97 ~\C7 B A oapnag
T MASTER

R ' /57
O e é/

Unlimited Release

Location Errors in Time of Arrival (IQA)
and Time Difference of Arrival (TDOA)
Systems —

Eugene A. Aronson

@ Sandia Laboratories

SF 2900 Q(7-73)

QISTRIBUTION oF
N OF THIS DOCUMENT (s UNLIMITED



DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.



DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.



Issued by Sandia Laboratories, operated for the United States
Energy Research & Development Administration by Sandia
Corporation.

NOTICE

This report was prepared as an account of work sponsored by
the United States Government. Neither the United States nor
the United States Energy Research & Development Adminis-
tration, nor any of their employees, nor any of their con-
tractors, subcontractors, or their employees, makes any
warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness or usefulness of
any information, apparatus, product or process disclosed, or
represents that its use would not infringe privately owned
rights.

Printed in the United States of America

Available from

National Technical Information Service
U. S. Department of Commerce

5285 Port Royal Road

Springfield, VA 22161

Price: Printed Copy $4:®D; Microfiche $3.00
37



SAND77-04395
Unlimited Release
Printed July 1977

LOCATION ERRORS IN TIME OF ARRIVAL (TOA).AND
TIME DIFFERENCE OF ARRIVAL (TDOA) SYSTEMS

;ﬂ*/

Eugene A, Aronson
Applied Mathematics Division 2613
Sandia Laboratories, Albuquerque, NM 87115

spansored by the United States Government. Neither
the United Slales nor lhc Um(ed States Energy

and De ion, nor any of
lheu employees, nor any of their contractors,

— L NOTICE- “’"A—'—j
This report was prepared as an account of work

or theu ployees, makes any
warranty, expreu or implied, or assumes any 1
Hability or ibility for the o
or of any infc product or
process disclosed, or represents that its use would not
infringe privately owned rights.

l———_,\ ————

ABSTRACT

’ In this report it is shown that the covariance matrix of object location errors

is identical for time of arrival (TOA) and time difference of arrival (TDOA) systems
if the inverse of the covariance matrix of TOA (TDOA) errors is used as a weighting
matrix, Also, with this weighting the location errors statistics do not depend on the
particular difference pairs in the TDOA scheme, provided that a complete and non-
redundant set is used. If the TOA or TDOA errors are samples of jointly gaussian
random variables, this weighting is optimal in the sense of maximum likelihood and
minimum variance, Only rolativo valuoo of the weighting noed be known for optimality.
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LOCATION ERRORS IN TIME OF ARRIVAL (TOA) AND
TIME DIFFERENCE OF ARRIVAL (TDOA) SYSTEMS

Introduction

An object at an unknown location generates a pulse of energy at an unknown initial time. This
pulse is radiated and detec;ted by a set of sensors. Each sensor estimates the time of arrival (TOA)
of the pulse at the sensor. If the velocity of the pulse from object td sensor is known and constant,
the TOA minus the initial pulse time is proportional to the distance from object to sensor. If there
are more sensors than unknown coordinates of the object, it is possible to estimate the unknowﬁ

position and the initial time by least-squares techniques.

Since the initial time itself is not generally of interest, it is common to remove it by taking
time differences of arrival (TDOA) and solving a system of equations of order one less than with

TOA in the least-squares sense,

In general, the TOA data contain errors; and hence any data reduction scheme produces
estimates of the object location that also contain errors. Since the errors in the TOA estimates
are not generally the same statistically, it is usually advantageous to use a weighting scheme to

reduce object location errors,

In particular, if the data errors are jointly gaussian random variables with zero mean, which
is not a generally restrictive assumption, the maximum-likelihood, minimum-variance estimate of
the location errors is obtained if the weighting matrix is the inverse of the covariance matrix of the

TOA errors or of the TDOA errors, if such a scheme is used.

In this report we prove that if the aforementioned weighting matrix is used, the object loca-
tion error statistics are identical for both TOA and TDOA schemes. Also, these statistics are the
same no matter what data difference pairs are chosen for the TDOA method, provided that an inde-

pendent, nonredundant set of differences is used.

The stateméent above is actually proved only for the very typical case when the TOA errors

are independent random variables, but we feel it is valid for correlated TOA errors.

While our interest here is in locating an object by TOA or TDOA, the statement is just as
valid for estimating any unknowns from data when a data model function--in our case, distance--
is compared to data in the least-squares sense. All that is required is that the model function be

continuous and differentiable in the unknowns.



In the following material we use capital letters to denote matrices or vectors and lower case
letters for scalars. All vectors are column vectors unless expressed as a transpose. The

superscript T means "transpose."

Object Location by TDOA
It is desired to estimate the location of an object. At some unknown time a pulse of energy
is generated at the object. This pulse radiates and is detected by a set of sensors at fixed, known
locations. We estimate a TOA of the pulse at each sensor, By operating on the TDOA between
pairs of sensors, we estimate the object position.
Let the (unknown) object position be
P = {x,y, z}

Let there be N+1 sensors, and let the known position of the nth sensor be

P ={x,y,z};n=1,2,...,N+1 .
n n’'n’“n

The distance from object to the nth sensor is

r = \/(x-xn)g + (y-yn)2 + (z-zn)z

If ’cu is the TOA at the nth sensor and vp is the (constant) velocity of the pulse, we must find P

co ao to putisfy the N eyualluns

m, <N . (1)

If all three coordinates of P are unknown, at least four sensors are required. If any two caordi-

nales are unknown, at least three sensors are needed, etc.

We assume that whatever pairings of data are used in Eq, (1), exactly N nonredundant, inde-
pendent time differences are employed. These conditions are determined by examining an N by

N+1 test matrix. Let all elements of the test matrix be zero except for +1 in the mth row and m,

column and -1 in the Illth row and‘m column, If the test matrix has rank N, the differences are

2
independent and nonredundant.



In generalvthere are more data differences than unknowns, and Eqs. (1) are solved in the
least-squares sense. It is convenient to use matrix notation. Let R and D be N-dimensional -

column vectors

If W is an N-by-N symmetric weighting matrix, we wish to find P so as to minimize the scalar
T
v=(R-D)" W(R-D)

Minimization of v is usually done by Newton iteration. Let A be the N-by-3 matrix

[a, -a b, -b c, -c¢,
R L, L 1, 1 :
a -a b -b c -c dr = -
A= - 4x
m, m, m m, ™My My ar A (2)
a -a b -b c -cC
N, Ny Ny Ny Ny Ny

where
a = (x- xn)/rn ,
b = (y-y)ir, .
e, = (z - zn)/rn

Of course, A is N by 2 if there are only two unknowns, etc. If PP is the pth estimate of P, and AP

and RP are A and R, respectively, evaluated at P = Pp, the iteration is

‘ -1
pP*1 _ pP +(ApTWAp) APTW(RP } n)

If the data errors are "small" and the system is "well conditioned,” convergence is répid
and the location errors are small. The condition of the system is determined by the condition of ae T ,

the matrix APT wAP. Note that this matrix depends only on the system geometry and the chdice
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of W, not on the data or their errors, The iteration is usually terminated after a fixed number of
iterates or when the change in location estimates becomes less than some preassigned value.

Some discussion of location estimate errors is in Ref. 1.

Location Error Statistics

It is of interest to estimate the errors in the object location for any set of object and sensor
geometry.. If the data errors; i.e., the TOA errors, are "small" and the system is "well
conditioned," then it can be shown that the object location errors depend linearly on the data
errors.1 Let Pe be the errors in the estimates of the object location, and let De be.the data
errors. For TDOA, De is the vector of data error differences; fur TOA it io the vector of the

data errors themselves. We get

-1, T
Pe-B A WDe’ (4)

where

B - ATwa .

Let E[.] denote expected value. In general we may assume that E[De] =0

and hence

E[Pe] =0 ., (5)
If C is the covariance matrix of the dala errors,

c - E{DeDZ] ; ‘ ‘ (6)
then the covariance matrix of the position errors is

epf] = n aTwewap™ (7)

r - E[P
c
If the data errors are jointly gaussian randuw vaciables, thon an optimum rhnice of W is

W ="C . : : (8)

This choice yields the maximum-likelihood, minimum-variance estimate of the object location.2

In this case Eq. (7) simplifies to

P =B . (9)



The gaussian assumption is reasonable for most systems. If the data errors are jointly
gaussian, then, from Eq. (4) the location errors are also jointly gaussian and all their statistic;s
are known from their mean and covariances. The results presented thus far, and indeed all re-
sults in this paper, are valid whether or not the data errors are gaussian. The gaussian property

assures only that the choice W = C.-1 is optimal in the maximum-likelihood, minimum-variance

sense,

Choice of Data Differences
We now arrive at the first of the two salient points of this report. We prove the following: ,

Proposition 1

If the TOA data errors are independent random variables with zero means and the weigﬁtirig
matrix is chosen as the inverse of the covariance of the data difference errors, then the covariance
matrix of the position errors is independent of the particular choice of difference pairs--provided,

of course, that a set of independent, nonredundant differences is used.

It is likely that the proposition is also true if the TOA errors are correlated, but the proof-
of this statement is too tedious to pursue here, The independence of TOA errors is usually valid
since the sensors are typically separated physically and subject to independent noise processes.

The proof is quite lengthy ar;d is broken into fwo sections, First, an important lemma is
proved that states that Proposition 1 is valid if any one TOA appears in all differences; that is,
the value of Pc does not depend on which TOA is common to all differences. '['he main proof then
follows by induction. We show that the proposition is true for three sensors; we then assume it
true for N sensors. Now, if an additional sensor is introduced, we show that Pc does not depend
on with which of the original N sensors this new TOA data is paired. Hence, the proposition is

true for any number of sensors and any set of pairings.
Before proceeding, we introduce some notation and present two important theorems.
Let the TOA error from the nth sensor be ten' Then

£fir] - Hartom] = 0. m % 0

The TOA error variance is

v =v2 E[tz]
n p | en
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We assume that v > 0 for all n and define

g, = v, . (10)

Theorem 1: (Ref. 3) ~- If G-1 exists and

c-Gg+uvl,

where U and V are column vectors, then

-1

cl-gl.yt

uvig™! |

1/ +va tu) .

>
n

Theorem 2: (Ref. 4) -~ Suppose the matrix ¢ is composed of submatrices of the

indicated orders

p= ' -y
C 1 U12
]
T A G N v
¢c=1----- - - - - - ,
Cs1 : Caz
' MxN) + (MxM) |
and C and Q = C22 - C21 (WCIZ) are nonsingular, where C_1 = W. Then
- . -
Wiy ST
(NxN) ' (NxM)
~-1 1
C =- - - - = T T T T ’
Wo1 v Wo
]
| M xN) + (MxM) ]
and
-1
WH = W+ (WCls)Q ((‘-21W) '
W, = ~(WC,. )@}
12 ~ 12 ’
w,. = -Q Nc, W)
21 ~ 21 7
o1
W22 =Q .



We shall use Theorem 2 only with M = 1 and é symmetric. In our case Q is a scalar,
C21 = Cgl, and C and W are symmetric. We get

T
Q = a4 = cyy - C,WC,

)

T
W, o= w+(wclz)(wc12) /q,
w - wl - -we, ./
127 a1 12/
sz = 1/q.

Proof of the Lemma

Lemma: TIf one sensor appears in all differences, then the values of B and hence of its
inverse Pc does not dépend on which sensor is the common one--provided the TOA errors are
independent random variables and W = C 1.

Suppose there are N+1 sensors. Choose the (N+1) - st sensor as the common one, The N

by N covariance matrix of the data difference errors is

Vit VNa VN+1 VN+1
3 (11)
C = VN+1 VaoTVUN#1 . . . UN+1 "
VN+1 VN+1 © Uyt Ve ]

and . i

- U
Vel {1, 1, |

v=1{1,1,...,1} ,



Thus,

B 7
1 0
gl - &y ,
0
and
. N -
= 1
A I\ + "N+1E gn '
n=1
If we defino
N+1
s =2, g (12)

then )\ = 1/suN+1 . Note that the value of s does not depend on which TOA was chosen as the

common one. Now, from Theorem 1, the optimum weighting matrix is

‘

B ~ Z/ - /s - /s i
gl gl s glgz ¢ glgN
| L (13)
w =" = _glgzls gz - gzlﬂi i 'QZEN/S
~g g /s 8,8/ NPT
- 1 N | 28N « o e N N ]
It will

For simplicity in the exposition we will let the z coordinate of the object be known.

be shown that this is not a restrictive assumption. For this situation with two unknowns the A

matrix is N by 2. Its form for the lemma is

[~ - h b,
Anel T % "NEL T T

A= | 3N+ T %2 Pn+1 " Py .
AN+ T AN Pn+1 7 PN

14




We now compute B = ATWA. First,

g1[("‘N+1 -ay)s - § NN an)] gl'EbN+1 - byls -;'gn(bN-l;l B bn)]

WA =

[ R

gN[(aN+1 ) ?N)S"}ﬁ: En@Nyr ~ an)] gN[(bN+1 - by's '; EnPypy - .bn)]

All the sums in WA are fr@ 1 tq; N; but, since aN+1 - aN+1 = 0 and bN+1 - bN+1 = 0, we s:an ‘
take all sums from 1 to N+1 without affecting the result. Consider the element in the mth row and .’

first column of WA, |

Nl

gm (aN+1 - am>s A :gn(aN+1 - an) - gm aN+1S'- ams - aN+1 Z nn
nsl ) )

Now, define ’ S PR

‘ N+1 ' N+1

h, =Z ga and h =f gb - | (14)
n=1 n=1

We note that ha and h.b, like s, are independent of the common index. We now get V

~
g,hy - 3ys) gyl - Bbys)
WA - rl—x
s

gN(h:_1 - aNs) gN(hb - sz)

The matrix B is seen to be .

2.4 ANy~ a g, - ans)' Z (ANe1 ~ 8'n)gn(h'b - bys) 4
1 n n
B~ -
s
Zn: (bypq - D)€ (0, -3 8) Zn: (byryy = P8,y - B,S)

These sums can be taken from 1 to N+1,

15
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We denote the elements of B as

Then,

2
By T [aN+1(ha Z €y = 8 Z gna'n) B haz €n%n * SZ gnan] /s

2 2
[aN-bl(hus - shn) - hu. + SZ gnanJ /s

By similar operations on the elements of B we conclude that

|-
N--1 9 5
'311 = Z En®n ~ ha/5 ’

n=1
N+1
312 = Byt gnanbn - hahb Is (15)
n=1
N+1 5
Bao =E €y "y /s
n=1

Thus the elements of B do not depend on the choice of common TOA, and the lemma is proved.

If A were an N-by-3 matrix; {.e., If three coordinates of the object were unknown, then
N+1 -, n=1,2,..., N, and B would
be 3 by 3. However, the new elements of B-—Bl3 = 331, 533 = 333, and 533--ce_m be evaluated

the third column would contain terms of the form c¢

merely by replacing a or b by ¢ in Eqs, (15), In general, therefore, the lemma is true and

Eqgs. (15) are valid for any number of unknowns.

Also, proof of the lemma did not use the particular forms of a and bn specified in the

TDOA method. Thus the lemma is true for any least-squares scheme that minimizes
T .
v=(R-D)WR-D) |,

where R is the vector of pairs of function differences and D is the vector of independent data

differences. All that is required is that R satisfy the usual continuity and differentiability



criteria, Of course, we must have W = C-1 , and the lemma has been proved true only if the

individual data errors are mutually independent.

Proof of Proposition 1

We are now ready to prove Proposition 1. As before we will use only two, unknowns, say x

and y, and then show that Proposition 1 is valid for any number of unknowns,

Suppose there are data from three sensors. The proposition is true from the lemma since
two independent differences using three data values must have one data value in common. Now,
assume the proposition is true for N > 3. We obtain data from an N+1 sensor and introduce the

additional data difference vp(tN+ - tk)' k=1, 2, ..., Ninto the computation of B, Clearly

1
the new set of N differences rs- independent and nonredundant. If the value of B is now inde-
pendent of the choice of k, then the proposition is true for all N by induction.

Since the proposition is assumed true for N sensors, we may without loss of generality take
the original N+1 differences with the data from one sensor as a common element. Let the common
data element be the Nth one. If k = N, the proposition is true from the lemma. Thus we restrict

k=1, 2, ..., N-1.

Thé matrices C and W with N data values are givén by.Egs. (11) and- (13), respectively,

with N replaced by N-1, With the additional data we must evaluate a new B matrix, viz,.

B - ATWA
where
aN T % PN Py
~ A .
A= [—A_;] “ 13N T qN-1 by T PN-1]
E‘N+1 *k Prer TPk
w=c1, ~ _
and
C : C12
"~ 1 .
C 'T" R
1
Ci2 .+ S22

17
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with

Q
1
——
(=4
-
(=)
.
<
=~
-
o
o
e

12
C

22 = Un+1 T %

~

The only nonzero entry in C12 is in the kth column. The matrices C and W are N by N,

C., isN-1by 1, and A is N by 2.

12
~ ~
Since C is symmetiric, W is symmetric. We have
1
W11 ' W12
W = WT . ,
12 22

and by standard matrix operations,

T T T, T T, »
B =A WllA +A"W Ak + Ak W12A + AkAkWZZ (16)

12
=Q,*Q,+Q, + Q
1 2 2 3’
where Eq. (16) defines the Qi' Note that Ol’ Q2 + Q’_f, and Q3 are oymmecetric,

Denote by the superscript k that part of a matrix that depends on k. For example, we can
write R = R' + Bk. The Bk dcpends uu k and the B' does not. We wish to prove that Bk = 0.
Also, fur cunvenlence in thls section, redefine s, ha’ and hb to be sums from 1 to N--gece Egs.

(12) and (14).
We now apply Theorem 2. The scalar q is

4= HWop = Uy *

where Wy is the kth diagonal element of W. Hence,

- N 2/s
97 Uner T VT VB T Bk

T Upgy TV T VLIS T vy, s,

.

and q is independent of k. The vector WC12 is the kth column of W multiplied by Vi We have



WCg = Vk{—glgk’ ax

= {'g1‘ "8 s v v

The first term of Eq. (16) is

T

‘ T ‘ T
Q, = ATWA+AT(WC )WC ) Ala .

gl+s
c gt Sg

_gk+$, . .

AL

o ’gN-l}/s .

. T .
Denoting (WCIZ)(WCIZ) /q as Qi + Qi’ we can write

2
€1
Q -
I
0
Q" :
1 —gl
0.

that is, the only nonzero elements of Q'i are in its Eth' row and kth column.

"A =
A QlA

© - By8N-1
2
/s"q ,

0 ... - .. 0
g
0 . ~gq 0
“8g s-2g, © "EBN-1
0 P —gN_i « o 0

-a )2
N "k

- 2(aN-ak) 2 gn(aN- an)

s{a

S(aN-ak)(bN-b)
laga )y g (by-b)

B (bN_bk)E gylayay)

Now,

/sq .

- 19
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The sums in the expression above are over n and may be taken from 1 to N. Since A, W, and

Q! do not depend on k, as well as certain terms in ATQ"A,
1 P 1

2
say - 2haak sakbk - hbak - habk
= /sq

2
sbk - 2h'bbk

=

Taking the next term of Eq. (16),

' B ' -
2sa.N_‘_1ak ZSak : sbN+1ak + SaN+1bk
]

. - +2haak : +akh.b + pkha = 2sakbk
Q+Q," = [~~~ " """~~~ T T T T T s s /sq .
t

. 2Slelbk 2sbk
]
+2hbbk
Finally,
. . -a)? sa,.. ~a )b, . -b)
SN+ T %k N+1 ~ 2PN T Pk )
N . ) sq
QB 2 . ’
... S(bN+1 - bk)
and
sa2-2sa a sa,b -8 b, - sb a
« k N+1%K k'k ~ ¥N+1"k N+1%k
Q3 = /sq
2
e . sbk - 2SbN+1bk

/sq

(17)

(18)

(19)



Combining Eqs. (17), (18), and (19) gives
k k k kT  _k
Thus Proposition 1 is true for two unknowns. However, because a and b appear only in pairs
and B is symmetric, the result is valid if either a or b is replaced by c, etc. Thus the propo-

sition is true for any number of unknowns,

Again we note that the result does not depend on the particular form of a and b and there-

fore it is valid for any kind of least-squares data difference scheme, with the usual caveats.

Object Location by TOA

Instead of locating the object by the TDOA method, we can introduce an additional unknown

u and use the TOA data directly, without differences. Suppose the pulse is initiated at the object -

at the unknown time to' Then u = vpto. The new vector of unknowns is
P = {x, y, z, u} .

Let there be TOA data from N sensors. ‘ The scalar to be minimized is

v = (R -D)T
u u

W (R -D) ,
u u u u

where R and D are the N-dimensional vectors

+u, ..., T +u},

Ru = {r +u, r N

1 2

D = vP{tl, tyr o v e tN} )

With the N by 4 matrix

A
u

dR _/aP
u' u
the object is located by the iteration

pP*l _ pP +(ApTW Ap“)-lApTW (Rp -D ) )
u u u u u u u u

21




If the errors in the tn are independent gaussian random variables with zero means, the

maximum-likelihood, minimum-variance weighting matrix is simply

where g, = 1/:;n and v is the variance of the error in thn' Using this Wu’ the covariance

. . : . -1
matrix of the location errors and the error in u is Puc = B“1 , where, as usual

B -ATW A,
u u u u

Comparison of TOA Errors and TDOA Errors
The second important result in this paper is now proved.

Proposition 2

If the maximum -likelihood, minimum-variance weighting matrix is used, the covariance

matrix of the object location errors is the same whether TOA or TDOA methods are used.

Again, Proposition 2 is proved only if the TOA errors are independent random variables,

with zero mean; but it is likely to be valid if the TOA errors are correlated,
We provc the proposition for the general case of M unknowns and N > M TOA dala inea-
surements for N sensors. Let there be M "position" unknowns U, m o= 1,2,..., M, and

Wiipd . " . - . . _
let the "initial time" unknown be Uprer? i.e,, u Uprer® The M + 1 dimensional vector of un

knowns is

P = {ul, uz, PPN "M’ ulV[+1} .

With TOA-type data from N >M sensors, we wish to satisfy the N equations

rn(ul,...,uM)+uM+1~dn-'0, n=,2...,N

in the least-squares sense, where dn is proportional to the data from the nth sensor and r. is a

function that models dn' Let

A = (amn); o = d(rn + uM+1)/dum. m=1, ..., M+,

22



. . 2 . - = . = : ) = t
By analogy with the previous material we would use Uy X, uy =Y, etc., dn "’p.tn uM+1, vp o

and o= aLe ., bn , etc. As usual let the dn errors be independent random variables with

zero mean and inverse variance g,

Now, define

n=1 n=1

] ) >,
s =E €n’ hm =Z €n%m’ and fij : €n 'anj ‘
n=1

For example, h1 = ha' f12 = fab,,etc.

The location error covariance matrix Pc for the TDOA system is M by M, and the Puc

for the TOA method is M+1 .by M+1, We now prove that the upper left M-by-M matrix of
-1 1 .

B~ = P __ isidenticalto B~ = P .
u . uc i c
Let the elements of B be Bij' Then, from Eq. (15),
B. =1f.. -hh/s .
ij ij i
!

If

F = (f) and H ={h1, By oo hM} . , o
where F is an M-by-M matrix, then B is clearly of the form

B = F-HHT/S

-1 -1 T -1

gl rl oo lmTr s
-F s P lgg T Ys- 5P ) , ’ (20)
Now consider Bu' . We get
B 1 B 1
u11 . u12 F . H
B = - = == - - - = - =1l = -
u g7 ' B aT
Y2« Yoz '

23 .
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From Theorem 2,

q-= s-HF'H

and

-1 -1

Fla @l @r?!
11

os)
"

)aq

-1

Flaip!

HHYF (s - HT

Flm . (21) |

Equation (20) is identical to Eq. (21) and the proof is complete.

Conclusions

it has been shown that the covariance matrix of object location errors is identical for TOA
and all TDOA schemes if the maximum-likelihood, minimum-variance weighting matrix is used.
This weighting is optimal if the TOA errors are jointly gaussian random variables. This descrip-
tion of the data errors is not generally restrictive. The TOA, TDOA identity has been proved
only if the data errors are independent random variables, but we feel it is likely valid if the errors

are correlated. In most applications these errors are not correlated.

The optimal weighting matrix is the inverse of the covariance matrix of the data errors in
the TOA case and the inverse of the covariance of the data error differences in the TDOA case.
In any application the absolute values of the weighting matrix need not be known, but only their

relative values are required for optimality.

At least in the situation where the data errors are taken as independent random variables
it seems that a direct TOA scheme is simpler than any TDOA scheme. The TOA .method re-
quires the inversion of a matrix of order one higher than any TDOA method, but the elements of - : _' v
the TOA matrices are easier to compute than those of the TDOA. In the absence of evidence to '

the contrary we generally recommend the TOA method.

We have not examined considerations such as numerical analysis and programming prob-
lems in this report. In any implementation of TOA or TDOA, these kinds of considerations must

be included in the decision as to system methods.
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