Shared virtual memory (SVM) is a virtual memory
laver with a single address space on top of a distributed
real memory on parallel computers. We examine the
behavior and performance of SVM running a parallel
program with medium-grained, loop-level parallelism
on top of it. A simulator for the underlying parallel
architecture can be used to examine the behavior of
SVM more deeply. The influence of several parame-
ters, such as the number of processors, page size, cold
or warm start, and restricted page replication, is stud-
ied.

1  Introduction

Several basic models, or paradigms, exist for pro-
gramming parallel machines, most of which are re-
lated to real machine models (e.g., shared-memory
model, message-passing model, data-flow model, or
graph reduction). A relatively simple model for par-
allel programs is the shared-memory model, where all
processors operate on one (flat) shared memory. In
this model all processors have the same view of mem-
ory: immediately after a write executed by one pro-
cessor, all the other processors can access this mem-
ory location with the new value (strong cokerence).
Mapping this model onto shared-memory hardware
would be easy if the hardware ensured proper coher-
ence efficiently by itself. But the problem with shared-
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tems (usually with snoopy cache protocols to enforce
coherence in multiple caches), which solve the prob-
lern for a limited number of processors, are restricted
by bus bandwidth. Approaches to tackle this prob-
lem are NUMA-systems (Non-Uniform Access Archi-
tectures, e.g., NYU Ultracomputer [Got86), IBM RP3
[PBG*85), and BBN TC2000 {Ine90]), where a per-
formance penalty up to an order of magnitude ex-
ists for remote accesses, as well as multicache sy tems
[LLG*90], where data is replicated to local caches
and consistency is ensured by special cache protoccls
(e.g., directory-based protocols [CF78], [ASHISS)).
Because of complexity restrictions with hardware im-
plementations, these protocols have to be kept simple.

One way to achieve hardware scalability is to use
distributed-memory computers (e.g., Intel’s Paragon
XP/S, nCUBE’s NCUBE 2, or Thinking Machine's
CM-5). Such computers, however, do not hide dis-
tribution of data from the programmer. (An excep-
tion is the array data type in CM-FORTRAN.) Ev-
ery remote data access has to be programmed explic-
itly, and automatic compiler generation of correct and
efficient communicaticn statements to access nonlo-
cal data [ZBGH86){CK88] is difficult. Other problems
with this model are process migration and the passing
of pointers or complex data structures between dis-
tinct address spaces.

Hardware scalability and ease of programming may
be reconciled by the use of a virtnal memory layer
with a single address space on top of a distributed
real memory (see Figure 1). Such a configuration
gives the user and compiler the appearance of shared
memory with a single address space, analogous to the
way virtual memory hides restrictions of real memaory
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called shared virtual memory (or SVM) [Li86), repli-
cates mermory pages for performance reasons and en-
sures proper coherence between copies through special
protocols.

single addraess space
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Figure 1. Page mapping in SVM

While fine-grained parallelism on the statement or ba-
sic block level is handled more efficiently with super-
scalar or pipelining CPUs, coarse-grained parallelism
(e.g., multitasking on the outer subroutine level) is
usually difficult to manage by programmers or by par-
allelizing compilers. In our study we are concerned
mainly with medium-grained parallelism as, for exam-
ple, expressed in the outer loops of computationally
intensive kernels.

In this paper we examine the behavior of software-
controlled memory coherence mechanisms with
medium-grained parallelism. We consider the influ-
ence of several parameters, including the number of
processors, page size, cold or warm start, and re-
stricted page replication. To overcome the restrictions
of a concrete hardware, we simulated a simple abstract
parallel machine which accepts as input a parallel pro-
gram trace and emulates the memory behavior of an

SVM.

The paper is structured as follows. After giving a brief
overview of the memory colierence problem, we de-
scribe our abstract machine model and the simulation
process. In Section 4 we present our simulation re-
sults, in Section b we discuss related work, and in Sec-
tion 6 we offer some roncluding remarks about future
extensions to our work.

2 Memory Coherence

The basic problem in memory systems with possible
data replication (e.g., multicache systems, shared vir-
tual memory) is keeping memory coherent. A memory
1s called strongly coherent [CFT78) if the valae returned

by a read operation is always the same as the value
written by the most recent write operation to the same
address. A relaxation of thisis a weak coherent scheme
[DSB86), where memory consistency has to be ensured
only at synchronization points.

The problemn of memory coherence first came up with
multicache systems. In the directory scheme proposed
by Censier and Feautrier {CF78], a bit vector held in
a centralized directory represents which caches hold
copies of cache hines. In order to reduce memory, a
restriction of this scheme was proposed by Agarwal et
al. [ASHHS88], where only up to i simultancous data
copies are allowed and directory pointers refe; to ac-
tual copy holders. If these pointers are exhausted,
copies must be invalidated. Agarwal et al. gave
two variations of this idea: the Dir; B- and Dir; N B-
schernes (Dir for Directory), the former invalidating
all 7 copies through a broadcast message (B for broad-
cast), the latter sending individual invalidation mes-
sages to copy holders (VB for no broadeast). Usually,
hardware approaches in such multicache systems are
limited by complexity restrictions enforcing easy pro-
tacols.

Another approach to keep caches coherent is to use
software [CVA0] [CKM88). For example, Cheong and
Veidenbaum proposed a compiler-directed cache man-
agement where appropriate cache invalidation com-
mands are generated by compilers. But such ap-
proaches are restricted to multiprocessors with shared
memory and private caches and thus offer no real solu-
tion in avoiding shared memory in hardware. Also, in
the absence of exact information, software-controlled
cache invalidation has to be conservative.

3 Simulation of SVM

Examining the behavior of shared virtual memory on
real machines is restricted to system parameters such
as hardware page size or compiler and linker assistance
in generating parallel programs. To study the hehav-
jor of SVM in detail, we have implemented a simnulator
that madels the behavior of SVM on an abstract par-
allel machine. We have abstracted from the concrete
hardware because we are interested in memory behav-
ior and memory performance on the level of reference
counts and page faults rather than cycle times on a
specific hardware implementation. Iowever, the re-
sults of our work provide input for work in this field,
too. The machine model we introduce is a good com-
promise between simplicity and accuracy. e simula-
tion process is divided into two parts. In the first step



(see Figure 2) an appropriate parallel program trace
is generated that is used as input for the simulator. In
the second step the simulator takes this trace and sev-
eral parameters and simulates the behavior of shared
virtual memory on an anstract parallel machine.

Parallel DO ALLi=1n
 program i) = b))
Preprocessor l instrume niation '
DO ALLi=1n
Annotated reference bi)
paralle] progrum reference a(i)
1) = (i)
msrumeniation
na-time library
Compiler ‘ compiling/linking .
execlitable
mstrumented program
Program run l Urace generation l

parallel program
race

Figure 2: Trace generation process

The first step in the simulation process is to produce
an appropriate memory and parallelism trace of a pro-
gram. Generating accurate parallel program traces is
difficult, as the behavior of these programs often crit-
ically depends on the ordering and timing of events
such that every delay (e.g., for performance informa-
tion gathering) can influence the overall program be-
havior. The traces we gather have no time stamps;
rather, the ordering of events as memory accesses and
parallel events is important and is preserved. In the
absence of exact timed references, these traces are
more suited for regular problems without racing con-
ditions.

To generate a trace, one neeeds a program where par-
allelism is controlled through parallel loops, paral-
lel regions, critical sections, and barrier synchroniza-
tion, similar, for example, to PCF-Fortran [Par88]
or Fortran extensions of several vendors of shared-
memory parallel computers. The parallel program
is run through a preprocessor [Ber88] which gener-
ates an annotated version of the progran:. This pro-
gram is compiled and linked with appropnate run-time

support libraries and generates at execution time a
trace of the memory reference behavior interspersed
with parallelization information. The parallel pro-
gram trace gives memory access information, such as
referenced memory address, access type (read or write
access, access to private or shared location), size of ref-
erenced location, and a back-reference to the accessed
variable. In this study we have instrumented only sub-
scripted variables, since most scalar variables usually
can be held in registers or private memory locations.

The abstract machine model of our simulated parallel
computer has N units, each with a processor, (un-
limited) private memory, an MMU (Memory Manage-
ment Unit), and a communication processor; we call
each of this units a nede. One processor is the mas-
ter processor executing all serial code. If all proces-
sors executed the serial code, unnecessary access con-
flicts would be generated. Each processor has an input
queue with memory references to interpret; processor
steps are performed along the queues in a round-robin
fashion. If the simulator encounters in the memory
trace the beginning of a parallel loop or parallel sec-
tion, the distinct iterations or sections are split to the
input queues of the processors, which are determined
with a parameterized scheduling algorithm. After each
parallel loop or region, a barrier synchronizes all pro-
cessors that have participated in the loop. If a pro-
cessor reaches a critical section, all other processors
wishing to enter this section are blocked.

We have restricted the input language to loops where
the number of iterations is known on entry of the loop;
jumps out of the loop are prohibited. This approach
as well as the specific model of how loop iteration
are spread over nodes helps us explain the cost model
given below, without assumptions about synchroniza-
tion hardware.

Parallel loop iterations and parallel region cases are
scheduled statically. The set of all processors is sub-
divided into intervals of the form I = [py, p,] (initially
one interval [1, N]) to which iterations or cases will
be spread. The loop master processor, the first pro-
cessor in an interval (initially the master processor),
initiates parallel execution of other processors in the
interval by sending them the interval (e.g., numbers
of first and last processors) and the number of itera-
tions to handle. With this information, all processors
in the interval are able to decide which subinterval
they belong to and which iterations they should work
on, or whether they have no work at all (if there are
more processors than iterations). For [ iterations and



N processors,

(i+1I)XNJ~LiXINJ“1), (1)

consecutive processors form subinterval i. With this
model in mind, the costs of initiating a parallel loop
are the costs of sending the above information from
the loop master node to the subinterval. This task
can be done in time O(logy(n)) (without broadcast)
until each processor has the information, where n is
the number of participating processors in the subinter-
val. Technically, we distribute these costs as if all par-
ticipating processors immediately get this information
and then synchronize for the given time. Similarly, if
a barrier synchronization has to be done at the end
of a loop or region, the costs on each processor are
O(2 x logs(n)) after all processors have reached the
synchronization point (which correspond to posting
and acknowledging of synchronization in a tree-like
fashion). Actually, this cost model is conservative, as
not all processors reach the synchronization point at
the same time. Thus, posting could be started earlier.

n; = maz(l, |

In our implementation of SVM, we used an algorithm
with a write-invalidate-based protocol and a strong
coherence scheme similar to Li’s dynamic distributed
scheme [Li86], which itself is based on the Berkeley
Ownership scheme [KEW™*85]. In this concept, every
page has an owner who maintains a copy set with all
nodes that currently have a read-only copy of the page.
On a page fault, the faulting page is requested from
the current owner, who can be reached over a chain of
probable owners. For write page faults, the ownership
changes to the requester, who invalidates all copies
before writing to the page.

In our model, page faults and invalidation messages
block the faulting node for a specific time (simulation
parameters fyair and tinyar; see below) while serving
nodes (e.g., page owners sending the page to the fault-
ing node) are not blocked at all; requests, for instance,
are handled by the communication processor.

As a starting partition of the virtual memory, all mem-
ory pages are spread uniformly over all available nodes
such that page p is located on node p mod N.

3.1 Simulation Input Program

As the input program for our simulations we used a
parallel matrix multiply as given in Figure 3 for a
square matrix of size n x n where n = 64; the two
outer loops were parallelized. It was not our purpose
to find a very efficient version of the matrix multiply
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for SVM; rather, we were jnterested in an applica-
tion program with reasonabie memory references as
an input for our simulator. We chose matrix multiply,
because it is memory intensive, with significant data
reuse as well as potential parallelism.

There exist six major versions of matrix multiply de-
pendent, on the loop order [GvL89]. We have chosen
the jik-version (named after the loop order) such that
write references to the result array arc on contiguous
memory locations. We have specified that loop itera-
tions be spread in blocks over all available processors
(as opposed, e.g., to interleaved spreading).

DO ALL j=1,n
DO ALL i=1,n

tmp = 0.0
PO k=1,n
tmp = tmp + b(i,k) * c(k,j)
END DO
a(i,j) = tmp

END DOALL
END DOALL

Figure 3: Parallel matrix multiply

The memony space for each array a,b,c is 4096 words:
each iterateon of the inner parallel loop has a total of
129 meniory references to subseripted variables (128
read accesses, 1 write access); the whole program has
528,384 memory accesses to subscripted variables. \We
will use in our simulations between 4 and 1024 proces-
sors such that the granularity for a parallel task in the
inner parallel loop will be between 64 x 129 = 8256
and 4 x 129 = 516 memory references.

3.2 Simulation Parameters

In the following sections, we express all execution
times in multiples of memory ticks, where one memory
tick should be seen as the cost to access one word in
local memory on a node. Although we will not specify
a concrete value, the relation of all following values to
this reference value is sound.

We have chosen a page faull wait time {45 (in men-
ory ticks) as given in Equation 2, where { 5, are
costs for page fault handling, neopy (p) is the number of
nodes that hold a curreirt copy of page p (the faulting
page), r is the number of page requests along a chain

R TR R LT R KA S TR TR

L T Y O T T IR PP T] TR

Voo ik

Vi,



Ll

Ih]

Ljaunt + (7lcopy (P) + Dtinval
twait = traun + (7 + 1)tuartup + tsend X Spage

if node is page owner
not owner, read fault (?)

tfault + (nco,;y(l)) + l)tinual + (T + l)tnartup + taend(spage -+ ncOpy(p)/Q) not owner, write fault

of probable page owners, t,i4r1up are startup costs for
communication, ts.nq are costs for sending one word
between two nodes, and spqge is the size of a page in
words. If the page is found on the faulting node (e.g.,
write-fault on a node that is owner and has a read-only
copy of that page), the costs are tygui. Any invalida-
tion message sent to another node and waiting to be
acknowledged has additional costs of 2 X t;nuar; multi-
ple invalidations can be pipelined. If the faulting node
is not the page owner, a page request is sent along the
chain of probable owners; the owner node sends the
page and on write faults in addition the copy set. We
assume that two node identifiers can be packed into
one word. During a page fault, the processor waits
and is not able to, say, synchrouize.

Loop startup costs are logz(n) X tsync; barrier synchro-
nization costs after a loop finishes are 2 x loga(n) x
tsyne, Where n is the number of participating nodes.
We distinguish between an unlimited number of read
page copies and a restriction to a fixed limit after
which page copies have to be invalidated before a fur-
ther page copy can be send. 'We ran the simulations
for N = 4, 16, 64, 256, and 1024 processors. Table 1
shows the actual parameter values we have chosen in
our simulations.

Table 1: Basic parameter values.

tfault 50 LiCkS
talar!up 50 tale"S

fault startup time
startup time for send

teend 2 ticks time to send one word
finval 60 ticks page invalidation time
toyne 60 ticks basic synchr. time

Spage 4-1024 page size 1n words
N 4,16,64,256,1024 | number of nodes

4 Simulation Results

We distinguish between two types of initial page and
data distributions. The first type, which we call cold
start, resembles the behavior of applications without
any predistribution of daia or programs with very
different types of data access pattern between distinct
program phases. In this type of simulation each page

(1)

exists on program startup on one node, which has
write access to the page and is also owner of it. Ini-
tially all pages are distributed uniformly over all nodes
in an interleaved scheme as already described.

The second type of initial configuration, which we call
warm start, is similar to an application where a ker-
nel is called inside an application program and former
parts of the program have similar data access patterns.
To get a realistic page distribution, we run the simula-
tion twice. The final page distribution of the first run
gives the start distribution for the second run, which
gives the overall result for the warm-stars,

Further, we distinguish between two simulation types
with arrays of different dimension. In the first type,
64 x 64 simulations are done with properly dimen-
sioned arrays. In the second type, 65 x 65 simulations
are done with arrays that are dimensioned 65 x 65 but
for which only the upper 64 x 64 submatrices are used.

The results, as shown in the next sections, are given
in a log-log scale. Each line represents one data set
for a specific page size (in words). We refer to results
given in the next section as the base case.

4.1 Variation in Page Size

Page size 1s a critical parameter in the design of a
memory system; if this size is t..0 large, contention
effects and false sharing prohibit good performance.
On the other hand, page fault latencies and communi-
cation startup costs mostly dominate page-fault han-
dling in software-controlled memory systems. Thus
a fair compromise has to be chosen between reduc-
ing contention and avoiding unnecessary page faults.
While page fault latency and overhead are system
parameters and usually independent of an applica-
tion, contention and false sharing problems critically
depend on given access patterns. Figure 4 shows
speedups! for several page sizes and number of pro-
cessors for given parameter values and input, program.

Most of the execution time with small page sizes in the
cold-start model is spent in getting pages the first time

ISpeedup values are total execution times (in memory ticks)
of the parallel version related to memory ticks of the sequen-
tial version, which is the number of memory references to sub-
scripted variables.

"



100 L

103

speedup

10V}

# processors

(a) 64 x 64, cold start

103k

101}

spoedup

10

108 A SO S

.
1ot 100 104 10?

¥ processors

(c) 64 x 64, warm start

Figure 4:

(high number of startup overheads), because the ini-
tial data distribution, uniformly spread over all nodes,
is different from the initial demand of data on nodes.
Since the working set for matrix multiply is relatively
small because of reuse of data, cold-start effects would
get even worse for larger working sets and an increas-
ing number of processors. While small page sizes have
this cold-start effect, large page sizes (1024 words)
have contention problems as the number of processors
increases.

In the warm-start model, speedup results are up to
23 times higher than cold-start results. The reason
is that, since all nodes already have read-copies of
the b and c-arrays (final page distribution of the pre-
tun), these pages do not need to be fetched. Problems

spoedup
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(b) 65 x 65, cold start

{d) 65 x 65, warm start

Base case

preventing higher speedups are ¢ ntention and false-
sharing for write-array @, as wel, as synchronization
overhead on start and exit of parallel loops. While
synchronization overhead is due to the abstract ma-
chine model we have chosen, the other problemns are
affected by large page sizes.

For the 65 x 65-dimensioned matrix, unnecessary false-
sharing occurs, since matrix columns are not aligned
on page boundaries. For pages with 256 words and
larger, write array a shares a page with read array
b such that on every write to this page, copies are
invalidated on nodes that access affected parts of array

b.

Figure 5 shows the relative amount of time (accumu-
lated per-processi times) spent in different simulation
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Figure 5: Relative amount of time for different, states with spqge = 16 (base case)

states for a page size of 16 words; time types are ex-
plained in Table 2. In the cold-start model, page-fault
wait times consume a significant portion of the to-
tal time; in the warm-start model, however, the work
time, dominating for a small number of nodes, is (rela-
tively) reduced by synchrunization and idle times. Idle
times arise if more than 64 processors are available
at program start, while the outer loop gives work for
only 64 processors. Processors that are not involved
in running the outer loop are idle until the outer loop
is spread over 64 processors and work starts for the
inner parallel loop.

Table 2: Time types for different states

type | description

work | handling memory references,

wait | page fault wait times.

idle idle times.

sync | loop startup costs and barrier synchronization.

4.2 No Postloop Synchronization

As can be seen in Figure 5, one slowdown in the pro-
gram Is barrier synchronization after a parallel loop
ends. This problem can be avoided with our paral-
lel matrix-multiply algorithm. As a consequence, we
have specified in a different algorithm version that no
barrier synchronization has to be executed on exit of
a parallel locp Figure 6 show speedups for execution
without postloop synchronization.

For the cold-start model and for a moderate number of
processors, the effects are small, since synchronization
time (startup costs for loop initiation, barrier synchro-
nization at loop exit) is small compared to page fault
times and total execution time. But for a large num-
ber of processors and small page sizes, speedup values
nearly doubled as the relative amount of synchroniza-
tion time increased in the base case.

The limitation for even higher speedups is startup
costs for loop initiation. The total execution time on
each of the 1024 processors with a page size of 4 words
(the best speedup reached) in the warm-start model
is 1,356 memory ticks (compared with 528,384 mem-
ory ticks in the serial case), of which 38% are working
time while the rest is spent in loop startups. With
our parallel execution model (parallel loop initiation
time of O(log n) with n participating nodes) and cho-
sen parameter values, these costs cannot be further
reduced.

4.3 Different Access Order

In the base case (loop order jik), write accesses to ar-
ray a are done in subsequent order in memory under
Fortran memory mapping of arrays. As loop itera-
tions are spread in blocks over available processors,
blocks of memory are written by the same processor
such that write-sharing of pages is reduced. For an ijk
locp order, written memory locations are accessed in
smaller blocks (dependent on the number of nodes) in
an interleaved fashion, and thus write-sharing of pages

S 1
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Figure 6: Without barrier synchronization

occurs more often. Figure 7 shows speedups for loop
order k.

In cold-start simulation, only medium to large page
sizes with a small number of nodes show a significant
performance reduction compared with the base case.
Otherwise, speedup numbers are greater than 60% of
the base case. Although more often write accevses in
loop order "k are page misses as write page-sharing is
enhanced, costs for write faults do not dominate total
costs; total costs are mainly caused by initial page
distribution, as shown already for the base case.

For warm-start simulations, 64-node speedups show
a significant performance degradation for medium to
small page sizes (large page sizes do not perform well
in the base case, too). The reason is that now all

iterations of the outer loop are spread over distinct
nodes and subsequent memory locations are written
by different processors.

Although, in matrix multiply, nodes share write pages
but no single memory location, nearly every write ac-
cess with loop order ijk and a large number of nodes
results in a write page fault. One possible solution
to this problem is a strategy shown 1 Myrias ma-
chines [Cor90]: distinct processors write to private
page copies, which are later merged to one final page.?

2Crucial to this idea js that page merging can te done effi-
ciently even with a large number of pages.
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4.4 Restriction of Page Copies

So far, we have kept track of all page copies. The space
complexity for full information, as it would be imple-
mented in a straightforward bit-vector approach with
a bit-vector part of each page descriptor, is O(M N)
bits on each node, where M is the number of pages and
N is the number of processors. For a whole system this
means a quadratic increase with the number of pro-
cessors. As already noted, Agarwal et al. [ASHH88]
proposed with their Dir; N B- and Dir; B-schemes a
limitation of copies, thus restricting the information to
be kept on each node; after this limit is reached, copies
have to be invalidated. Figure 8 shows speedups for
a restriction to 32 copies; after this limit is reached, a

copy is chosen randomly for invalidation. Simulations
with different limitation valies show gimilar effects.

The results show that, for our implementation of ma-
trix multiply and with a straightforward implemen-
tation of the Dir; N B-scheme, the limitation of read
copies means a severe restriction, as all nodes need
partial copies of read arrays b and c. Three sections
can be seen in the figures. In the first section the
number of nodes (and the number of requests for page
copies) is smaller than the copy limit. Thus there is no
difference from the base case. As soon as the number
of nodes is larger than the copy limit, however, the
system is blocked with invalidating pag.s, as pages
are shared heavily between nodes. In tle third sec-
tion, with a large number of nodes, page sharing is
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reduced, since only sn,aller portions of the whole data
are needed on every node. In general, restriction to
a limited number of copies penalizes access patterns
where many processors share a read copy, accessing
data several times.

As a copy set is needed only on page owner nodes,
most of the bit vectors in the straightforward imple-
mentation of page tables are not used. While dynamic
allocation of memory is difficult with hardware con-
trollers, programs are able to allocate space for bi
vectors on demand. In our implementation, a bit vec-
tor is allocated if a node gets page ownership and is
released on losing ownership. With this rolution, the
total space complexity is reduced from 2/ MN?) to
O(MN).
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Several other approaches allow any number of read
copies without inv lidations and without the space
complexity of a bit vector in each page descriptor;
these ideas were originally proposed for scalable mul-
ticache systems. Primarily, the differences lie in the
data structures and operations used. In the Scalable
Coherent Interface [JLGS90] double-linked lists rep-
resent copy holders of cache blocks, while the Stan-
ford Distributed- Directory Protocol [TD90] is based
on single-linked lists of distributed directories. Maa,
Pradhan, and Thiebaut [MFT91] proposed a tree di-
rectory and a hierarchical full-map directory to keep
track of copy holders.
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5 Related Work

Li [Li86) [LH89] discussed the basic concepts for cen- -

tralized and distributed algorithms with a strong co-
herence scheme and showed the practical applications
of lis ideas in prototype implementations on a ring of
workstalions and on a hypercube parallel computer.
He implemented a variation of the Berkeley Owner-
ship Protocol [KEW*85].

Bennett, Carter, and Zwaenepoel [BCZ90] give a clas-
sification for objects in distributed memory in order
to handle them efficiently. In addition to the usual
classes of type privale and general read-write, they
distinguished between frequencies (write once, mostly
read, etc.) and special concurrency types (synchro-

nization). For each class they had a special coherence
treatment.

Myrias [Cor90], a computer manufacturer now out of
business, implemented on their parallel machines a
software layer simulating a single address space. At
the beginning of a parallel loop or section, child pro-
cesses are generated with their own private memory,
initially a copy of the memory of the father process.
At the end of the parallel loop, child memories are

merged to one memory in which the father process
continues execution.

Eggers and Katz [EK88] [EK89] examined effects of
sharing in multiprocessor systems with invalidation-
based multicaches. For their (coarse-grained) pro-
grams they gave a low percentage of shared write
accesses (2% of total references) and low contention.
They found that with the invalidation-based protocol,
large block sizes are favorable for programs with per-

processor locality, as the number of invalidations is
not high.

6 Conclusions

As shown for our implementation of matrix multiply,
in cold starts most <f the execution time is spent in
getting the correct initial data distribution; especially
with small page sizes, these distribution costs domi-
nate the overall performance. This startup overhead
will even be worse for problems with fewer operations
per data item. Matrix multiply favors warm starts,
since after an initial run, read-only data is already
distributed according to the access pattern. Data lay-
out specifications in programs (e.«, as in Fortran-D
[FHK*91] or Vienna FOR1... ©  1Z91}) can help
to overcome initial distribution costs. In our model,
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synchronization costs limit even better performance
on a large number of nodes.

For chosen system parameter values, there is no over-
all preference for a particular page size. For a small
to medium number of nodes, medium page sizes show
good performance; on the other hand, small page sizes
are favorable with a large number of nodes. The rea-
sons are that contention effects are reduced and that,
with smaller granularities of parallel tasks, smaller
portions of memory are accessed by each task.

A severe restriction for the parallel matrix-multiply
program is a limitation for read copies as proposed in
Dir;N B- and Dir; B-schemes. The reason is that with
a heavy reuse of data and simultaneous accesses of
parallel tasks to the same memory regions the dermand
of page copies exceeds the number of possible copies
which, in turn, results in trashing.

Two possible extensions to our research are first to
examine a broader range of applications with diffe: .nt
and irregular access behavior, and second to incorpo-
rate weak coherence schemes, especially for applica-
tions with different access patterns.
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