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In th i s  r epor t  it is shown that the  covariance m a t r i x  of object location e r r o r s  
is identical f o r  t ime  of a r r i v a l  (TOA) and t ime difference of a r r i v a l  (TDOA) sys tems  
if the  inverse  of the covariance mat r ix  of TOA (TDOA) e r r o r s  is used a s  a weighting 
matr ix .  Also, with th i s  weighting the location e r r o r s  s ta t i s t ics  do not depend on the  
particular difference p a i r s  in  the  TDOA scheme, provided that a complete and non- 
redundant s e t  is used. If the TOA o r  TDOA e r r o r s  a r e  samples  of jointly gaussian 
random variables,  th i s  weighting is optimal in  the  sense  of maximum likelihood and 
minimum variance, Only rolativo valuoo of tho woighting nood bo lcnown f o r  optirnality, 
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LOCATION ERRORS IN TIME OF ARRIVAL (TOA) AND 
TIME DIFFERENCE OF ARRIVAL (TDOA) SYSTEMS 

Introduction 

. . 

An object at an unknown location generates a pulse of energy at an unknown initial time. This 

pulse is radiated and detected by a set of sensors. Each sensor estimates the time of arrival (TOA) 
. . 

of the pulse at the sensor. If the velocity of the pulse from object to  sensor is known and constant, . , . .  . .  

the TOA minus the initial pulse time is proportional to  the distance from object to sensor. If there 

a r e  more  sensors than unknown coordinates of the object, it i s  possible to estimate the unknown , ' . . 

position and the initial time by least-squares techniques. 

Since the initial time itself is not generally of interest, it is common to remove it by taking 

time differences of arrival (TDOA) and solving a system of equations of order one less  than with 

TOA in the least-squares sense. 

In general, the TOA data contain e r rors ;  and hence any data reduction scheme produces 

estimates of the object location that also contain e r rors .  Since the e r r o r s  in the TOA estimates 

a r e  not generally the same statistically, it is usually advantageous to  use a weighting scheme to 

reduce object location e r rors .  

In particular, if the data e r ro r s  a r e  jojntly gaussian random variables with zero mean, which 

is not a generally restrictive assumption, the maximum-likelihood, minimum-variance estimate of 

the location e r ro r s  is obtained if the weighting matrix i s  the inverse of the covariance matrix of the 

TOA e r r o r s  or of the TDOA er rors ,  if such a scheme i s  used. 

In this report we prove that if the aforementioned weighting matrix i s  used, the object loca- 

tion e r r o r  statistics are, identical for both TOA and TDOA schemes. Also, these statistics a r e  the 

same no matter what data difference pairs a r e  chosen for the TDOA method, provided that an inde- 

pendent, nonredundant set of differences is used. 

The statement above i s  actually proved only for the very typical case when the TOA e r ro r s  

a r e  independent random variables, but we feel it i s  valid for correlated TOA er rors .  

. While our interest here is in locating an object by TOA or  TDOA, the statement is just a s  

valid for estimating any unknowns from data when a data model function--in our case, distance-- 

is compared to data in the least-squares. sense. All that is required is that the model function be 

continuous and differentiable in the unknowns. 



In the following material we use capital le t ters  to  denote matrices or  vectors and lower case 

let ters  for. scalars.  All vectors a r e  column vectors unless expressed a s  a transpose. The 

superscript T means lltranspose." 

Object Location by TDOA 

It is desired to  estimate the location of an object. At some unknown time a pulse of energy 

is generated at the object. This pulse radiates and is detected by a set of sensors at fixed, known 

locations. We estimate a TOA of the pulse at each sensor. By operating on the TDOA between 

pa i rs  of sensors, we estimate the object position. 

Let the (unknown) object position be 

Let there be N+l sensors ,  and let the known position of the $h sensor be 

The distance from object to  the nth sensor is 

If tI, is the TOA at the nth sensor and v i s  the (constant) velnc!ty of the pulse, we must find P 
P 

GO a o  t;u uutiafy the EJ equallurls 

If all three coordinates of P a r e  unknown, at least four sensors a r e  required. If any two cnordi- 

11a1es are unknown, a t  least three sensors a r e  needed, etc. 

We assume that whatever pairings of data a r e  used in Eq. (I) ,  exactly N nonredundant, inde- 

pendent time differences a r e  employed. These conditions a r e  determined hy examining an N by 

N+1 test  matrix. Let all  elements of the test matrix be zero except for  +1 in the mth row and ml  

column and - 1  in the mth row and m a  column. If the test matrix has rank N, the differences a r e  

independent and nonredundant. 



In general there a r e  more data differences than unknowns, and Eqs. (1) a r e  solved in the 

least-squares sense. It is convenient to  use ~ a t r i x  notation. Let R and D be N-dimensional 

column vectors 

. . . . 
If W i s  an N-by-N symmetric weighting matrix, we wish to find P so  a s  to minimize the scalar . . 

Minimization of v is usually done by Newton iteration. Let A be the N-by-3 matrix 

where 

. . 
Of course, A is N by 2 if there a re  only two unknowns, etc. Lf pP is the pth estimate of P, and A' . . - 

. . .  
and RP a r e  A and R, respectively, evaluated at P = pP, the iteration is . . 

. ... . :. 

. .  . 
If the data e r ro r s  a r e  ttsmallu and the system i s  "'well c o n d i t i ~ n e d , ~ ~  convergence i s  rapid , . .  

. . , '.' . . 
. . .  

and the location e r r o r s  a r e  small. The condition of the system is determined by the condition of ., . . . . . , . . 
. . . . . . 

the ma t r ix  Ap'WAp. Note that this matrix depends only on the system geometry and the choice 
. 



of W, not on the data o r  their e r ro r s .  The iteration i s  usually terminated after a fixed number of 

i terates  or  when the change i r ~  location estimates becomes less  than some preassigned value. 

Some discussion of location estimate e r ro r s  is in Ref. 1. 

Location Er ro r  Statistics 

It i s  of interest to  estimate the e r ro r s  in the object location for any set  of object and sensor 

ge-etry.. If the data e r rors ;  i. e . ,  the TOA e r ro r s ,  a r e  llsmallll and the system i s  "well ' >  

conditioned." then it can be shown that the object location e r ro r s  depend linearly on the data 

errors . '  Let P be the e r r o r s  in the estimates of the object location, and let De be the data 
e 

e r ro r s .  Fo r  TDOA, De i s  the vect& of data e r ro r  differences; P U L  TOA it io the vector of the 

data e r r o r s  themselves. We get 

where 

T 
B = A  W A .  

Let E[. 1 denote expected value. In general we may assume that E[D 1 = 0 e 
and hence 

If C i s  the covariance ma.trix 6f the data erroi-s, 

then the covariance matrix of the position e r r o r s  is 

If the data e r r o r s  a r e  jointly gaussiail randum val,iablcs, thon an optim~uv nhnice of W i s  

This choice yields the maximum-likelihood, minimum-variance estimate of the object location. 
2 

In this case Eq. (7) simplifies to 



The gaussian assumption is reasonable for most systems. If the data e r ro r s  a r e  jointly 

gaussian, then, from Eq. (4) the location e r ro r s  a r e  also jointly gaussian and<all their statistics 

a r e  known from their mean and covariances. The results presented thus fa r ,  and indeed all re-  

sults in this paper, a r e  valid whether o r  not the data e r ro r s  a r e  gaussian. The gaussian property 

assures only that the choice W = C-' is optimal in the maximum-likelihood, minimum-variance 

sense. 

Choice of Data Differences 

. . '  

We now arr ive at the f i rs t  of the two salient points of this report. We prove the following: .. ' 

. . . .  . . 

Proposition 1 
. . 

If the TOA data e r ro r s  a r e  independent random variables with zero means and the weighting 

matrix is chosen a s  the inverse of the covar ian~e  of the data difference e r ro r s ,  then the covariance 

matrix of the position e r ro r s  is independent of the particular choice of difference pairs--provided, 

of course, that a set of independent, nonredundant differences i s  used. 

It i s  likely that the proposition i s  also t rue if the TOA e r ro r s  a r e  correlated, but the proof 

of this statement i s  too tedious to pursue here. The independence of TOA e r ro r s  is usually valid 

since the sensors a r e  typically separated physiczlly and subject to independent noise processes. 

The proof i s  quite lengthy and i s  broken into two sections. F i r s t ,  an important lemma i s  

proved that states that Proposition 1 i s  valid if any one TOA appears in all differences; that i s ,  

the value of P does not depend on which TOA i s  common to all  differences. 'the main proof then 
C 

follows by induction. We show that the proposition is true for thrcc sensors; we then assume it 

true for N sensors. Now, if an additional sensor is introduced, we show that PC does not depend 

on with which of the original N sensors this new TOA data i s  paired. Hence, the proposition is 

true for any number of sensors and any set of pairings. 

Before proceeding, we introduce some notation and present two important theorems. 

Let the TOA e r ro r  from the nth sensor be ten. Then 

The TOA e r ro r  variance i s  



We assume that v n  > 0 fo r  a l l  n and define 

Theorem 1: (Ref. 3 )  -- If G-l exists and 

where U and V a r e  column vectors ,  then 

6 

Theorem 2: (Ref. 4) -- Suppose the matr ix  C is composed of submatrices of the 

indicated o rders  

- 1 
and C and Q = C22 - C21 (WC12) a r e  nonsingular, where C = W. Then 



A 

We shall use Theorem 2 only with M = 1 and C symmetric. In our case Q i s  a scalar,  
T 

C21 = Gal, and C and W a re  symmetric. We get 

Proof of the Lemma 

Lemma: Tf one sensor appears i r ~  all  differences, then the values of B and hence of its 

inverse P does not depend on which sensor i s  the common one--provided the TOA e r ro r s  a re  
C - 1 independent random variables and W = C . 

Suppose there a re  N+l sensors. Choose the (N+l)  - st  sensor a s  the common one, The N 

by N covariance matrix of the data difference e r ro r s  is : . . 

This matrix is clearly af the form of Theorem 1, with 

and 



and 

then = l / s ~ ~ + ~  . Note that  the value of s does  not depend on which TOA was chosen a s  the 

common one. Now, f rom Theorem 1, the optimum weighting mat r ix  is 
. . 

F o r  simplicity in the  exposition we will le t  the  z coordinate of the object be known. It will 

be  shown that  this is not a res t r ic t ive  assumption. F o r  th i s  situation with two unknowns the  A 

m a t r i x  is N by 2. I t s  fo rm fo r  the l emma is 



,?  . !. 

T 
We now compute B = A WA. F i r s t ,  

. . 
All the sums  in  WA a r e  f rom 1 t o  N; but, since aN+l - a = 0 and bN+l - b N + l = O , w e c a n  . .  

N+ 1 . . : . . 
take a l l  sums  f rom 1 t o  N i l  with,out affecting the result .  Consider the element i n  the  mth  r& and ,.' ' '. ',, . . 

. . . . ? . 
f i r s t  column of WA. 

. . . . 
. . 

Now, define 

N+ 1 N+ 1 

h = gnan and 4 = gnbn . 
a L .  

n= 1 n= 1 

We note that ha and h,, like s, a r e  independent of the common index. We now get 

The  mat r ix  B is seen t o  be  
i 

These  sums can be taker1  iron^ 1 t o  N+1. 



We denote the elements of B a s  

Then, 

By similar operations on the elements of B we conclude that 

Thus the elements of B do not depend on the choice of common TOA, and the lemma is proved. 

If A were an N-by-3 matrix; i. e., if three coordinates of the object were unknown, then 

the third column would contain t e rms  of the form c ~ + ~  - cn , n = 1, 2, . . . , N, and B would 

be 3 by 3. However, the new elements of B--filg = pgl ,  = p33, and pZ3--can be evaluated 

merely by replacing a or  b by c in Eqs. (15). In general, therefore, the lemma is true and 

Eqs. (15) a r e  valid for any number of unknowns. 

Also, proof of the lemma did not use the particular forms of an and bn specified in the 

TDOA method. Thus the lemma is true for any least-squares scheme that minimizes 

where R is the vector of pairs  of function differences and D i s  the vector of independent data 

differences. A l l  that i s  required is that R satisfy the usual continuity and differentiability 



- 1 
cr i ter ia .  Of course ,  we must  have W = C , and the  l emma h a s  been proved t r u e  only if the 

individual data e r r o r s  a r e  mutually independent. 

Proof of Proposit ion 1 

We a r e  now ready t o  prove Proposition 1. A s  before we will use  only two.unknowns, say x 

and y,  and then show that Proposition 1 is valid fo r  any number of unknowns. 

Suppose the re  a r e  data f rom th ree  sensors .  The  proposition is t r u e  f rom the l emma since 

two independent differences using three  data values m u s t  have one data value in  common. Now, 

assume  the proposition is t r u e  f o r  N > 3. We obtain data f rom an  N+l sensor  and introduce the 

additional data difference - tk),  k = 1, 2, . . . , N into the computation of B. Clearly 

the  new se t  of N differences rs. independent and nonredundant. If the value of B is now inde- 

pendent of the choice of k, then the proposition is t r u e  f o r  a l l  N by induction. 

Since the  proposition i s  assumed t r u e  f o r  N sensors ,  we m a y  without l o s s  of generality take 

the original  N+1 differences with the data f rom one sensor  as a common element. Let the common 

data element be  the  Nth one. If k = N, the proposition is t r u e  f rom the lemma. Thus we res t r i c t  - 
k = l ,  2. . . . , N-1. 

The  m a t r i c e s  C and W with N data values a r e  given by Eqs. (11) a n d  (13), resp'ectively, ' 

with N replaced by N-1. With the additional data we mus t  evaluate a new B mat r ix ,  viz,. 

where 

and 



with 

. . 
The only nonzero entry in C is in the kth column. The matrices 6 and * a re  N by N, 12 .. ' 

A . . 
C12 i s  N-1 by 1, and A is N by 2. , . .  . . . .  

. . . .  

. . . . . . 

.,' . 
A . . A 

Since C is symmetric, W is  symmetric. We have . ... . .  . 

and by standard matrix operations, 

T 
where Eq. (16) defines the Qi. Note that Q1, Q, + Q,,  and Q are ojmmctric. 3 

Denote by the superscript k  that part of a matrix that depends on k .  For example, we can 
k  k  

write R = Bt + B . Tho E depends 011 k arld the R 1  does not. We wish to prove that B~ = 0. 

Also. cu~lve~llence in enls section, redefine s, h and hb to  be sums from 1 to N--sce Eqs. a' 
(12) and (14). 

We now apply Theorem 2. The scalar q i s  . . 
, . 

where w is the kth diagonal element of W. Hence, , .  , 
k k  - . . 

. , . . 

. . 
' .  . = VN+l + V , ' -  V k +  11s = vN+l + 11s , . . 

. . . . 

. . .. . . . .  . .  . . . 
and q is independent of k .  The vector WC12 i s  the kth column of W multiplied by v k .  We have : - 



T h e  f i r s t  t e r m  of Eq. (16) is 

T 
Denoting (WC12)(WC12) ./q a s  Qi + Q; we can wr i t e  

. , 
that  is, the  only nonzero e lements  if QQ11 a r e  in i t s  k th '  row and kth column. Now, 

1 - 



T h e  s u m s  in the  express ion above a r e  over n and m a y  be  taken f rom 1 t o  N. Since A, W, and 
T 

Q f  do not depend on k, a s  well  a s  cer ta in  ter.111~ in A Q I A ,  
1 

Taking the  next t e r m  of Eq. (16). 

A s  usua l  the  sums  a r e  on n f r o m  1 t o  N. Thus,  

Finally, 

and 



Combining Eqs. (17). (18), and (19) gives 

Thus Proposition 1 is true for two unknowns. However, because a and b appear only in pairs 

and B i s  symmetric, the result i s  valid if either a o r  b is replaced by c ,  etc. Thus the propo- 

sition i s  t rue for any number of unknowns. 

Again we note that the result does not depend on the particular form of a and b and there- 

fore it i s  valid for any kind of least-squares data difference scheme, with the usual caveats. 

Object Location by TOA 

Instead of locating the object by the TDOA method, we can introduce an additional unknown 

u and use the TOA data directly, without differences. Suppose the pulse i s  initiated at the object 

at the unknown time t Then u = v t The new vector of unknowns is 
0' P 0' 

Let there be TOA data from N sensors. The scalar to be minimized i s  

where R and DU a r e  the N-dimensional vectors u 

With the N by 4 matrix 

the object i s  located by the iteration 



~f the e r r o r s  in the tn a r e  independent gaussian random variables with zero means, the 

maximum-likelihood, minimum-variance weighting ma.trix i s  simply 

. . . . .. . '  . . 

. . 
where gn = 1 / v  and v  i s  the variance of the e r ro r  in v t . Using this W the covariance . . 

n n P n- u' . . 
matrix of the location e r r o r s  and the e r ro r  in u i s  Puc = By1, where, a s  usual ' . . . . .  

Comparison of TOA Er ro r s  and TDOA Er ro r s  

The second important result in this paper i s  now proved. 

Proposition 2 

If the maximum-likelihood, minimum-variance weighting matrix is used, the covariance 

matr ix of the object location e r r o r s  is the same whether TOA or TDOA methods a r e  used. 

Again, Proposition 2 is proved only if the TOA e r ro r s  a r e  independent random variables, 

with zero  mean; but it is likely to be valid if the TOA e r ro r s  a r e  correlated. 

W e  provc the proposition f o r  the general case of M unknowrls slid N 2 M TOA tlu.l.ii Itica- 

surements for N sensors. Let there be M ftpositionn unknowns u m = 1,  2, . . . , M ,  and m ' 
le t  the "initial t imeff unknown be u ~ + ~ ;  i. e . ,  u = The M + 1 dimensional vector of un- 

knowns i s  

With TOA-type data from N >M sensors, we wish to satisfy the .N equations 

in the least-squares sense, where d i s  proportional to the data from the nth sensor and rn i s  a 
n 

function that models d Let 
n' 



By analogy with the previous material we would use u = x, u2 = y, etc.. d = v t = v  t 
1 n p n' U ~ + l  p 0' 

and a nl = a n,"n2 = b n s  etc. As usual let the dn e r ro r s  be independent random variables with 

zero mean and inverse variance g n' 

Now, define 

N N 
s =x gn. hm = gna-, and f .  lj = f5 g n ~ a n j  . 

n= 1 n= 1 n= 1 

For  example, hl = h a,  f12 = fab, .e tc .  

The location e r ro r  covariance matrix PC for the TDOA system is M by M, and the Puc 

for the TOA method i s  M+l .by M+1. We now prove that the upper left M-by-M matrix of 
B-l - i s  identical to  B-I  = PC . 

u - Puc 

Let the elements of l3 be B . . .  Then, from Eq. (15). 
'3 

8.. = f. .  - h . h . 1 ~  . 
'! . '3 'J 1 J 

F = (f..) and H = . . . .  . 
13 

where F is an M-by-M matrix, then B is clearly of the form 

T B = F - H H  /s . 

This form confnrms to that of Theorem 1 and thus 

Now consider B . . We get 
u 



From Theorem 2. 

T -1 
q = s - H  F H , 

and 

Equation (20) i s  identical to Eq. (21) and the proof i s  complete. 

Conclusions . . 

It has been shown that the covariance matrix of object location e r ro r s  i s  identical for TOA 

and all  TDOA schemes if the maximum-likelihood, minimum-variance weighting matrix is used. 

This weighting i s  optimal if the TOA e r ro r s  a r e  jointly gaussian random variables. This descrip- 

tion of the data e r ro r s  i s  not generally restrictive. The TOA, TDOA identity has  been proved 

only if the data e r ro r s  a re  independent random variables, but we feel it i s  likely valid if the e r ro r s  

a re  correlated. In most applications these e r ro r s  a re  not correlated. 

The optimal weighting matrix i s  the inverse nf t h ~  covariance matrix of the data crroro in 

the TOA case and the inverse of the covariance of the data e r ro r  differences in the TDOA case. . , . . . .  . 
. . ' .  In any application the absolute values of the weighting matrix need not be known, but only their . . . : ' .  

. . .  . . . . . . . .  relative values a re  required for optimality. . . . . . . .  
. . 

. . . . _ / .  . . . .  ' 

. . 
At least in the situation where the data e r ro r s  a re  taken a s  independent rand'& variables 

" . . 

it seems that a direct TOA scheme is simpler than any TDOA scheme. The TOA method re-  . . 
quires the inversion of a matrix of order one higher than any TDOA method, but the elements of ' . '1. 

. . 
.,. ( .. . . . . 

the TOA matrices a r e  easier to compute than those of the TDOA. In the absence of evidence to . . ,. . .:. , ,:, .. 

the contrary we generally recommend the TOA method. 
. . . . 

: .# .. ' 

I . : :  : . . ,. . . 
We have not examined considerations such a s  numerical analysis and p r o p r w l n g  grob- . . - . 8. . . 

lems in this report. In any implementation of TOA or TDOA, these kinds of considerations must 

be included in the decision a s  to system methods. 
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2600 L ,  E .  Hollingsworth 
2610 R. J. Det ry  
2613 M. R .  Scott 
2613 E. A. Aronson (10) 
2630 E .  K. Montoya 
2640 J. L .  T i schhause r  
2644 A. R.  Iacolet t i  
5122 R .  J. Harison 
8150 D. E .  Gregson 
8410 R.  Baroody 
9400 H. E.  Lenander  
9410 R. L .  Br in  
9411 E .  White 
9420 T. L. P a c e  
9422 G. L. West  
9424 F. D. Gu t i e r r ez  
9426 J. L. Roge r s  
9470 S. A .  Moore  
9471 R.  D. Bentley 
9473 J. D. P a t r i c k  
!W3n T. S. C'huroh 
9483 W .  V .  Hereford  
9520 R.  H. Schultz 
8266, E. A. Aas  
3141 C. A. Pepmue l l e r  (Actg) (5) 
3151 W. L.  Garne r  (3) 

F o r :  ERDAITIC (Unlimited Release)  
ERDAJTIC (25) 

(R. P. Campbell ,  3172-3) 




