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CRITICAL HUMAN ORGAN RADIATION DOSIMETRY FOR THE 

ACTIVE BONE MARRO\~* 

• .. ' 

Abstract 

Critical Human Q_rgan· Radiation Q_osimetry (CHORD) probability 

density functions for A-P, P-A, bilateral, rotational, and isotropic 

incidence, plus simple ·depth-dose data, permit· the rapid estimation of 

the radiation insult to the active red bone marrow system of .the·. ICRP 

Referenr.e Man. The CHORD concept follows the variati~ns in the 

microscopic processes of absorption, attenuation, and scattering on a 

macroscopic level so that it is not necessary to ~ttempt detailed 

calculations for each and every case of interest. Similar techniques 

have been applied to reactor criticality calculati~ns and the general 

logic of the CHORD process can be.applied to any cause-response type 

situation which can be described in terms of variation with distance 

in the medium of interest. Do~es to active bone marrow from exposures 

to photons and neutrons are presented and excellent aqreement was 

found with the few available experimental results. 

Introduction to the CHORD Concept 

When a bioorganism is subjected to a radiation environment, a 

critical organ or rP.gion of greatest risk usually is irradiated non­

uniformly if the linenr dimensions of the critical organ are not small 

or the depth of the critical organ within the bioorganism is not large 

compared with the mean-free pathlengths of the irradiating particles. 

Radiation insult specific analyses are usually based on dose to cells, 

*Research sponsored by the Energy Research and Development Administra­
tion under contract with Union Carbide Corporation. 
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a small target site or cluster of cells within an organ such as the 

mandible, or a center such as the central nervous, or active bone 

marrow system. For some effects, cells or sensitive sites within 

cells may not be irradiated uniformly. because of discrete energy loss 

events and microdosimetric considerations (Rossi, 1975) may be 

desirable. On a more macroscopic scale, chronic effects such as bone 

sarcomas or evP.n leukemia may, in sonr12 cases, be d'ir'er:tly related to 

highly localited exposures such as usually encountered 1n radiotherapy 

of tumors and the maximum absorbed dose at a particular site (mass of. 

a gram as opposed to an intercellular .site) may be more ·meaningful 

than the mean absorbed dose to the complete active marrow system 

(Hilson and Carruthers, 1962; A. R. Jones, 1975), Detailed 

distribution of photon dose to specific active marrow regions for A-P, 

P-A, rotational, and side (lateral) incidence have been published and. 

should be readily applied to many situations· of interest (Jones et 

~·, 1973; Clifford and facey; 1970). Fur radiation protectiorJ and 

risk analyses from acute effects and those chronic effects where risk 

is thought to be proportional to the insult to the system such as 

usuany assumed for leukenr'ia, it i~ often not possible or tle~ii"able to 

establish insult-response type correlatiorrs on a microsco[)ic level. 

ThP.refore, it becomes necessary to assign a 11 mean 11 insult or risk to 

a non-uniformly irradiated 11 Critical organ 11
• 

One approach to the dosimetry of a non-uniformly irradiated 

critical organ, such as the red bone marrow system, is to use a 

probability density distribution of length, referred to as a CHORD 

length distribution. Any specific CHORD or p {.t} d.t distribution is 
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obtained by assuming that the critical organ is simply a• .volume of. 

constant density, and ·for each d.ifferential unit of mass dm, chosen by 

Monte.· Carlo techniques~ the minimum distance l to th~ closest. 

irradiated air-tissue interface is uniquely determined. Thi.s process .. 

is continued until p {l} dl is well known statistically. Chord 

usually implies a straight line through two points on the surface, 

e.g., the skin; however, in thi~ paper CHORD is an acronym.derived 

from ~ritical ~uman ~rgan ~adiation ~osimetry and represents only a. 

specific portion of a 11 true Chord 11
• The CHORD concept is .illustrated 

in Figure 1 and the CHORD nr p{.e} d.e.. distrlbu_t1on. provides 

11 Weighting 11 factors for an integration over a specific insult such as 

a 11 multicollision 11 depth-dose curve for the source geometry of 

·interest. 

CHORD Applications to Red Bone Marrow. 

Figure 2 illustrates the distribution of the active red bone 

marrow in the normal adult and the corresponding analog for our Monte 

Carlo transpqrt code. In the adul.t reference man (ICRP, 1975) there 

are 1500 grams of·active red marrow and 1500 grams of yellow ·marrow 

which are predominately fat cells. Inactive yellow marrow may be 

transformed quickly into active marrow by a stimulus such as· bleeding: 

or infection; yellow marrow in bone shafts is known. to contain some 

active cells but, in general,· the proportion of active cells in adult 

yellow ma~row is usually considered to be small (S~iers, 1966). Thus, 

for most situations of interest, only the red marrow receives· major 

consideration. 
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The importance of a risk estimate based on radiation damage to 

the active marrow system cannot be overstated as bone marrow damage 

usually will be the major mechanism in radiation death and acute 

radiation sickness ste1m1ing from whole body irr~diation because it 

occurs at much lower levels (Facey, 1968; Wald, 1975) than death or 

incapacitation due to radiation damage of the gut mucosa or the 

central nervous system. For sublethal criticality accident exposure 

levels, levels of inter~st 1n radiation protection- anrl population 

exposure levels, the most de111anding recomrnelludtioi1S of the ICRP (1964) 

relate to the maximum permissible doses to the gonads and the blood~ 

forming organs. In radiation protection, the testes are usually 

considered to be the critical organ of primary interest because of 

their shallow location and because of the difficulty of estimating the 

bone marrow insult; however, if the exposure level 

indivirlu~l to considerable risk, then an estimation of the 

subjects an 

insult to 

his active marrow system could be advantageous for determining what 

medical treatment should be administered promptly (Wald, 1975). 

The dose at a penetration depth of 5 em is often chosen to 

describe the insult to the re<.l bone morrow; however, for photon 

irradiation the "5 em rule" is often in error by a t'actor of twu and 

is expected to be even worse for neutron 1rrad1atioll. This 

·approximation tends to retain popularity in spite of its inaccuracy, 

because the red marrow is distributed widely in the skeleton. The 

skeletal distribution shown in Figure 2 illustrates the fact that, in 

general, no specific depth can be applied for different exposure 
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geometries and different i rradi ati ng particles or· even·· different 

energies of particles .having the same nature. 

For ·internal dos·imetry, ·especially .for radipnucl ides deposited: ·i.n 

or n~ar the ·skeleton, a pretise calculational analog qf the active· 

marrow system requires some postulations about cavity size .variation 

and the distribution of these marrow cavities within the ~keleton. 

However, for most situations of external exposure, the active marrow 

may be assumed to be uniformly deposited in certain regtons of the 

skeleton. This- simplification is possible because for external 

8Xpo5urc; dista11Ct! versus insult (dose) variation is much less than. 

for internal radionuclide deposition where the insult (dose). usually 

varies even more rapidly than inversely with the square of the 

distance. There are two opposing effects that also influence the· 

photon absorbed dose to marrow. These effetts are the increased 

shielding by the bone structure and the enhancement of dose near ·the 

higher atomic number bone tissue (Spiers, 1966; Wilson a~d Carruthers, 

1962). As demonstrated later, the net influence of these opposing 

effects is usually considered to be small for external·. exposure 

although such is not always the case for internal emitters. 

·CHORD Distribution and Marrow Doses 

Figure 3 and Table 1 present CHORD density functions for active 

marrow in the Reference ~1an Phantom (ICI{P, 19/5) for A-P, P-A, 

bilateral, rot~tional, and isotropic t!xposure. Due to the nature of 

the .CHORD concept and the general convexness of the Reference Man 

Phantom, there is no differentiation between 2TI and 4TI CHORD 

distributions; however, depth-dose curves will reflt!ct the different 
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Table !'. CHORD 'p{l}b! Values .for Active .Marrow .in Refer:ence Man~ 

2 (em) Rotational CV A-P cv• P-A CV Bilateral cv Isotropic CV 

0-0.5 .00515 6 .00626 3 .00718 3 0.0138 2 .0231 3 
0.5-1 .0175 3 .0157 2 .0252 1 .0420 1 .Q658 2 

1-2 .0608 2 .0412 2 .0716 1 .115 1 .154 2 
2-3 .0508 3 .0361 2 .0791 1 .114 . 1 .126 2 
3-4 .0465 3 .0340 2 .0850 1 .110 1 .0944 2 
4-5 .0505 3 .0442 2 .107 1 .133 1 .. 152 2 
5-6 .0662 2 :0730 .r .126 . 1 .173 1 .179 2 
6-7 .0744 2 .0782 1 .109 1 .160 .136 2 
7-8 .0705 2 .0748 1 .08()6 .0966 i .0586 .2 
8-9 .0703 2 .0738 1 .0756 1 .0359 2 .0105 6 
9-10 .0603 . 2 .0641 1 .0626 l .00688 4 

10-11 .0482 3 .0522 1 .0440 '2 
11-12 .0380 ~ .0364 l .0207 2 
12-13 .M11 3 .0292 2 .0127 3 
13-14 .0292 3 .0549 1 .0121 3 
14-15 .0282 3 .0658 1 .0119 3 
15-16 .0268 4' .0675 1 .0123 3 
16-17 .0285 3 .0643 .0129 3 
17-18 .0283 3 .0492. .1 .0130 3 
18-19 .0237. 4 .0231. 2 .0154 3 
19-20 .0241 4 .0159 3 .0168 2 
20-21 .0218 4 
21-22 .0169 4 
22-23 .0135 5 
23-24 .00985 6 
24-25 .00866 6 
25-26 .00787 7 
26-27 .00672 7 
27--28 .00699 7 
28-29 .00545 8 
29-30 .00562 8 
30-31 .00385 9 
31-32 .00276 11 
32-33 .00194 13 
33-34 .00170 14 
34-35 .00147 15 
35-36 .00184 14 
36-37 .00126 16 
37-38 .00'164 14 
38-39 .000988 19 
39-40 .000341 32 

•coefficient of variation in percent. 
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exposure qeometries. The peak at 2 em for rotational and isotropic 

exposure is due to the shorter penetration distances to the side ribs 

and upper arm bones while the more important pea~ at about 6 em is 

predominantly from the vertebrae and pelvis. The CHORD distributions 

are influenced strongly by the pelvic region and the thoracic 

vertebrae which contain about 36% and 28%, respectively, of the total 

active marr0\11. In Figure 3, .e. varies to 40 ern for rotational 

exposure because it was dssumed that rotat1onal CHORD dose estimates 

will be obtained from btoad ~~~m d~pth-dOSQ d~t~. For ~il~teral and 

isotropic exposures, .e. varies to 10 em because depth-dose ·data is 

expected to be related to the minimum distance to the closest 

irradiated surface. 

The CHORD distributions from Figure 3 were used in conjunction 

w1th depth-dose curves (see Figure 1) according to 

Dred marrow = ~ D (.e.) • p{t} • ~.e. 
.e. 

because all CHORD distributions wt:n'·e normalized to unity. Photon uuse 

to the active marrow as predicted by Lire CIIORD concQpt ic; shown in 

Figure 4; however, bilateral and rotational results are not shown 

because of close agreement with the results for A-P exposure. 

Figure 5 provides active marrow dose relative to exposure at the 

front of the chest for A-P incidence. Alun Jones• experimental 

results (1964) are included and the mean deviation between the two 

methods is only 6% to 1.25 MeV which is high into the Compton range 
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shown in Figure 6. Figure 6 is intended to serve as a guideline for 

applications of the method of CHORDs to critical regions in or near 

bone tissue. Experimental results ·were not available for higher 

energies. Column 4 in Table 2 represents estimates from the CHORD 

method and column 5 is from our Monte Carlo transport code (Jones, et 

!!., 1973). These values shown in column 5 were calculated at the 

time of the cited reference but have not been published previously in. 

this form. The Monte Carlo results show excellent agreement i~ the 

photoelectric region (see Figure 6) but seem to become increasingly 

inaccurate ir1 the Compton region. This unexpected characteristic of 

the Monte Carlo results defies explanation at this time but the effect 

will be investigated. 

The important practical case of dose to the active marr6~ from 

broad beam incidence on a constantly rotating phantom is· .·shown in 

Figure 7. Experimental results from Wilson and Carruth~rs (1962), 

Alun Jones (1964), and Facey (1968) may have suffered ·slight 

disfiguratians due to replotting, but all appear to _have been 

normalized to the same ordinate at 250 keV. Much concP.rn has been 

expressed (Facey 1968) about whethe~ m~rrow dose per unit exposure 

should incre~se monotonically with energy as· noted by Wilson and 

Carruthers (1962) or whether it should peak at about 100 keV as noted 

by Alun ,Jones (1964). The different shapes have been considered due 

to energy degradation within the ·~hantom and t~e fact· that the 
' ~ . . 

detector systems of A 1 un Jones (196_4) and ·wn son· an·d · Carruthers had 

energy dependences in opposite directions (Facey, 1968). 
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Table 2. Active Marrow Dose Relative to Dose at the Front of 
the Chest. 

- n+ . D DID 
MONTE CARLO++ I-ENERGY (MARROW) (CHEST) CHORD 

50 KEV -. 26* .48 .54 .54 

100 .42 .5t .74 I 68· 

250 1.1 1.47 .75 .47 

660 2.7 . 3.61 .75 .so ....... 
<..n 

1.25 MeV 5.3 6.14 .86 .55 , 

-10 . . 
*10 RADSIFLUENCE PHOTON 

+ . -
T. D. JONES~ HEALTH PHYSICS~ 1973~ VOL. 24~ P. 248. 

++cALCULATED AT TIME oF HEALTH PHYSICS~ vaL. 2'~~ P. 248~ 1973~ BUT 
UNPUBLISHED. 

: . . . . 
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At this time, it seems more probable that the different shapes 

are due primarily to the fact that if one considers the shape of the 

curve describing the ratio of the. photon fluence per unit exposure as 

a function of photon energy (Rad. Health Hbk, 1970; Fair, 1967) then 

the dose response curve must have a shape that peaks about 100 keV 

because the fluence per unit exposure varies more rapidly with energy 

than does the absorbed dose to the marrbw, and secondarily to the fact 

that Wilson and Carruthers assumed that 60%. of the active marrow 

received a dose similar to that measured in the thoraci~ vertebrae and 

40% received a do~e s1m1lar to that measured in the sternum*. The 

CHORD. doses. are tn excellent agreement with ·Facey's results (1968), 

except for ·a consistent 12% overestimation. This deviation is 

attributed to the facts that (a) 13.1% of the active. marrow is in_the 

skull (see F·igure 2) which Facey did not include, (b) experimental 

results from ·Facey appea~ to· have been normalized to other 

experimental result~ at 250 kev, .. (c) experimentally obtained doses to 

the active marrow system necessitate· the assumption of an "effective 

mass center" of each important. marrow region (Clifford and Facey, 

1970)**, and (d). the CHORD estimate. did .not allow for increased 

attenuation by bone tissue shielding the marrow. A.s ·Seen in Figure 6, 

* This method of averaging would tend to underestimate dose at lower 
enerqies because as Facey. (1968) points out, the "pelvis dominates 
dose at higher energies followed by the thoracic vertebrae nnrl sac­
rum down to 30 keV. There the ri~s enter second place and below 30 
keV the ribs dominate." Facey (1968) attempted to resolve difficulties 
in the rotational case and his results are shown in Figure 7. 

**For precision, this "effective mass center" would have to be "weighed" 
proportionally to dose variations in the local volume·of intere~t~ 
however, most experimenters appear to have.used the mass centroid. 
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this effect is not large except for extremely low energies. At the 

low energies, dose to the shallow marrow becomes increasingly 

important, as is shown by the rapid attenuation of dose as a function 

of depth, and must experimental rP.c;ults are expected to be somewhat 

low because of the method of averaging. CHORD dose values were 

normalized per unit exposure according to the Rad. Health Hdbk. 

(1970)*. In spite of factors a 1 b, c, and d,.excellent agreement for 

A-P estimates (A. R. Jones, 1964) and rotat1onal estimates {Facey, 

1968) compared with the method of CHORDs is observed. Figure 4, which· 

shows the dose to the active marrow for exposure to monoenergetic 

photons, suggests that if one is concerned only about protection of . 

his bone marrow, he should not do the instinctive thing and turn his 

back, but instead should face the hazard while backing away. The same 

effect was also observed· by Pi~sch (1968) and holds for the. neutron 

data ·in Table 3 which illustrates dose to the act1ve marrow from 

exposure to monoenergetic neutrons. Some· of the data in Table 3 are 

plotted in Figure 8 for ease of application. Bilateral and rotational 

rt:>c;ults are not shown in Figure 8 because of their close agreement 

with the results for A~P exposure. Absorbed dose from neutron 

produced recoil· ions is· usually characterized by the hydrogen atomic 

dcn~ity. ber.ause about 70% of the absorbed dose is due to int~ractions 

with hydrogen atoms for neutron energies below14 MeV (Auxier, 196e; 

Jones, 1974). Standard soft muscle tissue contains about 10% by 

* Poston•s conversion values of fluence per unit exposure·for the Ref-
erence Man tissue composition are, for all practical purposes, equal 
to those in the Rad. Health Handbook. 



Table 3. Dose to Active Marrow from Neutron Produced Recoil Ions 
a5 Predicted by CHORD Distributions. 

FREE-SPACE*· 
ENERGY KERMA P-A** .A-P. BILATERAL ROTATIONAL ISOTROPIC 

.025 EV 2.1 2.1 1.2 1.4 1.6 .70 
1 KEV 1.0 3.3 2.2 2.1. 2.3 1.1 
10 KEV iO. 4.1 2.6 . 2.6 2.8 l.6 ...... 

•.o 
100 KEV 70. 12. 7.4 9.4 9.2 5.4 
1 MEV 230. 110. 67. 74. 75. 47. 
2.5 MEV 340. 240. 180. 15(}, 190. 84. 
14 MEV 690. 590. 520. 420. 540. 330 . 

... 

* 
X 10-9 ERGS/ (GRAM-FLUENCE NEUTRON.) 

.. 

** X 10-11 RADS/FLUENCE NEUTRON 
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weight hydrogen and has a specific gravity of unity, while bone tissue 

contains about one-half the weight percentage of hydrogen as does 

muscle tissue but has .. about. twice. the specific gravity of muscle .. 

tissue so that the hydrogen atomic density is not very different for. 

the two types of biological tissue. Lung tissue has a specific 

gravity of only about 0.3 and the hydrogen atomic density, therefore," 

is quite .different; however, most. critical organs of interest are 

either distant from the lung tissue or closer to an irradiated surface 

$0 that the penetration distance in grams/cm 2 is less than the other 

port·iull· of the ray of travel that passes through a section of -the 

~ungs. Based on depth-dose curves from ·some of our previous 

calculations (Jones et ~.,.1973), it·is believed that most regions of 

variable specific gravity do not. significantly' inf~uence the 

application of the method of CHORDs, unless. one is specifically 

interested in dose to a volume of lung tissue.· 

Other CHORD Applications 

Figure 9 illustrates a proposed dosimeter or 11 riskmeter 11 in which 

the relative set~ings of the outer two dials select the appropriate 

CHORD distribution and the inner two di~ls ~elect the insult (depth­

dose) curve for the energ~ and·type of'incident radiation. Alun Jones 

(1966) sugg~sted that dosimetry should be approached by match~ng 

variations in dose or risk with scattering, absorption, and 

attenuation; however, the CHORD method seems to permit this same 

precision of matching variability on a simplified macroscopic level. 

Hopefully a schema such as incorporated into Figure 9 would 

render the absorbed dose index, D1, and dose equivalent index, H1, for 
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the standard ICRU 30 em sphere (ICRU, 1971) even less useful than it 

already is,_ because, by using CHORD density functions plus standard 

insult: (multicollision depth-dose) curves, a health physicist or 

medical technician could easily and quickly estimate exposure values 

to any-biological _tissue at risk. It is also becoming apparent that 

significant· calc~lation~l and experimental efforts will soon be 

directed to the estimation of tissue risk due to microwave 

irradiations and the availability of p{l} dl distributions should be 

helpful. 

Conclusions 

In summary, the method of CHORDs permits rapid "critical organ" 

dose estimation and helps to circumvent some of the problems of 

relating organ dose or risk to readings from meters or film badges. 

A personal dosimeter measures exposure at the surface of the chest; 
: :' , ~ 

the measured exposure corresponds neither. to the exposure in free 

space nor to the organ or whole body dose and area dosimeters 

determine only free space exposure (Piesch, 1967). Alun Jones (1966, 

1964) pointed out that a survey meter or personal dosimet~r may. 

overestimate the insult to the active marrow by a factor of 10 or 

underestimate by a factor of 6. In spatially dependent radiation 

fields, or for exposure to broad beam sources having an orientation 

other than A-P, it is usually very difficult to have an accurate risk 

estimate becausP. of normalization tu an inaccurate or shielded reading 

taken at the location of the chest. 
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