDITY
MEASUREMENTS OVER A METROPOLITAN AREA*

A. J. Alkezweeny and N. S. Laulainen

ABSTRACT

The particle size distributions measured in the St. Louis city plume is shown to be bimodel. The total particle volume decreases dramatically above the inversion. The peak in the volume distribution is shifted toward larger particles at higher altitudes. Aerosol extinction coefficients derived from sunphotometer optical depth measurements at 5 wavelengths are compared to those calculated from the measured size distributions using Mie theory with two different particle refractive indices. For an entirely real refractive index of 1.5, the measured values are consistently larger by factor of 2 to 4 than the calculated values. Including a large imaginary part to the refractive index, $n=1.5-0.31$, improves the agreement, suggesting that the aerosol in the city plume may have significant absorptive characteristics.

A DC-3 instrumented aircraft was used to measure simultaneously aerosol particle size distributions and turbidities at different altitudes over metropolitan St. Louis, Missouri. An Electrical Aerosol Analyzer (Liu et al, 1974) and a Royco Optical Sensor model 220 were used to determine the particle size distribution in the range of 0.01 μm to 5.0 μm . The sensor was interfaced with a 15 channel pluse height analyzer and a printer. A multiwavelength sunphotometer was employed to measure solar intensities in four narrow wavelength bands (~ 10) centered at 448.2, 500.7, 557.8 and 618.9 nm respectively, and in two broad wavelength bands (~ 60 nm) centered at 500 and 598.4 nm respectively. Using calibrated instrumented response of the photometer, turbidities were determined for each of the wavelength bands.

The flight was made on August 8, 1975, under clear and hazy sky. Wind was from the southeast at less than 10 knots. The measurements were made at about 12 miles northwest of Civic Memorial Airport in Alton, Illinois. The vertical temperature profile shows an inversion between 4000 to 5000 ft MSL (Fig. 1). The particle size distributions measured during this flight are shown in Figure 2. Clearly the distributions are bimodel. The total volume decreases dramatically above the temperature inversion. The peak in the volume distribution is shifted to larger particle sizes with increasing altitude. The figure also shows that the volume concentration just below the inversion is higher than at 2000 ft MSL which indicated that the material is accumulating beneath the inversion. This is also reflected in an SO_2 measurement which shows a similar behavior. The material above the inversion probably represents a well aged pollutant trapped above the inversion. The SO_2 level was 7 ppb which is an order of magnitude lower than below the inversion.

Aerosol extinction coefficients derived from the sunphotometer turbidity measurements are given in Table 1, Column A for each wavelength band. The coefficients were determined according to Eq. 1:

$$b = \Delta\tau/\Delta h \quad , \quad (1)$$

where b is the average extinction coefficient for the layer between h and $h+\Delta h$, $\Delta\tau$ is the difference between the turbidities (aerosol optical depths) measured at h and $h+\Delta h$, and h is the altitude. Since τ is unitless, b has units of $(\text{length})^{-1}$.

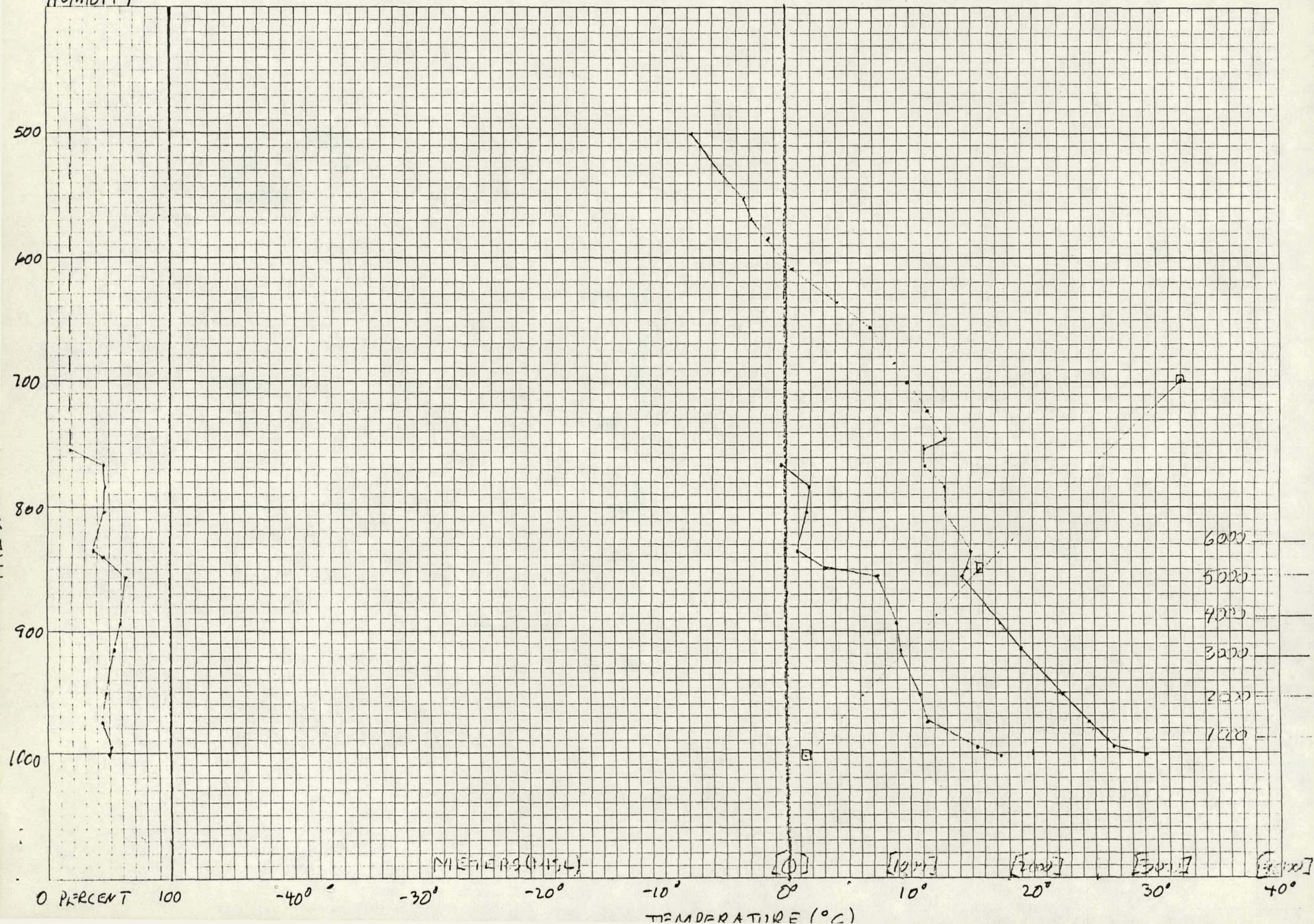
For comparison, aerosol extinction coefficients were calculated from the measured size distributions at each altitude with Mie theory with two different particle refractive indices according to Eq. 2:

$$b = \sum_i Q(\alpha_i, h) \Delta S(D_{pi}) \cdot \frac{10^{-6}}{4} \quad , \quad (2)$$

where $Q(\alpha_i, n)$ is the unitless Mie extinction efficiency for size parameter $\alpha_i = \pi D_{pi}/\lambda$ and refractive index n and $\Delta S(D_{pi})$ is the measured particle surface area ($\mu\text{m}^2/\text{cm}^3$) in the geometric mean particle diameter size class D_{pi} . The summation is over all size intervals from about $0.04 \mu\text{m}$ to $5 \mu\text{m}$. Calculated extinction coefficients for $n = 1.5$ are given in Table 1, Column B, while coefficients for $n = 1.5 - 0.3_i$ are listed in Table 1, Column C.

For $n = 1.5$, the measured values are consistently larger, by factors ranging from 3 to 4, than the calculated values. Including a large imaginary term to the refractive index, $n = 1.5 - 0.3_i$, improves the agreement; significant discrepancies still exist however. The comparison suggests that the aerosol in the St. Louis city plume may have significant absorptive characteristics, a result found by others (Waggoner and Choalson, 1975). Spatial

inhomogenaities in the city plume may be responsible for some of the observed discrepancies between measured and calculated extinction coefficients.


The inversion layer also has a dramatic effect on the transmission of solar radiation. Table 2 shows the solar radiation transmission losses due to aerosol through a turbid atmosphere as one decends from above the inversion (6000 ft MSL reference level) down to well below the inversion. As expected the predominance submicron particles has the greatest effect for the shorter wavelengths.

REFERENCES

- 1 B. Y. H. Liu, and D. Y. M. Pui, "On the Performance of the Electrical Aerosol Analyzer", J. Aerosol Sci, 6, (1975) 249-264.
- 2 A. P. Waggoner and R. J. Charlson, "Measurements of Aerosol Optical Parameters", paper presented at Symposium on Fine Particles, University of Minnesota, May 28-30, 1975.

RAPS/ALTON #144 AUG 8, 1975 1646 CDT

RELATIVE
HUMIDITY

40

AUGUST 8, 1975

TIME ALTITUDE

1600	2000 FT
1626	3000 FT
1650	4000 FT
1715	5000 FT
1738	6000 FT

30

20

10

0

 $\Delta V / \Delta \log D \text{ (}\mu\text{m}^3/\text{cm}^3\text{)}$

0.01

0.1

1.0

10

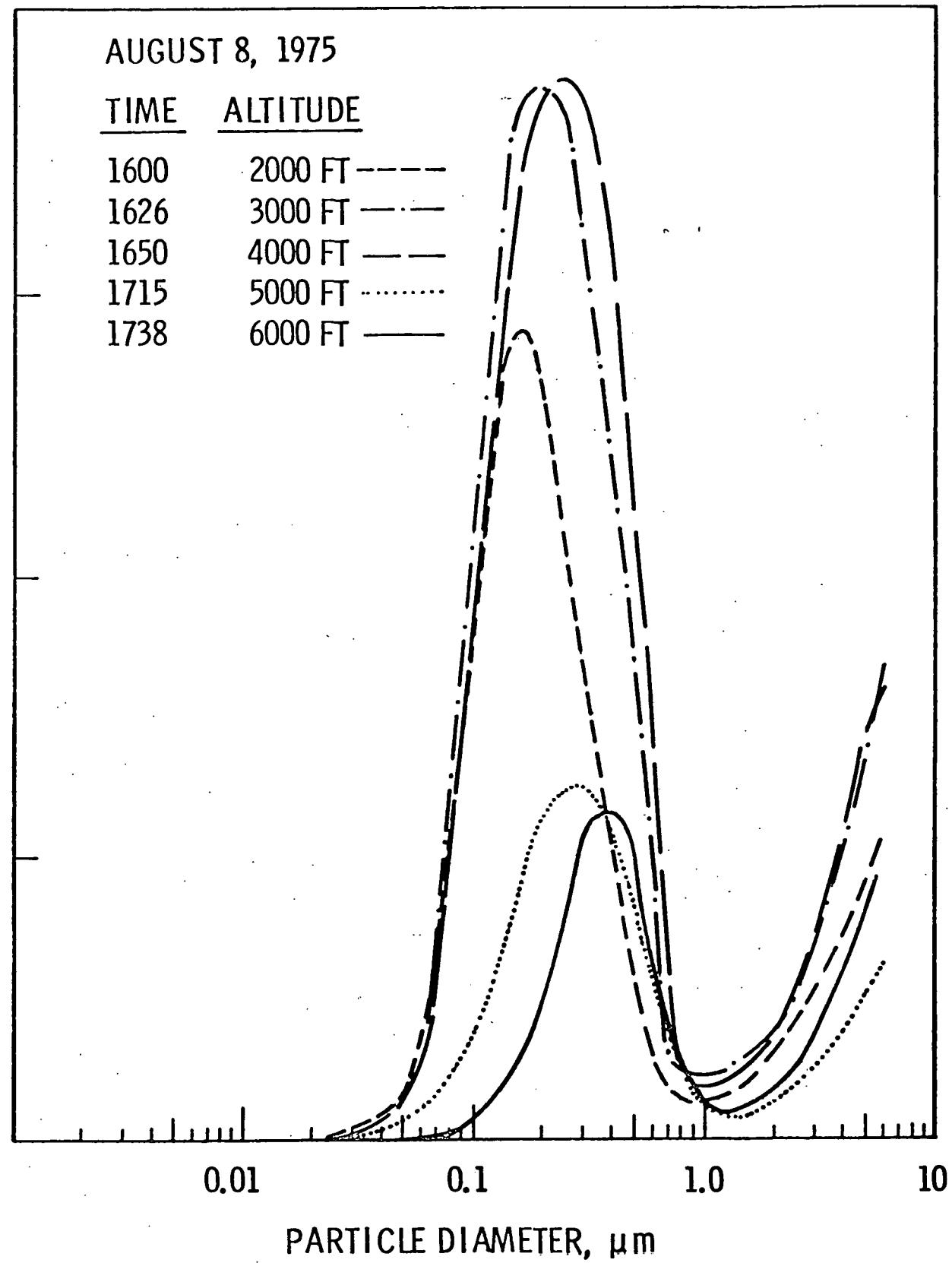

PARTICLE DIAMETER, μm

Table 1. COMPARISON OF AEROSOL EXTINCTION COEFFICIENTS DERIVED FROM SUNPHOTOMETER OPTICAL DEPTH MEASUREMENTS AT 5 WAVELENGTHS AND EXTINCTION COEFFICIENTS CALCULATED FROM MEASURED SIZE DISTRIBUTIONS USING TWO DIFFERENT PARTICLE REFRACTIVE INDICES.

Altitude (ft)	Extinction Coefficient, b , 10^{-4} m^{-1}														
	448.2 nm			500.0 nm			557.8 nm			598.4 nm			618.9 nm		
	A	B	C	A	B	C	A	B	C	A	B	C	A	B	C
2500	$2.0 \pm .7$	1.20	2.30	$0.9 \pm .5$	0.96	2.03	$0.4 \pm .4$	0.72	1.85	$0.7 \pm .7$	0.65	1.72	2.3 ± 4.4	0.61	1.64
3500	$5.1 \pm .6$	1.62	2.83	$6.0 \pm .5$	1.30	2.52	$4.6 \pm .5$	0.98	2.30	$3.1 \pm .6$	0.90	2.15	3.1 ± 1.0	0.85	2.05
4500	$3.3 \pm .5$	1.22	1.94	$1.1 \pm .4$	1.00	1.74	$1.4 \pm .4$	0.75	1.60	$2.2 \pm .6$	0.69	1.50	2.1 ± 1.0	0.65	1.43
5500	$1.9 \pm .5$	0.59	0.74	$1.3 \pm .3$	0.50	0.68	$1.3 \pm .4$	0.38	0.63	$0.1 \pm .4$	0.36	0.60	$.7 \pm 1.0$	0.34	0.58

Table 2. SOLAR RADIATION TRANSMISSION LOSSES DUE
TO AEROSOL THROUGH A TURBID ATMOSPHERE
REFERENCED TO 6000 FT AND DESCENDING TO
2000 FT

Altitude (ft)	Transmission Loss Due to Aerosol				
	448.2 nm	500.0 nm	557.8 nm	598.4 nm	618.9 nm
5000	6%	4%	4%	0.3%	2%
4000	15%	7%	8%	7%	8%
3000	27%	23%	20%	15%	16%
2000	31%	25%	21%	17%	22%