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ABSTRACT

This is a proposal to study, both theoretically and
experimentally, the possibility of making a fusion reactor
by magnetically impioding a cylindrical metallic shell on a
prepared plasma. The approach is characterized by the
following features: (1) the nonrotating liner would be
driven by an axial current, (2) the plasma would also carry
an axial current that provides an azimuthal magnetic field
for thermal insulation in both the radial and longitudinal
directions, (3) solid end plugs would be utilized to
prevent axial loss of particles, and (4) liner speeds would
be in the 10^ cm/s range.

Our preliminary calculations indicate (1) that the
energetics are favorable (energy inputs of about 10 MJ
might produce a machine in the break-even regime), (2) that
radiation and heat losses could be made tolerable, (3) that
alpha-pai '^iolnt heating could be made very effective, and
(4) that Taylor instabilities in a fast liner might be
harmless because of the large viscosities at high
pressures.

A ,preliminary conceptual design of the sort of fusion
reactor • that might result from such an approach is
discussed, as are some of the relevant reactor scaling
arguments.



. 1. INTRODUCTION

Liner systems use the kinetic energy of a rapidly imploding shell to

compress a plasma to high pressure. The external impulse accelerating the liner

is applied oyer a relatively large area, but the impulse decelerating it against

the plasma occurs over a much smaller area, and generally is applied for a

shorter time at the end of the implosion. The process can be visualized as an

energy compression system which produces much larger pressures on the plasma than

are applied to accelerate the liner. Imploding liner fusion systems would use

the high pressure obtainable with liners to compress and heat a plasma to

thermonuclear temperatures at much higher density than in thermonuclear systems

limited by strength of materials. The high - density (10 -10 cm"-3) short

burn-time (10 -10"^ s) nature of this approach provides a fundamentally

different alternative to the present main-line efforts being pursued within the

field of magnetic confinement.

Tu=? various approaches to fusion using imploding liners can be characterized

in teruis of the liner velocity as follows:

.(1) for a passive liner (i.e., zero liner velocity) plasma heating must be

accomplished entirely by some means other than liner compression. The liner is

used for inertial confinement only. A group from the Kurchatov Institute has

suggested the use of liners in this manner to confine high-velocity

plasma streams produced by coaxial guns. Some proponents of fast high-density

Z-pinches suggest passive liner containment for those systems. By its nature the

passive liner tends to be an element of an approach that would be characterized

primarily by the plasma production and heating scheme.

(2) For a liner velocity in the 10 -10 om/s range, the implosion time would

typically be of the order of 30-3000 vs. For such times some form of magnetic

containment of the plasma' is required. However, the use of imploding liners

allows the confining magnetic fields to reach the megagauss range, so in

principle a 10-keV plasma having a density of 10 * could be contained.

(3) With an initial liner velocity of the order of 10 cm/s, the implosion

time would be in the 3-30 vs range. These times are short enough that wall

confinement becomes of interest. Magnetic fields are required for thermal

insulation, but not for containment. This 8 >> 1 regime has the advantage of

less magnetic field energy, .and the wall-confined plasma approach could lead to a

more stable plasma containment system than might be expected with magnetic



confinement. The main plasma physics considerations are associated with

transport problems such as cross-field heat conduction and particle loss caused

by magnetic field diffusion into the imploding liner. An important uncertainty

associated with this attractive regime lies in the problem of plasma preparation.

The required compressed plasma of about 10 cm~^ and 10 keV for a 1 vs burn time

implies an initial density and temperature of-about 10 cm and 100 eV, for a

compression ratio of' 1000.

(4) Finally, if solid (or liquid) liner velocities of 10^ cm/s could be

achieved, a variety of approaches appear to be quite interesting. With such a

high velocity, the plasma can be shock-heated to an appreciable temperature

before final compression, and the thermal relaxation time without magnetic fields

can be longer than the burn time. Although such high liner velocities appear to

be very difficult to achieve, the ANGARA e-beam experiment of Rudakoy2 can be

considered to be a liner implosion of this class.

In the proposal which follows, we shall primarily be concerned with regime

(3)i that is, with liner systems having a' wall-confined plasma and liner

velocities of about 10 cm/s. We shall be considering nonrotating thin solid

liners driven by an axial current. The plasma is contained in the axial

direction by solid end plugs, and it has an embedded azimuthal magnetic field for

thermal insulation against heat flow in the radial and axial directions. Some

advantages of this approach are:

(1) The wall confinement of the plasma with 0 > 1 avoids the equilibrium and

stability problems that have plagued magnetic confinement schemes. This is

potentially a tremendous advantage.

(2) The azimuthal insulating magnetic field provides axial as well as radial

energy confinement. This leads to the possibility of short systems, that is,

less than a meter long.

(3) This same azimuthal magnetic field can confine axially and radially the

alpha-particles produced during thermonuclear burn, leading to great?.y improved

reactor energetics.

(4) The short liner implosion time, implied by the fast liner velocity,

ameliorates the elastic-plastic and . the Raylelgh-Taylor liner instabilities.

(For the Rayleigh-Taylor instability, this statement is based upon a model for

viscous damping, but there is also experimental evidence to support it. See Sec.

III.E.)



(5) As opposed to a B̂ , drive field, a Bo field gives increasing driving

pressure as the liner collapses and gives higher efficiency of energy transfer

to the liner. •

(6) - From the reactor viewpoint, a high-power-density, compact, and

relatively simple system is conceivable.

.'"' Finally, it should be mentioned that idealized calculations, presented in

Sec. III.A, which do not include plasma energy losses, indicate that very

interesting experiments (Q approaching 1) could be done for a 10-cm-long

liner with bank energies of a few megajoules.

There are also disadvantages to the approach:

(1) Energy losses due to line radiation and bremsstrahlung from the cold

- plasma near the walls and due. to an associated convective flow of plasma toward

the walls may be severe.

(2) The magnetic diffusion of the drive field into the liner is likely to be

a serious problem. It may be necessary to drive the liner with an external

current-carrying plasma rather than have the liner carry its own drive current.

(3) For a Bg drive, with the liner carrying its own drive current, either a

sliding or deformable current contact is required for at least part.of the liner

implosion.

(H) For a reactor, the required initial plasma (n. ~ 1 x 10 cm~^, T. = 200

eV, B. = 50 kG) falls into an unexplored region. At present we do not know how

to produce such a plasma.

(5) The reactor would involve a rapidly pulsed energy transfer system and an

explosive thermonuclear energy release.

The suggestion of an imploding liner approach to fusion is certainly not

new. An exhaustive history will not be attempted here, but among the earlier

papers a;-e those of LinhartJ and Alikhanov et al. It is well known that at

present, the approach is being pursued in the USSR (e.g., Budker, Alikhanov et

al., and Rudakov ), in France (e.g., Rioux and Jablon ) and in the USA at NRL

(e.g., Robson, and Turchi and Robson • ). The liner velocity regime of 10 cm/s
k fi 7

that we propose to investigate has been considered previously ' " but it is not

clear that such velocities for magnetically driven liners have yet actually been

achieved. The present proposed program forms a natural complement to the NRL
11 U *5

LINUS program, which is concerned with the 10-10 cm/s liner velocity regime.
The • two programs, involve different plasma problems and different reactor



considerations, and both approaches show promise and should be explored.

The use of imploding liners to heat and contain thermonuclear- plasmas

involves three physics problem areas. These are (a) liner implosion, (b) initial

plasma preparation, and (c) plasma containment in the liner during implosion and

burn. These are discussed in the context of the present approach in the sections

which follow. The design of an imploding-liner fusion reactor would involve many

further problems, and preliminary considerations of these are also discussed.

Section II contains the proposed LASL experimental program. This program

divides naturally into two parts: the liner implosion and the plasma preparation.

A preliminary design for a cheap capacitor bank for driving imploding liners is

discussed, and the results of some calculations for circuit behavior and liner

trajectories are presented. The requirements for the initial plasma are

considered, assuming classical transport, and it is shown that th•••: initial

conditions n± = 2 x 10 cm"3, T ± =200 eV, Bi = 20 kG would be sufficient for

quite interesting experiments. Possible ways of producing such a plasma are

discussed, including gun injection and two hard-core geometries. Finally, the

diagnostic requirements for liner implosions and for the plasma preparation

program are considered.

Section III contains theoretical considerations of several important topics.

Two models, one analytical and one numerical, are presented for the liner

dynamics and plasma conditions. These models include the effects of liner

compressibility but neglect plasma losses. The two models are found to be in

good agreement with each other. The analytical model predicts, for optimized

conditions,

Q (2Tr/p)1/2 = 7.0 (E L/£)
1 / 2 , (1-1)

where Q is the output fusion energy divided by the input liner energy, E is the

input liner energy (GJ), a is the length of the system (m), and p is the density

of the liner (gm/cm3). For a copper liner this would imply Q ~ 1 for a liner

input energy of only 20 MJ/m. Although the results from these models are very

encouraging, a self-consistent calculation including plasma losses is required.

The numerical model is also used to investigate the internal state of the liner.

It is found that (1) compressibility effects do not cause the liner to melt, (2)

one can expect significant vi3cosity,inhibition of Rayleigh-Taylor instabilities,



(3) the' driving magnetic field may penetrate the liner before the liner reaches

its minimum radius, and (1) in a reactor the neutron flux from the burn might

vaporize the liner. The predicted magnetic field diffusion into the liner, and

the accompanying melting of the liner, are of serious concern. Thicker than

optimum liners may be required, or it may be necessary to drive the liner with a

plasma instead of having the liner carry its own driving current.

Section III also contains discussions of liner instabilities and of plasma

energy losses. Initial calculations show that the radial plasma losses can be

held to acceptable levels if the required plasma currents can be obtained.

(These are about 1-2 MA for the reactor and about 1/4 MA for a good experiment.)

A pessimistic- calculation for the energy loss down the axis indicates that this

loss might be significant at low input energies. The problem of bremsstrahlung

and line radiation from the cold plasma near the walls, and a possible associated

convective transport toward the walls, is not treated here. It is possible that

these effects could cause serious energy loss. Buckling and Rayleigh-Taylor

liner instabilities are not expected to be serious if the liner is driven hard

enough. For the elastic buckling instability this occurs because the driving

pressure exceeds the material yield stress in a time short compared to the

instability growth time. An expression for this latter time is given by Velikhov

et ai.,12

tbuckle z (AB/c) (fV2E) 1 / 2 (1-2)

where E is Young's modulus, o is the material yield stress, A is the liner

thickness, and P is the material density. Typical values yield t^^^g of the

order of 10 PS, which, for the liner drives being proposed, is about a liner

implosion time and is long compared to the time for the yield stress to be

exceeded. The growth rate of the fastest growing Rayleigh-Taylor mode is

examined in the presence of viscous damping. An empirical model for the

viscosity at high pressures is presented, namely that the viscosity is

proportional to the pressure. Using.this model the Rayleigh-Taylor instability

of the inner liner surface is not expected to grow fast enough to be serious,

whereas the instability of the outer surface during liner acceleration is

marginal. In this context the magnetic field diffusion into the liner is

expected to be beneficial. • •



Section IV contains preliminary considerations of the reactor that would

result from the proposed fast liner approach to fusion. Such a reactor would

have the advantages of high-power-density and compactness and the disadvantages

of the requirements of large fast-pulsed energy release and transfer. For the

purposes of these reactor considerations, another model is introduced for the

combined plasma/imploding liner system. This model assumes an incompressible

liner, allows liner rotation for generality, and includes a simplified treatment

of axial plasma loss. For comparable cases this third model agrees fairly well

with the others. From the results of this model a feasible but unoptimized

reactor operating point is chosen. A description of a possible reactor concept

is presented. Basically this concept involves plunging a preformed liner into a

liquid-metal bath which absorbs the thermonuclear energy release. At this very

preliminary stage, of course, such a reactor concept can only be regarded as an

illustration of the general type of reactor that might eventually evolve. The

subjects of energy storage and transfer into the liner driving circuit and of

neutron energy deposition into the liner are also,briefly considered..

Section V describes the proposed experimental schedule in terms of an

orderly transition from the present Implosion Heating Experiment (IHX), oeginning

when that experiment is completed. The level of effort would remain at the

present level of the IHX during the early exploratory phases of the program.



II. PROPOSED LASL EXPERIMENTAL PROGRAM " •
• • • . ' . . , ' i '

A. ,, General Description , . '

We are proposing a three-element program (liner implosion, plasma prepara-

tion, arid theoretical support) to explore the liner implosion approach to fusion

in the 106-em/s liner velocity regime. Such a program would form a natural com-

plement to the NRL LINUS program, which is concerned with the 10if-105-cm/s

. liner velocity regime. The present approach is based on the concept of a magnet-

ically driven, thin, nonrotating, metallic liner imploded at a velocity of about

106 em/s. The.geometry is roughly cylindrical. The liner is driven by a magnet-

ic field in the theta direction. The liner would either carry its own implosion

current (the "directly driven" case), or perhaps the current would be carried by

a supplementary plasma just outside of the liner (the "plasma driven" case). The

initial plasma would be warm and dense (~200 eV and ~10 1 8 cm"3 ultimate goals)

and would be protected against thermal losses by an embedded magnetic field in

the theta direction. Material end plugs would be employed.

A modest program, at first treating liner implosion and plasma preparation

separately, would lead later, assuming success, to liner compression of plajma

systems. A cheap 2.4-MJ capacitor bank would be constructeds mostly from sur-

plus parts. This bank would be used to implode small aluminum liners (e.g., 5-cm

diameter, 0.8-mm thick, and 10-cm long). For the initial implosions non-plasma

loads, such as a B field or a compressed gas, would be employed. Liner veloci-

ties, symmetry of implosion, and efficiency of energy transfer from bank to

liner., are examples of quantities that would be measured. The ultimate goals of

this port?.on of the experimental program would be to understand the relevant

physical processes occurring during the liner implosion and to obtain liner im-

plosion velocities of 106 ciii/s.

A parallel effort would be directad towards the preparation of a suitable

plasma for the liner implosion. The initial goal for plasma preparation is

n = 2 x 10 1 6 cm" at T = 200 eV with a 20-kG embedded field, whereas the ultimate
18 —3

goal is n = 1 x 10 •- cm at 200 eV with 50-kG field. Containment and thermal

insulation during implosion and burn appear to be adequate with wall-supported

diffuse Z-pinch plasmas. Such plasmas can be, generated with coaxial gun-type

discharges, but some development will be required. In a diffuse Z-pinch con-

tainment system, end loss appears to be adequately reducible by material plugging,

either by liner implosion against plugs or by end closure by faster implosion of

the liner at the ends. Other possibilities for plasma preparation are: a) the

' 8 • • ' • • . • ' • • " " - • • ' . . - '



1 ' 13
electromagnetic shock tube approach, e.g., the early MAST experiments" and the more
recent work at Columbia University, and b) the explosion of a solid T>2 thread.

The techniques and equipment required for a magnetic liner drive are very

similar to those required for 6 pinches or Z pinches. They include large capaci-

tor banks or inductive energy storage systems with fast switching capable of

handling millions of amperes at tens of kV, The requirements for the plasma pro-

duction fall within the pulsed high-S approach. Thus LASL is well equipped to

handle the liner drive problems and also problems of initial plasma preparation

and containment. Many of the problems encountered in the diagnostics of the

liner implosion are very similar to those handled routinely at LASL. Finally we

have strong theoretical support available, including numerical codes which have

been developed for other applications.

B. Liner Implosions

We plan to construct a bank to drive the liner from surplus capacitors taken

from the old Zeus bank. They are 14.7-uF, 20-kV capacitors that have 60-nH in-

ductance, and there are presently about 3000 of these available. About 800

would be used for this bank. These capacitors would be arranged with four in

series and 200 in parallel to make an &0-kV, 2.35-MJ bank. This bank would have

20 modules with 40 capacitors in each module. A schematic diagram of one such

module is shown in Fig. II-l. The switch could be a dielectric switch or possibly

a low-pressure switch. Group CTR-5 at LASL has built and successfully tested di-

electric switches which were to be used in IHX as a backup for the rail gaps.

The modules can be connected to the collector plate with cables in such a manner

as to give inductive isolation for each subgroup of four capacitors, as protec-

tion in case of individual capacitor failure. The 2-m-diameter collector plate is

shown in Fig. II-2. The liner will be housed inside a 1.3-m-diameter steel contain-

ment vessel. Presumably everything inside the vessel will be destroyed with each

shot and everything outside will be saved. The total weight of the vessel would be

over 3000 lbs, and it should be capable of safely containing 6 MJ of energy.

Z-pinch drive is chosen for these experiments because for a given liner it

allows the use of a slower, less expensive bank to achieve the desired liner ve-

locity. Ignoring resistive losses, about 80% of the bank energy can be trans-

ferred to a liner with either a 0-pinch or Z-pinch drive. However, to get this

efficiency the bank must be much faster for a 0-pinch drive. With such a drive

the work must be done on the liner early in the implosion because the area of the
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liner drops later in time, causing a decrease cf the force on the liner, In the

Z-pinch case, the area decrease is more than compensated by che increase in mag-

netic field, B. a 1/r. Alternatively, the L of the liner peaks early in time

for the 6-pinch drive, where L a vr, and increases monotonicaily in the Z-pinch

case where L ot v/r. In order to get high transfer efficiency it is necessary

for the current to peak well before the L maximum because the rising L is needed

to transfer most of the inductive energy to the liner. Therefore, a slower and

thus less expensive bank can be used with a Z-pinch drive, because the L in this

case peaks later in time. Finally, 9-pinch drives may introduce an azimuthal

asymmetry in the implosion because of end effects at the feed slot. The use of

Z-pinch drive however, introduces the problem of maintaining dynamic electrical

contact with the liner.

In designing the bank a thin liner model is used to calculate the dynamic

impedance of the liner. The circuit is shown in Fig. II-l, where C, Rs and L

are due to the bank, transmission line, and collector plates, and Z is due to

the liner. When the switch is closed the liner moves under the influence of the

magnetic pressure, producing a dL/dt effect in the driving circuit. Estimating

150 nH as the inductance per capacitor and its cable connection to the collector

plate, and assuming an insulation thickness between the collector plates of 0.2

cm, one finds L = 4.5 nH and C = 735 uF. The value of R will probably be deter-

mined primarily by the switch resistance and by the current contact to the

liner; thus it will not be known until we do the experiment. However, assuming

that R = 0.5 mJ2, it is possible with this 2.35-MJ bank and collector plate ar-

rangement to get 1.5 MJ into an aluminum liner of the dimensions r. = 2.5 cm,

5 = 0,8 mm,and £ = 10 cm. This corresponds to a liner velocity of 0.9 x 106

cm/s. The calculated circuit behavior and liner trajectory for this case are

shown in Fig* II-3. For a smaller thinner liner, r. = 1.25 cm, 6 = 0.4 mm,and

a = 10 cm, the liner energy would be 0.6 MJ with a corresponding velocity sf

1.2 x 106 cm/s. Velocities such as these are two or three times those reported

by Alikhanov for Z-pinch driven liners and are near the values given by

Rnoepfel as the velocity limits for aluminum.

These velocity limits of Knoepfel are derived under the condition that the

driving current is carried by the metallic liner, with the assumption of a

planar geometry. In Section III.D the results of a calculation for magnetic

11
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diffusion in a cylindrical geometty are

presented. For the. particular condi-

tions treated there, a liner velocity

of 5 x 105 cm/s was obtained. This

value is consistent with the correspond-

ing Knoepfel limiting velocity. Thus

there is reason to suspect that magnetic

diffusion may limit the liner velocities

that can be obtained with the proposed

2.35-MJ bank to values below 106 cm/s.

If this turns out to be the case, it

might be possible to devise a plasma

drive for the liner, that is to have a

plasma just outside of the liner carry-

ing most of the drive current. For ex-

ample such a plasma might possibly be

created by coating the outside of the

liner with a low boiling point material

which would be ablated, ionized, and

heated during the early phases of the

implosion.

In summary, an inexpensive 2.35-MJ,

80-kV bank can be built from existing

capacitors. This bank is calculated to

be capable of driving reasonably sized aluminum liners to velocities of about

106 cm/s, but magnetic diffusion may limit the attainable velocity to a lower

value. In the latter case a plasma drive could be attempted.

As was mentioned previously, the initial experiments (in this liner implo-

sion portion of the overall program) would be directed towards investigating the

liner implosion itself. Undoubtedly direct drive of the liner would be tried

first. The efficiency of transfer of bank energy into kinetic energy of the

liner would be investigated. Hopefully high efficiency (y 50%) can be achieved

with sliding current contacts; if not, deformable contacts would be used. Natu-

rally the liner velocity would be measured. To investigate the possibility of

liner instabilities, the symmetry of the liner implosion would be studied, as

would be' the symmetry of deceleration on a load such as a Bz field.

12

Fig. II-3.
Calculated circuit and liner parameters
during an implosion of a liner onto
vacuum. The initial liner has r. = 2.5
cm, £ = 10 cm, 6 = 0.8 mm.
resistance is 0.5 mft.
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Liner Diagnostics

Tc accomplish the program just described, the following things need to be

determined:

a) the energy transfer from bank to kinetic energy of liner

b) the liner velocity

c) the energy transfer from liner to load

d) the symmetry of the liner drive .

e) the symmetry of deceleration on a load.

Since the mass of the liner and the initial energy of the capacitor bank

can be measured accurately, the first two items are closely related. The usual

measurements of circuit parameters, such as the driving current and the collector

plate voltage, will help determine the energy transfer from the bank to the liner.

Electrical contact probes can be used to measure the liner velocity. Flash x rays

can be used for this same measurement, and for investigating the symmetry of liner

dynamics as well. A framing camera, in conjunction with mirrors, may also be

useful for these velocity and symmetry measurements, A magnetic probe would be

used for measurements of the load pressure when B loads are employed. In short,

the standard diagnostics would be sufficient, at least at the start. The equip-

ment and expertise are available at LASL for all of these measurements.

C. Plasma Preparation

1. Requirements. In a lossless adiabatic compression T a r ' , where T is

the plasma temperature. Assuming a radial compression ratio of 30:1 (28:1 has

been achieved for solid aluminum liners by the NRL group), the initial plasma

temperature must be about 100 eV if the final temperature is to be 10 keV. Ac-

cording to.the previous subsection, as much as 1.5 MJ could be transferred from

the capacitor bank to the liner. Assuming 1.0 MJ is transferred from the liner

to the plasma during the lossless compression to a temperature of 10 keV, an ini-

tial plasma energy of about 10 kJ-is required for energy balance. This initial

energy implies an initial plasma density of about 1 x 10 /cm , if the 2Q0 cm

volume of the liner described in the previous subsection is used. Noting the
18 3

assumption of ideal lossless compression, perhaps n.,= 1 x 10 /cm and

T. = 200 eV are reasonable goals for the initial plasma. In the proposed experi-

ment the implosion time would be about 3 ys. Using the simplest estimate for

the radial heat loss from ion thermal conduction, it appears that an initial value

of about 50 kG for the embedded BQ field will provide a thermal relaxation time

13



18 3

long' compared to the implosion time. Thus the values n. * 1 x 10 /cm ,

T « 200 eV, B « 50 kG are taken as ultimate goals for the initial plasma.

Using these values, the classical times for electron-electron and ion-ion colli-
— 10 —9

sions are 1 x 10 s and 6 x 10 s,respectively, and the ion and electron cy-
'-1 —9 —1 — 12

clotron times are u . = 4 x 10 s, and w = 1 x 10 s.
The following discussion supports the initial field value of 50 kG. Since

o -
the ratio of unmagnetized to cross-field thermal conduction is about l/(u t ) ,and since the unmagnetized thermal conductivity is proportional to l/Ou)^, the

—2
electron thermal conduction is only 10 of the ion theraal conduction, using

the above values for collision and cyclotron times. Also, at the beginning of

the implosion, the magnetic field does not greatly inhibit the ion thermal con-

duction. Thus one obtains a thermal relaxation time of about 6 us for the abt ,rs
18

initial plasma conditions, using the Spitzer value for the ion thermal conduc-

tivity, and using r. for the scale length for temperature gradients and irr£ as

the area for thermal loss. This estimate oi 6 us is long compared to the im-

plosion time. At the end of the compression, ion cross-field thermal conduction

dominates, and a similar estimate gives a thermal relaxation time of 0.8 ys,

which is long compared to the dwell time (̂  100 ns). The assumption of classical
19

heat loss is supported somewhat by the experiment of Feinberg and Gross, al-

though the plasma conditions are not the same.

The calculations used to obtain the above "ultimate goal" values for the

initial plasma conditions are admittedly very crude. The "optimized" initial

conditions derived in Sec. III.A from the analytical scaling model are
17 3

n, * 5 x 10 /cm and T. « 500.eV. The estimates for thermal losses in Sec.

III.C based on the same model imply a less stringent requirement of about 25 kG

for the initial magnetic field.

The above two sets of conditions for the initial plasma have been derived

from the viewpoint of making efficient use of the liner energy. Very interesting

experiments, however, can be done with considerably relaxed conditions. Holding

the liner dimensions and the initial temperature constant, conditions at lower

densities and magnetic fields can be found that should also be thermally insu-

lated. This can be seen by noting that the thermal relaxation time scales
2 ' •

roughly as B./n. times a function of the initial temperature and radius. There-

fore, according to this method of estimating the required magnetic field, a

plasma with the initial conditions T± = 200 eV, n± = 1 x 10 /cm3, and B. = 6 kG

14 .



should also be heated. However, this value of B. is too small, for a B. of

around 20 kG is. required in order that at the end of compression the ion gyro-

radius be small compared to the plasma radius. With B. = 20 kG and T. = 200 eV,

a value n± = 2 x 10 gives 3 ± * 1. These initial conditions make a nice goal

for the first liner-imploded plasma experiments. Such a plasma should allow

interesting experiments of liner-driven wall-supported plasmas, although non-

optimum use of the liner energy would result *

It should be emphasized that the method employed here of estimating the re-

quired insulating magnetic field is quita crude. Although reasonable agreement

is obtained with the better treatment of Sec. III.O, potentially important ef-

fects like convective flow and radiation from the cold plasma at the walls are

not included.

, 2. Possible Methods. It was shown in the previous subsection that to take

good advantage of the liner energy in the experiments proposed above, the liner

should be imploded on a plasma having initial conditions approximately as

follows: n± - 1 x 10
18/cm3, T± = 200 eV, and B Q i = 50 kG. On the other hand,

. the analytical scaling model of Sec. III.A suggests the following as ideal ini-

tial conditions: n± - 5 x 10
17/cm3, T ± = 500 eV, and B Q i = 25 kG. Both of

these sets of conditions represent plasmas rather different than those commonly

produced in the laboratory, especially when the required volume («* 200 cm3) and

lifetime0* 3 ys) are considered. Thus an experimental program, directed towards

the eventual production of such plasmas, is required. Fortunately, interesting

liner implosion experiments can be done with initial plasmas having parameters

(e.g., n. = 2 x 10 /cm , T± = 200 eV, and B Q i = 20 kG) much closer to those that

can presently be obtained. To produce such a plasma in a geometry suitable ror

liner implosion, however, still requires an exploratory experimental program.

We are proposing such a program to complement the liner implosion effort.

Initially the emphasis would be on a flexible approach, that is on maintaining

the ability to try new ideas quickly until a particular approach proves espe-

cially promising. A small, very flexible capacitor bank facility is available

for such plasma preparation experiments.

The remainder of this subsection describes several possible approaches by

which the initial plasma might be produced.

a. Gun Injection. It may be possible to provide the initial plasma for

liner compression by plasma gun injection. Coaxial plasma guns, such as thost

described by Marshall and Henins and by Cheng and Wang, are presently capable

15



of producing plasmas with energies and densities close to those required. At
17 3

LASL, for example, gun plasmas having a density of 2 x 10 /cm , a directed

energy of about 200 eV, and total energy 300 kJ have been produced. Gun plasmas

are believed to contain frozen-in Bfl field, but the magnitude is unknown.

Gun injection is the main approach of the Soviet liner program. One of the

main problems with gun injection is transport of the plasma from the gun or

guns to the liner. In the Soviet approach this is being done in two ways, one
22

by transport along an axial magnetic field, and the other by locating the guns

.directly adjacent to the liner as in the experiments of Alikhanov et al. The

axial magnetic guide fiê -J! approach takes several forms. One is to inject plas-

mas from the two ends of the system, with the two gun plasmas interacting in the

liner region to produce a stopped dense plasma. In general this leads to a stan-

dard iinear 6-pinch situation,with particle and thermal end-loss difficulties dur-

ing compression leading to the requirement of a long system. The t-/o gun plasmss

carry frosen-in B fields in opposite directions. Thus it is difficult to see

how a two-gun approach can lead to a simple diffuse Z-pinch plasma of the kind de-

sired in a short system with reasonable hydromagnetic stability.

Another possibility with gun injection is to take the diffuser-compressor
23

approach studied by Zhitlukhin et al., at the Kurchatov Institute. A gun plas-

ma injected into an axial magnetic field, which increases gradually with axial

position, can be compressed isentropically and be raised considerably in density

with its translational kinetic energy converted into thermal particle energy dur-

ing the compression. This process should also raise the frozen-in B field and

produce the desired initial plasma .conditions, high density and reasonably large
frozen-in B . The B guide field would tend to be pushed outward by the plasma

y z

and would form a buffer between plasma and liner, kept at low temperature by

axial heat conduction. The diffuser-compressor system would be particularly ap-

plicable to a highly ordered plasma like that produced by the deflagration gun of

Cheng.

It appears also to be possible to guide and compress plasma by simple con-
23

ducting walls. Zhitlukhin et al., have demonstrated a tenfold compression
using converging copper plates, and conical compression has been demonstrated by

24
Dunne and Benham in 1965 using a Xe plasma. Such a system would be desirable,

since it would require no axial guide field. Whether it could be adapted to give

the desired conditions is not known. .

16



Finally it should be pointed out that the diffuser-compressor system might
23

well lead to a passive liner reactor concept. Zhitlukhin et al., have observ-

ed a 60-fold plasma compression to a density of 1.5 x 10 /cm , starting with a

Mach 5 gun plasma with a flow speed of 2 x 10 cm/s. Presumably the compres-

sion ratio is limited by the initial plasma temperature (10 eV in this case).

It would appear that a plasma from a Cheng deflagration gun, or a scale-up there-
20 3

of, would be capable of much greater compression, conceivably to the 10 /cm

range at thermonuclear temperatures. A reactor based on such a liner system

would be operationally attractive because of its simplicity.

b. Hardcore Gun Geometry. Another possible system for plasma production

is shown in Fi,g. II-4. It can be described as a diffuse wall-supported Z pinch.

This system and thfj following explanation of its operation are suggested by the
20

coaxial gun experiments done in the past by John Marshall. A pre-plasma is

formed by a coaxial discharge between the liner and the hard core. This drives a

B. magnetic piston away from the insulator, pushing magnetized plasma outward

against the liner. When the discharge reaches the end of the center electrode,

the magnetic flux in the piston flows out, allowing the magnetized plasma to

collapse against the hard core. The

liner would then be imploded, short-

circuiting against the hard core, trap-

ping flux and plasma and compressing

them to high density. Most likely not

all of these things will happen as vi-

sualized so it would probably be neces-

sary to do a certain amount of parameter

searching and diagnosis, just to prepare

a reasonable pre-plasma. This hard-

core geometry may not be ideal, but the

system could provide a first plasma for

liner implosions while other plasma

preparation schemes are developed.

c. Electromagnetic Shock Tube.

A possibility that has the advantage of

good plasma-magnetic field mixing and

r—PRE-PLASMA
\ 8ANK

INSULATOR

Fig. II-4.
Conceptual drawing of an inverse-pinch
hard core liner implosion system.

control over BQ is the electromagnetic

shock tube approach similar to the early

17



MAST experiments and the experiments of Gross et al. ' ' With modest

voltages and currents (40 kV and 106 A) one should be able to get magnetic piston

velocities of around 2 x 10 cm/s and densities of about 10 /cm . Increasing

the voltage and current might produce plasmas approaching the desired-initial

plasmas. Plasmas of 1 * 500 eV and n » 1016/cm3 have been produced by this

method. Figure II-5* shows a geometry that could be tried; perhaps the central

conductor in the liner region could be a small wire of Li or D.

d. Exploding Solid Do Thread. Another possible source for the initial

plasma is a deuterium thread heated to the approximate temperature with a large

current.* See Fig. II-6. The pinch will be unstable causing a scrambling of

field and plasma. It might be possible to adjust the external <-.ircuit so as to

give the desired plasma and field conditions. It would require a 300-ym-diameter

thread of solid D. Threads of this size can be produced in one of the modes of
25

operation of the thermal spinner device of Jarboe and Baker.

PRE-PLASMA
BANK

INSULATOR

LINER

INSULATOR

n \ \ \ \ \ \ *. • \

ZZZZZZZZZ c

SOLID
DEUTERIUM

THREAD

W W W \ \ W XX \ \X\ \ \ \ XX

Fig. II-5.
Schematic of liner and initial plasma-
producing apparatus for the shock heat-
ed initial plasma (deforming contact).

Fig. II-6.
Conceptual drawing of an inverse-pinch
hard-core liner implosion system
(sliding contact).
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3. Plasma Diagnostics. The goals of the plasma preparation experiments

have been described in terms of required values for the quantities n , T., and

Bfl; therefore we need to measure all three of these quantities. During the ini-

tial phases of the plasma preparation experiments, it is desirable to have some

relatively simple diagnostics to assess progress in plasma production without

the diagnostics themselves requiring a great deal of effort. For example, dur-

ing this development phase the density could be measured by counting fringes

in a Mach-Zehnder interferometer; a ten-fringe shift of 633-nm wavelength light
" ' 17 3

would be observed if the density were 3.5 x 10 /cm along 10 cm of length.

Such measurements are presently made on the IHX, although they are for area

densities corresponding to less than a single fringe shift. The temperature can

be estimated by the technique of measuring the degree and rate of ionization of

impurity carbon atoms by observing carbon ion spectral lines. Alternatively,

the temperature can be measured by the double-foil transmission soft x-ray tech-

nique. The measurement of B Q may be a difficult task if magnetic probes prove

impractical. Measuring Faraday rotation is a possibility, although the geometry

is not ideal because the magnetic field is azimuthal. For a 2.5-cm tangential
16 3

path near the wall, a rotation of 0.029 rad would occur if n = 2 x 10 /cm ,

B» = 20 kG, and A = 10.6 ym. This amount of rotation is larger than those typi-

cally measured in IHX. For n = 2 x 1018/cm3, B = 50 kG, and A = 0.633 ym, the

rotation is 0.026 rad, which should also be measurable. Such Faraday rotation

measurements would probably be more straightforward than the present measurements

in IHX because the time scale will be much longer and the-1 desired accuracy will

be less.
These diagnostics should give a good estimate of the plasma parameters.

When we are confident that the plasma conditions are close to those desired, .
dT dn

e 6
T , n , -r—- and -r—• can be measured using Thomson scattering. Accurate measure-
6 6 Clt ut

ments of BQ are not really necessary since its only function is to lower -r— ando . , dt

~. If the energy and particle losses are to be tolerable during the « 3 ys im-

plosion time, the desired conditions for the'initial plasma are: «r T"" ai*d

;

In contrast to separate plasma preparation experiments, diagnostic access

to the plasma of an imploding liner system is expected to be very poor. The

19



plasma would be completely surrounded by metallic walls, and all diagnostic

elements located close to the liner would be destroyed on each shot. Therefore,

the most promising diagnostic, assuming some degree of success, will be neutron

emission from the hot deuterium plasma. The number of neutrons produced in the

liner-imploded plasma experiment will depend strongly on the degree to which the

requirements of both the liner and the plasma experiments are met. There could

well be sufficient number to allow a measurement of the ion temperature from the

broadening of the neutron velocity distribution. Then, from the total number of

neutrons and the volume as measured by flash x rays, one can deduce n. If the

neutron yields are too small, a small hole can be used in one of the end

plates to allow particles and radiation to escape. In this case charged-particle

energy analyzers can be used, and spectroscopy and soft x-ray measurements can

be performed on the radiation to give further information on plasma parameters.

20



III. THEORY

A. Analytical Scaling Model

An approximate analytic lujdel has been constructed for the calculation of

the final plasma conditions, produced by adiabatic compression, and the resulting

DT-burn effected by an imploding compressible liner. For the parameter regime of

interest to us, no shocks are produced in the liner material during the implosion

phase. The work differs from the fundamental work of Shearer and Condit in the

following respects.

1. Cylindrical convergence of a possibly thick liner is allowed.

2. A simple Gruneisen equation of state is applied to the

liner.29

3. The parametric dependence of the final plasma temperature and

the gain (Q) on the initial conditions is emphasized.

The simple liner equation of state used here is equivalent to a linear

variation of the bulk modulus with pressure,

B(P) = Bo + B'P = pdP/dp (III-1)

where, for many metals of interest (copper, silver, go^d, aluminum),

B' = 5 (Ref. 30). The final results prove to be very insensitive to the elastic

modulus Bo. The equation of state derivable from Eq. (III-1) can be used to

represent the compressional energy of the liner in the form shown below.

The key to the physics of the compressible liner lies in writing the liner

internal energy corresponding to Eq. (III-1) in the "symmetrical" form

where w is the specific internal energy, and observing that for moderate material

compressions (p/po z 1.5.- say), the pressure term, P/Bo dominates the density

term (p-po)/po. This approximation greatly facilitates the theory and proves

accurate for those implosions that are sufficiently strong that, somewhere in

the liner, (p-po)/po is not too small. * [For
1 everywhere very small (P-Po)/Po, the
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two terms of Eq. (III-2) exactly cancel, and the liner behaves as an

incompressible material.] The accuracy of Eq. (III-2) is not very crucial,

since, only its integral over the liner cross section enters the final results.

By means of Eq. (III-2), system energy balance, pressure balance across the

inner iiner surface, and an approximate calculation of the pressure profile in

the liner,, it is possible to obtain a simple transcendental equation for a

supplementary variable 6, in terms of which the energy transfer efficiency

(initial liner kinetic energy, E^, into final plasma thermal energy, E f) and

final plasma temperature can be expressed.

The pressure profile is estimated in a manner similar to that employed by

Shearer and Condit, however, without neglecting cylindrical convergence

effects. The essence of the method is to observe, from code runs, that the liner

moves roughly as a whole, even for liners whose radius and thickness have become

comparable. The fact that each layer of liner undergoes roughly the same

acceleration implies that the force on a layer, divided by all the liner mass

beyond that layer, is roughly independent of which layer is singled out. One can

thereby obtain a relation between the pressure profile and an integral of the

density profile. Since a further integral is performed to obtain the liner

internal energy, the results will be very insensitive to the specific density

enhancement profile. We have chosen the latter to be a flat profile, with p « p .

The equation tor 0 then proves to,be

where Ep^ is the initial plasma energy, Rp^ is the initial plasma radius, and Aj^

is the initial metal cross-sectional area. Equation (III-3) is trivial to solve

numerically. Then the energy transfer efficiency, £ = Epf-/EL, can be expressed

as

'. e = 1/(1 + 6; . . (III-4)

Thus, e can be interpreted as the ratio of the liner internal energy to the

plasma energy, at peak compression. The final plasma temperature Tf can be
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wri t t en as

I R 2 -i2/3
10 d + % e) e -r_Bi . (in-5)

^ ALi J

To calculate the system gain (fusion energy out relative to liner energy

in), we first make a rough estimate of the burn time as the fusion energy divided

by h§!£ the peak fusion power for a triangular power pulse. The energy

calculation involves a time integral of the.fusion power over the liner motion.

Each point on the trajectory involves plasma conditions and liner conditions that

are expressible in terms of the final state and the fractional distance to be

traveled to reach the final radius. The "rough" estimate of the burn time made
2

here involves setting the temperature-dependence of <av>D-p <* T pi a s m a, a good
approximation between 7 keV and 20 keV (see Ref. 28 and Table III-I).

TABLE I I I - I . RELATIVE-VALUES OF <crv>DT/T^.

Tf(keV) =

<av>/x^ =

8.0

183

9.0

196

10.0

206

11.0

213

12.0

219

13-0

222

Tf(keV) = 14.0 15.0 16.0 17-0 18.0 19.0 20.0

<ov>/T = 224 225 225 224 223 221 219

Then the trajectory integral can be done practically analytically. (The velocity

of the liner inner surface also enters the trajectory irtegral when converting

the integration variable from time to plasma radius. This velocity is estimated

from conservation of energy and approximated by its values near the final state,

where most of the burn occurs.) The resulting expression for the burn time, x,

can be written as • ..
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= 2 J J2_4 <V 5/3-e

where Z is the system length and pi is the initial liner density in g/cm . The

prefactor of 2 comes from dividing the energy by half the peak power. The.

post-factor (.285/.25) comes from a more accurate numerical evaluation of the

trajectory integral which is provisionally evaluated analytically to be (TT/4).

The .trajectory integral,, after much reduction, has the form

fJo
where 6 represents the fractional distance to the final radius. The post-factor,

G(9), is a complicated function of 9 that comes from an accurate ' evaluation of

, the mass-averaged root-mean-square liner velocity <u>. G(6) is always very close

to 1.0, as illustrated in Table III-II.

TABLE III-II. VALUES OF G(9)

,1/2
10/3 -

[7/3 - e + (1

e(9) = 1/(1+9) and a(9) = 10 + 259

9 =

GO) =

Q

6(9) =

1

1

1

.1

.010

.0

.103

•

1 .

2 .

1 .

2

025

0

138

1

3

1

• 3

.041

.0

• 153

1

4

1

.4

.054

.0

.162

1

5

1

.5

.065

.0

.168

1

6

1

.6

.075

.0

.172

1

7

1

.7

.084

.0

.175

1

8

1

.8

.091

.0

.177

1

9

1

• 9

.098

.0

.179
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To complete the calculation of the system gain, we write the fusion energy

.out (peak power times T/2 for a triangular power pulse) as Q times the input

liner energy, and the latter as (Epf/s). The resulting Lawson-type expression

oan be written as

e 12 Tf(ergs)
q nf x = yzov^ni = F (Tf) , (III-7-a)

where y is the energy yield (17.6 MeV) per D-T reaction, in ergs.

Here, according to Glasstone and Lovberg,31 we have taken

-"12 f 19^2.4 "1
J~ J
f

T2/3 (keV) I T^/3 (keV)

where the numerical coefficient of 3-68 has been changed to 5.0 to give better

agreement with the values of J. L. Tucl<32 between 6 and 20 keV. Equations

(III-6) and (III-7) and the definition, e = (E /E ), can be folded together to
PI Li

give an explicit expression for the normalized gain. It reads

1 y<tfv>DT - Kl

pi d 12 T2(ergs) r L

(The appended prefactor of (1/2) comes from the fact that in a triangular power

pulse, the yield is the burn time times half tne peak power). Because of the

approximate treatment of Eq. (III-2), Eq. (III-8) is only meaningful provided e

is not very close to 1.0, i.e., for appreciable liner compressions.

Comparison-^ of this analytic model with R. Malone's computer code, CHAMISA,

is displayed in Fig. III-l and Table III-III. This sophisticated code is described

in Section III.B. It is seen that the transfer efficiencies, final temperatures,

and Q values are in excellent agreement. Thus, the approximate analytic model

can be used to check the code and for rapid and inexpensive exploration of the

initial parameter space, (\/i, N= "pi^Rpi) Tj_, f"Rpi/ALi) • Note that even in

the unoptimized case shown in the figure, break-even (Q ~ 1) at E^/S, ~ 100 Mj/ra

is predicted, or 10 MJ for a 10-cm-long liner. By optimization of density and

. • • ' ' • ' 2 5
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Fig. III-l. Comparison of the model
and the code, CHAMESA. .

Fig. III-2. Relation between the
transfer efficiency and initial
parameters.

temperature of the initial plasma, the gain can be doubled at E^/Z =0.1 GJ/m,

for N = 0.9 x 1020cm-1 and Xj_ =0.22 keV. The optimization procedure is described

next in this section. Note also that, in spite of the liner being compressible,

the energy transfer efficiencies remain quite high, e ~, 50 to 60$.

TABLE III-III. COMPARISON OF MODEL OPTIMIZATION WITH CODE OPTIMIZATION

26

Model Code

l<Sfevtll0 t
T o p t # [ys ]

(T p i [eV]) o p t <

(Pp f[dynes/cm2])o p t_ 1

2.7

1.6

220 •

.2 x 1013

1.9
•270

1.2 x 101 3



Based upon the above description and results of the model, it is now

possible to prescribe scaling laws that lead most directly to • high-Q machines.

Since Q essentially depends upon the product

the best that one can do, aside from increasing the liner energy, E is to

maximize the first two factors. The £ factor peaks at 0 = 1/2, e = 2/3-

According to Eqs. (III-3) and (III-4), and the corresponding solution plotted in

Fig. III-2, we must then have an optimal combination of initial parameters,

\ 0 , .

At the same time, since (<av>Df/T§) has a broad maximum around Tf = 15 keV, we

then have from Eq. (III-5)

10 T P1 = (15 keV>(8/9) 2 / 3 , (111-10)

or, also,

O/-3

= 3-0 .

Dividing Eq. (III-9) by Eq. (Ill-10) with a conversion from keV to ergs, we then

find the following optimal condition

- 9 > 0 x 1 ° 6 e rS s" 1 » ' • (111-11)

where EL/£ is in ergs/cm, or, also
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N[cm"'1] = 9.0 x 10 2 0 (EL/£ [GJ/m]), ' : (III-11-a)

where N = npiTrR^ ±s the plasma line density in cm""1. Equation (111-11) just

3ays that, for fixed final" temperature and fixed efficiency, the liner energy per

particle-is an invariant. Equations (111-10) and (111-11) constitute optimal

relations between the. initial parameters. > ,

Under these conditions, the system gain from Eq. (III-8) will then scale

exactly as

= 6.94

or, also, rounding off slightly,

= 7.OVEL/«. [GJ/m] . (Ill-12)

Other relations of interest under these optimal conditions are as follows.

The burn time under optimal conditions proves to be

, (III-12-a)

where A^ is the initial liner thickness, and the final plasma pressure under

optimal conditions is found to be

The relations, Eqs. (III-10-a).-, . (111-12), (III-12-a), and (III-12-b) were

compared with a run of the code ClIHAMISA, for a copper liner, with (TTR^./ALI) = 50

and EL,/^ = 0.15 GJ/ra. 1 The comparison is tabulated below. The agreement appears

to be quite satisfactory. Eq. (Ill-12) implies "break-even" with input energies

on the order of 20 MJ/m! : '
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Since there will probably be a practical upper limit to the initial plasma

volume density that can be achieved, Eq. (111-11) implies that

=const. (Ill-13)

Since there will also probably be a practical upper limit to the initial plasma

temperature that'can be achieved, Eqs. (111-10) and (111-13) imply

ALi/(EL/£) = const. (111-14)

But AJJ. = 27rRpi Aj., where Ai is the initial liner thickness. Again noting

Eq. (II1I13), Eq. (111-14) becomes

= const. ,

We conclude that, for given plasma initial density and initial temperature, the

scaling, Q ~-\/(EL/Jl) , can be achieved by simultaneously increasing the liner

initial radius and thickness as -̂  (EL/£)•

B. Numerical Code Capabilities

Detailed numerical calculations have been made in order to verify the

analytic model discussed above and to provide information on the temporal

behavior of the system.

The basic features of the code, CHAMISA, which was used are summarized

below:

•. One-dimensional cylindrical geometry (planar or spherical geometry

available also).

• Lagrangian hydrodynamics; treats liner compressibility.

• Inviscid fluid flow; no elastic-plastic effects.

• One or two material temperatures (electrons and ions).

• Realistic material equations of state (calculated by Group T-4,
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LASL). Density and temperature based, treating solid, liquid, and

gas phases, ionization, crystalline phase changes, and degeneracy.

Descriptions of the methods used to calculate the equations of

state and results for several materials are given in

Refs. 34,35,36.

• Thermal conduction (along or across a magnetic field).

• Magnetic field diffusion, including temperature, density, and phase

change effects on the electrical resistivity. Ohmic heating of

liner treated. Alternatively, the simple magnetic field boundary

condition options (see below) can be used if field diffusion is not

of interest. •

• Thermonuclear burn.

• Boundary condition options for liner dynamics:

- Constant or time-variable external pressure.

- Adiabatic ideal gas. Can be used in conjunction with magnetic

field options below. Bremsstrahlung losses and thermonuclear

burn (DT plasma) monitored;. no feedback to affect state of gas.

- BQ magnetic field generated by Z-pinch current in liner. Current

can be programmed in time in an arbitrary way or to describe a

driving circuit for the liner system. Field excluded from liner

(perfect conductor).

- B z magnetic field; constant total flux assumed. Field excluded

from liner (perfect conductor).

• Liner rotation.

The results of the calculations which have been made with this code appear

in various sections of this proposal. In particular, numerous parameter studies

of compressible liners driving adiabatic plasmas have been made to verify the

analytic model and scaling laws presented in Section III.A; appropriate results

. are presented there. In Section .III.C, simple scaling relations are used to

obtain non-self-consistent estimatas of plasma loss rates using the plasma

• parameters obtained, from code calculations. In Section III.D code results are

used extensively in a discussion of the thermal state of the liner as determined

by adiabatic compression, shock and viscous heating, magnetic field diffusion and

a ohmic heating, and neutron, energy deposition in the liner. Finally, in Section

IV, code calculations are compared with an incompressible liner model used for
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cu tain aspects of the reactor analysis.

It is clear from the list of code features that the numerical capability is

already available to go well beyond the preliminary calculations presented in

this proposal, especially in regard to the interaction of the central plasma and

magnetic field with the liner. We propose to study the time-dependent problem,

with a spatially inhomogeneous plasma and a nonideal solid wall, which involves

magnetic field diffusion into the liner, thermal conduction to and into the

liner, and radiation from both the plasma- and the ablated liner material. This

•can also be done in the context of a liner implosion, in which the plasma energy

gains and losses are calculated self-consistently.

Numerous other codes are available within the Laboratory which complement

the capabilities of the code just described. In particular both one- and

two-dimensional codes^''3°>39 exist, which treat the elastic-plastic material

state which exists during the implosion phase. The two-dimensional code^" has
40previously been used for analysis of the effects of yield strength and

41viscosity on the development of Rayleigh-Taylor growth in solids.

C. State of the Plasma

1. Estimates Based on Analytical Model. In Sec. III.A, an

approximate analytic model was constructed for' the elucidation of the final state

and burn of an adiabatically compressed plasma imploded by a compressible

cylindrical liner. The notion of system optimization for a given input energy

was introduced, and the scaling from one optimized system to the next with

increasing input energy was displayed. In this subsection, we shall restrict our

attention to these optimized systems only, and shall roughly estimate their

losses due to bremsstrahlung and heat conduction, and their additional heating

due to 3.5-MeV alpha-particle redeposition. Clearly, the notion of an optimized

ideal system, derived by neglecting these losses and gains, is only sensible

provided that these effects prove to be small perturbations on the ideal system

itself.!

For nonoptimized systems, we can use the more general loss expressions in

conjunction with our short, fast, model code which basically involves just the

numerical solution of the transcendental equation for 0. We hereby propose to

carry out these more general parameter studies as part of our theoretical liner

program.
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a. Bremsstrahlung Losses. In calculating these losses, we distinguish

two regions of time, the time during the implosion to the final state, and the

burn time. The fact that these regions have some overlap is of no great

importance to the following discussion.

The instantaneous power density of bremsstrahlung radiation is

Pbrem = 5-35 x 10"24 n 2 T (keV) [ergs em-3s-1] . (111-16)

If we multiply by the instantaneous plasma volume and integrate over time up to

the final state, we get the bremsstrahlung energy lost during the implosion,
Ebrem f• As earlier, it is useful to convert from an integral over time to one

over plasma radius, which involves dividing the integrand by a liner velocity

obtained from global energy conservation. As before, we only require the liner

velocity near the final state. We then take the ratio of the lost bremsstrahlung

energy to the final plasma energy, and find

* W ^ ^ = 5-35 * " " 2 * — i ^ J aiiieZw n. ^ ( m_ 1 7 )

where Pj_ is the initial liner density in g/cm3, N is the plasma line density in

cm-1, (EL/£) is the input energy in ergs/cm, and the functions e(9), a(6), G(9)

are defined as follows.

e(9) = 1/(1+9)

a(9) = 10 + 25 9 (111-18)

0(6) =|(2)(5/3-e) ; = | 1 / 2

L 7 / 3 - e + <1-«

Also, Ibrem is tne final form of the trajectory integral,

»-jf-^ r e r a = | - j r r r z : = / ——x
o a/i = 1 - 2 8

.1+x^)(
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If we now specialize Eg. (111-17) to an optimized system, wherein© z 1/2,

Tf -15 keV, and N = [9.0 x 106 x (EL/B, )][cm-1] with EL/£ in ergs/cm, then

Eq. ( I l l -17) reduces to

[Ebrem,f-Jgrl = 8.4 x 10-2 4 /EL [a /

*V? KPT] }j T |_~m

(111-20)
1 * I m 1

'opt .

where P^ is still in g/cm3, but now (EL/&) is the input energy expressed in

gigajoules per meter.

We conclude that the input energy can become as large as 100 GJ/m before the

bremsstrahlung losses during the implosion become comparable to the energy

obtained by the plasma from the liner.

Next, we suppose that' the plasma sits in its final state for a burn time,

and we compare that time to a bremsstrahlung cooling time. The latter is

estimated by dividing the final plasma energy by the total bremsstrahlung power

radiated under final-state conditions. We find

r C3N T f(ergs)]
£ 1 • • • • — • • • • . . - » . 1 • — — - -

N2 Tj/2(keV)

or

T 4.8 x 10-9 Tf ( k e V )

Tbrem = 5.35 x 1O"22> H

We now divide this by the burn time estimated in Subsection III.A. The result is

Tbrem /pi _ 4.8 x IP"9 TJ/2(keV) 5/3-e J(E L /£)
^ If

J(EL
If 1-" 5-35 x 10-24 N a If 1-e [.574 x G(0) x ^ |

(111-22)

where p^ is the init ial liner density in g/cm3, and (Ei/&) is the input.energy in

ergs/cm. Finally, we specialize this expression for an optimized system and find

flbrem J E J = M , (III-23)
T "^TTjopt. y(EL/£)[GJ/m]
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where (E^/H) is now in gigajoules per meter. We see that the input energy can be

as large as 10 GJ/m before the bremsstrahlurig cooling time becomes as short as

the burn time. We conclude that for' input energies of less than a few GJ/m,

bremsstrahlung losses from the body of the plasma will not be a serious concern.

b. Thermal Conduction Losses

i. Introduction. We envision a Bg. trapped in the plasma to provide

thermal insulation in the radial and axial directions. At the same time, we

suppose EQ is sufficiently small as not to influence the plasma dynamics. These

two conditions can be written, respectively, as

wci Tii >. 1 ' (111-24)

2n p i T p i > Bg^/air .

Here, û i is the ion gyrofrequency, and ii±, later sometimes called Tj_, is an

ion-ion collision time, and all quantities are evaluated at the initial time.

[Hence Bgj_ means the initial Bg.]

If we take, for simplicity,

Vraion/2mproton/(A/10> ~ V

where A is the Coulomb logarithm, these inequalities can be written as

l>7 X 1 ° ~ 1 5 "T*-[key])3/2 < B0i[Gauss] < 2.8 x .10-* (npl[om-3)]
1/2(Tpi[keV])

1/2

(111-25)

where we have set^2?.^ = 3 x 1010-^To T3/2(keV)/n(cm-3).

Here Bo^ is a representative value of the initial azimuthal magnetic field,

and np£, and Tpi are respectively the initial plasma volume density and

temperature. The inequalities of Eq. (111-25) become more and more strongly

satisfied as the adiabatic compression of the plasma proceeds. These

inequalities have been'mapped in Fig. III-3. We see that for Tp^ = 100 eV and
npi ~ 3 x 1o17cm"3, trapped fields of about 40 kjgauss are required. For higher

initial temperatures, the allowed range of fields becomes broader.
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V)
CO

VALUES OF INITIAL Bg LIMITS
SUCH THAT: | )w c i Tj j> l

np; cm"
3—*.

Fig. III-3. Values of B_ such that i) the ions are magnetized, ii) magnetic
pressure is small.

In this proposal, we do not present self-consistent calculations of the

losses. Such complicated and detailed calculations are proposed for future work.

Here, we provisionally assume that the radial gradient length is on the order of

the instantaneous plasma radius. Thus, we neglect the short transient time

required for the initial thin thermal boundary layer to relax to gross plasma

dimensions. One might expect the initial thermal boundary layer to be only a few

ion gyro-radii thick, and for initial densities like 101? cra~3t temperatures like

100 eV, and magnetic fields like 50 kGauss, the relaxation time of such a

boundary layer is found to be only a few hundredths of a microsecond. This

transient phenomenon differs from the analogous one discussed by Jensen^ in that

the initial plasma here has a high density (1017 to 1 0 ^ cm"3) and a low

temperature (100 to 200 eV), whereas the one discussed by Ref. 43 has a density

of 10^6 cm~3 and kilovolt temperatures.

ii. Radial Ion Heat Conduction. The instantaneous radial ion heat

flux near the wall is approximated here by
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ion,r = Tp/Rp (111-26)

where T p is the central temperature, so that the total ion radial heat loss per

second per cm is

, i 0 n T (111-27)

Here the cross-field ion thermal conductivity for

wall by

ion
' mlon $3/2 raion

> 1 is given near the

N T

LR2 U2 1
L p c i j i

LR2 U

L p c i j i n i t i a l

(m-28)

with T^j_ the ion-ion collision time referred to the central temperature, N the

line density, and both are constants of the motion. Also, we have noted that

(R2 o)2 ) is a constant of the motion which we set to its initial value.

Finally, we have represented the temperature near the wall by some fraction, $,

times the central temperature..

The energy lost due to radial ion heat conduction during the implosion to

the final state, Ei o n r f, can now be evaluated by the same methods used for

bremsstrahlung. We find, after normalization to the final plasma energy,

j£ Tf(ergs)G(e)Ibrem
3 ^ (•uciTii)in.*

1/2(^2pi/ALi)(raion
U)

ci(in.)) y}(EL/A) (ergs/cm) ̂ 2a6(5/3-e) '

where Pj_ is the liner initial density, in [g/cm3], ancj «in." stands for "initial

value."

Upon specialization to an optimized system [G(6) = 1.07, 6 = 1/2, e = 2/3,

a = 22.5, Tf(ergs) = 1.6 « 10-9 Tf(keV) = 1.6 x 10~9 x 15 keV] and noting that

Ibrera =1.28, this becomes
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Eion.r.f

= 2.90 x 10-15 (111-30)

Because x ^ is proportional to [T^{ /n pi], this result can be further reduced by-

means of the two optimization conditions derived earlier, namely

f Li ^ )- = 5.16

and

N = {9.0 x 1020 x (EL/fi,)[GJ/m]}cm-1 . (111-32)

In the further reduction of Eq. (111-30), we take m^ = 4500 me, which

constitutes an average D,T mass.

If we also recall that

Rp(cm)Be(Gauss) = 2 x 105 x IZ(MA) , (111-33)

where I z is the trapped axial plasma current (a constant of the motion)., then

Eq. (111-30) can finally be reduced to

[•
Eion.r.:r ^feirl _ QJ>1 VEL^ ̂ GJ/m] (IH-34)
Bp.f y p l l "7™ (I«[MA])2

opt.

We conclude that, if the instantaneous plasma radius is a relevant scale length,

then the energy loss due to cross-field radial ion thermal conduction during the

liner implosion will not be a serious problem provided

IZ[MA] > (EL/£ [GJ/m])1/2Vcf>1/lt , (111-35)
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which means that I z must be at least one or two megamperes for input energies

from .01 to 1 GJ/m, and, furthermore, this required plasma current scaling is

predicted to be rather insensitive to the input energy to the liner. These

values of plasma current are not inconsistent with those allowed values of

B referred to in Fig. III-3 and in the introduction to this section. The

initial trapped magnetic energies involved amount to only a few tenths of MJ per

meter.

Next, we consider the cooling time of this loss mechanism, during the final

state, compared to the burn time.

Dividing the final plasma energy by the radial ion heat conduction loss

rate, we find a cooling time,

3NTf(ergs)
i o n' r = 2TrKi°nTf(er

1/2.1
( I I I" 3 6 )

where If is the central temperature, and ($Tf) again represents an outer

temperature. The ratio of this time to the previously estimated burn time is

Tion,r _ 3 (5/3-

" e
,,

(111-37)

where Pj_ is the liner initial density in (g/cm3), and (E^/H) is the input energy

in (ergs/cm). We specialize to an optimized system by writing 6 = 1/2, £ = 2/3,

G(0) = 1.07, Tf(ergs) = 1.6 x 10-9 Tf(keV), with Tf(keV) = 15 keV. Then

Eq. (111-37) becomes

-*opt.

= . 0 0 7 8 B 2 ( l n . ,

where the

initial

T

input energy is now in (GJ/m), and B (in.) is the edge value of the

magnetic field in gauss. Then, noting the dependence

1;L(in.) - (x|(
2/npi) and again making use of Eqs. (111-31), (111-32), and

(111-33), we find that Eq. (111-38) reduces to

trapped

| ( 2 /
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IM
3 z ^ L (111-59)

We again conclude that essentially condition (111-35) is required in order that'

the radial heat-conduction cooling time exceeds the burn time.

iii. Axial Heat Conduction Driven by Radial Gradients. Axial heat

flux driven across B9 by axial temperature gradients should be relatively

unimportant compared to radial heat conduction driven by radial temperature

gradients, because the area at the end-plugs is generally much smaller than the
ho

lateral surface of the liner. However, according to Braginskii, tKere also

exists an axial heat flux driven by radial gradients, which we now discuss. For

each species, with wcjTjj >> 1, this cross-effect heat flux has the form

q = .5. nPTPqcross,z 2

where Tp and Rp are instantaneous values of plasma temperature and radius, and

a)C£ = eBg/mionc, with B0 being a representative azimuthal magnetic field. The

heat flux represented by Eq. (111-40) flows only along isotherms, producing

neither cooling of the plasma nor changes in its entropy. Also, this heat flux

is equal but oppositely directed for ions and electrons. However, it is hot at

all clear what becomes of this benign situation near the end plugs, where the

heat flux (of the j t n species, say) turns the corner and flows (along isotherms)

towards the axis with IO0JTJ •*• 0. The region where the axis intersects the end

plug presents a complicated two-dimensional problem, exacerbated by the wide

range of values covered by wcjTj as well as b;s species coupling through

equipartition. We propose to study this problem further. For now, nothing more

can be said as to whether the heat flux represented by Eq. (111-40) indeed

remains a benign phenomenon. :

iv. Axial Heat Conduction Near the Axis. We consider now the heat

conduction to the end plugs in regions so near the axis t'.*at U c-T^ < 1, for

•v
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-either species. Thus, we exclude from the present discussion those hard-core

systems mentioned elsewhere in this proposal. Such systems cannot have axial

loss of the type we now consider, but instead might suffer the usual problems of

a wall in a hot plasma environment. Within the context of a very pessimistic

over-estimate derived later in this section, the total heat conduction out of

..these- near-axis "holes'." proves to be dominated by the ions, and can be obtained,

to within a numerical coefficient C, by just multiplying Eq. (111-40) by the

total area of an end-face! Thus, we write this power loss as

npT2(ergs) c £
L V R C fy CIU-41)

where N is the plasma line density, and C is the numerical coefficient. Here we

have, taken the representative value- of Bg to be near the wall, as will be

justified by the derivation that is presented later in this section. Then, we

have noted that [B§(Rp) x Rp] is a constant of the motion and have used its

initial, value.

Upon integration of this power over time up to the final state, we obtain

the energy lost to the plasma by this means during the implosion. The result,

relative to the final plasma energy, can be written

Eh61e,ion,f /ZTT _-C e T f(ergs) AL1 1 G(e)Ibrem . ( n i - 4 2 )
^pT * P i " 3 e [B eRp] i n < * ^ < E L / A ) [ergs/cm] ^2a6(5/3-"e)

' o 1/2

where BQ is in Gauss, p'̂  is in g/cm3, and Rp, £., and ALJ. are in cm. Upon

specialization to an optimized system, this becomes

hole, ion, f '.JSL = 0.46 x C
[GJ/mJ

opt.

One can also estimate the cooling time, x n 0^ e ^on during the final state, as

the final plasma; energy divided by the loss rate given by Eq. (111-41). Here,

and also In Eq. (111-43)»• we pessimistically assume full thermal contact between



the entire plasma and the near-axis "pipe." One thus has

Thole , ion = 3N Tf £• 1 | ( B 9 R P ^ n .
N Tf

For an optimized system, this can be written

Fhole.ionl = J( 40/C) x 10"8 £[cm] IZ[MA]| [sec] . (111-45)
L jopt.

Upon division of Eq. (111-45) by the burn time of an optimized system,

namely,

S x O . M , fe&ggfl x 1Q-6 Fseci ,
2TT / E / A tGJ/m][GJ/ra]

\ -
one finds

Thole,ion = °'80 [cm-1] IZ[MA] yJEL/l [GJ/m] , (111-46)

opt. pi 1

where Aj_ is the initial thickness of the liner. Later in this section, we

roughly estimate that the numerical factor is C £ 7. However, we believe that

this value of C is probably orders of magnitude too large.

According to either Eq. (111-43) or Eq. (111-46), we then conclude that, if

^pi ~ & anc* Aj_ ~ 0.1 cm, the heat loss due to this mechanism will not dominate

the input energy provided

IZ[MA] > lAjEi/fc.CGJ/m] . (111-47)

More generally, the condition that this near-axis heat loss be small can be

written as,

Iz[MA] >

We also recall Eq. (111-35) s the condition that the radial heat conduction be

small, •
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, I / *T

These conditions can be conveniently combined as

cnwo-o

This combined condition reduces to Eq. (III-48-a) at low input energies, to

Eq. (III-48-b) at high input energies, and provides a reasonable transition at

intermediate input energies. It is plotted in Fig. III-4, with § = 1/16, and

(10 .RpiAj/A [cm]) as a parameter. [Recall that $ is the plasma temperature near

the radial wall, divided by the central plasma temperature.] We see that the

plasma current needs to be several megamperes in order to keep the thermal losses

to an acceptably small level, but we believe that the axial losses that appear to

dominate at low input energies constitute a great over-estimate. This is

discussed later.

We now present a derivation of the loss rate, Eq. (111-41). Since BQ must

vanish at r = 0, we suppose it is proportional to r throughout the plasma. We

over-estimate the heat loss in this axis region by supposing that Bg = 0 up to a

radius where fociTi = 1 for the ions, and wceTe = 1 for the electrons. We call

such a radius the "hole" radius, one for each species, rhion and r̂ e- Within

this hole, each species is assumed to lose heat axially as if there were no

magnetic field. The hole radius for the j t n species is calculated as follows,

["Cj(Rp)
Tj]in. (III-H9)

where Rp is the instantaneous plasma radius and Rp^ is the initial plasma radius.

Here we have made the approximation that Tj is independent of position within the

plasma and have used the properties that RpB0(Rp) and Tj are constants of the
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(cm)

1/4 U0Rp,_A,/l)

•

•1.0 $ « 1/J6 ; l z in MA ; e L / l inGJ/m ;

, A;, and I in cm.

I
0.01 0.1 1.0 10.0

zLlt (GJ/m)
Fig. III-4. An estimate of axial plasma current required to keep thermal losses

below the input energy.

motion. We then find that the ratio of the electron hole-radius to the ion

hole-radius is.

ihe_
rhion

2me
mion

(111-50)

The heat flux of the jfcn species, in the absence of a magnetic field, is

approximated by

QiZ = Kj, Tp/^z , (111-51)

II
where ^z is an axial gradient length for the temperature profile, and Tp is the

central plasma temperature. Mote that, as in (ii),. the heat flux (and hence the

thermal conductivity) is calculated near the wall, where the temperature gradient

is well established, but not at the wall where complex interactions are

occurring.
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We now make a very pessimistic assumption. We suppose that the unknown

axial gradient length, &z, is" very short, on the order of the smallest

macroscopic radial dimension of this model system, namely,

\ z rne , ' (111-52)

and we furthermore suppose (pessimistically) that this holds for both the

electrons and the ions because of equipartition. For n^n< = 10^ cm-3,
Tin. - 100 eV, Bg^ = 50 kG, Rpj_ = 9 cm, and a compression ratio of 30 to Rpf =

0.3 cm, we find rne = 3 x 10"
11 cm!

Then, the respective electron and ion power losses out of one end are given

Qhe = Ke\\ Tp ^he (III-53-a)

djQhion = H)\ Tp idjifltt . ' (III-53-b)
he

Noting Braginskii's expressions^2 for the parallel thermal conductivities, the

ratio of these two power losses is then

Thus, the ion heat loss dominates zne electron heat loss near the axis in this

model, because the cross-section of the ion "pipe" in so much larger than that of

the electron "pipe" that it wins over the larger electron thermal.conductivity.

From Eq. (III-53-b), and the expression for the ion thermal conductivity

near the end plug, namely

mion

where :'Tp and x± are central values and (YTp) is the temperature near the end
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plug, one can estimate the ion power loss out of one end as

rhe

With the help of Eqs. (111-49), (111-50), and (111-51), this can be reduced to

Q . ~ u"-""" \u->'*-1 ii : ^ . (111-56)

It is reasonable to assume a temperature drop by at least a factor 5 from the

body of the plasma to a point near the end plug, ¥ = 0.2. Then, with ™±on = 4500

me, the square bracket becomes [•••] -0.85. If we substitute this into

Eq. (111-56), and double the result to allow for loss from the other end, we

finally have

Qhion = 6.8 P | . (111-57)
LRPB9(RP)]in.

This completes the derivation of Eq. (111-41) where the numerical factor, C,

is now seen to be about 7- It should be noted that the derivation leading to

Eq. (111-57) and the further results of Eq. (111-43) and Eq. (111-46) invoked

either moderate or very pessimistic assumptions, namely:

i) Perfect thermal contact between the ion "hole" and the rest of the

. plasma;

ii) The axial temperature-gradient length scale was set equal to the

smallest relevant radial dimension;

iii) The temperature near the end plug was taken to be down only a

factor 5 from the central temperature.

We particularly call attention to the small size of lz - rne, earlier estimated

to be ~ 3 x 1Q""1* cm. A more relevant length for the near-axis axial heat loss

problem might be a mean free path. For the initial conditions assumed earlier in

order to estimate rne, we find ̂ e e ~ 0.1 cm and ̂ ^± ~ 0.3 cm. Therefore, we

believe that the near-axis axial heat loss is probably several orders of
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magnitude . smaller than our estimate. In Fig. III-4, we have shown only the huge

over-estimate! Even so, we see that only a few megatnperes of plasma current

suffice to keep the losses below the input energy.

c. Alpha-particle Heating. In this section, we shall see that if the

initial plasma; can be properly prepared- (10"!7em~3 £ npj_ <. 10^°em~3;

Tp£ i 100 eV), also with sufficient axial current to mitigate thermal losses, as

discussed in the preceding sections, then we should expect significant plasma

heating by alpha-particles during the burn. We shall begin the heating estimate

by writing down' the expression for the energy loss of a test particle to a

background of field particles,

<*etest V Afield Afield etestA _., (HI.58)

dt m
red.

 vtest
F(x):

where m r e d < is the reduced mass, A is the Coulomb logarithm,

2-x

and

F(x) = ^ ^ L erf(x) - (2A/rf) x e
mfield + mtest

x = vtest/vfield» wlfch vfield =

Because of their small mass field, electrons see a much bigger Coulomb

cross-section of the test alpha-particle than do field ions. Hence, the alpha

test particle will be slowed down primarily because of Coulomb scattering of

electrons. When Eq. (111-58) is specialized to an alpha test particle, and

electron field particles, and a characteristic energy-loss time is defined by

fcA =

where E A is the 3.5 MeV alpha energy, one finds

,3
(111-60)
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For 2 keV <, Te < °°, the function, F(x)/x3, ranges frora 0.65 to 0.75- Therefore,

in the remainder of this section, we shall replace F(x)/x3 by 0.70. Then

Eq. (TII-60) gives Table III-IV.

TABLE III-IV. VALUES OF ntA SUCH THAT ALPHA PARTICLES LOSE
MOST OF THEIR ENERGY TO PLASMA ELECTRONS

Te = 2 keV ntA = 2.8 x 10
12 s/cra3

5 1.1 x 1013
10 3-2 x 1013
15 6.2 x 1013
20 9.2 x 1013

An alpha particle will have a chance to heat the plasma if its gyroradius is

less than the plasma radius. Suppose an "average" alpha is born at r = (1/2)Rp

with vi = v|| = v^/^2 and vA = ̂ 2E^7m^ = 1.3 x 109 cm/s. Also, suppose the plasma

axial current density is uniform. Then one can easily show that the gyro-radius,

RA, of this "average" alpha is related to the plasma radius, Rp by •

£i = *A , (111-61)
Kp J-z

where I z is the total plasma current, and the characteristic current, IA, is

given by

IA = N i W l a 1.9 MA . (111-62)
L y o e Jmks it

Thus, if the plasma current exceeds about 2 megamperes, a large fraction of the

alpha particles, that are born will not hit the wall at r = Rp. Their gyro-orbits

will then lie in (r,z) planes and will drift axially to the end plugs with

guiding-center drifts composed of the sum of VB and curvature drifts. These
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drifts are in opposite directions, and one has the following drift velocity

formula, in MKS units. :

Again, for an "average" alpha, we take r = (1/2)BD, v
2 = (D/2)vf, v2 = (1/2)v2,

and thereby obtain

£ " * • • : ; <m-6U)

Thus, if I z much exceeds 2 MA, the alpha particles will drift to the end plugs

much more slowly than their energy-velocity would indicate.

For an "average" alpha born roughly in the center, the nt̂ ,, product can then

be written as

lk$ ktt ' (in-65)

Here, we have defined a representative alpha particle dwell time as

tdP s (1/2)2/vdr. But, the final plasma density can be written as

n = npf = V - ? " J L ~ T1?r\ C = 7— a ( 9 ) e . (111-66)
P TTRpf2 AL1 OrR2f/ALi) AL1

in which 8 and a(8) have been defined in i l l-A. If our in i t i a l parameters are

nearly optimal, as we assume, then a0 = 11.25, N[cm-1] = 9.0 x 10^0 1L\J% [GJ/m],

so Eq. (111-66) gives

I 1 0 ALiCem2]

Substitution of Eq. (111-67) into Eq. (111-65) provides
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ntdr = Jo.7 x 1022 ̂ -J^i!fL ± ™ iSJ sec/cm3 . (111-68)

Now, suppose in a machine with Q - 2, the following parameters:

EL/Ji = 0.1 GJ/m

I ~ 30 cm

Iz ~ 5 MA

Then, Eq. (111-68) yields

ntdr = H x 10
12 s/cm3 . (111-69)

Comparing with Table III-IV, we see that the above parameters are such that most

of the alpha particles that are produced ought to lose about one-tenth of their

energy to the 10-or 15-keV plasma.

To calculate the temperature increment produced by the alpha particles, we

need the burn fraction, fburn* T n i s ls written as follows.

f _ Total Yield . Q x (EL/£ [ergs/cm])
(Yield per reaction)(Total no. of ions) (y[ergs])(N[cm~^])

(111-70)

For an optimized system, Q = 7\(EL/ii)[GJ/ra] -^p^/2^, and N = {9.0 x 1020 (E^/£)

[GJ/ra]} cm-"1, and Eq. (111-70) becomes

[fburn]Opt ~ 0.028 ^(EL/£)[GJ/m] yjp±/2n , (III-7D

where, as always, p^ is the initial liner density in g/cm3. Then, the

temperature increment, TA, can be found from the following equation,

3N&TA = (fAEAlburn N*-

or,

TA = -̂  W A l b u r n • (111-72)
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Here, (f^E^), with 0 < f^ < 1, is the representative amount of energy lost by an

alpha particle. The fraction fA, is a function of plasma temperature/defined by
fA(Tp) = ntdr/(ntA) with ntA given in Table III-IV. From Eq. (-III-7D, with

EL/l [GJ/m] =0.1, we have fburn=.0.01. Then from Eq. (111-72) with f& = 0.1

and E A = 3.5 x. 103 keV, we find

*'A s 1.2 keV (EL/£ =0.1 GJ/m) (111-73)

We conclude that, with rather modest assumptions as to the input energy,

liner dimensions, and plasma current, the alpha particles will make a noticeable

contribution to the plasma temperature.

The scaling of the temperature increment, TA, with input energy is

interesting. For a given final plasma temperature, f A« ( E L / J O / A ^ , from

Eq. (111-68). From Eq. (III-7O, fburn a V EL / £ • Then» E<*- (HI-72) implies

TA oc (EL/Jl)
3/2/ALi (111-74)

for nearly optimal systems. If we scale up with ALi ^ EL/£ as discussed earlier,

then

TA

Thus, at EL/5, = 1 GJ/m, we would have TA = 3.8 keV.

These modest, but noticeable temperature increments will help to maintain

the plasma near the optimal DT reaction temperature (peak of <tfv>DT/T
2
f) and will

mitigate the thermal losses. Also, the axial plasma currents required to keep

the alpha particles around are not inconsistent with those plasma currents needed

to keep thermal losses under control.

To the extent that the initial liner cross section can be scaled up more

slowly than the input energy, the alpha heating will scale up more favorably than

is indicated by Eq. (III-74-a).

d. uther Minor Thermal Effects. The following mechanisms of thermal

transfer and cooling or heating were also considered in detail and were found to

be completely negligible for the parameter regime of interest for our

contemplated liner implosions.'
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1. Axial convection of heat by the electrons due to the presence of

the plasma current. [Cold electrons enter one end and hot

electrons leave the other end.]

. 2. Radial heat flux caused by axial current flow in the presence of

Bg. [See Ref. 42]

?,. Work done by the thermal force. [See Ref. 42j

4. Ohmie Heating. [Although ohraic heating is negligible within the

context of the final energy given to the plasma by the liner, it

might be a very important mechanism for attaining the 100 eV or so

required of the initial plasma.]

e. Summary and Conclusions. We have here made estimates of plasma
it?thermal losses based on classical plasma transport theory, and an estimate of

iiii
alpha-particle heating based on Coulomb collisions w:th electrons. Admittedly,

these estimates were so primitive as to amount to little more than dimensional

arguments. As part of our liner program, we hereby propose an intensive

theoretical and numerical effort, which would re-examine the losses and gains with

suitable detail and rigor. Moreover, this would entail an extensive parameter

study, not just limited to optimized systems only. Also, nonclassical transport

(turbulence), and plasma-wall interactions' would be seriously considered.

Reference 7 has considered the phenomenon of radiation from a

magnetoplasma near a cold boundary. This type of calculation is very important

and has possibly serious consequences for our concept of a wall-supported plasma,

called "gas-kinetic confinement" by the Russians. We feel that this kind of work

needs to be re-done before it can be of use to us, for the following reasons:

i) The time-scales obtainable from Ref. 7 are of the same order as

our contemplated implosion and burn time scales, so their

assumption of a steady state is not valid for our situation.

ii) The presence of wall impurities was neglected,

iii) The bootstrap heating by alpha particles, which we feel could be '

quite contributory in a liner reactor system, was neglected.

Thus, we propose, as part of our liner program, to re-think and re-do the problem

of radiation from the cold boundary layer of our wall-supported plasma.

Although the primitive state of our present calculations precludes the

attachment of literal significance to the detailed numerical results, these
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results probably are qualitatively meaningful. They suggest that:

1. Axial thermal losses near the axis of a nonhard-core system must

be guarded against, particularly at low input energies (~ .01

GJ/m); However, we believe that we may have greatly over-estimated

these losses, for the several reasons already mentioned.

2. Radial thermal losses must be guarded against, particularly at

large input energies (- 1 GJ/m);

3. Several megamperes of plasma current, probably less than 10 MA,

are required to keep these losses at an acceptable level;

4. Such plasma currents should be adequate to insure at least a

modest and possibly a very considerable amount of heating by the

alpha particles, in systems of break-even or better capability.

5. Bremsstrahlung from the bulk plasma is unimportant compared to

other losses; however, impurity radiation and cold, dense plasma

radiation at the plasma-wall interface could be important2* and

needs to be studied in a self-consistent manner.

We repeat our intention to re-examine all of these questions theoretically,

in a detailed and self-consistent manner. W« believe that cur personnel and our

computing facilities are equal to the task.

2. Temporal Variation of Plasma Heating and Cooling Rates. In this

subsection we examine some of -the rates for plasma energy gain or loss from a

different point of view. Using the time history of the plasma density and

temperature given by numerical calculations with the code CHAMISA> we display the

temporal variation of the loss rates. The calculations of the plasma state are

not self-consistent in that the plasma densities and temperatures from the code

are based on the simple scaling relations for an adiabatically compressed ideal

gas. The loss rates are calculated in the sense of perturbation theory: the

losses do not feed back to influence the plasma state. The code calculations do

include the effects of liner compressibility. In future work it will be possible

to numerically model the plasma-liner interaction so that the plasma losses are

treated in a self-consistent way. The present discussion is intended only to

illustrate some of the basic phenomena.

The treatment is approximate in two respects: (1) simple approximations are

used to estimate the relative magnitude of the various effects; and (2) no effort

is made here to calculate the interplay among the mechanisms.
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The following notation will be used; units in square brackets apply in

numerical expressions:

n = plasma ion (or electron) number density (DT plasma) [era-3]

T = plasma temperature [eV]

R = plasma radius [cm]

A = average ion atomic weight (= 2.5 for DT)

N = TrR2n = line density [cm"
1]

Z = ionic charge (= 1 for DT)

JtnA = Coulomb logarithm

B = magnetic field imbedded in DT plasma [Gauss]

K = coefficient of thermal conductivity [erg/cm/s/eV]

Q = rate of energy loss or gain [erg/s/cm]

we,<i)£ z electron or ion gyrofrequencies [rad/s]

Te,T^ = electron or ion collision times [s]

Quantities with a subscript "o" refer to the initial value, while "f" refers to

the final value at peak compression of the plasma. We define the radial

compression ratio

X = Ro/R . (III-75-a)

The basic model for the plasma is that of an ionized Y = 5/3 perfect gas. The

plasma is compressed adiabatioally. Losses or gains, other than PdV work, are

not used to modify the plasma energy. Their magnitude is calculated from the

adiabatic plasma conditions; the self-consistent treatment of the various effects

will be done in more elaborate computer calculations in the future. For an

adiabatic plasma in cylindrical geometry, we have the scaling relations

n/n0 = (Ro/R)
2 = X2 (III-75-b)

T/To = (n/no)2/3 = x ^ 3 . (III-75-c)

Note that N = irR2n = No is independent of the compression ratio due to our

assumption that the liner is end-plugged. Most numerical examples will assume
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the initial values,To = 100 eV, no = 1 x 10
18 cm-3, Ro = 10 cm, Bo r BQ O = 30 kG,

and a compression ratio Xf = 103/2 required to bring the plasma to a peak

temperature (no losses) of Tf = 10 keV. Figure III-5 illustrates the variation

in time near peak plasma compression of the inner liner radius, the liner kinetic

and internal energies, and the adiabatic plasma energy for a system with these

parameters. The*initial liner kinetic energy is 280 MJ/m. These values are not

optimal values in any sense, but are used only to illustrate "typical" orders of

magnitude of the various rates and energies.

. . We will use a single temperature description of the DT plasma. This is
18

valid if the electron-ion energy equilibration time

Tei = 3-14 x 108 A T3/2/(Z2 n £,nA) s (III-76)

is short compared to the other time scales in the problem. With the specified

initial conditions, and taking18 Anft = 9 .

independent of X (except for a weak dependence in &n/V). For n0 = 10^7 and

To = 100 eV, Te^ = 0.8 Vs. Adiabatic compression keeps the ratio* Te/Ti fixed;

but near peak compression brerasstrahlung, ion thermal conduction, and o^particle

energy deposition tend to cool or heat electrons or ions relative to the other

species. These processes act on a t.'.mescale i. 1 Us (see Fig.,III-6), and might

give Te i T^ for a short period but Te = Tĵ  is generally a good approximation.

The proposed full numerical calculations will allow Te i. T^.

The fundamental energy input to the plasma is just the adiabatic work done

on it by the incoming liner. The plasma energy per unit length is

Ep = 3NkBT , , (III-77-a)

which scales as X ^; for our usual parameters

.Wp a 1.5 x 10
11 X^erg/cm . (III-77-b)

Figure III.6 shows the rate of adiabatic work, -PV, as a function of time near

54



COPPER LIHER, R |0=l0cm,Ao=O.lcm E^LINER KINETIC ENEftG'

PLASMA.rio.lQ'^ai^To.lOOeV EL-LINE3 INTERNALENER',

EKO-280 MJ/m Er-PLASMATHERMALENERSY

-I.S -1.0 -0.5 OD 0.5 1.0 1.5

TIME RELATIVE TO PEAK COMPRESSION (/us)

(2 IE
a?
bj

10 g

0.8 g

as £

04

I

to'
7
5
3
2

10'
7
S

3
2

10
7
5
3
2

. IMPLOSION

-id'

S
7

-JO"1

2

3

5
7

-10°

-PV'Compressionol Work

-1.5 -1.0 -0.S 0 0.S 1.0 1.5
TIME RELATIVE TO PEAK COMPRESSION (/is)
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Fig. IH-6. Plasmas energy gain and
loss rates near peak compression.

peak compression:

-PV = Wp = - (4/3)(v/R)Wp , (111-78)

where v = R is the velocity of the inner surface of the liner.

The other potential energy source for the plasma is a-particle heating

during the burn phase. The total thermonuclear power, Qj)^, is also illustrated

in Fig. III-6. It is defined by ' .

Q D T = TTR2 n 2 <crv> , (111-79)
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where X0V> is defined in Eq. (iii-7_b). For T- < 10-keV, <ov> scales as Ts,

s ~ 2-3, so that Q D T scales roughly as X5. Note that the peak of QDT is nearly

coincident with the peak loss rates.
•''-' 1 f t

'The bremsstrahlung loss"' rate in the DT plasma, when integrated over the
plasma cross section, is

25 2 / 2 8 /3 erg/s/cm .

Figure III-6 shows the loss rate versus time near peak compression for a

compressible copper liner, with total energy 280 MJ/m, Ro = 10 cm and plasma

parameters no = 10
1^/cm3 and T o = 100 eV, for which

Q b r e m = 4.8 x 1 0 ^ X
8'3 erg/s/cm. (III-80-b)

it should be noted that the liner dynamics respond only to the plasma pressure

P = 2nkBT = 2 kB(noTo)x10/3 , (111-81)

so that in the adiabatic approximation used here, the liner dynamics, the

energies and radius curves in Fig. III-5, and the -PV curve in Fig. III-6 are all

unchanged by variations of no and To -which keep n oT o fixed. Figure III-6 shows

that Qbrems *s *ess than the compressional work rate -PV during the implosion and

dominated by adiabatic expansion after pe&k compression. Furthermore, holding

n oT o constant, Q'orem " n^To oan ^e decreased like ^~ by going to lower n

and higher T . The thermonuclear burn calculation also indicates that some

improvement in the burn rate, Q D T, also occurs in going to TQ = 200-300 eV while

decreasing n correspondingly. This improvement occurs because <o*v> for DT

reactions-' rises faster than T as the temperature increases, for T < 10 keV.

So the burn rate, proportional to n2<av> « (nT)2[<av>/T ] is still an increasing

function of T for given nT.

For the conditions considered here, cross-field ion thermal conduction to

the liner appears to be the most serious loss. Work is in progress to make

detailed numerical calculations of the thermal conduction losses, which involves

the self-consistent treatment of the thermal boundary layer of a wall-confined
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plasma with an embedded BQ. But for illustrative purposes we will use a simple

dimensional analysis method. We take the heat loss at the liner-plasma interface

to be

Qion = 2irR-KiVr ,

4?
where K^ is the cross-field ion thermal conductivity

K± = 2nk2T TiG(u>iTi)/Mi

G(y) = (y2 + 1.32)/(yi| + 14.8 y2 + 3-8) . (III-82-c)

M is the ion mass, and kR is Boltzmann's constant. In the limit y » 1,

G(y) = y t which gives the usual 1/B scaling of K.. Ki is evaluated at the

"central" temperature T, rather than at some intermediate temperature $T, where

0•< * < 1. In the strong field limit (y » 1), KA «$-V2 f s 0 taking $ = 1 is no

worse than the other simplifications made here. We approximate the gradient by
Up

-T/R, so that with the usual values of n and T and with
o o

T ± = 2.1 x 10
7 T 3 / 2 A1/2/(n ZntL) s , (HI-83)

we get

K± = 4.5 x 10
11 X10/3 G(y) . (III-84-a)

y = wiTi = 0.27 X , (III-84-b)

and

Qion s -2.8 x 10
14 X1U/3 G(y) erg/s/cm. (111-85)

Values of QiQn have been plotted in Fig. III-6 for an initial BQ field of 30 kG.

It is assumed that this field will be produced with the initial plasma, either by

plasma gun injection or as the result of a Z-current used to heat the initial

plasma (see Section II). BQ is also preferable to B in that it reduces axial

57



thermal conduction losses to material plugs at the ends and inhibits axial

a-particle loss during the burn phase; B does neither. If the internal plasma

current can be maintained during the final stages of the implosion, B scales as
9

B0 = BeoX , . ' . (111-86)

which gives BQf = 1 MG for Xf = 30 and BQo = 30 kG. • •

Now consider the scaling of Q. with the same liner dynamics (n0T fixed)

but increasing T and decreasing n . In the high field limit where G(y) = y" ,

<* nT/T^ and Q « nlwe have K^ <* nT ̂ / ( w ^ ) •<* nT/T^ and Qion « nl / ^ « (nT)': I ^'^ the same

scaling as" for bremsstrahlung losses. Going to higher T and lower n will

reduce Q. as T~° . Also, Q. « B so a larger initial field is desirable,
ion o ion

With B = 60 kG and BQ» = 2 MG, Q, would be another factor of 4 smaller, the
oo oi ion

liner dynamics are unchanged since even with these fields, the peak magnetic

pressure is less than 1% of the plas«" nressure. . :

The results obtained here are consistent with those obtained a'oo/e with the

analytic model: (1) the dominant loss mechanism is radial ion thermal conduction.

(2) Initial Bfl fields on the order of or greater than 30 kG will be required to

keep the radial thermal loss to a tolerable level. (3) Bremsstrahlung losses

from the bulk plasma are relatively unimportant. (4) The coincidence in time of

the thermonuclear burn with the dominant losses implies that the deposition of a

significant fraction of the a-particle energy in the plasma {see Section III.C.1

above) can play an important role in canceling the losses. (5) The adiabatic

work (-PV) dominates the losses considered here until very near peak compression.

The results presented above are based on highly simplified models, and more

quantitative results will be needed, both for comparison with experiments and for

more accurate predictions of reactor feasibility. It was pointed out in Section

III.B that, to a great extent, computer codes are presently available at LASL

which are capable of treating these problems.

D. Thermal State of the Liner

The thermal state of the liner during the implosion phase is of particular

importance in considerations of the Rayleigh-Taylor instability of a magnetically

driven liner. As shown in Section III.E, viscosity in the compressed liner

material has a significant stabilizing influence for the Rayleigh-Taylor
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instability. There is experimental and theoretical evidence-5 that compressed

solids have a viscosity near 2 kilopoise, a value capable of preventing serious

Rayleigh-Taylor growth for the liner implosion conditions considered in this

proposal. In fact, Russian experiments ^ have found viscosities in aluminum of

20 to 100 kilopoise.

Two distinct modes of operation will be considered here: the "ideal" case

(hereafter called A) in which the driving magnetic field does not penetrate the

liner, and the case (called B) in which the magnetic field completely penetrates

the liner. As will be shown, significant diffusion of the driving magnetic field

into the liner can be expected to occur during the implosion phase if the applied

current is carried by the liner itself. Field penetration reduces the efficiency

with which electrical energy is converted to liner kinetic energy, but not by a

large factor. However, the ehmic heating will cause all or a large portion of

the liner to melt. It is expected that melting will significantly reduce the

material viscosity and the associ'^ed stabilizing effect of that viscosity. On

the other hand, as the , t!leld penetrates the liner, the conditions for

Rayleigh-Taylor growth change in two ways which tend to reduce the growth: (',)

the driving force, grad(B2), is distributed over a slowly varying density

gradient within the lint* ahu (2) the maximum acceleration spends a relatively

short time near any particular mass element of the liner as the field moves

through the liner. The first effect reduces the local growth rate compared to

that for a sharp interface with a large density mismatch, while the second

reduces the growth time for a particular mass element.

It may be possible to approach the ideal limit of case A by causing the

driving current to be carried by a plasma layer adjacent to the liner. In this

case, the driving force remains at the plasma layer-liner density discontinuity

during the entire acceleration time. However, because the magnetic field does

not penetrate the liner, the temperature of the liner is increased only a little

by adiabatic compression. The temperature remains well below melting, so that

the viscosity should be large, reducing the growth of the Rayleigh-Taylor

instability.- .

The following discussion has three parts. We first consider heating

mechanisms other than ohmic heating $ these determine the liner state for case A.

Next we examine magnetic field diffusion and ohmic heating. Finally we consider

several processes which are important near peak compression; these do not
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influence the implosion phase but may affect the dynamics of the liner-plasma

interface and the liner reexpansion.

1.' Mo Magnetic Field Diffusion (Case A). The adiabatic compressional work

done on the liner is considerable, but only a small fraction of that energy goes

into an increase in the material temperature. Writing the temperature, T, as a

function of specific volume, V=1/p, and "entropy, S, we have

. dT = OT/8S)vdS + OT/8V)sdV . (111-87)

For an adiabatic change, dS=0; then dT can be rewritten as

dT = (3S/aV)TdV/(3S/3T)v

= - OP/3T)vdV/OS/3T)v .

The specific heat at constant volume, Cv, is

Cv = T(3S/3T)V ,

so the adiabatic temperature change .satisfies

CvdT = - T(3P/3T)ydV (dS = 0) , (111-88)

whereas the internal energy satisfies

dU = - PdV (dS = 0) . (111-89)

For low - temperature solids compressed somewhat above normal density

(Ap/p > 0.1), the pressure is a weak function of temperature. If we write

CydT = (3£nP/3JtnT)vdU (dS = 0) , (111-90)

the logarithmic derivative gives the fraction of the energy increase which goes

into increasing the temperature. This derivative ranges from near unity at
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normal conditions (room temperature, normal density p ) to 10~2 at P/P = 1.3 and

P=1O12 dyne/cm2 (=1 Mbar), to -JO"4 at p/pQ=3.1 and P=32 Mbar (Ref. 46). The

remainder of dU goes into work done against the repulsive forces between atoms in

the solid lattice. The temperature increase when copper is compressed to a

density of about 11.5 gm/cm3 (p/p =1.3) at a final pressure of 10 dyne/cm2 is

approximately

AT = + (3JlnP/3£nT)v(p/p)(Ap/p)/cv (III-9D.

- 10~2 I(1012 dyne/cm2)/11.5 gm/cm3] (0.3)/(5 x 1010 erg/gm/eV)

- 0.005 eV - 60 K ,

which hardly changes the temperature from its initial room - temperature value.

Numerical calculations with the code described in Section III.B give an

integrated AT "0.016 eV. The essential point here is the presence of the

derivative 0AnP/QJlnT) in the temperature equation; were it not considered, one

would erroneously predict a temperature increase ~ 1 eV - 12 000 K, far above the

normal density melting temperature for copper of 136O K = 0.117 eV (Ref. 47).

Comparison of the final temperature calculated above (0.04 eV) with the

normal density melting temperature would suggest that there is little margin for

error in the crude calculation following Eq. (111-91). However, the melting

temperature is an increasing function of density. Kennedy '" has shown that

the melting temperature of many metals follows the relation

Tm = Tmo C1 + C ^ W V P " , UII-92)

where T is the melting temperature at normal density, p , and C is constant

for a given metal. For aluminum, T = 933 K (Ref. 47) and C - 5.14 (Ref. 49),

while for copper C - 4.00 (Ref. 50). At a compression p/p =1.3, the melting

temperature of copper is increased by a factor of - 1.92 to about 0.22 eV

= 2610 K. In fact, the melting temperature rises more rapidly with compression

than does the adiabatic temperature change:

dT/dTm = (3&nP/3£nT)v P/CPoCvVmo)
 z °-°5 • (111-93)

The conclusion is that adiabatic compression is unlikely to melt the liner.
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Furthermore, the adiabatic temperature change is reversible, so the temperature

will drop back- to room temperature when the pressure is removed.

; • Two other mechanisms which might heat the liner in case A are shock heating

and viscous heating. These are not reversible, although if heating occurs while

the material is compressed, a subsequent expansion will lower the temperature

accordingly. Shock heatirig does not occur because the liner motion tends to be

near sonic or subsonic. Also the risetime for the applied field will be of the

order of several microseconds and is larger than the1 time for a sound wave to

move through- the liner, A/cs where A is the liner thickness and cs is the sound

speed. With A. £ 0.5 cm and cs > 5 x 10
5 cm/s, A/cs £ 1 us. Viscous heating is

unimportant because the liner compression rate is small except near turnaround.

During the implosion phase div(v) £ 10^ s"1; with viscosity - 2 x 1o3 poise, the

viscous heating rate is £ 2 x 1O13 erg/cm^/s. The rate of change of the

'•-emperature is, - 40 eV/s, so that for a 25-ys implosion the temperature rise is

only about 10-3 ev - 12 K. Even with larger viscosities the viscous heating is

not serious.

The conclusion for. case A' is that in the absence of magnetic field

penetration of the liner, compressibility effects do not cause the liner to melt.

One can expect significant viscositv inhibition of Rayleigh-Taylor growth.

2. Magnetic Field Diffusion (Case B)• As mentioned above, if the liner

itself carrier the driving current, one must expect significant magnetic field

diffusion and ohmic heating even in a good conductor like copper. This will

cause -all or a large part of the line.r to melt during the implosion phase.

However, the field penetration time is comparable to the implosion time, so that

it is possible to make either time shorter than the.other by changing the initial

liner radius or thickness or the driving circuit characteristics. Work is in

progress to investigate the effects of changing the ratio of these times.

Because the liner melts and because the acceleration takes place in a nearly

uniform medium, considerations for the Rayleigh-Taylor instability are quite

different than in case A. This topic is discussed in Section III.E. The present

discussion is concerned only with the phenomena of magnetic field diffusion and

ohmic heating during the implosion phase.

Nonlinear magnetic field diffusion is treated in great detail by Knoepfpl.^1

The equations for field' diffusion in cylindrical geometry with a Z-current are
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dBQ/dt + Be0v/9r) = (O2/4TT) (3/3r) [(n/r)O /3r) (rBQ ) ] (111-9*0

Jz = (c/4TT)(1/r)(9/3r)(rBe) , (111-95)

where BQ is the magnetic field, v is the radial velocity, r) ia the resistivity,

and Jz is the current density. The time derivative is the coraoving derivative:

d/dt = 3/3t + v(3/3r). The ohtnic heating rate per unit volume is nJ2- The

diffusion process is "nonlinear" because the resistivity is a strong function of

temperature: as an element of mass is heated, the resistivity increases, which in

turn increases both the local heating rate and diffusion coefficient.

In the code, CHAMISA, described in Section III.B, these equations are solved

simultaneously with the equations for the liner motion. The temperature and

density dependence of r\ used in the code are based on the empirical data given in

Tables 10-IV and 10.V of Reference 51. For copper this gives a resistivity in

the solid phase of the form

n = noM
+3'(T-To)^Po/P>2'7 » (in-96)

with n o = 1-58 x lO-^s, g' = 59-7/eV, To = 0.0235 eV, and p o = 8.94 gm/cm3.

This is used for temperatures less than the melting temperature given by the

Kennedy melt law discussed previously (Eq. 111-92). At T = T m e l t, n has a

discontinuity, and for T > T m ej t , H is taken to have the same form as in

Eq. (111-96) but with coefficients appropriate to the liquid phase. Figure III-7

shows a snapshot in time at 6.4 ys after the beginning of the implosion of a

copper liner by a constant current of 40 MA. The initial inner radius of the

liner was 10 cm and the thickness was 0.1 cm. The liner has moved only 0.6 cm

but has a velocity of 1.8 x 105 cm/s. The outer part of the liner (to the right

of r = 9.48 cm) has melted while the inner part is still solid. This transition

is indicated by the sharp changes in the resistivity and current density. The

high resistivity in the melted layer forces the current to be carried by the

solid layer. The arrow on the vertical axis labelled n 0 is the resistivity of

room - temperature copper. Melting occurs slightly below the normal melting

temperature of copper, T m o = 1360 K, because the density near the solid-liquid
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Fig. III-7. Magnetic field variables
within the liner at 6.4 ps following
the beginning of an implosion with a
constant 40-MA current. BQ is the mag-
netic field, T is the material tempera-
ture, T] is the electrical resistivity,
J is the current density, and H is the
current integral described in the text.
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interface is slightly below normal density. The melting temperatures at relative

compressions p/Po of 1.0 and 0.95 are indicated on the vertical axis. The

quantity II is called the current integral and is defined as

H(m " X [J(m,t')]2dt- , (111-97)

where m denotes a Lagrangian mass element. The significance of n is as follows.

The local ohmic heating rate is

pCv(dT/dt) = (111-98)

If we neglect the density, dependence of n (take p = p0) then from Eq. (111-96), n

is a known function of T and we can integrate Eq. (111-98):

64



n(m,t) = / j2dt' = / dT POCV(T)/H(T) . (111-99)

The rightmost expression depends only on the initial temperature To, the final

temperature T, and the properties po, CV(T), and n(T) of the material being

considered. The value of II required to raise the temperature of a solid from

room temperature (300 K) to the normal density melting temperature is denoted by

nsra. For copper, n g m = 8.9 x 10
8 A2 s/cm'*, while for aluminum, nsra = 3-2 x 10^

A2 s/cm'4 (Ref. 51). n s m is also indicated on the vertical axis of Fig. III-7-

The time for the field to completely penetrate the liner, t p e n, can be estimated

roughly using n s m: if we assume that J ~ I/(2rrRoAo) and take I to be constant (as

it is.in the numerical calculation considered here), then

n s m = (I/2TTR 0A 0)2 t p e n ..

Plugging in I = 4 x 10? A, Ro = 10 cm, Ao = 0.1 cm, and the value of IIsm for

copper, we get t p e n ~ 22 ys. The numerical calculation gives t p e n ~ 12 us.

Despite the fact that the field penetrates the liner well before the liner

reaches peak compression at 23 l-is, the liner still attains a peak implosion

velocity of 5 x 105 cm/s and produces a plasma volume compression of io3, with an

initial plasma of 1013 cm~3 ion density and 100-eV .temperature. The assumption

of a constant current is somewhat optimistic, but most of the liner kinetic

energy is acquired before the entire liner becomes resistive. The conclusion is

that magnetic field diffusion per se does not eliminate from consideration

configurations in which the liner itself carries the driving current.

3. Heating Near Peak Compression. Finally, we consider various mechanisms

which heat the liner near peak compression. The inner surface of the liner will

be heated by thermal conduction and bremsstrahlung x rays from the hot plasma and

by some fraction of the a-particle energy released during the burn. The concern

for liner fusion schemes is that the ablated liner material will move across the

magnetic field lines and contaminate the fuel plasma. The problem of a

wall-confined plasma with an imbedded magnetic field is a very difficult one, and

most work to date has considered only the problem of plasma energy loss to a

cold, nonablating wall, with plasma densities considerably below those of
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interest for liners.1^^3.52 The work mogfc r ei e v a nt to the question of ablated

liner material contaminating the plasma are recent Russian liner experiments

which showed no impurities within the plasma. These experiments were done with

liners having a length of 11 cm, initial radius of 6 cm, and initial thickness of

0.1 cm; the initial plasma parameters, were a density of 3 x 10^7 cm-3 and a

temperature of 10 eV, and containing a magnetic field Bz =10^ G. Stable,

symmetric implosions giving volume compression ratios of more than 100 were

obtained. These results are • very encouraging, not only for the question of

plasma contamination, but because they indicate that magnetically driven

thin-walled liners can be imploded stably and symmetrically.

The thermal state of the liner material during the post-implosion expansion

is largely determined by the energy deposited by neutrons penetrating the liner

during the burn phase. The thermonuclear neutrons have a mean free path which is

longer than the thickness of the compressed liner, but not by a large factor. As

a result, for an implosion which produces a large neutron yield (Q > 1), one can

expect a non-negligible fraction of the neutron energy to be deposited in the

liner. We give here approximate results for the liner which has been used as an

example at other places in this proposal: a copper liner with RQ = 10 cm, ̂ o =

0.1 cm, Po = 8.9 gm/cm3; maximum liner kinetic energy = 280 MJ/m; and plasma

parameters no = 10"^ cm~3 and To = 100 eV. A peak volume compression of 103 was

reached, with inner radius Rf = 0.31 cm, thickness A f _ 0.75 cm, and an

integrated line density

pf Af = j P dr (III-100)

of 14.4 gm/cm2. The mean density is Pf - 19 gm/cm3, twice normal density. The

nuclear yield, Y, is 1.23 GJ/m (assuming 17.6 MeV/reaction), and the peak neutron

production rate is <3.4 x 10^0 neutrons/m/us or 1.9 GJ/m/us.

Detailed neutron transport calculations including elastic and inelastic

neutron scattering and gamma-ray transport have been made for 14.1-MeV neutrons

incident on the inner surface of aluminum and copper cylinders at normal

density. ^ Figure 12 in Section IV shows the fraction of the neutron energy

deposited in cylinders of varying thickness. Because the fundamental

neutron-nucleus reaction scales with the number density of nuclei, the

transmission through a thickness b^ of material compressed to density p^ is
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roughly the same as a thickness AQ - Q^A^/Q0 of normal density material. At a

value of pA = 19 gm/cra, the energy absorbed in the liner is about 1255 of the

incident neutron energy. If we define a characteristic value (pA)* foi

transmission by

T = exp[-(pA)/(pA)*] , (III-101)'

where T is the fraction of incident energy transmitted, then a fit to the

calculated values, of T shows that for copper, (pA)* is in fact nearly independent

of pA. At pA = 9 gm/cm2, (pA)* = 160 gm/cm
2 while for PA greater than 30 gm/cm2,

(pA)* rapidly approaches an asymptotic value of 113 gm/om2. Because PfAf for the

liner is much smaller than the characteristic e-folding value, the deposited

neutron energy density is simply proportional to 1/r in the liner. Thus the

inner edge of the liner will be heated more than the outer edge; we neglect this

variation in ^he discussion below. The energy deposited in the liner causes the

temperature to reach a final value T» given by

M(UF+UV +f
 £ CvdT) =An (0.8 Y) , (III-102)
Tv

where M is the mass per unit length of the liner, An is the fraction of the

neutron energy deposited in the liner, and Y is the thermonuclear yield per unit

length; only 80? of the yield is in neutron energy. The heat of fusion, Up, for

copper is UF = 3.1 kcal/mole = 2.05 x 109 erg/gm, and the heat of vaporization is

Uv = 72.8 kcal/mole = 4-79 x 10
10 erg/gm (Ref.54). The vaporization temperature

is T v = 2855 K = 0.246 eV (Ref. 5*0. The specific heat, Cv, is a slowly varying

function of temperature up to melting and even into the liquid phase, so we

can simply write

Up + Uv +.CV(T£-TV) = An (0.8Y)/M .

With An = 12%, Y = 1.23 x lO14 erg/cm and M = 56 gm/cm, the right-hand side of

Eq. (III-103) equals 2.1 x 1011 erg/gm, which is significantly larger than Up +

Uv, so the liner will be heated above its vaporization temperature. Using Cy ~ 6

x 10i°.erg/gm/eV appropriate to the vapor state, we get T,, ~ 3 ev = 3 4 000 K;

note that T^> 10 Tv, a large margin for error. Such a liner will not rebound as
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shrapnel, but as a hot gas. This should significantly reduce the damage within

the reactor vessel.

Some qualitati/e aspects of Eq. (III-103) are worth pointing out. First of

ail, Y/M , = Q(EL/M) = QV#
2/2, where Ê , = MV#

2/2 is the liner energy per unit

, length and V$ is a characteristic velocity. A minimum condition for vaporization

* is- .' . "•- . ' •

. 0.4 AnQV#
2 =, Uv + UF = 5.0 x 10

10 erg/g . (111-104)

Reactor considerations require Q to be at least 5, so if we.take Q •% 5 and An =

0.1,'we find that a velocity V# ~ 5 x . 10^ cm/s is sufficient to ensure

vaporization of the liner by neutron heating.

The value of <An depends, as discussed above, on the integrated mass • density

at 'peak" compression, PfAf. A simple scaling argument shows that PfAf must be >

10 gm/cm2 for "interesting" liner implosions. As shown in Section III.A, the

optimal Q satisfies the. relation (Eq. 111-12)

Qopt = 7-0 [ELPi/2'TT]^2 ,' , (III-105)

where' the liner energy p'er unit length, E L, is in GJ/m and the initial liner

density, p^, is in gra/cm3. (Note change of notation: the energy per unit length,

denoted by EL/& in Sections III.A and III.C, is denoted simply by E L here.)

Writing E L as MV#
2/2, and using cgs units '- '•

Q = 3.5 x 10-7 [p^M/Tr]172^ , (III-106)

with M i n gm/cm and V# in cm/s. At. peak compression of a strongly imploded

liner, the. inner liner radius is small compared to the thickness, so M = PfirA2

Also, many numerical calculations have shown that pf/p^ ~ 2-3 is typical in a

strong implosion. Taking Pf/Pi = 3> we get

' pfAf = Q 5 x 106 cm/s g m / c m2 . (Ill-107)
*

With Q i 2 and Vs {. 10^ cm/s, PfAf j« 10 gm/cm
2. This, in turn, ensures that the

fraction of neutron energy absorbed, An, is £ 10$.
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In conclusion, the implosion of a fast, thin liner to conditions giving a

thermonuclear yield ratio Q > 1 will produce a neutron flux sufficiently intense

that the neutron energy deposited in the compressed and thickened (due to

cylindrical convergence) liner will raise the temperature of the liner above the

vaporization temperature. The detailed calculation above gave a liner

temperature, T^, more than ten times the vaporization temperature; while the

scaling arguments which followed indicated the general applicability of the

parameters used in the detailed calculation.
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•-E-. •••• Liner Instabilities

'•.'.• The high driving B field we contemplate will very quickly drive the outer

layers of the liner beyond the yield .point of the metal and into the range of

plastic behavior. For 'a directly driven liner (i.e.,- a liner carrying its own

driving current), the current carried in the liner will melt the outer layers

through ohmie heating. Thus at some intermediate stage there will be an-outer

layer of melted metal, beneath this will be a layer of normal material, and

finally, the. innermost layer will have yielded. At this stage the

Rayleigh-Taylor instability can develop in the outer layers and the inside layer

may be prone to buckling. Later on, even the innermost lasers become plastic.

When the liner collapse is finally stopped by the compressed plasma,

Rayleigh-taylor instabilities can develop on the inner surface. In this section

we examine these.instabilities and conclude that they will probably do no serious

harm.

A unique feature of our proposed drive with a BQ field is the stiffening

effect which this field has. For example, the driving field will strongly

stabilize- flute modes, so that the only possible Rayleigh-Taylor modes will be of

the sausage type. Thus these modes can be studied by side-on X-ray flash

photography. If such instabilities are not observed, then we can safely ignore

this problem. If they are observed, we could in principle measure wavelengths

and growth rates; these should lead to new experimental measurements of the

viscosity of the metal'or metals used.

1.' The Bucklin . Instability. In an earlier section of this report (Sec.

I) a, formula was given for the growth rate of the buckling instability in the

form12 ' . : '•

fcbuckle = (E.A/a)(P/12E)1/2. '

In this expression E is Young's modulus and a is the yield stress for the

material in question, P is its density and A is the liner thickness. In deducing

this formula, one supposes that the liner is driven by a perturbation to the

point of plastic yield of the inner surface in a negligible time. Thereafter the

load which produces buckling is equal to the yield stress, and Young's modulus of

the unyielding, remainder of the shell supplies the restoring force. The growth
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rate of any perturbation depends on the mode number m; Eq. (Ill-108) is the

reciprocal growth rate for the fastest growing mode.

In our case we are loading the liner quickly, therefore the correct value

for a should be the dynamic yield stress, not the static. Dynamic yield

strengths"' . for metals cf interest to us range from about 3-5 kbar for

aluminum to iO kbar for steel. We have supposed that the first figure also

applies to copper and have prepared the following table of buckling times,

calculated under the assumption that A = 0.1 cm and P = P(normal). Static yield

strengths of.metals tend to be three to four times less than those given in Refs.

55 and 40 and their use would have given correspondingly longer buckling times.

The yield strengths quoted in Refs. 55 and 40 are, if anything, too high, so our

buckling times are probably pessimistic.

TABLE III-V

BUCKLING TIMES OF SEVERAL METALS TOGETHER WITH THE

ALL ASSUME A = 0.1 CM

p (g/cm3)Metal

Aluminum

Copper

Steel

PARAMETER VALUES

E (kbar)

700

1000

2000

ASSUMED.

0 (kbar)

3.5

3-5

10.0

2.699 11-3

8.89 24.6

7.8 11.4

According to Table III-V, the e-folding time of the buckling instability is

about the same as the collapse time, so the instability would only e-fold once or

twice. The actual situation is probably better than this, however, because as

the shell collapses, the thickness A increases with time, approximately linearly

over the major part of the collapse. Thus if the initial A were 0.1 cm, the

effective value (i.e., the time average over the initial acceleration period)

would be more like 0.2 cm, doubling the growth times given in Table III-V. One

should also point out that the dynamic yield strengths used in Table III-V are

probably upper limits rather than accurate numbers, although Refs. 40 and 55 seem

to agree reasonably well.

From the above considerations we would expect the buckling instability to

grow at most two or three generations, provided the liner is driven hard enough.

This expectation is in full agreement with the experience of Fowler and

co-workers. ' They employed explosively driven liners to compress an axial
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magnetic field. Their published data show implosions free of buckling; Fowler

has, however, stated in a private communication that buckling was observed on

occasions when the liner was sufficiently gently driven.;* The drive velocities in

the published experiments were of the order of magnitude of those we contemplate,

but numerically somewhat smaller than what we hope to achieve. Alikhanov et al.

also report symmetric implosions for. magnetically driven metallic liners. It

would appear that buckling will probably not develop if. our implosions go more or

less as expected.

2. RayleighrTavlor Instability. As we have seen, ohmic heating is very

likely to melt the outer layers of the liner for the case where the liner is

driven directly.. This has two consequences unfavorable to the implosion, namelyj

energy dissipation through irreversible heating, and ultimate loss of driving

owing- to the field fully penetrating the shell. From the limited point of view

of the Rayleigh-Taylor instability, however, the consequences of field

penetration are favorable, as we shall now explain.

The electrical resistance of metals rises as the temperature rises. When

the melting point is reached, the resistivity commonly undergoes an upward jump

by a significant factor. Thus the magnetic field penetrates the metal liner more

or less, as a radiation front advances into cold material. The front encounters

cold material which is relatively opaque (low resistance). Behind the front is

the heated, relatively transparent (high-resistance) material. In the magnetic

case, there is, furthermore, behind the front, a melted zone in which the

transparency (i.e., the electrical resistivity) is even greater. To maintain the

flow of the magnetic field, the gradient must be large in the cold (low-

resistance) region, smaller in the heated region, and quite small indeed in the

liquid region. This means that most of the current flow and hence the JxB

driving force, is developed in' the unmelted region. Thus, once melting starts,

the principal driving force is developed in the neighborhood of the liquid-solid

boundary. As the density gradient here is very small, the Rayleigh-Taylor growth

rate will be very small also. Furthermore, because this current-carrying layer

advances through the liner the growth time at any particular layer is severely

limited. „•

. We consider now the problems of Rayleigh-Taylor instabilities at the outer

and inner surfaces, respectively, during the acceleration and during the bounce

72



periods. Theoretical considerations suggest, and experimental evidence seems to

support the idea that at high pressure both liquids and solids stressed beyond

yield exhibit rather high viscosities. This is discussed in more detail below in

subsection 4, where it is suggested that the viscosity may depend on pressure

roughly as

n = ep , . (III-109)

n being in poise, p is in bars, and e z o.O6. If this be true, then viscosity

will quasi-stabilize the liner implosion very nicely; that is, it will not truly

stabilize it, but will reduce the maximum growth rate to a point where the

instability will not manifest itself in the short time available.

To see how this comes about we refer Chandrasekhar's monumental treatise; °

the relevant formulas are given on page 447, Table XLVI. The formulas for k.,,

the wave number of maximum growth rate, and v the maximum growth rate are given

as

kM = a(P 2g/n 2) 1 / 3,

and

v M = b(pg
2/n)1/3,

where p is in g/cm , g is in cm/s , and n is the viscosity in poise. The

constants a and b depend in a complicated fashion on the ratio (p?-p1)/(p9+p1),

and are tabulated as functions of this parameter. Medium 1 (density p.) is

driving medium 2 (density p ) and p 2 > p.. It is assumed in .Chandrasekhar's

calculation that n1/P1 = n?/p?, therefore the P*s and n's on the right-hand sides

of Eqs. (III-110) and (III-111) above need no subscripts. The pressure p, in

bars, driving the liner is

p = 10"6 pAg, (III-112)

where A is the effective liner thickness. Let x.denote the total acceleration

period and s denote the distance over which the acceleration takes place. Then
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the Instability growth in generations can be writ' ̂n as

V MT'= 100 b (4s
2/Aev)1/3 ' .-_'•' (III-113)

if we accept Eq. (III-109) for the viscosity. Here v denotes the peak velocity

to which the liner is accelerated, or from which it is decelerated. Consider

first the instability at the outer surface during the acceleration. If the

driving medium is a nondiffusing magnetic field or a plasma drive, p^ = 0 and b

has its" maximum value b = 0.46. Setting e = 0.06, s = 2.5 em, v = 10& cm/s, and

A 2 0.1 cm, one finds v r = 7.4.

For a plasma-driven liner this figure is marginal since exp(v x) = 1600. On

one hand' for a directly driven liner it is too pessimistic, for the layer where

the principal drive is applied becomes buried in the metal [due to field

diffusion] where the density discontinuity at the liquid-solid interface is

small. A density jump of 10%, for example, reduces the value of b to 0.061.

This has a very strong effect on the value of v-vr. On the other hand, the

reduction of the viscosity by the heating caused by the magnetic diffusion may be

important. Equation (III-109), with e = 0.06, was obtained by fitting shock data

in aluminum, and the shock pressures and irreversible heating were nob enough to

melt the metal. Some of the data^5 indicate that at melting temperature, e might

well drop by a factor of about 10, which would raise v x by a factor 2.2.

Presumably the first of these two effects can dominate the latter.; for the work

of Alikhanov et al. furnishes experimental evidence that direct drive can indeed

be quasistable. ' Furthermore the estimate A = o.i. cm is pessimistic. For as the

liner collapses, A increases. A more reasonable estimate might be to set

^effective = 2 ^initial' w n i ° n buvs a factor of 1.3. Finally, from Eq. (III-113)

it is apparent that the instability can be ameliorated by making s shorter, v

larger, • or A thicker. This suggests using a more energetic and more impulsive

drive. '

The fact that our figures are marginal is not in itself a good reason to

rule out this approach. They are based on viscosities which are not very well

known and are more likely to be too low than too high, for all the experiments

measured viscosity versus pressure in shocked materials. On the average, shocked

material will be at reduced density and an elevated temperature, as compared with

adiabatically compressed material at the same pressure, and both these effects
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reduce the- viscosity. Finally we should mention that there are experimental data

which indicate that Rayleigh-Taylor instabilities may not cause trouble. We

quote the experiments of Fowler et al."'-' Their liners were imploded at

velocities close to what we contemplate. They were driven by explosives; thus

the liner material was shocked and, according to our above argument, should be

less stable than our adiabatic drive.

The Rayleigh-Taylor instability of the inner liner surface can be treated in

a similar manner, if our model of the viscosity is not too far off at the high

pressures involved. The effective thickness, A j.n Eq. (III-113) stands for

Ajy2TrRp5where A^ is the metallic cross-sectional area and Rp is the plasma

radius. Since A^ hardly changes from its initial value, due to the very moderate

changes in liner density then for a compression ratio of ~. 20, A increases

roughly by 20 from its initial value. Conservatively, we take A ~ 10 Aj_. Also,

the code CHAMISA indicates that the deceleration occurs over a distance, s,

comparable to the final radius. Thus, taking s=(2.5 cm)/20=0.125 cm, (V..T) of

Eq. (III-113) becomes

V
M T = 0.47 for e = -06

1.00 .006

2.16 .0006

It therefore appears that the Rayleigh-Taylor instability on the inside surface

is not necessarily detrimental. For a reactor wibh s = (10 cm)/30=0.33 cm, V,.T is

larger by a factor of 1.8. The viscosity coefficient, e , of course is still not

known.

Thus the Rayleigh-Taylor instability of the inner liner surface may not be a

serious problem. In closing this discussion we refer again to the experiments of

Alikhanov and of Fowler. In the former work no incursion of impurities into the

plasma load was observed. In the experiments of Fowler et al., the load was a

magnetic field (no plasma), but the high compression, indicated by the high

magnetic fields that were reached, implies that instability at the innsr surface

did not spoil the implosion. In fact the field measurements show a decreasing

magnetic field for about 2 ps after peak compression before the signal ended by

probe destruction. Thus the probe survived through the peak compression, which

would have been unlikely if there had been a serious growth of instabilities on
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the inner surface.

• ' . • 3. Other Effeots. Irregularities of liner thickness from point to point

will amplify upon collapse even without any instability whatsoever. This is

purely the result of convergent hydrodynamio flow which causes the liner to

thicken as it collapses. This phenomenon simply establishes a relationship

between the compression desired and the necessary liner tolerances. The greater

the compression, the more nearly uniform must be the liner.

Implosions can also be spoiled by jetting of liner material and by spalling

of the inner surface. The great uniformity of magnetic pressure over the liner

surface, in contrast with what can occur with an explosive drive, will preclude

jetting provided the liner is seamless. Spalling is the result of reflection of

a shock wave by a free surface. As our drive is shookless, spalling of the inner

surface cannot be a problem at any time during the compression phase. On the

rebound, tension will probably occur in the metal and, if sufficiently severe,

may break up the liner, but we are prepared to live with this.

H. Note on Viscosity. Viscosity of metals at high pressures is a field

about which our knowledge is quite meager. At present there are no equation-of-

state calculations of which the authors are aware which make any attempt to

compute viscosity, in the liquid or in the plastic state. It is possible to

make a relatively crude theory, which does contain sensible physics, but from

which it is very hard to extract reliable numbers. It predicts viscosity to be a

linear function of the pressure, but with a complicated dependence on the

temperature.

Experimentally the case is not hopeless, but it is far from satisfactory.

Mineev and Savlnov * have measured the viscosity of aluminum, lead, and sodium

chloride by perturbing a stable shook wave and observing the decay of the
•30

perturbations. Swanson and Mader->° have made one-dimensional shock calculations

with a code which includes elastic-plastic transitions, strain-hardening and

strain-rate effects in aluminum. By adjusting parameters of the calculation to

fit experimental shock wave data they deduce a value for the viscosity. All in

all, 12 shots are matched. White50 has found that he can fit the Rayleigh-Taylor

growth rate data of Barnes et aL by a purely hydrodynamical calculation using a
61semitheoretical value of 1.4 kP. And finally, Perry and Mix have' deduced a
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viscosity from an observed instability in a shocked aluminum plate. In this last

experiment, the reflection of the shock from the back of the plate accelerates

the surface outward. Subsequently, on rebound, the back surface accelerates

inward. During this inward acceleration an instability develops which is

interpreted as Rayleigh-Taylor. From its wavelength n = 1.7 W is deduced.

In Fig. III-8 we have plotted all of the above results for aluminum as best

we could, and have drawn in the straight line fit

n = 0.06 p, (III-114)

n in poise and p in bars. This extrapolates to 6 cP at one bar which is quite

reasonable for a liquid metal (mercury, for example, is 2 cP). The surprising

agreement of this extrapolation necessitates a few words of caution. The data of

UJ

cuo
o

to .
O 'o
CO

O.I

r I I I I I I l l | I I I I 1 1 l l |

SOURCES OF DATA

? - RER 45

rn - REF 38
* o - - R E E 4 1
- - « - R E R 6 1

I I I I I III I I I I M i l l I I I I! III!

10 10
PRESSURE IN KILOBARS

Fig. III-8.
Viscosity of aluminum as a function of pressure. In most cases
the pressure was produced by an explosive driven shock wave.
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Mineev and Savinov include shocks of temperatures ranging from 630 to 3500 K, and

viscosity is known to depend on temperature. Swanson and Mader give shook

pressure for each shot but no temperature. They find that over the range 25 to

90 kbar the value n = 2 kP fits better than do 1 or 3 kP. We have therefore

plotted their results as a rectangle covering this range. Furthermore, the

quality of their calculated fits to data depends on other parameters in addition

to the viscosity. The data of Barnes et al. gives only peak driving pressure,

thus the actual pressure during the Rayleigh-Taylor growth is only approximately

known, and the temperature is not given. Finally Perry and Mix state only the

shock pressure whereas the instability actually develops in the rarefaction

following shock reflection, so the material is actually under tension. We have

plotted their point at a pressure corresponding to their shock pressure; this

questionable choice has been compensated by completely ignoring their point in

fitting the straight line, Eq. (III-114). The data we have plotted are all for

aluminum. Mineev and Savinov -* also give similar data for lead with viscosities

very similar to those of aluminum; they conclude that the viscosity is not a

sensitive function of the metal.

It is clear from the above discussion that Eq. (111-114) is not an

established natural law. On the other hand, there is reason to hope that

Eq. (111-11*0 is order of magnitude correct for temperatures which are not too

high.
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IV. PRELIMINARY POWER REACTOR CONSIDERATIONS FOR INERTIALLY CONFINED PLASMA

SCHEMES BASED UPON IMPLODING LINERS

A. Introduction

In an imploding-liner fusion reactor the very dense plasma is heated and

confined inertially by the imploding liner. A continuous spectrum of operating

modes can be envisaged, varying from the ~ 105-m/s implosions associated with

pellet fusion to the ~ lO^-m/s slow compressions proposed by the NRL group.
o oft

Very simple scaling laws ' show that the ratio Q of thermonuclear yield to

initial liner energy increases nonlinearly with both invested liner energy and

the inverse of the liner aspect ratio (ratio of initial inner radius to initial

thickness). Since low aspect ratio (i.e., massive) liners are typically slow,

this very simple scaling points to the desirability of slow implosions, as in the

NRL approach. Consideration of the shortcomings of this very simple scaling,

however, points to problems for the slow liner approach. For instance, the

constraints of particle/energy end loss (cylindrical geometries are being

considered), liner compressibility, and/or hydrodynamic (Rayleigh-Taylor)

stability of the inner liner surface generate optimum Q-values at higher and

higher liner aspect ratios (thinner and faster liners). The penalty incurred for

the nonideal behavior of both liner and plasma is the increase in liner kinetic

energy required to achieve a given system Q. The following sections give a

preliminary analytic rationale for considering intermediate-to-fast (i.e., high

aspect ratio) imploding-liner fusion systems.

The preliminary nature of these "reactor" studies cannot be overemphasized.

The absence of in-depth systems studies and experimental results makes

comprehensive and self-consistent evaluation of the reactor potential ^ in terms

of "reactor desirability" (e.g., reactor size, duty cycle, cycle time, stored and

recirculating energy, plant factor, planned outages, siting/environmental

problems, and development costs), "confidence in physics assumptions" (e.g.,

equilibrium/stability, particle/heat transport, heating, impurity effects, and

refueling) and "reactor technologies" (e.g., first-wall/blanket/shielding, energy

storage/transfer, fueling and impurity control, vacuum, system control, and

energy conversion/recovery) ill-advised at this time. Nevertheless, the material

contained herein gives a preliminary indication of the reactor advantages and

disadvantages portended by a fast-liner inertially confined reactor (FLICR).
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Specifically, the FLICR" approach heats and confines the plasma on its own

timescale, thereby obviating or alleviating, major problems associated with

slow-pulsed or quasi-steady-state confinement schemes. The major penalty

incurred is the requirement of large fast-pulsed energy release and transfer.

Given an acceptable physics operating point for FLICR, the technological task is

clear: how to efficiently, economically, and repeatedly transfer large amounts of

energy to a destructible liner/elecfcrical-lead system while simultaneously

minimizing damage to the more expensive, permanent structure surrounding the

implosion/explosion region. A very preliminary and sketchy scenario is given

which addresses this problem. .

The •desire and need for compact high-overall—power-density (> 10 MW/m3)

fusion systems will require very fast burns simply because of the nature of the

plasma medium. The attributes of compactness and a virtual decoupling of system

efficiency from significant size scaling, should also result in considerably

reduced development costs for a FLICR device. The aforementioned problems and

unknowns associated primarily with "reactor technologies" are acknowledged but

are not significantly understood at present.' "Confidence in physics assumptions"

is also poorly resolved (few relevant experiments have bê rj made), although the

potential advantages portended by the FLICR approach may be truly significant.

The "reactor desirability" of FLICR should be high from the viewpoint of size

(costs, degree of modularity, maintainability, etc".), power density, and

first-wall considerations.

B. Dvnamic. Incompressible Liner Model '"

The results of preliminary studies of . rotationally stabilized imploding

liner fusion systems are discussed. An idealized model of an incompressible

cylindrical liner is developed, based on earlier work by Turchi, Shearer,

and Robson. An energy principle. is ' use': to determine the liner and

thermonuclear burn dynamics in the presence of axial, particle loss. A simple

energy balance is used to relate liner characteristics to the required liner

efficiency (i.e., reversibility) for a given recircu'lating power fraction.

Aside from the assumption of incompressibility, this model is intended to be

more general than would be required for the experimental approach of this

proposal or for the reactor concept that follows (Sec. IV. C). In this spirit,

the effects of the energy balance of a rotating liquid liner are included in this
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model. By considering the nonrotating case within the model, the results apply-

equally well for a solid nonrotating liner.

1. Caloulational Model. Referring to Fig. IV-1, a unit length & of

cylindrical liner is described by inner and outer radii r-j and ^ , respectively,

at time t after the implosion has commenced. Subscript "o" refers to the initial

(t = 0) condition, and subscript "f" designates conditions at maximum

compression. The plasma radius is rp, and for all cases considered here the

plasma is assumed to be wall-confined (rp = r-j). Axial particle loss is

described by a simple sonic flow model. An energy principle based upon the

initial and final states of the liner-plasma system is used to derive the liner

dynamical equation. The liner material is assumed to be an incompressible

liquid, and the plasma is assumed to behave as an ideal gas. All energies

(Fig. IV-1) are expressed per unit liner length, and, except for the plasma

temperature T(keV), mks units are used.

VOLUME COMPRESSION RATIO

RADIAL KINETIC ENERGY

ROTATIONAL KINETIC ENERGY

PLASMA ENERGY Wpl

COMPRESSIONAL ENERGY Wpyt

END-LOSS ENERGY WEL«

THERMONUCLEAR ENERGY W N |

Fig. IV-1.

Illustration of liner geometric model
and list of key notation used in re-
actor analyses.
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a. Pressure-Volume Work on Plasma. If K = VO/V = (r*po/
rp)2 is

defined as the volumetric plasma compression, the adiabatic relationship for a

plasma with a particle line density N(m~1) that is depleted-from an initial
31

inventory No by end loss is given by

(T/To) = K
Y"1(N/N0)

a , .. (iv-1)

where Y = (2 + f)/f, f is the degree of freedom, « = 2<E>/f(kT) - /, and <E> is

the mean energy of end-loss plasma. The work Wpv expended by the liner in

compressing the plasma from rp0 = r-j0 to rp = r-j is equal to

Wpv/Wpo = (2/3) r (N/N0)
1+(S Ky'2 dK . (IV-2)

For the case of no end loss (N/No = 1) Eq. (IV-2) reduces to

wpVWpO = (2/3)(KY~1- 1)/(Y-D , (IV-3)

where Wp0 = 3N0(kT0) is the initial plasma energy.

b. End-Loss Energy. The rate of particle end loss is assumed to be

given by

dN/dt = - N/T E L (IV-4A)

T E L = £»/2vs (IV-4B)

v3 = (ykT/mi)
1^2 . (IV-4C)

The parameter I* equals the device length only when end loss is not inhibited by

a buffer magnetic field. The end-loss energy is given by

W =f
L Jc

where <E> is the average energy carried away by an end-loss particle. Typically,

82



<E> is assumed equal to 3(kT).

o. Liner Radial Kinetic Energy. Designating uP as the radial liner

velocity at position r, the radial kinetic energy is given by

WKR = (1/2)yp 2vrrpu^dr (IV-6A)

WKRO = Up/2)(r10uri0)2 £,na (IV-6B)

wKRf = 0 (maximum compression) . (IV-6C)

For an incompressible liner the product rur is a constant of radius and

a = (r20/r10)2.

d. Liner Rotational Kinetic Energy. The liquid liner is given an

initial, uniform angular frequency &o to stabilize Rayleigh-Taylor instabilities

at the inner liner surface when ur •* o (maximum compression). Designating

u o = rfi(r) as the rotational velocity at position r and time t, the rotational

kinetic energy is given by

W K e = (1/2)j 2irrpu29dr (IV-7A)

fr2= irp I r3fi2(r) dr . (IV-7B)

On the basis of mass conservation for an incompressible liner an element of liner

material positioned at r(o) at t = 0 will be located at r(t) = [r(o)2

+ r2 - r2 ]1/2 at time t. Conservation of angular momentum for each liner

element requires

= r(o)2fio = Q0 Q

Substituting Eq. (IV-8) into Eq. (IV-7) leads to
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wK60 = (irp/t) j£rfo<a
2-1) (IV-9A)

WK6 = [WK0o/K2(a2-i)j {1 + K(a-1) 2 . 1

)]}} . (IV-9B)

In the limit of high compressions with K(a-1) » 1 Eq. (IV-9B) approaches the

limit %g/WK0Q -*• 4K/(ot+D; the considerable increase in rotational energy at high

compressions must be supplied by the initial radial energy

e. Raylelgh-Taylor Condition. Equating d(WKR + WKQ)/dt to dWpv/dt

[Eq. (IV-2)], solving for dur /dt at maximum compression (ur = 0), and equating

the radial de-acceleration to the centripetal acceleration rft2(P) evaluated at

the inner radius gives the following relationship for Q2,

* (V3TTP)K Y(N/N O)
1 + ( S WpQ/r![0

(IV-10)

where K designates the maximum compression (r-.tg/r-jf)2. This expression is used

to determine the initially uniform rotational frequency fJo required to satisfy

the Rayleigh-Taylor condition at the inner surface r^ under conditions of maximum

compression (ur = o, dur /dt = - r-fl^ir^), < = i?).

f. Liner Dynamics. The major energy quantities that describe the

liner have been derived. The following energy balance is used to define the

liner dynamical equation for the Incompressible case eing considered.

WKRO + WK0O + wpo = WKR + WK9 + wp + WEL >

where Wp = 3N(kT) is the plasma energy at time t > 0. Defining T = tur /r-j0
substituting the previously derived energy quantities into Eq. (IV-11) leads to



(dK/dx)2 £n(-| + K(a-D) = 4K
1* Ana -

x ([1 + K(a-1)32 - 1 - K2(a2-1)

1) + 2(K-1) £n[1

pu2 )] K ^ (N/N O) K d K .H 10 r-jQ J 1

Equation (IV-12) is evaluated at the point of maximum compression

= 0) to determine the initial radial velocity ur in terms of the maximum

compression £. Equation (IV-10) is used to determine J20, and, once a final

desired temperature is specified, Eq. (IV-1) is used to determine K. Obviously,

an iterative numerical procedure must be used when end loss (N/No ^ 1) occurs,

integration of (Eq. IV-4A) giving (N/No) versus t.

g. Liner Energy Balance. As a measure of liner efficiency the

following ratio is defined,

Q = WN/(WKR0 + W K e o + Wp0) , (IV-13)

where W N is the thermonuolear yield

WN = (EN/47ir
2
o)f K N 2 <OV> dt (IV-14A)

<ov> = (5 x 1 0 - 1 8 / T 2 / 3 ) e-19.9VTi/3 (m3/s) # (IV-14B)

A highly idealized energy flow diagram for a liner fusion power plant is

illustrated in Fig. IV-2. An indication of the degree of liner reversibility

needed for a given circulating power fraction E is n, defined as the fraction of

the total liner energy (W£Rg + W^gg) that is recovered reversibly each cycle.

Given the re-oirculating or make-up energy Wc = (i-tiH^fio
 + wK9o) + wpo + WSL»

the electrical energy WE = nth twN + W p o + (1 -n)(WKR0 + W K 0 O) +W E L)], and

e = W 0 / W E , the required liner efficiency becomes
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n =

Fig. IV-2.

Schematic diagram of simple energy bal-
ance used to evaluate the dependence of
liner reversibility n required for a
given recirculating power fraction e
and thermal conversion efficiency n , .

- (WEL/WN)]}/[1-Q(Wpo/WN)] . (IV-15)

Equation (IV-13) gives Q, and nfcjj represents the thermal-to-electric conversion

efficiency. The quantity e(n=0) designates the recirculating power fraction of a

"throwaway" liner reactor.

2_. Results of Dynamical. Liner Reactor Calculations. The foregoing

definitions of Q, e,and n, are used to give a preliminary estimate of the reactor

potential of an imploding-liner fusion system. It is emphasized that detailed

design and systems studies must follow on the basis of these preliminary results;

the intent here is to give general indications and not to present a firm

operating point in either the physics or engineering sense. The significant

influence of liner compressibility effects are not included in these results, but

are treated in Section III.

a. Results from Inoompressible Liner Model. The dependence of Q on the

initial liner inverse aspect ratio A o/r 1 0 for r 1 0 = 0.1 m is depicted in

Fig. IV-3 for the values of r-jQ, no, To,and Sl0 indicated. , The effects of end

loss for the case of no Rayleigh-Taylor stabilization (Qo = 0) is shown in Fig.

IV-iJ as a function of the effective length S,* [Eq. (IV-1B)], which describes the

line-density exponentiation time xgL as a function of sonic velocity vg. Hence,
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£* is not the true device length when poloidal field end loss inhibition is used,

but is used here only as a measure of end-loss reduction required relative to the

free streaming case. The optimum shown in the Q vs_ A0/r-iQ dependence results

from the increased implosion time and integrated end loss as A o is increased;

without end loss Q increases monotonically with Ao.

Shown also on Fig.IV-4 is the case where Rayleigh-Taylor stabilization is

imposed [Qo given by Eq. (IV-10)] for r-jg = 0.10 m but without end loss (J£* = °°).

An optimum Q is shown at Ao/
r10 = 0.32. For thin liners the effective

thermonuclear burn time T B = WN/PN(max) is small, and, consequently, Q is

diminished. Thickening the liner increases Q at the expense of increased radial

energy needed to supply the increased rotational energy at maximum compression,

£. For very thick liners, &0/r<\o > 1.0, the rotational energy requirement

becomes appreciable, eventually dominating WJJ and decreasing Q. This latter

effect is easily shown by the ratio ripV =
 wpv^^wKR0 + % 6 0 ^ of% pressure-volume

o

•
0

r,n»0.15m / r , 0 * 0.10m

T0«O.IOkeV

flo«O.O
rK>'0 1

0.001 0.01 0.10

(r20-f,0)/r,0

1.0 10

I
i

o

10

9

e-

7 -

6-

Tf «10 keV

IV, »10 x IO24m"3

To»O.IOkeV

r|0.0.l

O.OOI 0.0! 0.10

Fig. IV-3.
Dependence of Q on liner aspect ratio
A /r for an incompressible liner
o 10
(p = 9.4 x 103 kg/m3), without end loss
(«,* = oo) and without rotation (tt - 0) .

Fig. IV-4.
Dependence of Q on liner aspect ratio
A /r1Q for an incompressible liner,
including end loss, but without rota-
tion. Also shown is a curve for no
end loss, but with rotation.
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work and the total initial liner energy. From Eqs. (IV-6B), (IV-9B), and (IV-10)

in the limit K >> '1, it follows that,

. M«IM tWl)<2hD.M<ill
P v 2 ( 1 ) d i 4 [ ( 1 ) } }

Depending on the relative values of a = (r2Q/ri0)
2 and K, Eq. (IV-16) exhibits

two limits. If a is ~ 1 to.2, Eq. (IV-16) predicts that npv = 1/y = 3/5 for

large K. On the other hand, for a £ 4 to 5, the quantity (1/npv - 1) approaches

[(Y-l)/2][a-i32An[K(a-1)], which diverges (i.e., nDV "" 0) for very thick liners

and any realistic value of K. «/.>" *

b. Preliminary Indications of Liner Compressibility on Energy Balance.

For the example case considered here (no = 10^^-3, T 0 = 0.1 keV,

K = 1000, Tj = 10 keV), the plasma pressure exerted on the liner at maximum

compression will be tremendous (32 MB). Clearly, liner compressibility effects

will be significant. Although these effects are considered in Section III, it

will be instructive at this point to examine the effects of compressibility on

the foregoing reactor predictions. The inner radius trajectory and instantaneous

fusion power (20 MeV/n) as calculated from the present code are shown In

Fig. IV-5 as a function of time for a r10 = 0.1 m, Ao/r10 = 0.01 liner which is

initially filled with an no = 10
2V"3, To = 0.1 keV plasma and compressed to 10

keV (K = 1000). Similar results obtained from the code CHAMISA (see Section

III.B) are also shown on Fig. IV-5, and Table IV-I gives a numerical comparison

between these cases. Two compressible calculations are illustrated: a) the

initial liner kinetic energy W KR 0 is" identical to that of th.j incompressible cafe

(only 68$ of the initial liner energy is converted to plasma energy), and b) the

initial liner energy is sufficient to Insure that the compressed plasma

conditions (K = 1000, Tf = 10 keV) are identical to those specified in the

incompressible calculation. Table IV-I and Fig. IV-5 show that for the same

initial liner energy the compressibility reduces the overall system.performance,

as measured by Q = WN/(WKR0 + WpO)t by 55%, from the incompressible case. An

increase in the initial liner energy by a factor of 1.87 is required to achieve

the same compressed plasma conditions, and the efficiency of liner energy

transfer to the plasma decreases, but the increased fusion yield WN renders a Q
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TABLE IV-I.

Initial radial kinetic energy Vmo

Martmum compression < " (rio/fjf)2

Initial radial velocity u (m/s)

Maximum plasma temperature T.(keV)

Radial kinetic energy at maximum compression WKRf(MJ/n)

Compressional energy in liner, WpvL(HJ/n)

(HP f } /WKHPVL + "kRf} /WKRO
Turn-around tine T

l
(\is)

Peak fusion power P..(W/m) x 10"'

n
Total fusion energy
« " V<«KR0 + HP0>
TB - WN/PN (pa)

e<n-0)

<nx> x 1020 (s/m3)

HI.ITV EFFECTS FOR

Incompressible
Reference
Case

150.

100(1.

7.3x103

10.0

0.0

0.0

0.0

13.3

2.69

771.

5.1

0.29

0.41

2.90

SAMPLE CASE* '

Compreseible(W

Calculation with
Same Initial
Liner Energy

150.

567.

7.3x103

6.8

4.0

44.

0.32

13.3

0.53

424.

2.8

0.60

0.66

4.54

Compressible
Calculation
with Same
Final Compression

281.

1000.

1.0x10*

10.0

27.0

100.

0.45

9.7

2.69

1400.

5.0

0.52

0.42

5.20

< a ) n o - 0.1 B, A0/r10 - 0.01, n0 - 1 x 10
2* m"8, To - 0.1 keV, p - 9.4 x 10

s kg/m', tlo - 0.0.

*b'Nickel equation of state used, p • 8.90 x 10* kg/mJ.

— DCONPIESSUE LINER
— C0NPKS5IIIE l l iER I ITH SANE LINER ENERCV AS l«C0MPSfSSI8t£ « S r

— cmnEssieiE LINER WITH SANE FINAL FLASHA COMPRESSION AS
IMCOMPttESSIBLC CASE

0' '10
T, >IO ktV
T 0 -O .U .V
n.'I.OxlOr in

1.0
(+) TIME (/i»)

Fig. IV- 5.
Time dependence of the liner radius r} (relative to the initial radius r,,) aud
fusion power PN (20 MeV/n) for both compressible and incompressible liners
(p = 9.4 x 103 kg/m3). The incompressible case is calculated from the present
model and the compressible case is from the code CHAMISA.
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value which equals that predicted by the incompressible calculation. As seen from

Fig. IV-5, the increased reaction yield is a consequence of the longer time spent

at higher compressions, which is a peculiarity of compressional effects when the

same final state is achieved. The penalty extracted for this situation is the

considerable increase in initial liner energy W K R 0 and initial liner velocity

In view of the limits imposed by liner compressibility, the r1Q = 0.1 m,

A0/r-|o = 0.01 ease selected here for numerical examination represents a

"break-even"-to-marginal reactor . operating point. That is, according to

Eq. (IV-15) with WgL = 0 and no direct recovery of liner energy [n = 0 ] such a

system would at best have an e = 0.66 recirculating power fraction.

As discussed in Section III the influence of liner compressibility on

reactor efficiency gives an optimum initial plasma density for a given n 0T 0

product. For the cases considered in Fig. IV-5 and Table IV-I

(n0T0 = 1.0 x 10^3 keV/m3), these optimum Q-values are (n0 = 0.33 x 10
2l) m~3,

To = 0.30 keV) 4.50 and (n0 = 0.50 x 10
2i* m"3, T o = 0.2 keV) 5-87, respectively.

Other concerns and uncertainties are: a) mechanism and efficiency of.-._energy_

transfer to the liner from either an inductive or capacitive store,

b) mechanical/hydrodynamic/thermal response of structure surrounding the liner,

c) degree of energy-transfer in both the liner and associated electrical lines

that is possible and/or necessary to assure a good recirculating power fraction,

and d) efficiency of initial plasma formation.

C. Preliminary Reactor Design Considerations

From the results presented in Table IV-I and the discussions given in

Section IV.B.2.b, interesting design points for a fast-liner inertially confined

reactor (FLICR) may exist for n 0 ~ 0.5-1.0 x 10
21* m~3, T o ~ 0.1-0.2 keV,

r-jQ - 0.1 m and A0/r-]Q - 0.01 (Q - 4-6, e(n=0) - O.3-.5) under the assumption of

effective radial and axial plasma confinement by poloidal fields and the neglect

of energy transfer inefficiencies. The liner1 radial kinetic energy W^g will be

in the range 150-300 MJ/m. Hsnce, if the liner length & can be held below 1 m,

mechanical energy releases will be in the range 300-600 MJ/m (including

alpha-particle and plasma kinetic energies); clearly, the liner per se and a

portion of the power leads and pre-plasma injector will be destroyed

(1 MJ = 0.24 kg TNT equivalent). This mechanical energy will be deposited
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ultimately as sensible heat to a high-temperature coolant and, therefore, will be

recoverable by the .thermodynamic cycle. No attempt is made to recover the liner

energy directly (i.e., n = 0), as is proposed by NRL.62 The numerical values

given above in no way should be construed collectively as an optimized operating

point for a FLICR, but are used only to give an estimate of reactor size end

operating mode. Since the ~ 1000 MJ/m fusion energy release corresponds to

- 100 kWeh/m (1. kWeh = 9.0 MJ (thermal) at ^TH = 0.4), the cost of materials and

re-fabrication of demolished components must fit within the constraint of - 10-20

$/m of total energy release each pulse. Finally, a 100-MWe power station will

require ~ 5-10 s between power pulses, although a multi-liner system would allow

longer dwell times per liner (with added capital costs, $/kWe). Although the

physics, technological, and economic constraints summarized in Section

IV.B.2.b have yet to be quantitavely integrated into a consistent picture of the

FLICR, the following qualitative description does reflect the essential elements

of a fusion reactor as well as the major questions which eventually must be

resolved.

1. Description of Possible Reactor Embodiment. Figure IV-6 schematically

illustrates a reactor concept based upon the fast liner implosion. A precast

liner (solid Li-o.i^Do.q is used here, but a different material having higher

electrical conductivity would be required) (A) encased in an electrically

insulating cylindrical shell (e.g., glass) (B) is affixed to an insulating tube

(C) and plunged into a liquid-metal bath (LiQ -j Pbg.q) (D). The insertion of the

liner is rapidly followed by insertion of a long support tube (E) to form the

coaxial arrangement shown. Filling the support tube, coaxial insulating tube and

associated flat-plate insulation with liquid metal (e.g., Ligi Pbg.g) forms a

current conductor for the Z-pinch plasma formation and the Z-pinch liner drive.

To the liner end of the support tube is fixed a small ampule of D-T fuel (F),

which upon emersion into hot liquid metal heats and ejects DT gas/liquid through

an orifice downward to the grounded end of the liner [refer to detail drawing on

Fig. (IV-6)]. Voltage is applied across the D-T fuel ampule by means of the

coaxial support tube (E), and the resulting discharge forms both the initial

plasma and poloidal insulating field onto which the liner eventually implodes.

Obvious stability questions arise with respect to the Z-pinch plasma discharge,

in that the liner requires ~ 10 us to reach maximum compression. Radial current
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Fig. IV-6.

Schematic diagram of a fast-liner inertially confined reactor (FLICR).
text for description of operation.

Refer to

feedplates (G) of liquid metal are used to minimize parasitic inductance, the

question of overall energy transfer being addressed in the following section.

The degree of demolition and damage to the supporting insulator structure is an

open question at present, but is amenable to calculation if and when more

detailed studies are required. It is postulated here that the liner and < 1 m of

support insulator are destroyed each shot, but the more complex feedplate

insulator and feedthroughs can be recycled for many implosions. Given the

validity of this assumption, the tubular insulator of ~ 0.1- to 0.3-m diam and

< 1-m length (~ 1-rara wall thickness) will be destroyed and enter the primary

Lig.i Pt>o.9 coolant as a slag and debris. Figure IV-6 shows the liner and
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associated apparatus (coaxial support tube (E) and D-T fuel ampule (F), flat

plate insulator (G), vessel cover (H), plumbing for injection of liquid-metal

conductors, etc.) in before, during, and after locations. A conveyor-belt

operation is proposed to insert, remove, and refurbish these liner assemblies

(J). Hence, the insulator represents the only materials-related cost, and since

this insulator has virtually no structural, thermal, or radiation-damage

requirement, this cost should be small, but not negligible. Glass tubing of

this size and shape costs - 2.00 $/kg,and -1.4 kg/m (r10 = 0.1 m, 1-tnm

thickness) of the material would.be destroyed each shot. The major expense will

probably be related to capital and operating cost associated with repair and

refurbishment of the recovered liner stalk (e.g., liner casting, cutting and

grinding of damaged liner stalk, bonding of new liner/insulator and D-T

ampule/insulator to the liner stalk and support tube, fabrication of replacement

liner, etc.).

Clearly, numerous physics, technological, and economic unknowns can be found

with the above described FLICR concept. For example: a) What is the MHD

stability of a wall-confined, dense Z-pinch? b) To what degree can the

postimplosion explosion be directed away from sensitive regions and be dissipated

as heat into the (multiphase, perhaps) liquid-metal coolant? c) Can a mechanical

design for the proposed liner insertion and recovery be realized which has some

chance for fast (seconds, but probably not mirutes) and reliable operation?

d) Can liquid-metal conductors be flowed and reformed in a fashion indicated?

e) Can this system operate at a total cost of at most a few dollars per liner

and associated destroyed apparatus?

2. Liner Driving Circuit and Energy Transfer/Storage (ETS) Efficiency.

The rapid (10-20 V>s) energy transfer times envisaged for the FLICR eliminates

from consideration all but oapacitive and inductive (slow homopolar

motor/generator to charge a transfer inductor, which is rapidly switched into the

liner'inductance) energy transfer and storage (ETS) systems. Examples of both

capacitive and inductive ETS were considered for driving the FLICR. Electrical

aspects of the liner assembly schematically depicted in Fig. IV-6 were idealized

according to Fig. IV-7. Shown also on Fig. IV-7 are the characteristic

dimensions and liner parameters used in tne single, unoptimized calculational

example. The results of the incompressible calculation summarized on Table IV-I

(W K RQ = 150 MJ/m) were used for an I = 0.30-ra-long liner.
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Fig, iv-7,
model of liner, coaxial feedline, and radial feedplate used to per*

form circuit analysis of the reactor concept depicted in Pig, I?-6,

For the dimeasioas given on Fig. IV-?, the transfer line induotanoe

13 nh and the liner induptanee ger ae ig given by-

a 60

tc = (r^/r^^ and a = (PaQ/P^Q)§ (See See, iv.sa). A'he resales of a

to the dynafflte (eapaoittv© STS) Qirouit equatetens show that the

implosion time is - 19 us Coompapeej to the icteal value of 13,3 us given in

Table 1V-I:)« For this ease the skin ciepth of W.Q:,-J PbQ%g alloy is 1.^ ram. Since

thi& skin depth is- greater than the initial liner thickness A Q s ;,Q am ohosen

for this oaloulation, all. of : the liner is assumed to oontrieute to pesistive

heating, Bupiag the oofflpressioii the liner thiokness exoeeds the 1,^-mm skin

depth, tot at this point the peak ourrent will fee frozen into the moving liner

and! little skin effect will be seen, Kenoe, the liner resistanoe is fixed at

1,1 x 10"^ O> The coaxial feedline and the radial feed«plate, which for these

computations are assumed to have the resistivity of copper, sustained a Joule loss

equivalent to one skin depth (Q,M ram),



a. eapaoitiye ETS Example. The electrical circuit used to model the

oapaoitive ETS system is depleted on Pig, IV-8. The. means by which the capacitor1

is charged was not examined, nor were the resistances and inductances of the

capacitor bank and switches. The circuit equation is given by,

V(t) a q/C a I ( R t + R ^ ) + (1^+1, )

where I = - q and L^nh/s) = (6Q/r2)^2. The kinetic energy of the liner

[Bq. (IV-6)] is rewrittan as,

where within the thin-liner approximation,

, (IV-20)

Finally,, the force balance on thy liner can be approximated as,

F^(Nt) a (i2/a)(dLA/dra) s - (3,0 x i<H/ra)i2 . (iv-ai)

The circuit and liner-dynamics equations were numerically solved under this

thin-liner approximation in the same manner as in Section II (see e.g.,

Fig, li-3). Table IV-II summarizes the oalculational results. The liner radius,

driving current••, voltage, and kinetic energy are shown as a function of time on

Fig. IV-9, Of the. 68 MJ (32? MJ/m) initially stored in the capacitor bank U% is

transferred to the liner, 1&% is lost as resistive heating (mostly recovered as

sensible heat, see Fig, Vf**5)%md % remains in the capacitor bank. The remaining

\\% is stored inductively in the leads and liner and may be recovered in part,

depending on circuit dynamics after the liner inductance is disruptively removed

fpora the circuit (i.e., on how much of and the mode in which the. circuit survives

the implosion). .

It must be emphasized that the foregoing example is unoptiraized, is based on

a very simple circuit analogy, evokes a thin-liner approximation, and uses the

unoptiraized liner parameters summarized in Table I:\T-I. More complete impedance

matching between the capacitor, transfer lines and liner, and increased ETS
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CAFAGlTIVe ETS EXAMPLE

14 (6 16

Fig. IV-8,
Circuit diagram used to analyse the
eapacitive ETS option for the liner
reactor.

Fig. IV-9.
Time dependence of feedplate voltage
V(kV , liner current I (MA), inner and
outer liner radii r^m) and r (TO), and
liner kinetic energy WKR(MJ/raJ for the
capaeitive ETS example*

TABLE IV-II

gtWMARY OF CAPACITIVE ETS PARAMETERSJJSED TOJ>R1VE_THK

IHCOMPRESSIBLE i.ift.iPha.̂  LtNER CASK GIVEN IS TABLE IV-1

4
G

V

CO

(a)

Initial liner inner .radius

Initial liner thickness

liner lengch.

SfS capacitor

Inttlal ETS capactEor voltage

Initial ETS capaQltor energy

final ITS capacity energy

Final liner energy

FJaal inducctve energy

leases

losses in lit.er

0.10 a

0.001 »

0.3 m

2oF

260 kV

68 MJ

3.6 HI

ASHJ

7.4 KJ

12 Hi

SKI

19 m

to initial liner energy

in Table .IV-I.

used in the caleulativna



efficiency is undoubtedly possible. Approximately 1/3 of the resistive energy

loss occurs in the L1Q,-| Pb0 o liner per se, and changing to a better conductor

for the liner material would reduce this loss. The « 2,1 x 10^ MJ/m3 deposited

into this particular liner material is worrisome from another viewpoint; an

appreciable portion of the liner would be vaporized by resistive heating alone

C3.4 x 101* MJ/ra3 required to vaporize this material starting from 300 K).

b.InductiveETS Example. The use of inductive energy transfer and
storage is possibly cheaper than the oapacitive ETS described in the previous

section. An example of the inductive ETS system is depicted in Fig. IV-10

wherein a long-terra energy storage (e.g., a homopolar motor/generator66)> c^p, is

used to transfer energy into a room-temperature storage coil, Lg on a - 30-ms

tiraesoale. At the point of complete transfer to L s and for times short compared

to the Gfjp •* L s transfer time, the capaoitive element Cjjp (i.e., the homopolar)

appears as a short circuit to the current transients. The contactor switch S3

isolates the load inductance L^ + L, during the slow energy transfer to Ls.

When the current peak occurs in Lg (85 MA in this example), the switch 83 is

closed and S-j is opened, A small reverse charge on the counterpoise capacitor

COp assures the current through S-j is zero to permit opening. The current from

La resonantly transfers to the load inductance L^ + L& by means of the transfer

capacitor CPp, which is sized to give the desired voltage and current risetirae.

The switch S 2 is opened at peak voltage (zero current in the C o p leg of the

circuit), the currents in L 9 and L^ + 1$ now being equal. The current and

voltage waveforms, are subsequently determined by the circuit L/R time constant,

which in part is determined by the liner dynamics. The circuit equation

\ + V1 l (IV-22)

is solved in conjunction with a liner dynamics equation [Eq. (IV-21)], the

results of which are given on Fig. T,V-11. The electrical model of the liner and

feedplate system is the same as that used in the eapaoitive ETS example

(Fig. IV-?). Table IV-III summarizes key numerical results. Of the energy used

97
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CCp CQUNTERPULSING ANO TRANSFER CAPACITOR

L s STORAGE INDUCTOR
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I , INDUCTANCE OF TRANSFER LINES

R^ RESISTANCEOFLINER , ,
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SWITCH $tOPEN TIME (/*«)
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Fig, IV-1Q.
Circuit diagram used to analyze the
inductive ETS option for the liner re-
actor.

Fig. IV-il,
Time dependence of feedplate voltage
V'(kV), liner current 1(MA), inner and
outer liner radii r^m) and rg(tn),and
liner kinetic energy W1»tl(MJ/m7 for the
inductive ETS example.KIT

TABLE I V - I I I

SIMiAKV OF INPUCUVE ETS PAKAHETERS USED TO DRIVE TOE

Q^QQ UNSft CASE GIVES IN TABIE IV-l

V

tnicial liner inner radius

Initial liner chtcknes*

liner length

hcMpelai 'capacitance

transfer capacitance

initial heaopelar voltage

peak voltaje at liner feedplate

•torage inductance

initial energy in homppolar

tnergy initially transferred to ts

final energy stored in I>(
energy given to liner

final energy remaining in l> 4- L»

final energy stared in C,

nssisclve losses
cp

tlae to charge
tiite to charge + t>.

0.10 a

0.001 •

0.30 a

20 kF

. O.8S6 «F

110 V.

260 W

2?.? oh

1'QHJ

100 HJ

2.8(0

48. J HI

8,6 KJ

30.0 HJ

10.1 HI

32.0 K3

37,0 u

4.2 w*

'Corresponds to initial liner energjr HR

•umarized on table IV-I.
used in the.calculations



by the liner system, Es0-E0-ESf = 67.2 MJ, 48.3 MJ is actually delivered to the

plasma, resulting in a transfer efficiency of 72%. This compares to the 66$

efficiency computed for the oapacitive ETS example. The energy stored in C o p and

the final energy stored in Ls are assumed here to be reclaimable at nearly 100?

efficiency. Although unoptimized, both the capacitive and inductive ETS systems

are expected to have overall transfer efficiencies of - 70$.

3. Nuclear Heating of the Liner at Maximum Compression. Although detailed

neutronic calculations of the FLICR Li 0 > 1 Pb0%g blanket are premature, related

calculations have been made in support of the NRL liner reactor concept. *

Calculations have been made for the FLICR concept by Dudsiak in order to estimate

the degree of nuclear (gamma/neutron) heating incurred within the fully

compressed L I Q ^ Pbg.g liner. (These are the same calculations that are

discussed in Section III.D.3.) Figure IV-12 gives the fraction of the 14.1-MeV

(2.25-pJ) neutron energy deposited into compressed liners of varying thicknesses

and materials. A vacuum boundary condition is assumed at the outer radius of a

liner of given thickness. For the Lio%-| PbOtg case being considered, the liner

thickness is 11.3 mm at maximum compression, and Fig. IV-12 indicates i 2% of the

14.1-MeV neutron energy is deposited. For the incompressible case given on Table

IV-1 the (20 MeV/n) fusion yield is WN = 771 MJ/m. Hence, the average energy

density within the liner resulting from neutron/gamma heating amounts to

1.72 x 10^ MJ/ra3. Figure IV-13 shows the computed spatial distribution of

nuclear heating within fully compressed liners of various thicknesses. The

peak-to-average energy density is 3-4, so local heating near the inner surface

will be more severe than that given by the average value. Hence, nuclear heating

of the liner material is comparable to that predicted for joule heating in

Section IV.C.2.st both being sufficiently high to vaporize a significant portion

of the liner. The spatial and temporal behavior of both joule and nuclear

heating, the related evaporation rates, and the effects of these processes on

liner dynamics and thermonuclear yield represents a complex problem which has yet

to be calculationally explored. These preliminary estimates show, however, that

liner heating and mass transport may be quite important, and more detailed

analyses are certainly warranted.
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Fig. IV-12.
Dependence of the fraction of the
14.1-MeV neutron energy deposited into
an imploded liner of varying thickness
for various materials. (Neutronic
calculation used normal densities and
cylindrical geometry.)

Fig. IV-13.
Total (neutron plus gamma) energy den-
sity deposited per 14.1-MeV incident
neutron as a function of distance into
an imploded liner Li Pb- g liner
for four thicknesses,'A. (Seutronic
calculation used normal density and
cylindrical geometry.)

D. Summary and Conclusions

Although simple sealing assumptions point to relatively thick, slow liners,

accounting for the real and serious problems of hydrodynamic stability (of the

liner), liner compressibility, and plasma particle/energy end loss present

convincing arguments for very fast implosions (< 10-20 ys liner transit times,

< 1-JJS burn time). Physical containment of the mechanical energy release and the

need for fast, high-voltage energy transfer represent serious disadvantages for

this concept, although the direct recovery of the postimplosion liner energy is

not necessary for operation as an economic power reactor. The compact, high-

power density characteristics of this system offer strong advantages. Numerous

problems and/or uncertainties with respect to "reactor desirability," physics

requirements, and technological demands have been identified throughout the text.

Many of these problems and/or uncertainties undoubtedly can be resolved or at

least put into a more quantitative perspective by detailed study and systems

optimization, the results presented here being based entirely on unoptimized
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scoping • studies. The absence of a firm experimental basis upon which to

extrapolate into and to evaluate the reactor regime, however, represents a major

limitation to the required parametric systems studies. In this context the fast

liner experiment is proposed to provide data and operating experience with which

to substantiate or to disprove the cautiously optimistic reactor projections made

herein. A parallel systems studies effort should also be maintained which will

analytically probe into these numerous uncertainties as well as incorporating

into the systems analyses new experimental findings.

Acknowledging, therefore, the need for more profound systems studies and

physics analysis, these scoping studies indicate that investments - 150 MJ/m into

a r-jQ = 0.10-m radius, A Q / ^ Q = 0.01 inverse aspect ratio liner will yield a

FLICR with a reciroulation power fraction e - 0.40, if none of the liner energy

is recovered and no plasma energy loss occurs. Radial and axial diffusion have

not been incorporated into this reactor analysis. The effects of liner

compression will require a factor of 1.87 increase in liner energy, whereas the

transfer efficiency of either a eapacifcive or inductive ETS system will be on the

order of 1Q% ; both inefficiencies will require ~ 400 MJ/m to be transferred to

the liner reactor to yield 1400 MJ/m (20 MeV/n) of thermal energy. This example

is based upon the injection of 0.1-keV precompression plasma at a density of

1.0 x 102\-3. in addition to liner compressibility, liner heating by both

return currents and fusion neutrons may significantly affect plasma compression

if a less resistive/absorptive liner cannot be found; increasing the liner

thickness will ameliorate the joule heating, while exacerbating nuclear heating.

More realistic modeling of essential physios into the reactor analysis

(e.g., alpha-particle heating a.id confinement, axial and radial plasma

confinement, compression of buffer/insulating fields, liner heating and

evaporation, plasma injection, etc.) will undoubtedly influence significantly the

reactor concept depicted in Fig. IV-6. Aside from these aforementioned

modelistic shortcomings, however, the problem of efficient blast confinement in a

way to minimize damage to expensive reactor components represents an engineering

challenge with deep economic implications for the FLICR concept. The

compactness, high-power density, and relatively inexpensive development cost

associated with the FLICR, however, definitely warrant more serious

consideration of the concept on both a physics and engineering (i.e., systems

studies) level.
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V. ESTIMATE^MANPOWER, COST, AND MILESTONES

It is proposed that this experiment carry over directly from the Implosion

Heating Experiment. The starting date would depend somewhat on the final measure-

ments being made on the IHX, but it could probably be started near the beginning

of FY 78. The level of effort proposed here for FY 78 represents orderly con-

tinuation of the IHX prograi and is regarded as the lower limit of a viable

liner program.

The cost of the plasma preparation experiments would be covered by the oper-

ations budget. The liner drive bank will use about 800 14.6-yF 20-kV capacitors

that were recently removed from the Zeus capacitor bank. The cables are avail-

able from a supply of failed cables from the Scyllac and Scylla IV-P systems.

The bank will be switched by homemade solid dielectric switches. A major pro-

curement of $50 k will be required for collector plates, a blast chamber, and

some trigger components. The bank will be constructed by the group technicians,

perhaps with help from summer students who are hired from a special budget.

Table V-I shows the manpower requirements for the first three fiscal years

and Table V-II gives estimated costs by fiscal year. The major procurement for

the second fiscal year is mostly for the replacement of liner components destroy-

ed on each shot. In the third fiscal year the jump in major procurement repre-

sents a start towards development and acquiring parts for expanding the liner

drive bank.

TABLE V-I

MANPOWER REQUIREMENTS

FY 78 4.5 Scientific Staff

5.5 Other Technical

FY 79 5.5 Scientific Staff

7.0 Other Technical

FY 80 5*5 Scientific Staff

1.0 Engineer

9.0 Other Technical
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Total man years

Manpower cost

Major procurement

TABLE V-1I

COST ESTIMATES

FY 78

10.54

$560 k

50 k

FY

12.

$740

60

79

78

k

k

FY 80

15.78

$1017 k

200 k

$610 k $800 k $1217 k

Preliminary estimates for the time required for various activiti :s after the

end of the IHX experiment (month 0) are (in months):

Plasma preparation experiments 0 on

Bank construction and testing 0 to 12

Liner implosions without plasma 12 to 24

Liner implosions on plasma 24 on,
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