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A]_TRAL'T

The design of efficient heat exchangers in which the working fluid changes phase
requires accurate modeling of two-phase fluid flow. The local Navier-Stokes
equations form the basic continuum equations for this flow situation. However, the
local instantaneous model using these equations is intractable for all but the
simplest problems. All the practical models for two-phase flow analysis are based
on equations that have been averaged over control volumes. These models average
out the detailed description within the control volumes and rely on flow regime
maps to determine the distribution of the two phases within a control volume.
Flow regime maps depend on steady state models and probably are not correct for
dynamic models.

Numerical simulations of the averaged two-phase flow models are usually
performed using a two-fluid Eulerian description fbr the two phases. Eulerian
descriptions have the advantage of having simple boundary conditions, but the
disadvantage of introducing numerical diffusion, i.e., _harp interfaces are not
maintained as the flow develops, but are diffused. Lagrangian descriptions have the
advantage of being able to track sharp interfaces without diffusion, but they have
the disadvantage of requiring more complicated boundary conditions.

This paper describes a numerical scheme and attendant computer program,
DISCON2, for the calculation of two-phase flows that does not require the use of
flow regime maps. This model is intermediate between the intractable local
instantaneous and the averaged two-fluid model. This new model uses a
combination of an Eulerian and a Lagrangian representation of the two phases. The
dispersed particles (bubbles or drops] are modeled individually using a large
representative number of particles, each with their own Lagrangian description.
.The continuous phases (liquid or gas) use an Eulerian description. Since the
dispersed phase particles are modeled directly, the model avoids the numerical
diffusion associated with Eulerian models.

Previous work along this line has been done by researchers at LANL using the KIVA
computer program [Amsden, 1989] to model spray-combustion processes, and
researchers at JAYCOR using the BUBBLE computer program [Stuhmiller, 1989] to
model bubbly flow. The KIVA program models drops sprayed into a continuous gas,
and the BUBBLE program models one continuous liquid phase and one discrete
bubble phase. Our computer program, DISCON2, will eventually extend these
models to two continuous phases (liquid and gas) each containing a discrete phase
(bubbles and droplets). However, the present paper describes only the one-
continuous phase, one-discrete phase model, lt solves the Eulerian continuity,
momentum, and energy equations for the liquid in each control volume, and the
Lagrangian mass, momentum, and energy equations for each bubble. No explicit
flow regime map is used in the model. Heat addition from the wall is modeled
using a subcooled boiling model. DISCON2 has been used to simulate the boiling of
liquid water in a flow channel with a constant wall heat flux, and the results of
these calculations are presented.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
emp,loyees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product,or
process disclosed, or represents that its use would riot infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herei_ndo not necessarily state or reflect those of the
United States Government or any agency thereof.
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NOMENCLATURE

a = acceleration w = temperature weighting
factor

A = area
x = distance

B = any combination of
variables t_ = volume fraction

C = coefficient A = increment

Cp = heat capacity e = entropy
F = mass transfer rate

: De = equivalent hydraulic
diameter 0 = interface temperature

f = interface or wall drag p-- density

coefficient Subscripts
F = force particle exerts on

continuous phase a = added mass

g = acceleration of gravity b = bubble

G = mass flow rate d = drag

h = film heat transfer f = frontal

coefficient g = gas

i = enthalpy i = particle index

M = multiplier j = momentum cell index

Nu Nusslet Number k = continuity cell index

P = pressure l = liquid

Pe- Pecklet Number sat = saturation

Q = energy w = wall or wake

r = radius Superscripts
n = time level

Re: Reynolds Number

• St = Stanton Number

t = time

. T = temperature

u = velocity

V = volume
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1. INTRODUCTION

The modeling and numerical simulation of two-phase flow continues to pose
complex and challenging problems. Descriptions based on the local
instantaneous Navier-Stokes equations with internal interfaces are clearly
intractable in aU but the simplest cases, The present state-of-the-art model
in two-phase flow is based upon the averaged two-fluid concept. This paper
describes a model based on a multiphase description that is intermediate
between the numerically intractable local instant description and the fully
averaged two-fluid model, In particular, the dispersed phases are modeled
using Lagrangim_ descriptions that are embedded within the Eulerian
description tbr the continuous phases. This approach: (I) permits the
statistical features of the dispersed phases to be modeled directly, (2)
permits the prediction of flow regime transitions, and (3) avoids the
numerical diffusion associated with Eulerian implementations of multi-field
descriptions. Similar models have previously been successfully used to
model fuel sprays [Dukowicz, 1979, O'Rourke, 1981, O°Rourke, 1987, and
Amsden, 1989]. Their extension to two-phase flow presents additional
challenges related to void fraction coupling between phases and particles
that are no longer small compared to computational cell sizes.

A computer code, DISCON2, has been written to implement this model.
The basic concept of the model is to describe the motion of the

_[- dispersed phases using Lagrangian descriptions. The main motivation is
to be able to predict flow regime transitions and represent a spectra of

. drop and bubble sizes. However, in order for the continuous and
_, discrete phases to interact, it is necessary to relate the two

descriptions. This interaction takes piace through three mechanisms:

_ _ 1. Phase coupllng, because each phase occupies a
-7o"_ volume not available to the other phase (void
"__ fraction coupling)

_._ 2. Interface drag between the phases (momentum
_"_ coupling)
. o •

3. Interface energy and mass transfer (energy
_-- coupling)

." The first mechanism proved the most difficult to implement
numerlcaIIy.

a._ Shown at the left is the top section of a typical subcooled bofllng
DISCON2 s_mulatJon. As is evident irl the graphic, spherical bubbles,

_ elliptical bubbles, spherical cap bubbles, and slugs are generated as the

_ simulation progresses.
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Section 2 describes the discrete phase Lagrangian model equations, Section
3 describes the continuous phase Eulerlan model equations, Section 4
describes the phase coupling models, Section 5 describes some additional
models, Section 6 contains a summary of the basic equations, and Section 7
describes the solution scheme, Section 8 describes test problem
calculations that have been performed, and Section 9 contains some
conclusions. The references are in Section I0.

2. DISCRETE PHASE LAGRANGIAN MODEL EQUATIGNS

The mass, momentum, and energy equations for each discrete particle,
bubble in this case, are based on the average properties of that bubble.
Because each bubble has its own position in space and is individually
tracked, the conservation equations are ordinary differential equations
governing the time evolution of mass, momentum, and energy. Each
evolution equation includes appropriate interaction terms with the
continuous phase, liquid in this case, through which the bubble is moving.

2.1. Disoreta Phase Mass Equation

The conservation equations are written in a partially discretlzed form
showing the time levels of ali source terms. Any undifferentiated term
without a tlme level shown is evaluated at the old, nth, time level. Ali terms
that are evaluated at the new time level contain an n+ 1 superscript. In the

___ B "+' - Bnfollowing, dB is understood to mean B stands for any variable or
dt At '

combination of variables.

The mass conservation equation for bubble i is,

d(vw ) _r.,, (1)
dt

where Fst is the mass transfer rate from the bubble to the liquid
phase. In the numerical implementation of all the discrete particle
equations, the time derivatives of products are expanded into products
of derivatives, and first-order forward differences are used with the
coefficients evaluated at the old time level. Because the description of
each particle Is Lagrangian, the particle density and volume are
functions of time only.

2.2. Discrete Phase Momentum Equation

The momentum balance for bubble l is,

psV_ dusdt = PsV_g - Fs (2)

where F s is the force that the particle exerts on the continuous
phase. This force is the sum of (i) the interphase drag force, (ii) the
added mass force, and (iii) the interface force due to the mean
pressure gradient about the particle,



v duob) E lb

where

f_ = [0.5{_ }_C_Aj_]u_ - u_l] (4)

is the interface drag coefficient, and the overbar signifies an average
quantity. The bubble velocity is evaluated implicitly in the interface
drag term, which removes the need for a small time step due to the
large values of the interface drag coefficient, f_.

2.3. Discrete Phas_ Energy Equation

The energy balance for bubble l is given by the following equation, which is
written in terms of entropy, ct:

or°., )= -_-_ + (5)
dt 8_z

The interface temperature is set to the saturation temperature at the
location of the bubble.

The first term on the right-hand-side is the entropy transfer rate associated
with the bubble-llquid mass transfer rate from inside the bubble to bubble-
liquid interface surrounding the bubble. The second term is the entropy
transfer rate associated with the heat transfer from the bubble-liquid
interface surrounding the bubble to the inside of the bubble. The driving
temperature difference for thls heat transfer is the bubble-liquid interface
temperature minus the internal bubble temperature. Since this last term is
an entropy addition rate, it is divided by the temperature of the bubble-
liquid interface.

2.4, Discrete Phase Kinetic Position Equstion

A final equation to advance the bubble position, x_, is needed in this
Lagrangian description, lt is,

dxc.__t.b=,,,+i (6)
dt -_

Modifications of equation (6) to include simple turbulence effects are
described later. These modifications incorporate the fact that the bubbles
are three-dimensional, and therefore, we use two additional kh_ematic
position equations to track the bubble in the other two dimensions.
However, our model does not include any interaction terms between the
continuous phase and the discrete phase in these two perpendicular
directions. We also use the three-dimensionality of the bubble in the
coalescence model to compute the overlap between two bubbles to
determine if they should be merged.
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Equations (1) - (6) are solved for each bubble. Simulations with up to
10,000 bubbles have been made with the DISCON2 code.

3. CONTINUOUS PHASE EULERIAN MODEL EQUATIONS

The continuous phase equations are dlscretized using a staggered Eulerian
mesh, shown in Fig. 1. Mass is conserved In each continuity cell, and
momentum is conserved in each momentum cell. The edges of continuity
cells are called junctions and are at the centers of the momentum cells.
The edges of the momentum cells are at the centers of the continuity cells.
Discrete values of densities, pressures, and energies are located at the
centers of the continuity cells, and discrete values of velocitle_s are located at
the centers of the momentum cells. In what follows, continuity cells have
the index k and momentum cells have the index j. As you may have noticed
earlier, bubbles have the index/. By adopting this convention, the
nomenclature is more consistent and easier to understand. In the finite
difference equations, variables are needed at locations where they are not
defined. Averaging and/or donoring techniques are used to compute these
values.

rr*J'_rrrrk,l_*'_,',r,'e'_e"_"_,,',cra"r,rrrrrr_r_ r,,_,r*'-_'_,--_',","re',",*',",',"e'_',"r,-rrrF_rrtrrrrrcFr¢_ ,',",m

]k--:2__ I i___I ""'_ " " "" ' '"" " "" " "" -T---],,I,,| b _ "l _,:_,;_[-b--,--_-l_,:_ UOnltlnUltV
_S 4" _S S SS PL _S SS I_ "11" I S S SS w

ells""" , , ,4¢,,,,,,,,,,,,,,_,,,,,,,,_,,,,,,v,,,,,,,,,._l ,,.,,,,,,,,,a,,_,_,,, r[m,m,-_,,,_,,,,_._m,_,_,,,,,,v,,,_,,,,,,,_,,,,,,,,,_
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Fig. I. Continuity and Momentum Cell Locations for the Staggered
Eulerian Grid.

:].I. Continuous Phase Mass Equation

The continuous phase mass balance for volume, Vk, Is,
btd_bles
U_ceUk

_(_,_v_)+(A__u_+,)___£{..,___,_o+,} (_)(it

The average continuous phase velocity at, Junction j Is uj. The
variable, r/w, ts defined In the Volume Fraction Coupling section In
terms of the bubble volume, Va,, and bubble location, x_. In equation
(7), the second term on the left, -hand side represents the net flux of
mass out of cell k. As tn the particle equations, the time derivatives
are expanded, and first-order tbrward time differences are used with
the coefficients evaluated at the old time level.

To prevent a convective Instability due to centered mass flux terms, the
fluxed densities In equation (7) are donored If the velocity ls not zero.
Because the bubbles are tracked In a Lagrangian manner, there are no
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instabilities associated with ¢_,and the fluxed volume fractions are not
donored.

3.2. Continuous Phase Momentum Equation

The continuous phase momentum equation is,

%_pjzV_ d---_+ aJzPJ_Vjujz ---------" =
(8)

-- ajiV.] _k - _k-I _e . n+l
L_ - J Jwll'LJl - Fj_ + %_ojzVjg

The bubble-liquid interphase force, F jbt, is defined as,

b_, I " ' "+' V raPt 1

Fj_= _ rlj_ J (9)

Consistency between the bubble and the continuous phase momentum
interface terms, F_, given in equation (3) must be satisfied.

The continuity cell variables with a j subscript are simple averages of
neighboring continuity cell values. "lhc convective acceleration terms are
evaluated using a one-sided upwind spatial gradient (i.e., donoring to make
the convective terms stable). In order to make this scheme implicit in the
terms responsible for sound wave propagation, the pressure gradient in the
momentum equation and the velocity in the mass equation are both
evaluated at new time. Hence, this scheme does not have a time step limit
based on the sound speed that explicit schemes have.

3.3. Continuous Phsss Ensrgy Equation

The conservation of liquid phase energy in cell k is given by the following
equation, which is written in terms of entropy, ek_:

at
bubbles

_n+l In eel/k

_..,1{ - T'n+I- 1_ A_ + _I_ _ j" ( 10)
Twk t

The weighting factor, w_b, allows us to use a linear combination of the wall
temperature and the average liquid temperature. When w_ is one, the
bubble sees the average liquid temperature for its heat transfer, and when
w_ is zero, the bubble sees the wall temperature for its heat transfer. This



allows us to model subcooled boiling where some bubbles are on the wall and
some bubbles are in the free stream.

The second term is the net liquid entropy flux out of cell k through its
junctions. The first term on the right-hand-side is the direct entropy
addition rate to the continuous liquid phase from the wall heat transfer.
Since this energy conservation equation is written in terms of entropy, the
wall heat added to the liquid is divided by the source temperature, which is
the wall temperature.

The two remaining summation terms account for _e energy transfer
between the continuous liquid phase and the bubbles. This energy transfer
can occur from both mass tra_Isfer with its associated phase change and heat
transfer. The first summation is the entropy transfer rate associated with
mass transfer from the bubble-liquid interface to the continuous liquid phase
in cell k. The r/_ in this equation is the fraction of bubble t in cell k. The
second summation is the heat transfer rate from the bubble-liquid interface
to the continuous liquid phase in cell k. The h_in this equation is the heat
transfer coefficient on the outside of the bubble.

4. PHASE COUPLING MODELS

The coupling of the discrete Lagrangian and continuous Eulertan phases
proved to be the most difficult part of the modeling and numerical algorithm
development. This section describes the coupling models under three
headings: (4.1} volume fraction coupling, {4.2} momentum transfer coupling,
and {4.3} energy transfer coupling.

4.1. Volumo FrJ,otion Coupling

In two-phase bubbly flow, the dispersed phase bubbles can become quite
large due to coalescence, merging to form extended cylindrical bubbles that
have transverse diameters approaching the pipe diameter. For this reason,
the volume occupied by the dispersed pmrticles can not be neglected as it
frequently is in modeling liquid sprays [Amsden, 1989].

The volume fraction coupling between the dispersed and continuous phases
must be treated carefully. The volume of a bubble located at x, is clearly
discrete in space. The volume fraction, a, in the continuous phase
equations results from these spatially discrete bubble volumes. However, in
the continuous phase equations, the volume fraction is a continuous field
variable with a spatially smooth distribution, as in classical two-fluid models
like RELAP5 [Ransom, 1985] and TRAC-BD 1 [Taylor, 1984].

This dual character of the volume fraction means that some smoothing
interpolation must be used when the bubble volumes are combined to
calculate the continuous phase volume fraction. This has been done in
DISCON2 using an extended bubble shape function. This should not be
confused with the actual shape of the bubble, which is described in Section
5.1. The continuous phase model represents the average phase properties
over a reglon of space comparable to the cell length, hx. Therefore, in
order to smooth out this particle induced continuous phase volume
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variation, the particle volume is distributed over an arbitrary length. In the
present code, this length is set to the Eulerian cell length, Ax. The code
has also run successfully with this arbitrary length set to two or three
particle diameters. Because the particle locations are Lagrangian, this
smoothing does not introduce any artificial diffusion of the volume fraction.
lt is simply an interpolation of the volume occupied by the discrete particles
onto the continuous field volume fraction, which is itself an average value
over the cell.

The cross-sectional area occupied by an extended bubble at position x and
time t is given by, A_ (x,t). lt will be convenient when we extend the
bubble's length to partition the cross-sectional area into the product of two
terms, the bubble's volume, V_(t), and the bubble's shape, rl_(x,t). Since,

the integral of the cross-sectional area occupied by a bubble, A_ (x,t), over

its length is equal to the bubble's volume, V_(t), the integral of the bubble's
shape over the stone length has to equal unity. We also require that the
shape function not change as the bubble propagates down the pipe, i.e., the
(x,t) dependence of the shape function is a function of the relative distance
from tbc i'ubble's current position, x_,

rl_(x,t)= ,_(q_)= ,_[X-X,b(t)] (II)

Thus. we can writethebubble'scross-sectionalarea as.

A_(x.t)= V_(t)rl_[x- x_(t)1 (12)

When we integrater/_with respecttox overcellk.we getthe fractionof
bubble i locatedincellk.

Ifallofbubble iisincellk. rl_isequaltounity.

The integralofbubble'scross-sectlonalareaequationover cellk timesthe
volume ofbubble i dividedby thevolume ofcellk givesthebubblevolume
fractionin cellk.

k  {rl[x-xo (t)l}ax- V_(t)rl_(t)vK (14)

In what follows, we will need the change in the bubble volume fraction over
a time step. Therefore, we differentiate equation (141 with respect to time
and make use of the fact that the time derivative of x_, (t) is just the bubble

velocity, u_ (t), and that the derivative of q- x- xd, with respect to x is 1, to
obtain,

dt L v, JL L v, j,o..,
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The integral in this equation can be written as the difference of the "out"
minus the "in" values of r/ at the two junctions at either end of cell k. From
Fig. 1, we see that cell k is bounded by junction j on the left and j+ I on the
right.

dam(t) = [ rl_(t)l[dV_(t)]dt V k dt {16)

Instead of using the point value of 77at junction J, we will use an average
value, because this well result in more smoothing of the solution as a bubble
moves through a cell.

dam(t) = [ Tl.b(t)lldV_(t)]dt V k dt (17)

The average value of 77in a junction is the integral of _ over the momentum
cell enclosing the junction di_rided by the length of the junction, t_x.

,7 ) I sl
The bubble volume fraction in a Junction cell is defined, as in equation (14),
as

= v,(t)v x(t)}]dx L vk {I9)
_

Using equations (18) and (19) for the average value of 77, we can re-write
equation (16) in terms of the bubble volume fraction in a junction cell as
follows,

=- dofkm(t__dt: [ il'(t)lrdV'(t)jV:]L dt - u_,(t)[ ak_i'_(t)-aj'm-(t)]_ (20'

This is the expression used in the DISCON2 code.=

=

4.2. Momentum Transfer Coupling

The momentum coupling between the discrete particles and the continuous
phase is due to the interface force acting on the surface of the particles. In

: equation {8) the momentum transfer due to mass transfer has been
neglected. This interface force is modeled in the particle momentum
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equation by the three terms f_,[u,b- {_ },b], V_baP/ax, and the added mass
term.

The first term represents the classical drag force as measured on a particle
immersed in a continuous phase. The drag force is formulated in terms of a
drag coefficient, Cn based on the equivalent frontal area. This drag
coefficient is obtained from the da_:a correlations of Peebles and Ga,.'ber
[Peebles, 1953] and Harmathy [Harmathy, 1960]. Peebles and Garber give
the drag coefficient in the laminar and distorted particle regime. They use a
four region formula. Harmathy gives an improved formula for the fourth
region and adds a fifth formula for the fully turbulent Taylor cap region. The
drag coefficients for bubbles that are used in the DISCON2 were summarized
in a previous paper [Trapp, 1991].

When using this formulation for a simulation with many bubbles of various
sizes, the question arises of what should be used for the continuous phase far
field velocity. In the case of a single bubble rising in a uniform fluid, the
appropriate continuous phase far field velocity is clear and is easily
determined. In the intermediate situations, the appropriate far field
reference velocity is not well defined. For cylindrical bubbles that nem-ly fill
the pipe, the appropriate fm" field reference velocity is th_ continuous phase
velocity far ahead of or far behind the bubble. Neglecting compressibility
effects, this is equivalent to using the mean volumetric flux as the far field
reference velocity. At the other extreme of a single small bubble rising in a
large tank, the far field velocity is clearly the liquid velocity far from the
bubble, which in the limit of vanishing small bubble size is equivalent to the
mean volumetric flux.

In the intermediate case, where there are many bubbles of various sizes
present in the flow, it is necessary to estimate an equivalent far field velocity
for use in the drag correlations. Several papers have recently addressed this
problem, see Kowe [Kowe, 1988] and Couet [Couet, 199 I]. A reasonable
model for the interstitial far field velocity that takes into account the added
mass of the continuous phase displaced with the particles has been
developed in these references. This model is applicable to low gas volume
fraction dispersed flows. When the bubble number density becomes small,
the analysis becomes inappropriate. In DISCON2, we consider a full range of
bubble number densities and bubble sizes including large cylindrical bubbles
filling the pipe. We have chosen to use the mean volumetric flux as the far
field reference velocity in all situations. This choice simplified the coding
and is appropriate in the limiting cases.

Recalling equation (19), one obtains for the volumetric flux at any junction,
b_b/es bubbles

tn cellJ in cellJ Vlb

The volumetric far field velocity defined irl equation (21) is independent of
position when the continuous m_d particle phases are Incompressible and
there is no mass transfer. In the numerical simulations, it is important to

- 12-
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repx'esent this far field velocity with a spatially smoot h function independent
of the Lagrangian nature of the particles. The velocity irl equation (21) is
consistent with the far field velocities used when the correlations were
developed and gives the spatially smooth refereuce velocity needed in the
drag force calculation.

The far field velocity defined above is not the whole story. Each paa,-ticl,e can
also be influenced by the wake of preceding particles. A trailing particle ca_1
be "trapped"/a_ the wake of a leading particle. When a trailing p_iLicle, say a
bubble rising in a liquid, _,s in the wake of another bubble, it is rising in a
flow field that has a velecity more nearly equal to that of the leading bubble.
lt rises due to buoyancy in _hls modified flow field. This is the primary
mechm_ism allowing bubbles to approach and cealesce_ This effecl, is
modeled by modifying the far field velocity in equation (21) by the w_ce
velocity of ieadlrg particles .vhen making the drag calc_;latlon.

The velocity in the wake of a solid object has been discussed in several texts,
see for example Batchelor [Batchelor, 1967] ,_nd Schlichtlng [Schlichtin_,
1955]. In general, for turbulent flow, the wake-induced flow at axiLyposit.lon
x behind an object can be expressed as,

uo Ir7)
where u_(x) is the centerllne wake velocity, and r_o(x)is a scale :tor
the radial distribution of the wake velocity. A standard integral
momentum balance gives the following relationship between u_(x)

and r_(x),

l i.JL = (23)
where u_ is the velocity oi' the wake producing object rela_tlve to _the

fluid, and rp is the equivalent radius of the particle based upon a
spherical shape consistent with the calculation of Cd. Using equ, ations
(22) and (23), the velocity at any location behind an ob]ect caused by
its w',_ke can be found if we know u,_(x) or r_ (x). Stuhmi_tler
[Stuhmfller, 1989] has carried out a prelimlnary con'elation of w_.flce
centerline velocity data from several sources and gives a formula for

where a_ = 0,20, b_ = 0,12, c_ = 0,01, auld Rb is the body or actual
rad.lus of _e particle. Comparisons of the DISCON2 code calculations
with the bubble rise data of Crabreee and Bridgwater [Crabtree, 1971]
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were better when we increased a,,, to 0.45. Therefore, we used aw =
0.45 in the current calculatlons with DISCON2, The bubbie shapes are
discussed in Section 5.1.

To complete the wake model, the wake velocity of every bubble leading the
bubble in question is calculated using the above formulas, "Tnere are two

;i , itrwake models in the DISCON2 code, one fl_at uses the maximum, wake and
one that uses the "closest" wake. In both cases, the leading bubble wake
velocity is used to calculate the modified far field velocity, ff_, for the trailing
bubble, The trailing bubble thus "sees" this modified far field velocity in its
drag correlation, lt rises in the wake flow field at a rate determined by the
balance of its drag _,d buoyancy tbrces. This is the primary mechanism by
which trailing bubbles overtake leading bubbles.

The second momentum coupling term, Vo_aP/ax, represents the average
pressure force on the particle surface due to the mean pressure gradient in
the continuous phase. This is the source of the buoyancy tern: t.bat arises for
a particle at rest in a stagnant fluid under the action of gravity. In the
present version of DISCON2, this effective mean pressure gradient in the
continuous phase is modeled using the gravity hezad and inerti_ acceleration
of the far field continuous phase flow,

[ax ,.

where {_}_ is the ccr.,._r_.,m_._:phase d:_:::,_:_ityat the location of bubble L

The third momentum ,.:_',,tplir_g +_"-_'.,_._,_,,_.-::_,_.....",,1.! mass, is modeled in the
conventional rammer _, .f_ a_::_,added _._,_.a coefficient of 0.5.

4 3. Energy Transfer 12_. _,,_

The energy transfer betw_"_."_ _2_edlscret,: _,.-_-t!cle m_d continuous phase is
due to heat transfer and ma_s transfer. ?he sum of the energy entering the
interface plus the ener_-_yleavU_;_:tt_e mtertk,:'.-: ::.:_,,_stequal zero. There can
be no accumulation of energy in (:he interface. "",'_s condition is expressed
by the following equation, where we are using e:,_:,tropyfor the energy
variable.

, " =0_ )_ r_n +.l
- t:_ +

0_ (261
_ w,n+l

+ e_b_ + 0_

This first term is the entropy addition rate from the inside of the bubble to
the bubble-liquid interface as a result of mass transfer. The second term is
the entropy addition rate from the inside of the bubble to the bubble-liquid
interface as a result of heat transfer. The third term is the entropy addition.
rate to the interface from the surrounding liquid as a result of mass transter,
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The last term is the entropy addition rate from the surrounding liquid to the
Interface _ a result oi"heat transfer.

In the above equation, there are three new variables. These define the
average liquid entropy, average liquid temperature, and average wall liquid
temperature surrounding bubble i in cell k and are defined as follows,

cells
sunound_g
bubble t

e,,= (27)
k

cells
surmundtag
bubbl_.t

(2a)
k

ce//s
surroundtng
bubble I

k

5. ADDITIONAL MODELS

Additional models are needed for computing the shape of the bubble. The
shape is needed to compute bubble coalescence, In addition, models are
needed for bubble turbulence and bubble-liquid heat transfer. We need film
heat transfer coefficients on the inside and outside of the bubble-liquld
interface. All of fllese additional models are discussed in this section.

5,1. Bubble Shape Model

So far in the development, the actual shape of the dispersed particle has not
been a factor in the model. The drag correlations are based upon the frontal
area of a_. equivalent sphere having volume Vp, and the actual shape has not
been needed.

In genex'al, bubbles, and to a lesser degree drops, take on a variety of shapes
depending upon their s_ze. '!he sequence of shapes shown in Fig. 2 is
generally characterized in increasing volume as sphere, oblate spheroid,
Taylor cap, and cylindrical bubble. We used the simple formulas given by
StuhmlUer [StuhmiUer, 1989] to characterize each shape. These formulas

are based upon the E6tvos number, /_, the particle volume, Vp, and the pipe
radius, R.
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Fig. 2. Calculated Bubble Shapes.

The E6tvos number is defined as follows,

E= 4gr_[ lp - Ppl)tr (30)

These shapes are explicitly used at two places in the model and tn ali visual
output from a DISCON2 simulation. The body or actual radius of the panicle,
R b, ts used in the wake centerltne velocity calculation, equation {24). Both
the particle radius, R b, and the actual vertical height of a particle are used irl
the bubble coalescence model.

5.2. Bubble Coalescence Model

Two bubbles merge or coalesce if they overlap in the radial and axial
directions by more than a certain fraction, called the overlap fraction. The
bubble shapes are used in the computation of this overlap fraction. The
overlap fraction is an input parameter, and In most simulations, it is set to
zero, i.e., the two bubbles merge when they Just touch. When two bubbles
are merged, the sum of their masses, momenta, and entropies are
preserved. The merged bubble is placed at the center of mass of the two
original bubbles. Only bubbles that are in the free stream are merged. Ali
the bubbles on the wall retain their identity even if they overlap another
bubble. They can only merge after they are released from the wall.

bhature extensions of the merging criterion will include the addition of a
delay time to account for time it takes the liquid film between the bubbles to
drain away. This phenomena has been observed experimentally.

5.3. Bubble Turbulence Model

A very simple turbulence model is used to simulate the effect of the
fluctuating continuous phase velocity field. The velocity of each particle Is
assumed to consist of the deterministic velocity component plus an additive
fluctuating component generated by the turbulence present in the
continuous phase. The particle positions are then calculated using the
following equations,
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-"+_ ' (3 1)
dt = u_ + U_b

dy_ , (3 2 ).----- = V_b
dt

dz,_ , (33)
d-'_. = w_

where u_,, u/b, and w_, are the velocities generated by the continuous
phase turbulence in the x, y, and z directions respectively. These
fluctuating continuous phase velocities are related to the intensity of
the turbulent wakes produced by the neighboring particles (wall
effects are neglected). A simple random walk process that produces
the same fluid parcel dispersion as found in homogeneous turbulence
as developed by Tennekes and Lumley [Tennekes, 1972] is used to

P P P

estimate the size of u_, u_, and w_, see StuhmiUer [Stuhmiller,
1989].

5.4. Wall Heat Transfer Model

A wallheat transfermodel has been developedfo=forcedconvection,
subcooledboiling,and saturatedboiling.The forcedconvectionand
saturatedboilingmodels areconventional,but the subcooledboilingmodel
isunique and willbe explainedinmore detail.

In subcooledboiling,the averageliquidtemperatureislessthan the
saturationtemperature,so in theory,no boilingcan takepiace.However, if
the heat fluxislargeenough, thewalltemperaturewillbe higherthan the
saturationtemperature,the fluidadjacenttothe wallwillbe above the
saturationtemperature,and subcooledboilingcan takepiace.The
subcooledboilingmodel partitionsthe heatfluxintotwo parts:thatdriven
by the differenceirlthewalltemperatureand the bulk liquidtemperature,
and thatdrivenby the differenceinthewalltemperatureand the liquid
saturationtemperature.In the subcooledboilingmodel,a portionofthe
heat goes intoheatingup the liquidphase,and the remaindergoes into
creatingand growingbubblesthatareattachedtothewall.Once the bubbles
getlargeenough, theyare releasedintothe bulk liquidphase where they
can eithergrow or condense.

For the wallheat fluxtothe liquid,we have,

. r,,,o.,., [,.,,-,.,.,.,,-, (34)wkl = '-a,._ [--wk - --k + h_,..c Twk - _"kl

where the heat t_ansfer coefficients are taken ft'ore the Chen [Chen, 1966]
correlation. This equation is used in DISCON2 to determine the wall
temperature. The wall heat flux to the liquid is an input quantity.

5_5. Bubble-Liquid Heat Transfer Model

The bubble-liquid heat transfer model consists of two models: one for the
inside of the bubble and one for the outside of the bubble. The outside heat
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transfer model is further modified when the bubble is on the wall at a boiling
nucleation site.

Inside the bubble, we use a relaxation model to compute the heat transfer
coefficient,

H'b k 0_ =

where z_ is the relaxation time constant for the bubble temperature.
The relaxation time constant is the time it takes the bubble
temperature to come within about 63% of its final value after a step
change in the bubble-liquid interface temperature. After about 5 time
constants, the bubble temperature is within 99% of the interface
temperature. This relaxation time constant is input and in most
calculations it is usually set to 20% of the time step to assure that the
bubble temperature stays close to the saturation temperature at each
time step.

Outside the bubble, when it is in the free stream, i.e., not attached to a wall
nucleation site, we use a heat transfer model from Whitaker [Whitaker,
19721 for heat transfer to a sphere in a flowing fluid.

L JL

where the Reynolds number is defined as

. ,[2R_ ]Reo-luo_{ ,i lh ca7)
and the Prm_dl number is defined as

Pr_ =
kl

When the bubble is attached to a wall nucleation site, we compute an
equivalent heat transfer coefficient from a combination of Lahey's
model [Lahey, 1978] for subcooled boiling, Saha and Zuber's
correlation [Saha, 1974] for the critical enthalpy for net generation of
vapor, and the Chen correlation [Chen, 1966]. This combination of
models Is also used In the TRAC-BD 1 computer code [Taylor, 1984].

The partitioning of the heat transferred from the wall Into the growing of
bubbles and heating of liquid ts taken from Lmhey's model [Lahey, 1978] for
subcooled boiling. The mass transfer rate from the wall to the bubbles on
the waU ls given by

i

Q.,_kMkz (3 9)
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where Mid is a multipher that gives the fraction of the wall heat flux that
goes to making bubbles, lt is given by,

Ik! - ikl'cr (4 O)Mkl

where _kz is given by,

In equations (40) and {41}, the critical enthalpy is the enthalpy tile fluid to
exceed before there is a net generation of vapor. It is given by the Saha-
Zuber model [Saha, 1974] as,

I Stk'CP' for Pekl > 70,000]

0.o065

hkl,cr= I (4 2 )[_,.o_(pk) Nu'_CP,445for Pekl <70,000

The Stanton number is defined as,

NU'kl (4 3 )St_ = --
Pekz

m_d the modified Nusslet number, which is the Nusslet number times the
: temperature difference, is defined as,

Nu'kl = QwkDe_I (4 4)
ks

The Pecklet number is defined as,

: Pekl = GkzDe_CP_ (4 5 )
kt

"12ais set of equations determines the mass transfer rate from the fluid on
the wall Lnto bubbles attached to the wall nucleation sites. If we now modify
the heat transfer coefficient on the liquid side of the bubbles on the wall as
given by the Chen correlation for hkz,._ we can let the code compute the
correct amount of mass to transfer from the liquid phase to the bubbles on
the wall. In this case, the conservation of energy at the bubble-liquid
interface, equation (26}. can be simplified to

: (e_ - e_)F_ = Ht_,(O,u,- T,,,_) {4.6}

where we have set w_ = 0 because the bubble is on the wall and T_ = 05z
: because the bubble is small and its internal temperature cannot differ very.
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much from Its interface temperature. We have also combined three terms,

hub_t/_"" , into H_.
l

We substitute into equation (46) the relationship obtained above for the
bubble-liquid mass transfer rate and get,

Q_ktA.,kM_(e.a, - e._ )= H_ (Oo_z- Two,) (4 7)

where N a is the number of bubbles on the wall in cell k. Notice, that by
dividing by Nk_ we have assumed that ali the bubbles on the wall have equal
rights and get an equal share of the wall heat flux. Another option would be
to partition the heat flux according to the size of the bubble.

Substituting for the wall heat flux to the liquid from the Chert correlation,
and noting that the saturation temperature in this equation, T_o_, is the same

as the interface temperature, 0_, and for small bubbles, the temperature of
the liquid surrounding a bubble, T_, is close to the wall temperature, T_k,
we can write the equation (47) as,

{F_'_Au'kM_(e_' -cub)} h_''_[T'k Tk']} (48)

= H_(Oa, , -T_k)

Solving equation (48) for H a , we get,

ha'A_!oo_z _ _ _fFwk'AwkMk'(e_' - e_ )} {hk'''"_ + ha "_ c T'_' - T_ I lLT,"k -0_ ]j (49)- "
When we use this value for H_a, bubbles attached to wall nucleation sites will
grow to create the same void fraction aus would be produced in more
conventional two-phase codes like RELAP5 [Ransom, 1985] and TRAC-BD 1
[Taylor, 19841 when they use the Lahey, Saha-Zuber, and Chen models.

While this subcooled boiling model for Hub is somewhat unconventional, it is
: used here because we have not found any appropriate correlations for the

heat transfer coefficient on the outside of bubbles attached to wall nucleation
sites. However, the DISCON2 code is certainly capable of using such
correlations ff and when they become available.

6. SUMMARY OF BASIC EQUATIONS

For the discrete phase, the basic equations are the mass conservation (I),
the momentum balance (2), energy balance (5), and the kinematic position
equation (6). The continuous field equations for each cell are the mass
conservation (7), the momentum balance (8), and the energy conservation
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(I0). In addition, there is the energy transfer coupling (26). The above
seven equations (per particle, per cell) are the basic equations to be solved
for the seven new time variables, V_b,Ua,,e_,,x_,,Pk,u#,andek. The formulas of
Section 4.1, are used to express the volume fraction, ak, in terms of the
particle volume, V_b. The re: nalning new time values of the state variables,
p_ and Pk, are functions of the independent state variables, Pk and T k. The
present version of DISCON2 neglects any pressure difference between the
phases; therefore, Pk (when interpolated to a particle position) forms an
independent state variable for the particle phase. Ali state relationships in
DISCON2 are linearized during a time step.

An examination of the basic finite difference equations reveals the following:

* They are linear in the new time variables. Hence, each
time advancement only requires the solution of a linear
system of equations. This is a very complicated linear
system due to the mixed Lagrangian and Eulerian
features of the equations and the implicit coupling

between the phases caused by the time derivatives of ak
in equation_ (7) and (10).

* The acoustic terms (i.e., velocities in equation (7) and
pressure gradient in equation (8)) are evaluated
implicitly, hence there is no upper limit on the
allowable time step size due to acoustic wave
propagation.

® The drag term in the particle momentum equation is
evaluated implicitly in U_b. Hence, the short time
constmlt associated with the large drag force on the
particle does not lead to a stability restriction on the
time step size.

Because of the explicit evaluation of the convective terms in the continuous
phase, the time step size is restricted by the material Courant limit. In
addition to the material Courant limit stability restriction on At, the step
size must be chosen to resolve the accuracy of the important physics of any
given process.

7. SOLUTION SCHEME

The solution scheme Is a semi-implicit scheme and is outlined below for one
time step of the calculation.

At the beginning of each time step, the volumetric flux and average
acceleration is computed from continuous phase velocities and particle
velocities. Next, any particles that satisfy the coalescence criteria are
merged. If two particles overlap by some specified fraction, which is input,
the two particles are replaced by one particle having a mass equal to the
sum of the masses of two merged particles, a momentum equal to the sum of
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the momenta of the two merged particles, an entropy equal to the sum of
the entropies of the two merged particles, and volume equal to the sum of
the volume of the two merged particles. The new particle is located at the
center of mass of the two merged particles. The pressure of the new
particle is a mass weighted average of the pressure of the two merged
particles.

The shape of the particle is then computed, and the heat transfer
coefficients are computed ii'om correlations. The drag coefficient is
determined using correlations discussed in Section 4.2. The wake velocities
at each particle's position due to each of the leading particles is computed
using the other equations in Section 4.2. Terms that go into the discrete
phase momentum equation are now known, and the new time particle
velocity is computed using equation (2). The new time particle position is
then computed from equation (6).

The integrated effects of the particles on the continuous phase are
computed. These effects are cop_rained in the last term of equation (8),
which is a summation over all the particles in a momentum control volume.
The continuous phase velocity for each momer, tum cell is computed using
equation (8). Since we do not know the new time pressure gradient yet,
this velocity is explicit and uses the old time pressure gradient, P_- P_-I.

We also compute an influence coefficient, vdpj =- At/(p:_), that can later
be multiplied by the gradient of the new time pressure increment,

/kP_._ - _,- k-_^P".I, and added to the explicit velocity, u__, to obtain the new time
velocity,

= +.ap ] (5o1

The new time pressure increment, AP ".' = P"*_-P", is computed using an
expanded Ibrm of the continuous phase mass equation, equation (7),

at L_.]-_ "t" j+,pj+,Uj+ I - _jpjuj ) =
_, (51 )
Ince//k

l

where we have expanded the time derivative Into two terms. We
replace the two velocities in the mass flux term in this equation with a
suitable form of equation (50). For the derivative of the volume
fraction, aixk/at, we use equation (20), which brings in a dV_,/dt term,
which can be expressed using an expanded form of the bubble phase
mass equation, equation (1),

dV_ dp_ dP r,+1 (5 2 )
p_--_+V_ dP dt =-'_

We do a similar expansion on the bubble energy equation, equation (5),
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Thus, equations (52) and (53) become a block tridiagonal system of
equations involving only the pressure and temperature increments in cell k,
and the pressure increment in its adjacent neighboring cells, k+ 1 and k-l,
This tridiagonal system is solved for the pressure and temperature
increments in each cell using a Gaussian elimination solver.

With the new time pressure and temperature increments are known, the
new time continuous phase velocity is computed using equation (50), and
the new time particle volume is computed using equation (52).

The continuous phase and the particle phase densities are computed from
an appropriate state equation. Using the new time particle volume, the
fraction of each particle in cell k, r/_, and Junction J, r/j_, is computed using
equations (14), and (19). The volume fractions of the continuous phase in
each cell and Junction are also computed at this time.

This concludes one time step of the calculation, and we repeat these steps
for the next time step.

8. TEST PROBLEMS

This section documents several DISCON2 simulations of experiments
performed by Carl St. Pierre [St, 1965,St, 1967]. While there may be more
recent data, this data was used because it was the same data that was used by
Stuhmfller to test out his BUBBLE code [StuhmilIer, 1989].

Each simulation can viewed as a another numerical experiment. Repeating a
run will gives different results because of the randomness in the locations of
the bubble nucleation sites and bubble turbulence.

8.1. St. Pierre Experiment

Two runs were simulated, Run 1 and Run I0. Run 1 had the lowest
pressure, 200 psla (1.38 MPa), told the lowest inlet subcooling, 0.5 F
(0.28K). Run 10 a higher pressure, 600 psia (4.14 MPa), and the highest
inlet subcooling, ].2.6 F (7.00K). Both runs had an inlet velocity of 3.78 ft/s
(1.152 m/s). The wall heat flux in Run I was 2.28 Btu/hr-ft 2 (7.19x104
W/m 2) and in Run 10 it was 9.12 Btu/hr-ft2 (2.88x105 W/m2).

The channel was rectangular and had dimensions of 0.437xl.750 in.
(1.11x4.445 cre). The heated length was 49.5 in. (125.7 cre), and the total
length was 61 in. (154.9 cm). A power supply that could output I00 V at
3000 A supplied the heating. The void fraction measurements used the
gamma-ray attenuation technique. St. Pierre estimated the error in the
average void fraction at less than 10%. Measurements were made at
thirteen equidistant locations along the channel, and in all cases, the
gamma-ray beam passed through the 1.75-in. depth of the channel.
Traversal of the channel in the narrow direction provided void fraction
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measurements across the channel. These were averaged to get the average
void fraction data at one of ten axial locations. Due to small misallgnments,
only 80°/6 of the cross section could be travex 3cd. St. Pierre states that this
limitation would tend to give higher void fractions for the downstream
portion of the test section where convex void fraction distributions were
present and lower fractions near the inlet where concave distributions were
present.

We modeled the experiment with 10 cells in the heated section with 2 cells
on either end for a total of 14 cells. Time steps of 5 ms were used. The
water was initialized with a uniform pressure and temperature. The wall
heat flux activated at cycle 5 after the gravity head in the water had built up.
We used the "maximum" model for bubble coalescence. Most of the runs
were 500 cycles long and from the results, steady state was reached by 300
cycles. Bubbles were released from the wall when their radius exceeded 1
mm. Their initial radius was 0.001 mm. The turbulence parameter was set
to zero, i.e., there was no turbulence model for these runs. The runs were
made with 10 active nucleation sites on the wall. The nucleation sites were
randomly picked.
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8.2. St. Pierre Run 10 Comparisons

Run 10 had an inlet subcooling of 7,0 K. Fig. 3 shows a comparison of the
DISCON2 calculation with the experimental data. We put_+10% error bars
on the experimental data, as recommended by St. Pierre. The data fox"the
calculation are averaged over 100 cycles, from cycle 400 to 500. The
experimental data is above the calculation is good over most of the range.
The calculated void has a general tendency to be under the experimental
data in the _pper end of the channel.

St. Pierre Run 10 Comparison
40'

I • Experiment _i T

2O

o
>

10

0 "- • , ...._ ,- • - r- • w • _ •
0 20 40 _0 80 100 120

Elevation (cre)

Fig. 3. Comparison of Averaged Void Fraction for St. Pierre Run
I 0 and DISCON2 Calculation.
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Fig. 4 shows the total number of bubbles at each cycle in the simulation of
Run 10. Since we activated 10 l_ucleaUon sites in each of the 10 cells, 100
of these bubbles were on the wall at nucleation sites. IT_at leaves about 1000
bubbles in the free stream after the initial transient has dissipated (after
cycle 100) None of the bubbles released from the wall collapsed in the free
stream. Evidently, they all coalesced with existing bubbles in the free
stream before they had time to collapse. The fluctuation in the number of
bubbies gives an indication of the statistical nature of the calculation. A
repeat of this calculation with a different set of wall nucleation sites could
easily result in a different number of bubbles at each cycle.

St. Pierre Run 10 DISCON2 Comparison

2500 .................

2000

1500
.,=

;_ 1000

50O

• • u

0 100 200 300 400 500

Cycle No.

Fig. 4. Total Number of Bubbles in the Channel for tile DISCON2
Simulation of the St. Pierre Experiment Run 10.
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Fig. 5 shows the liquid, wail, and saturation temperatures for the DISCON2
simulation of Run 10. Since the wall heat flux is constant and the wall
temperature is almost parallel with to the saturation temperature, we see
that the hmlc portion of the Chen correlation is the dominating term in the
wall temperature model, There is some slight curvature of the wall
temperature at the entrance, which indicates that if the subcooling was
larger, the hmac portion of the Chen correlation would come into play and
the wall temperature would parallel the liquid temperature. (Se_ Fig. 5. i in
Collier [Collier, 1972]).

St. Pierre Run 10 DISCON2 P,omparison
550 ................
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,., _---'e---'_ -'-'_--'; --
_ i i ................. i,ml

• --'--."cn---" Liquid
:= ----e---- Wall.,.-. 540
== ----.-t---- SaturationI=...

¢1.

E• B---'B='--m---'t" ....¢ ;' ¢_

530 ,_._m"_,_ , T , ,' ,-'_r _ "' =' '-
0 20 40 60 80 100 120

Elevztion (cre)

Fig. 5, Liquid, Saturation, and Wall Temperatures fbr the
DISCON2 Simulation at Cycle 500 of the St:. Pierre

Experiment Run I0,
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8.3. St. Pierre Run 1 Comparisons

Run 1 had an inlet subcooling of 0.28 K. Fig. 6 shows a comparison of the
DISCON2 calculation with the experimental data. We again put +10% error
bars on the experimental data. The DISCON2 data shown are averaged over
100 cycles, from cycle 400 to 500. The agreement of the calculation with
the experiment is good over most the channel length. There is some under
prediction of the experimental data around 40 cm and again at 100 cm.

St. Pierre Run 1 Comparison
50 .......................
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.2 30
u
M

u. 20

0
> 10

_1
0 ] ' "--- I •' "1 " I "" I " I ' "

0 20 40 60 80 1O0 120

Elevation (cre)

Fig. 6. Comparison of Averaged Void Fraction for St. Pierre Run 1
and DISCON2 Calculation.

9. CONCLUSIONS

The discrete particle two-phase flow model is able to dynamically predict
the evolution of both the flow topology and energy partitioning as the
bubbles form on the wall and merge due to wake effects. Many more
simulations are required, however, including larger subcooling experiments
and the transition from long Taylor bubbles to annular flow. Our goal is '.J be
able to simulate a boiling experiment, that has subcooled water at the
entrance and superheated steam at the exit. However, before this
simtdation can be done, we need to add the continuous gas phase with its]

discrete drops. We also need to improve the heat transfer models for
bubbles attached to wall nucleation sites. Work along these lines is in
progress and will be reported in due course.
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