

SUMMARY COVER SHEET

CONTRIBUTED PAPER INVITED PAPER

FOUR COPIES REQUIRED

TITLE: D-D-T PELLET LASER-FUSION FEEDBACK CONCEPTS

AUTHOR(S): (List authors in the proper order and exactly as they are to be published. PLACE AN ASTERISK AFTER EACH AUTHOR WHO IS AN ANS MEMBER; AN "S" AFTER STUDENT AUTHOR.)

1. G. H. Miley*
2. C. K. Choi*
3. S. Sutherland

MASIL

AFFILIATION(S): (List corresponding author's affiliation and complete mailing address.)

1. 214 N. E. L., University of Illinois, Urbana, Illinois 61801
2. (same as No. 1)

3. Sandia Laboratory, NM

Indicate number of author to whom correspondence should be addressed 1, and complete page 4.

To whom should the page charge be billed? Nuclear Engineering Program, U. of Ill. Urbana, IL 6180

Attach purchase order with appropriate purchase order number to original copy of the summary.
(Purchase order being sent under separate cover) P.O. # 543345JFOR CONTRIBUTED SUMMARY: Identify ANS Division or Technical Group having cognizance of your subject Controlled Nuclear FusionIn which subject category (from page 3) do you feel this summary belongs? 2.5 Exploratory Fusion ConceptsAlternative Category: 2.4 Fusion TechnologyHas the substance of this summary been presented or published previously (including U. S. ERDA or equivalent reports)? Preliminary studies presented in talk at YES NOGive details 1977 IEEE Mtg. at Troy, NY

Has the paper been submitted for publication in a technical journal?

 YES NO

Give details _____

Have you presented related papers?

 YES NO

Give details _____

Has this summary been approved for publication by your institution or company?

 YES NO

Give details _____

FOR INVITED SUMMARY:

Which ANS Division or Technical Group invited you? _____

Person who invited you _____ Session No. _____

FOR CONTRIBUTED OR INVITED SUMMARY:

Number of: Pages 3 Tables 1 Figures 1Word Count: Text 500 + (No. of figures plus tables) x 150 300 + (No. of lines of equations x 10) 0Total 800

Original line drawings or glossy black-and-white prints of each figure or table must be attached to original.

A COMPLETED SUMMARY COVER SHEET, TOGETHER WITH THE INFORMATION REQUESTED ON PAGE 4, MUST BE ATTACHED TO EACH OF THE FOUR COPIES OF THE SUMMARY. Please have copies made to complete your four copies.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

CONF-771109--3

FILING AND MAILING INFORMATION

Name and full mailing address of author
to whom correspondence should be sent
(Type or print legibly - form used for mailing)

LOG # _____

Prof. G. H. Miley
214 Nuclear Engineering Lab
University of Illinois
Urbana, IL 61801

Telephone _____
Commercial 217-333-2294
FTS 958-9129

Title of Summary D-D-T PELLET LASER-FUSION FEEDBACK CONCEPTS

This is to acknowledge receipt of your summary. Please use the log number above in future correspondence.

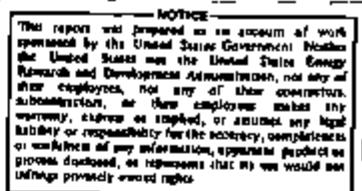
This summary will be considered for inclusion in the program of the American Nuclear Society's 1977 Winter Meeting, San Francisco, CA, Nov 27 - Dec 2, 1977. Another copy of this form will be sent to you about August 7, 1977 informing you of the Program Committee action.

Your paper has been reviewed and:

- 1. Accepted for presentation at the 1977 Winter Meeting. (See Attached Instructions)
- 2. It is suggested that your summary be revised. (See Attachment)
- 3. It is suggested that your summary be combined with the summary referenced as Log # _____ (See Attachment)
- 4. Rejected (See Attached Comments)

In all correspondence regarding your summary, please refer to the Log Number shown above.

Thank you for submitting this summary.


Sincerely,

Dennis A. Bitz
ANS Technical Program Chairman
1977 Winter Meeting

D-D-T Pellet Laser-Feedback Concepts

by

G. H. Miley, C. K. Choi, and S. Sutherland
Nuclear Engineering Program
University of Illinois
Urbana, Illinois 61801

A laser-fusion reactor employing deuterium-rich pellets to produce 2.45- and 14-MeV neutrons pumping of a Direct-Nuclear-Pumped Laser (DNPL) as a feedback coupling mode is considered. The DNPL utilizes MeV ions produced by neutron-driven nuclear reactions to pump a laser; and a deuterium-rich (D-D-T) pellet burn by the laser produces neutrons. Hence, the neutrons from one pellet burn drive the laser in order to ignite next pellet by which laser-fusion coupling scheme with DNPL is achieved.

This approach avoids several serious problems encountered in DNPL feedback fusion concepts using DT pellets [1-4] and offers a reduced tritium inventory and reduced neutron damage to materials. While a larger laser energy is required for ignition (vs. D-T), this obstacle is mitigated by the favorable energy-cost scaling of the DNPL compared to a conventional laser.

The use of a DNPL^[1] in the feedback mode can play two important and distinctive roles in laser fusion. First, this provides a way to bootstrap the startup without requiring large and expensive energy storage facilities that would be necessary for a conventional laser. Thus, Wells^[2] estimates that starting with 1 kJ conventional laser and imploding 300 DT pellets so as they energize a direct nuclear pumped laser having a 1% efficiency would make it possible to bootstrap up to an energy of 1 MJ. The DNPL could subsequently be employed for steady-state operation of the laser fusion device, and this would be its most crucial role.

The neutron economy must satisfy tritium breeding requirements and still provide sufficient neutron flux for laser pumping.

Figure 1 provides DNPL feedback with a deuterium rich (D-D-T) pellet proposed by Miley, et al. [6]. This design is intended to provide improved neutron economy compared to D-T pellets and, by reducing tritium breeding requirements, makes it possible to use a special graphite-D₂O blanket that effectively achieves energy storage through a lengthened neutron propagation time [7]. While the D-D-T pellet requires a larger laser energy than a D-T pellet, this obstacle is mitigated by the favorable energy-cost scaling of the DNPL compared to a conventional laser.

The lowest neutron threshold for a DNPL reported to date is $\sim 5 \times 10^{15}$ thermal neut./cm²-sec [4]. Such fluxes are difficult to achieve with D-T pellets due to the lithium-blanket required for tritium breeding. To avoid this, D-D-T pellets are proposed, i.e., a deuterium pellet containing a D-T "seed" for ignition propagation. Present estimates are that, compared to an equivalent D-T pellet, ~2 times the energy input is required for ignition. However, the added 2.54-MeV D-D neutron production provides an attractive coupling source and allows operation with a tritium breeding ratio $\ll 1$. Thus, the present design can utilize a thin lithium section followed by a helium-cooled graphite "moderator-propagator" region. Thickness of graphite blanket along with thermal neutron yields are tabulated in Table I. A bulk of the neutron kinetic energy is recovered as heat processed through a helium-turbine cycle to produce electricity.

Neutronic calculations, based on a reference 100-MJ output per pellet, indicate a neutron production of $\sim 3 \times 10^{20}$ /pellet which, with the present blanket, delivers $\sim 3 \times 10^{19}$ thermal neutrons to the DNPL. This is adequate to pump, in the feedback mode, a 10% efficient BF_3 fueled laser, or alternately 0.1% or 0.01% efficient UF_6 or AmF_6 fueled systems, respectively.

In conclusion, the D-D-T neutron-coupled DNPL concept is shown to meet the key objectives of energy storage and neutron economy. In common with other laser-fusion concepts, however, a number of other technological problems must be overcome to attain a practical power plant.

References

1. G. H. Miley, "Direct Pumping of Lasers by Fusion Reactors," *Trans. Am. Nucl. Soc.*, 15, 633 (1972).
2. W. E. Wells, "Laser-Pellet Fusion by Energy Feedback to a Direct Nuclear Pumped Auxiliary Laser," Paper 3D4, *IEEE Int. Conf. on Plasma Sci.*, Ann Arbor, Mich., May (1975). p. 76.
3. D. A. McArthur and J. V. Walker, "Nuclear-Pumped Laser Concepts for Laser Fusion," *SAND-76-5316*, Sandia Labs, Albuquerque, N. Mex. (1976).
4. G. H. Miley, "Direct Nuclear Pumped-Lasers," 4th Workshop on Laser Interactions, RPI, Nov. (1976).
5. K. A. Brueckner, "Assessment of Laser-Driven Fusion," EPRI-ER-203, EPRI, Palo Alto, CA, Sept. (1976).
6. G. H. Miley, S. Sutherland, C. Choi, and J. Glowienka, "Energy Feedback by the DNPL for a Laser-Fusion Reactor," 1977 *IEEE Int. Conf. on Plasma Sci.*, Troy, NY, May (1977).
7. G. H. Miley, "Reactor Neutron-Pulse Propagation," *Nucl. Sci. Eng.*, 21, 357 (1965).

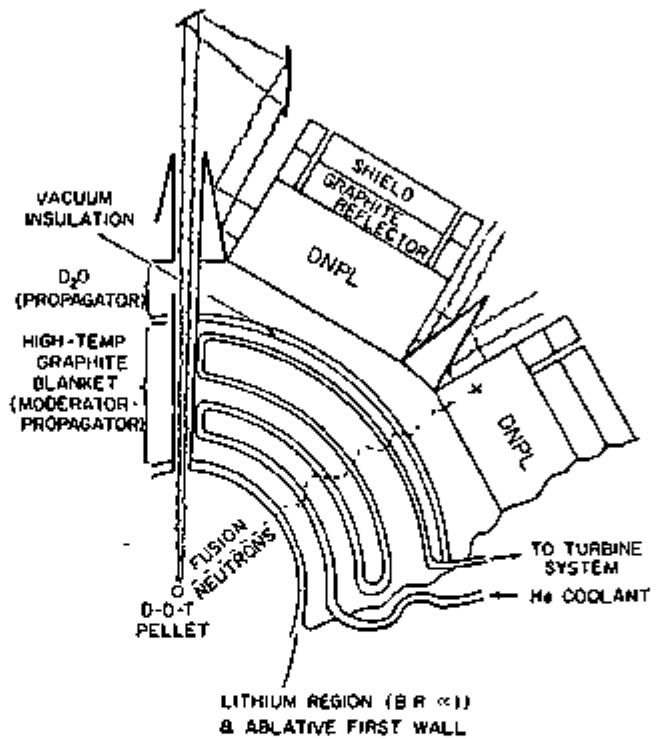


Figure 1. A D-D-T pellet, neutron propagation blanket concept for feedback coupling to a fusion reactor.

TABLE I. GRAPHITE BLANKET
THERMAL NEUTRON YIELDS
(BASED ON THE 4 ENERGY GROUP CALCULATION)

BLANKET THICKNESS (CM)	THERMAL NEUTRON YIELD* ($\int \phi_{TH} dT$)	LASER REQUIREMENT SATISFIED†
70	4.5×10^{19}	Yes
80	2.4×10^{19}	Yes
90	1.1×10^{19}	Yes
100	0.5×10^{19}	MARGINAL
110	0.24×10^{19}	No
120	0.11×10^{19}	No

* 4×10^{18} N FOR 10% ^{235}U AT 1 MJ.

†NORMALIZED TO A PELLET YIELD OF $\sim 3 \times 10^{20}$ FAST NEUTRONS/PELLET,
USING A D-D-T PELLET DESIGN.