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ABSTRACT

The design of efficient heat exchangers in which the working fluid changes phase
requires accurate modeling of two-phase fluid flow. The local Navier-Stokes
equations form the basic continuum equations for this flow situation. However, the
local instantaneous model using these equations is intractable for all but the
simplest problems. All the practical models for two-phase flow analysis are based
on equations that have been averaged over control volumes. These models average
out the detailed description within the control volumes and rely on flow regime
maps to determine the distribution of the two phases within a control volume.
Flow regime maps depend on steady state models and probably are not correct for
dynamic models.

Numerical simulations of the averaged two-phase flow models are usually
performed using a two-fluid Eulerian description for the two phases. Eulerian
descriptions have the advantage of having simple boundary conditions, but the
disadvantage of introducing numerical diffusion, i.e., sharp interfaces are not
maintained as the flow develops, but are diffused. Lagrangian descriptions have the
advantage of being able to track sharp interfaces without diffusion, but they have
the disadvantage of requiring more complicated boundary conditions.

This paper describes a numerical scheme and attendant computer program,
DISCON2, for the calculation of two-phase flows that does not require the use of
flow regime maps. This model is intermediate between the intractable local
instantaneous and the averaged two-fluid model. This new model uses a
combination of an Eulerian and a Lagrangian representation of the two phases. The
dispersed particles (bubbles or dropsj are modeled individually using a large
representative number of particles, each with their own Lagrangian description.
The continuous phases (liquid or gas) use an Eulerian description. Since the
dispersed phase particles are modeled directly, the model avoids the numerical
diffusion associated with Eulerian models.

Previous work along this line has been done by researchers at LANL using the KIVA
computer program [Amsden, 1989] to model spray-combustion processes, and
researchers at JAYCOR using the BUBBLE computer program [Stuhmiller, 1989] to
model bubbly flow. The KIVA program models drops sprayed into a continuous gas,
and the BUBBLE pregram models one continuous liquid phase and one discrete
bubble phase. Our computer program, DISCONZ2, will eventually extend these
models to two continuous phases (liquid and gas) each containing a discrete phase
(bubbles and droplets). However, the present paper describes only the one-
continuocus phase, one-discrete phase model. It solves the Eulerian continuity,
momentum, and energy equations for the liquid in each control volume, and the
Lagrangian mass, momentum, and energy equations for each bubble. No explicit
flow regime map is used in the model. Heat addition from the wall is modeled
using a subcooled boiling model. DISCON2 has been used to simulate the boiling of
liquid water in a flow channel with a constant wall heat flux, and the results of
these calculations are presented.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Meither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.
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NOMENCLATURE

acceleration
area

any combination of
variables

coefficient
heat capacity

equivalent hydraulic
diameter

interface or wall drag
coefficient

force particle exerts on
continuous phase

acceleration of gravity
mass flow rate

film heat transfer
coefficient

enthalpy
multiplier

Nusslet Number

pressure

Pecklet Number
energy

radius

Reynolds Number
Stanton Number
time

temperature
velocity

volume

w= temperature weighting

factor
x = distance
a = volume fraction
A= iIncrement
€= entropy
I'= mass transfer rate
@ = interface temperature
p=  density
Subscripts
a= added mass
b=  bubble
d= drag
f= frontal
= gas

=  particle index
= momentum cell index
= continuity cell index
= liquid
sat = saturation
w= wall or wake
Superscripts

n= time level



1. INTRODUCTION

The modeling and numerical simulation of two-phase flow continues to pose
complex and challenging problems. Descriptions based on the local
instantanecus Navier-Stokes equations with internal interfaces are clearly
intractable in all but the simplest cases. The present state-of-the-art model
in two-phase flow is based upon the averaged two-fluid concept. This paper
describes a model based on a multiphase description that is intermediate
between the numerically intractable local instant description and the fully
averaged two-fluid model. In particular, the dispersed phases are modeled
using Lagrangian descriptions that are embedded within the Eulerian
description for the continuous phases. This approach: (1) permits the
statistical features of the dispersed phases to be modeled directly, (2)
permits the prediction of flow regime transitions, and (3) avoids the
numerical diffusion associated with Eulerian implementations of multi-field
descriptions. Similar models have previously been successfully used to
model fuel sprays [Dukowicz, 1979, O'Rourke, 1981, O'Rourke, 1987, and
Amsden, 1989]. Their extension to two-phase flow presents additional
challenges related to void fraction coupling between phases and particles
that are no longer small compared to computational cell sizes.

A computer code, DISCON2, has been written to implement this model.
The basic concept of the model is to describe the motion of the

¥ dispersed phases using Lagrangian descriptions. The main motivation is
to be able to predict flow regime transitions and represent a spectra of
- drop and bubble sizes. However, in order for the continuous and
=: | discrete phases to interact, it is necessary to relate the two
f—% descriptions. This interaction takes place through three mechanisms:
- 1. Phase coupling, because each phase occupies a
P volume not available to the other phase (void
wi;‘; fraction coupling)
e 2. Interface drag between the phases (momentum
. coupling)
s 3. Interface energy and mass transfer (energy
o coupling)
. | The first mechanism proved the most difficult to implement
3 numerically.
75 Shown at the left is the top section of a typical subcooled boiling
DISCONZ2 simulation. As is evident in the graphic, spherical bubbles,
® elliptical bubbles, spherical cap bubbles, and slugs are generated as the
:;‘ simulation progresses.




Section 2 describes the discrete phase Lagrangian model equations, Section
3 describes the continuous phase Eulerian model equations, Section 4
describes the phase coupling models, Section 5 describes some additional
models, Section 6 contains a summary of the basic equations, and Section 7
describes the solution scheme, Section 8 describes test problem
calculations that have been performed, and Section 9 contains some
conclusions. The references are in Section 10.

2. DISCRETE PHASE LAGRANGIAN MODEL EQUATIGNS

The mass, momentum, and energy equations for each discrete particle,
hubble in this case, are based on the average properties of that bubble.
Because each bubble has its own position in space and is individually
tracked, the conservation equations are ordinary differential equations
governing the time evolution of mass, momentum, and energy. Each
evolution equation includes appropriate interaction terms with the
continuous phase, liquid in this case, through which the bubble is moving.

2.1. Discrete Phase Mass Equation

The conservation equations are written in a partially discretized form

showing the time levels of all source terms. Any undifferentiated term

without a time level shown is evaluated at the old, nth, time level. All terms

that are evaluated at the new time level contain an n+1 superscript. In the
n+l _ pan

following, %I-:i is understood to mean E—A—t-g— B stands for any variable or

combination of variables.
The mass conservation equation for bubble { is,

d(pfbvtb) +]
ok L -RALFAPN pyl 1
T ol (1)

where T',, is the mass transfer rate from the bubble to the liquid
phase. In the numerical implementation of all the discrete particle
equations, the time derivatives of products are expanded into products
of derivatives, and first-order forward differences are used with the
coefficients evaluated at the old time level. Because the description of
each particle is Lagrangian, the particie density and volume are
functions of time only.

2.2, Discrete Phase Momentum Equation
The momentum balance for bubble iis,
du

dt'b = PpVd ~ Fo (2)
where F, Is the force that the particle exerts on the continucus

phase. This force is the sum of (i) the interphase drag force, (i) the
- added mass force, and (iii) the interface force due to the mean
pressure gradient about the particle,

PV
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F, = ftu[u{;f‘ -{EL',}M]+CQ,{§,}(,,V¢(%“{al}(b)+ V‘b[%g:lb (3)

where

S =[0'5{5l}¢bcdtbAﬂblutb ‘ﬁw” (4)

is the interface drag coefficient, and the overbar signifies an average
quantity. The bubble velocity is evaluated implicitly in the interface
drag term, which removes the need for a small time step due to the
large values of the interface drag coefficient, f,,.

2.3. Discrote Phase Energy Equation

The energy balance for bubble iis given by the following equation, which is
written in terms of entropy, ¢;

d(pfbslbvtb) = —g, " 4 h'ibAlbl (63;] - T(?;“ )
- b* bl
dt olbl

The interface temperature is set to the saturation temperature at the
location of the bubble.

The first term on the right-hand-side is the entropy transfer rate associated

with the bubble-liquid mass transfer rate from inside the bubble to bubble-
liquid interface surrounding the bubble. The second term is the entropy
transfer rate associated with the heat transfer from the bubble-liquid
interface surrounding the bubble to the inside of the bubble. The driving
temperature difference for this heat transfer is the bubble-liquid interface
temperature minus the internal bubble temperature. Since this last term is
an entropy addition rate, it is divided by the temperature of the bubble-
liquid interface.

2.4. Discrete Phase Kinetic Position Equation

(5)

A final equation to advance the bubble position, x,, is needed in this
Lagrangian description. It is,

dx n+
el (6)

Modifications of equation (6) to include simple turbulence effects are
described later. These modifications incorporate the fact that the bubbles
are three-dimensional, and therefore, we use two additional kinematic
position equations to track the bubble in the other two dimensions. -
However, our model does not include any interaction terms between the
continuous phase and the discrete phase in these two perpendicular
directions. We also use the three-dimensionality of the bubble in the
coalescence model to compute the overlap between two bubbles to
determine if they should be merged.



Equations (1) - (6) are solved for each bubble. Simulations with up to
10,000 bubbles have been made with the DISCONZ2 code.

3. CONTINUOUS PHASE EULERIAN MODEL EQUATIONS

The continuous phase equations are discretized using a staggered Eulerian
mesh, shown in Fig. 1. Mass is conserved in each continuity cell, and
momentum is conserved in each momentum cell. The edges of continuity
cells are called junctions and are at the centers of the momentum cells.
The edges of the momentum cells are at the centers of the continuity cells.
Discrete values of densities, pressures, and energies are located at the
centers of the continuity cells, and discrete values of velocities are located at
the centers of the momentum cells. In what follows, continuity cells have
the index k and momentum cells have the index j. As you may have noticed
earlier, bubbles have the index . By adopting this convention, the
nomenclature is more consistent and easier to understand. In the finite
difference equations, variables are needed at locations where they are not
%ﬁned Averaging and/or donoring techniques are used to compute these
ues.
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Fig. 1. Continuity and Momentum Cell Locations for the Staggered
Eulerian Grid.

3.1. Continuougs Phase Mass Equation

The continuous phase mass balance for volume, V,, is,

bubbles

d \74 tncellk
(ak;,t}d k) ( kavdpklu&+l)$n: Z{n‘dbrnu} (7)

The average continuous phase velocity at junction j is u,. The
variable, 7,,, is defined in the Volume Fraction Coupling section in

terms of the bubble volume, V,, and bubble location, x,. In equation

(7), the second term on the left -hand side represents the net flux of
mass out of cell k. As in the particle equations, the time derivatives
are expanded, and first-order forward time differences are used with
the coefficients evaluated at the old time level.

To prevent a convective instability due to centered mass flux terms, the
fluxed densities in equation (7) are donored if the velocity is not zero.
Because the bubbles are tracked in a Lagrangian manner, there are no
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instabilities associated with ¢, and the fluxed volume fractions are not
donored.

3.2. Continuous Phase Momentum Equation

The continuous phase momentum equation is,

d u,, u,_ |
aﬂpjl d —L+ aﬂpﬂv uﬂ["""’Afx‘J-l—”:l =

Pn+l Pn+1 (8)
-0,V ["“—A—;*k'zl‘} = f a3 = F o + 030,V ,9

The bubble-liquid interphase force, F,,, is defined as,
n+ oP
tmeell ~fu(us” - {@}ib) -V [ax]

Fp= 2 Mg v (9)

Tl ve( G- (3

Consistency between the bubble and the continuous phase momentum
interface terms, F,, given in equation {3) must be satisfied.

The continuity cell variables with a j subscript are simple averages of
neighboring continuity cell values. The convective acceleration terms are
evaluated using a one-sided upwind spatial gradient (i.e., donoring to make
the convective terms stable). In order to make this scheme implicit in the
terms responsible for sound wave propagation, the pressure gradient in the
momentum equation and the velocity in the mass equation are both
evaluated at new time . Hence, this scheme does not have a time step limit
based on the sound speed that explicit schemes have.

3.3. Continuous Phase Energy Equation

The conservation of liquid phase energy in cell k is given by the following
equation, which is written in terms of entropy, ¢,:

0 \'4 .
(O«’upgztekz k) +( P E UL 1)::“ -
n+l aucbebﬂlis
Qﬁi..kléw"k"’ Z{Tikwrglsu} (10)
wk
3 e h ubAsz(a& [wllb:l:lﬂ +(1-wy,)T, ])
it

The weighting factor, w,,, allows us to use a linear combination of the wall
temperature and the average liquid temperature. When wy, is one, the

bubble sees the average liquid temperature for its heat transfer, and when
wy, is zero, the bubble sees the wall temperature for its heat transfer. This
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allows us to model subcooled boiling where some bubbles are on the wall and
some bubbles are in the free stream.

The second term is the net liquid entropy flux out of cell k through its
junctions. The first term on the right-hand-side is the direct entropy
addition rate to the continuous liquid phase from the wall heat transfer.
Since this energy conservation equation is written in terms of entropy, the
wall heat added to the liquid is divided by the source temperature, which is
the wall temperature.

The two remaining summation terms account for the energy transfer
between the continuous liquid phase and the bubbles. This energy transfer
can occur from both mass transfer with its associated phase change and heat
transfer. The first summation is the entropy transfer rate associated with
mass trensfer from the bubble-liquid interface to the continuous liquid phase
in cell k. The n,, in this equation is the fraction of bubble iin cell k. The
second summation is the heat transfer rate from the bubble-liquid interface
to the continuous liquid phase in cell k. The hyin this equation is the heat

transfer coefficient on the outside of the bubble.

4. PHASE COUPLING MODELS

The coupling of the discrete Lagrangian and continuous Eulerian phases
proved to be the most difficult part of the modeling and numerical algorithm
development. This section describes the coupling models under three
headings: (4.1) volume fraction coupling, (4.2) momentum transfer coupling,
and (4.3) energy transfer coupling.

4.1. Voluma Fraction Coupling

In two-phase bubbly flow, the dispersed phase bubbles can become quite
large due to coalescence, merging to form extended cylindrical bubbles that
have transverse diameters approaching the pipe diameter. For this reason,
the volume occupied by the dispersed particles can not be neglected as it
frequently is in modeling liquid sprays [Amsden, 1989].

The volume fraction coupling between the dispersed and continuous phases
must be treated carefully. The volume of a bubble located at x,, is clearly
discrete in space. The volume fraction, «, in the continuous phase
equations results from these spatially discrete bubble volumes. However, in
the continuous phase equations, the volume fraction is a continuous field
variable with a spatially smooth distribution, as in classical two-fluid models
like RELAPS [Ransom, 1985] and TRAC-BD1 [Taylor, 1984].

This dual character of the volume fraction means that some smoothing
interpolation must be used when the bubble volumes are combined to
calculate the continuous phase volume fraction. This has been done in
DISCON2 using an extended bubble shape function. This should not be
confused with the actual shape of the bubble, which is described in Section
5.1. The continuous phase model represents the average phase properties
over a region of space comparable to the cell length, Ax. Therefore, in
order to smooth out this particle induced continuous phase volume

-9 -



variation, the particle volume is distributed over an arbitrary length. In the
present code, this length is set to the Eulerian cell length, Ax. The code
has also run successfully with this arbitrary length set to two or three
particle diameters. Because the particle locations are Lagrangian, this
smoothing does not introduce any artificial diffusion of the volume fraction.
It is simply an interpolation of the volume occupied by the discrete particles
onto the continuous field volume fraction, which is itself an average value
over the cell.

The cross-sectional area occupied by an extended bubble at position x and
time t is given by, A,(x,t). It will be convenient when we extend the
bubble's length to partition the cross-sectional area into the product of two
terms, the bubble's volume, V,(t), and the bubble's shape, n,(x,t). Since,
the integral of the cross-sectional area occupied by a bubble, A, (x,t), over

its length is equal to the bubble's volume, V,(t), the integral of the bubble's
shape over the same length has to equal unity. We also require that the
shape function not change as the bubble propagates down the pipe, i.e., the
(x,t/ dependence of the shape function is a function of the relative distance
from tb~ irubble's current position, x,,

Mo (x.t) = N, () = r’ib[x—'xlb(t)] (11)
Thus, we can write the bubble's cross-sectional area as,
Ay (x,t) = Vi (t) N[ % — x4 (t)] A (12)

When we integrate 7, with respect to x over cell k, we get the fraction of
bubble i located in cell k,

N (t) = [ {lx - x5 (t)]}dx (13)

If all of bubble iis in cell k, 7n,, is equal to unity.

The integral of bubble's cross-sectional area equation over cell k times the
volume of bubble i divided by the volume of cell k gives the bubble volume
fraction in cell k,

g (£) = [Y-%Q] [, {nlx - xo(O)]}ax = [Y_:}:_L%I_Z@_LQ] (14)

In what follows, we will need the change in the bubble volume fraction over
a time step. Therefore, we differentiate equation (14) with respect to time

and make use of the fact that the time derivative of x, (t) is just the bubble

velocity, u,(t), and that the derivative of q = x — x,, with respect to x is 1, to
obtain,

s e i Ml
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The integral in this equation can be written as the difference of the "out"
minus the "in" values of 1 at the two junctions at either end of cell k. From
Fig. 1, we see that cell k is bounded by junction j on the left and j+1 on the
right.

doyg (t) _ [nm(t):l[de(t)]

dt vV, dt
(0] 22 [ - a0} e, 6]

Instead of using the point value of 7 at junction j, we will use an average
value, because this will result in more smoothing of the solution as a bubble
moves through a cell.

dac,;,z(t) ) [nk‘,;ft)][d";(t)}

(16)

(17)

—Uy, (t)[ V(‘b}‘(‘t)][n{xjﬂ - xtb(t)} - n{x.i ~ X (t)}]

The average value of 7 in a junction is the integral of n over the momentum
cell enclosing the junction divided by the length of the junction, Ax.

s 200} = [0 o = 22| 19

The bubble volume fraction in a junction cell is defined, as in equation (14),
as

o (t) = [K“%—,(c—tl]jjurwﬁonj[n{x = xtb(t)}]dx = [Y_______lb(t‘)IZJw(t)] (19)

Using equations (18) and (19) for the average value of 7, we can re-write
equation (16) in terms of the bubble volume fraction in a junction cell as
follows,

da,d,,(t! - [ﬂm,(t ][dvfb t :l_uw(t)[aﬂl.tb(t)" aJJb(t)] (20)

dt V. dt Ax
This is the expression used in the DISCON2 code.

4.2. Momentum Transfer Coupling

The momentum coupling between the discrete particles and the continuous
phase is due to the interface force acting on the surface of the particles. In
equation (8) the momentum transfer due to mass transfer has been
neglected. This interface force is modeled in the particle momentum
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equation by the three terms f,b,[ud, -{q, }‘b]’ V, 0P/ox, and the added mass
term.

The first term represents the classical drag force as measured on a particle
immersed in a continuous phase. The drag force is formulated in terms of a
drag coefficient, C, based on the equivalent frontal area. This drag

coefficient is obtained from the data correlations of Peebles and Garber
[Peebles, 1953] and Harmathy [Harmathy, 1960]. Peebles and Garber give
the drag coefficient in the laminar and distorted particle regime. They use a
four region formula. Harmathy gives an improved formula for the fourth
region and adds a fifth formula for the fully turbulent Taylor cap region. The
drag coefficients for bubbles that are used in the DISCON2 were summarized
in a previous paper [Trapp, 1991].

When using this formulation for a simulation with many bubbles of various
sizes, the question arises of what should be used for the continuous phase far
fleld velocity. In the case of a single bubble rising in a uniform fluid, the
appropriate continuous phase far field velocity is clear and is easily
determined. In the intermediate situations, the appropriate far field
reference velocity is not well defined. For cylindrical bubbles that nearly fill
the pipe, the appropriate far field reference velocity is the continuous phase
velocity far ahead of or far behind the bubble. Neglecting compressibility
effects, this is equivalent to using the mean volumetric flux as the far field
reference velocity. At the other extreme of a single small bubble rising in a
large tank, the far field velocity is clearly the liquid velocity far from the
bubble, which in the limit of vanishing small bubble size is equivalent to the
mean volumetric flux.

In the intermediate case, where there are many bubbles of various sizes
present in the flow, it is necessary to estimate an equivalent far fleld velocity
for use in the drag correlations. Several papers have recently addressed this
problem, see Kowe [Kowe, 1988] and Couet [Couet, 1991]. A reasonable
model for the interstitial far field velocity that takes into account the added
mass of the continuous phase displaced with the particles has been
developed in these references. This model is applicable to low gas volume
fraction dispersed flows. When the bubble number density becomes small,
the analysis becomes inappropriate. In DISCON2, we consider a full range of
bubble number densities and bubble sizes including large cylindrical bubbles
filling the pipe. We have chosen to use the mean volumetric flux as the far
field reference velocity in all situations. This choice simplified the coding
and is appropriate in the limiting cases.

Recalling equation (19), one obtains for the volumetric flux at any junction,

bubbles bubbles
tneell tncell § \74
P - . , tb
O,=ou,+ 3 aul,=ou+ 3 M,—2u, (21)
{

\'

t J

The volumetric far field velocity defined in equation (21) is independent of
position when the continuous and particle phases are inrcompressible and
there is no mass transfer. In the numerical simulations, it is important to

-12 -



represent this far fleld veiocity with a spatially smooth function independent
of the Lagrangian nature of the particles. The velocity in equation (21) is
consistent with the far fleld velocities used when the correlations were
developed and gives the spatially smonth reference velocity needed in the
drag force calculation.

- The far fleld velocity defined above is not the whole story. Each particle can
also be influenced by the wake of preceding particles. A trailing particle can
be "trapped" in the wake of a leading particie. When a trailing particle, say a
bubble rising in a liquid, is in the wake of another bubble, it is rising in a
flow field that has a velccity more nearly equal to that of the leading bubble.
It rises due to buoyancy in this modified flow fleld. This is the primary
mechanism allowing bubbles to approach and coalesce. This effect is
modeled by modifying the far field velocity in equation (21) by the waxe
velocity of leadirg particles ‘vhen making the drag calcvlation.

The veloclty in the wake of a solid object has been discussed in several texts,
see for example Batchelor [Batchelor, 1967] and Schlichting [Schlichting,
1955]. In general, for turbulent flow, the wake-induced flow at any position
x behind an object can be expressed as,

rw(x)‘_

2
WUyoie :uw(x)exp(—[ r ] ) (22)

where u,(x) is the centerline *vake velocity, and r,{x) is a scale for
the radial distribution of the wake velocity. A standard integral
momentum balance gives the following relationship between w,(x)
and r (x),

: - 2
]3] -3

p

where u, is the velocity of the wake producing object relative to the
fluid, and r, is the equivalent radius of the particle based upon a
spherical shape consistent with the calculation of C;. Using equations
(22) and (23), the velocity at any location behind an object caused by
its wake can be found if we know u(x) or r,(x). Stuhmiller
[Stuhmiller, 1989] has carried out a preliminary correlaticn of wake
centerline velocity data from several sources and gives a formula for

by (X)),

[%4 - [aw + b“‘(ﬁ%] ) (?}255 }2

where a, = 0.20, b, = 0.12, ¢, = 0.01, and R, is the body or actual
radius of the particle. Comparisons of the DISCON2 code calculations
with the bubble rise data of Crabreee and Bridgwater [Crabtree, 1971]

-1
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were better when we increased a, to 0.45. Therefore, we used a,, =

0.45 in the current calculations with DISCON2, The bubble shapes are
discussed in Section 5.1.

To complete the wake model, the wake velocity of every bubble leading the
bubble in question is calculated using the above formi:las. There are two
wake models in the DISCONZ2 code, cne that uses the 'maximum" wake and
one that uses the "closest" wake. In both cases, the leading bubble wake
velocity is used to calculate the modified far field velocity, &I, for the trailing

bubble. The trailing bubble thus "sees" this modified far field velocity in its
drag correlation. It rises in the wake flow fleld at a rate determined by the
balance of its drag 2:.d buoyancy forces. This is the primary mechanism by
which trailing bubbles nvertake leading bubbles.

The second momentum coupling term, V,0P/dx, represents the average
pressure force on the particle surface due to the mean pressure gradient in
the continuous phase. This is the source of the buoyancy term: that arises for
a particle at rest in a stagnant fluid under the action of gravity. In the
present version of DISCON2, this effective mean pressure gradient in the
continuous phase is modeled using the gravity head and inertial acceleration
cof the far field continuous phase flow,

P (- CLA LY
g”{P}w{g (r}t %u&‘fﬂ B

where {p}, is the continnous phase donaity at the location of bubble L

The third momernitum o wling iz, adodi=1 mass, is modeled in the
conventional manner <t i v added nirss coeffictent of 0.5.
4.3. Energy Transfer (: . piy

The energy transfer betws=¢: e discrets warticle and continuous phase is
due to heat transfer and mass transfer, "he sum of the energy entering the
interface plus the energy leavin: the interfa~~ r11st equal zero, There can
be no accumulation of energy in the interfac:. "is condition is expressed
by the following equation, where we are using c¢:utropy for the energy
variable.

hoAw (65" - To")
Oy
h 9n+l -lw Tn-rl +(1-w, Tn+l
""5ubr?z;1"' !letH( ibl [ b+ b ( lib) w(b])=0
Gibl
This first term is the entropy addition rate from the inside of the bubble to
the bubble-liquid interface as a result of mass transfer. The second term is
the entropy addition rate from the inside of the bubble to the bubble-liquid

interface as a result of heat transfer. The third term is the entropy addition
rate to the interface from the surrounding liquid as a result of mass transfer,

""ewr'&;‘l +
(26)
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The last term is the entropy addition rate from the surrounding liquid to the
interface as a result of heat transfer.

In the above equation, there are three new variables. These define the
average liquid entropy, average liquid temperature, and average wall liquid
temperature surrounding bubble {in cell 't and are defined as follows,

cells
surrounding
bubblet

Ep = ;[nkﬂzekt] (27)

cells i
surroun
bubblet g

Ty, = ;[TlubTu] (23)

cells
surrounding
bubblei

Tw(b = g[nklb’rwk] (29)

5. ADDITIONAL MODELS

Additional models are needed for computing the shape of the bubble. The
shape is needed to compute bubble coalescence. In addition, models are
needed for bubble turbulence and bubble-liquid heat transfer. We need film
heat transfer coefficients on the inside and outside of the bubble-liquid
interface. All of these additional models are discussed in this section.

5.1. Bubble Shape Model

So far in the development, the actual shape of the dispersed particle has not
been a factor in the model. The drag correlations are based upon the frontal
area of an equivalent sphere having volume V_, and the actual shape has not

been needed.

In general, bubbles, and to z lesser degree drops, take on a variety of shapes
depending upon their size. The sequence of shapes shown in Fig. 2 is
generally characterized in increasing volume as sphere, oblate spheroid,
Taylor cap, and cylindrical bubble. We used the simple formulas given by
Stuhmiller [Stuhmiller, 1989] to characterize each shape. These formulas
are based upon the Edtvos number, E, the particle volume, V,, and the pipe
radius, R.

- 15 -
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Fig. 2. Calculated Bubble Shapes.
The Eétvos number is defined as follows,

E = 49,-;[@_%&_'] (30)

These shapes are explicitly used at two places in the model and in all visual
output from a DISCON2 simulation. The body or actual radius of the particle,

R,, is used in the wake centerline velocity calculation, equation (24). Both
the particle radius, R,, and the actual vertical height of a particle are used in
the bubble coalescence model.

5.2. Bubble Coalescence Model

Two bubbles merge or coalesce if they overlap in the radial and axial
directions by more than a certain fraction, called the overlap fraction. The
bubble shapes are used in the computation of this overlap fraction. The
overlap fraction is an input parameter, and in most simulations, it is set to
zero, i.e., the two bubbles merge when they just touch. When two bubbles
are merged, the sum of their masses, momenta, and entropies are
preserved. The merged bubble is placed at the center of mass of the two
original bubbles. Only bubbles that are in the free stream are merged. All
the bubbles on the wall retain their identity even if they overlap another
bubble. They can only merge after they are released from the wall.

Future extensions of the merging criterion will include the addition of a
delay time to account for time it takes the liquid film between the bubbles to
drain away. This phenomena has been observed experimentally.

5.3. Bubble Turbulence Mode!

A very simple turbulence model is used to simulate the effect of the
fluctuating continuous phase velocity field. The velocity of each particle is
assumed to consist of the deterministic velocity component plus an additive
fluctuating component generated by the turbulence present in the
continuous phase. The particle positions are then calculated using the
following equations,
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_C.i_x.ib_zu"j‘,“+u:b (31)

dt
Loy, (32)
dz, _

where uj, uj, and wj, are the velocities generated by the continuous
phase turbulence in the x, y, and z directions respectively. These
fluctuating continuous phase velocities are related to the intensity of
the turbulent wakes produced by the neighboring particles (wall
effects are neglected). A simple random walk process that produces
the same fluid parcel dispersion as found in homogeneous turbulence
as developed by Tennekes and Lumley [Tennekes, 1972] is used to
estimate the size of uj, uy, and wj, see Stuhmiller [Stuhmiller,
1989].

5.4. Wall Heat Transfer Model

A wall heat transfer model has been developed fo: forced convection,
subcooled boiling, and saturated boiling. The forced convection and
saturated boiling models are conventional, but the subcooled boiling model
is unique and will be explained in more detail.

In subcooled boiling, the average liquid temperature is less than the
saturation temperature, so in theory, no boiling can take place. However, if
the heat flux is large enough, the wall temperature will be higher than the
saturation temperature, the fluid adjacent to the wall will be above the
saturation temperature, and subcooled boiling can take place. The
subcooled boiling model partitions the heat flux into two parts: that driven
by the difference in the wall temperature and the bulk liquid temperature,
and that driven by the difference in the wall temperature and the liquid
saturation temperature. In the subcooled boiling model, a portion of the
heat goes into heating up the liquid phase, and the remainder goes into
creating and growing bubbles that are attached to the wall. Once the bubbles
get large enough, they are released into the bulk liquid phase where they
can either grow or condense.

For the wall heat flux to the liquid, we have,
mt = Py e[ Ttk = Tt (PE™)]+ Mot Tkl — T (34)

wk

where the heat transfer coefficients are taken from the Chen [Chen, 1966]
correlation. This equation is used in DISCON2 to determine the wall
temperature. The wall heat flux to the liquid is an input quantity.

5.5, Bubble-Liquid Heat Transfer Modsi

The bubble-liquid heat transfer model consists of two models: one for the
inside of the bubble and one for the outside of the bubble. The outside heat
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transfer model is further modified when the bubble is on the wall at a boiling
nucleation site.

Inside the bubble, we use a relaxation model to compute the heat transfer

coefficient,
thptb_[gft_b:l 35
[ Tho J dr (39

H, {_h(b%""‘:i =

Oup

where 71, is the relaxation time constant for the bubble temperature.

The relaxation time constant is the time it takes the bubble
temperature to come within about 63% of its final value after a step
change in the bubble-liquid interface temperature. After about 5 time
constants, the bubble temperature is within 99% of the interface
temperature. This relaxation time constant is input and in most
calculations it is usually set to 20% of the time step to assure that the
bubble temperature stays close to the saturation temperature at each
time step.

Outside the bubble, when it is in the free stream, i.e., not attached to a wall
nucleation site, we use a heat transfer model from Whitaker [Whitaker,
1972] for heat transfer to a sphere in a flowing fluid.

_ | hy Ay _ Ay k 0.5 0.67 0.4
H, =[J§w, l]"[&bf ][ZR;u, ][2+(0.4Rea, +0.06ReS ) PrS?] (36)
where the Reynolds number is defined as
2R
Re,, = |u,, - {T, }wl[——;f"i} (37)
l

and the Prandl number is defined as

{Epn }a: Vi {5! }tb
ky

When the bubble is attached to a wall nucleation site, we compute an
equivalent heat transfer coefficient from a combination of Lahey's
model [Lahey, 1978] for subcooled boiling, Saha and Zuber's
correlation [Saha, 1974} for the critical enthalpy for net generation of
vapor, and the Chen correlation [Chen, 1966]. This combination of
models is also used in the TRAC-BD1 computer code [Taylor, 1984].

The partitioning of the heat transferred from the wall into the growing of
bubbles and heating of liquid is taken from Lahey's model [Lahey, 1978] for
subcooled boiling. The mass transfer rate from the wall to the bubbles on
the wall is given by

QwH‘AwkMkl
T, = (39)
® [tg.sa.t(Pk)_ild]

Pr, = (38)
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where My is a multiplier that gives the fraction of the wall heat flux that
goes to making bubbles. It is given by,

by — 1
M, = = kl kl,cr (40)
. [il.sa.t(Pk )= ikl,cr][l + Vi

where vy, is given by,
Vi = pklﬁl,sat(Pk)-iu]
) ﬁg.sat(Pk )[ig.s«n(Pk) - il.sat(Pk)]

In equations (40) and (41), the critical enthalpy is the enthalpy the fluid to
exceed before there is a net generation of vapor. It is given by the Saha-
Zuber model [Saha, 1974] as,

(41)

- St,,C
{ gt (Pr) = =—==£ for Pe,, > 70,000
' 0.0065
N er = NULC (42)
st (Pe) ~ 4';5'" for Pe,, <70,000
The Stanton number is defined as,
Nu,
“ Pe,, (43)

and the modified Nusslet number, which is the Nusslet number times the
temperature difference, is defined as,

. D
Nu,, = Q%ﬂ (44)
1

The Pecklet number is defined as,

G.D, C
Pem:._.’fl__"’.ﬂ__‘.’!_ | (45)

ki

This set of equations determines the mass transfer rate from the fluid on
the wall into bubbles attached to the wall nucleation sites. If we now modify
the heat transfer coefficient on the liquid side of the bubbles on the wall as
given by the Chen correlation for h,,,, we can let the code compute the

correct amount of mass to transfer from the liquid phase to the bubbies on
the wall. In this case, the conservation of energy at the bubble-liquid
interface, equation (26), can be simplified to

(€6 = € )Tew = Hip (8 — Tuss) (46)

where we have set wy =0 because the bubble is on the wall and T, = 6,,
because the bubble is small and its internal temperature cannot differ very
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much from its interface temperature. We have also combined three terms,
h
wwi 6, nto Hy.

We substitute into equation (46) the relationship obtained above for the
bubble-liquid mass transfer rate and get,

katAwkMkt(etb‘eub)=H 6, -T (47)
NH[E_sw(Pk)“iH] Ub( bl wtb)

where N, is the number of bubbles on the wall in cell k. Notice, that by
dividing by N,, we have assumed that all the bubbles on the wall have equal
rights and get an equal share of the wall heat flux. Another option would be
to partition the heat flux according to the size of the bubble.

Substituting for the wall heat flux to the liquid from the Chen correlation,
and noting that the saturation temperature in this equation, T,,, is the same
as the interface temperature, 6,,, and for small bubbles, the temperature of
the liquid surrounding a bubble, T ,, is close to the wall temperature, T,
we can write the equation (47) as,

ledAvkold(Eﬂ) - e;tb)
Nkl[tl.sat(Pk)_ i,d—]
= HUb(etbl - ka)
Solving equation (48) for H,,, we get,

hy A F i AucMia (€5 — €1) { [T - T }}
Hy, =l = (@2 u Pt e + P e | —— (49)
* { Nkl[it.sat (Pe)- ikz] e =T T = O

When we use this value for H,,, bubbles attached to wall nucleation sites will
grow to create the same void fraction as would be produced in more
conventional two-phase codes like RELAP5 [Ransom, 1985] and TRAC-BD1
[Taylor, 1984] when they use the Lahey, Saha-Zuber, and Chen models.

While this subcooled boiling model for H,, is somewhat unconventional, it is
used here because we have not found any appropriate correlations for the
heat transfer coefficient on the outside of bubbles attached to wall nucleation
sites. However, the DISCON2 code is certainly capable of using such
correlations if and when they become available.

}{hkl.mlc[ka = B ]+ Pt e[ T = Tua ]} (48)

6. SUMMARY OF BASIC EQUATIONS

For the discrete phase, the basic equations are the mass conservation (1),

. the momentum balance (2), energy balance (5), and the kinematic position
equation (6). The continuous field equations for each cell are the mass
conservation (7), the momentum balance (8), and the energy conservation
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(10). In addition, there is the energy transfer coupling (26). The above
seven equations (per particle, per cell) are the basic equations to be solved
for the seven new time variables, V,,u,,€,.X,, P ,u;, ande,. The formulas of

Section 4.1, are used to express the volume fraction, ¢, in terms of the
particle volume, V. The re naining new time values of the state variables,
ps, and p,, are functions of the independent state variables, P, and T,. The
present version of DISCON2 neglects any pressure difference between the
phases; therefore, P, (when interpolated to a particle position) forms an

independent state variable for the particle phase. All state relationships in
DISCON2 are linearized during a time step.

An examination of the basic finite difference equations reveals the following:

¢ They are linear in the new time variables. Hence, each
time advancement only requires the solution of a linear
system of equations. This is a very complicated linear
system due to the mixed Lagrangian and Eulerian
features of the equations and the implicit coupling

between the phases caused by the time derivatives of ai
in equations (7) and (10).

e The acoustic terms (i.e., velocities in equation (7) and
pressure gradient in equation (8)) are evaluated
implicitly, hence there is no upper limit on the
allowable time step size due to acoustic wave
propagation.

» The drag term in the particle momentum equation is
evaluated implicitly in ujp. Hence, the short time
constant associated with the large drag force on the
particle does not lead to a stability restriction on the
time step size.

Because of the explicit evaluation of the convective terms in the continuous
phase, the time step size is restricted by the material Courant limit . In

addition to the material Courant limit stability restriction on At, the step
size must be chosen to resolve the accuracy of the important physics of any
given process.

7. SOLUTION SCHEME

The solution scheme is a semi-implicit scheme and is outlined below for one
time step of the calculation.

At the beginning of each time step, the volumetric flux and average
acceleration is computed from continuous phase velocities and particle
velocities. Next, any particles that satisfy the coalescence criteria are
merged. If two particles overlap by some specified fraction, which is input,
the two particles are replaced by one particle having a mass equal to the
sum of the masses of two merged particles, a momentum equal to the sum of
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the momenta of the two merged particles, an entropy equal to the sum of
the entropies of the two merged particles, and volume equal to the sum of
the volume of the two merged particles. The new particle is located at the
center of mass of the two merged particles. The pressure of the new
particle is a mass weighted average of the pressure of the two merged
particles.

The shape of the particle is then computed, and the heat transfer
coefficients are computed from correlations. The drag coefficient is
determined using correlations discussed in Section 4.2. The wake velocities
at each particle's position due to each of the leading particles is computed
using the other equations in Section 4.2, Terms that go into the discrete
phase momentum equation are now known, and the new tirne particle
velocity is computed using equation (2). The new time particle position is
then computed from equation (6).

The integrated effects of the particles on the continuous phase are
computed. These effects are contained in the last term of equation (8),
which is a summation over all the particles in a momentum control volume.
The continuous phase velocity for each momeritum cell is computed using
equation (8). Since we do not know the new time pressure gradient yet,

this velocity is explicit and uses the old time pressure gradient, P; - P;_,.

We also compute an influence coefficient, vdp, = —At/ (p J‘Ax). that can later
be multiplied by the gradient of the new time pressure increment,

AP - AP;Y!, and added to the explicit velocity, uj®, to obtain the new time
velocity,

uf* = uS™ + vdp, [AP; - AP (50)

The new time pressure increment, AP"' = P"™! - P" is computed using an
expanded form of the continuous phase mass equation, equation (7),

dp, |dP n+ n+
PV + akvk['é%k‘]"_a'tl + A(a_lﬂpjﬂujﬂl —o,p,U; l) =
bubbles (51)
Z{nml""w‘r‘}
{
where we have expanded the time derivative into two terms. We
replace the two velocities in the mass flux term in this equation with a
suitable form of equation (50). For the derivative of the volume
fraction, da, /dt, we use equation (20), which brings in a dV,,/dt term,

which can be expressed using an expanded form of the bubble phase
mass equation, equation (1),

dv, dp,, dP ”
VvV, .= -T" 52
Po gy *Vegp g T T W (52)
We do a similar expansion on the bubble energy equation, equation (5),
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oP aT
+BletFrbT1 - H,bAt(Aeu,, - AT‘b) = HwAt(ewl - Tib)

Thus, equations (52) and (53) become a block tridiagonal system of
equations involving only the pressure and temperature increments in cell k,
and the pressure increment in its adjacent neighboring cells, k+1 and k-1.
This tridiagonal system is solved for the pressure and temperature
increments in each cell using a Gaussian elimination solver.

With the new time pressure and temperature increments are known, the
new time continuous phase velocity is computed using equation (50), and
the new time particle volume is computed using equation (52).

The continuous phase and the particle phase densities are computed from
an appropriate state equation. Using the new time particle volume, the
fraction of each particle in cell k, n,. and junction j, n,,, is computed using
equations (14), and (19). The volume fractions of the continuous pihase in
each cell and junction are also computed at this time.

This concludes one time step of the calculation, and we repeat these steps
for the next time step.

8. TEST PROBLEMS

This section documents several DISCON2 simulations of experiments
performed by Carl St. Pierre [St, 1965,St, 1967]. While there may be more
recent data, this data was used because it was the same data that was used by
Stuhmiller to test out his BUBBLE code [Stuhmilier, 1989].

Each simulation c¢an viewed as a another numerical experiment. Repeating a
run will gives different results because of the randomness in the locations of
the bubble nucleation sites and bubble turbulence.

8.1. St. Pierre Experiment

Two runs were simulated, Run 1 and Run 10. Run 1 had the lowest
pressure, 200 psia (1.38 MPa), and the lowest inlet subcooling, 0.5 F
(0.28K). Run 10 a higher pressure, 600 psia (4.14 MPa), and the highest
inlet subcooling, 12.6 F (7.00K). Both runs had an inlet velocity of 3.78 ft/s
(1.152 m/s). The wall heat flux in Run 1 was 2.28 Btu/hr-ft2 (7.19x104
W/m2) and in Run 10 it was 9.12 Btu/hr-ft2 (2.88x105 W/m?2).

The channel was rectangular and had dimensions of 0.437x1.750 in.
(1.11x4.445 cm). The heated length was 49.5 in. (125.7 cm), and the total
length was 61 in. (154.9 cm). A power supply that could output 100 V at
3000 A supplied the heating. The void fraction measurements used the
gamma-ray attenuation technique. St. Pierre estimated the error in the
average void fraction at less than 10%. Measurements were made at
thirteen equidistant locations along the channel, and in all cases, the
gamma-ray beam passed through the 1.75-in. depth of the channel.
Traversal of the channel in the narrow direction provided void fraction
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measurements across the channel. These were averaged to get the average
void fraction data at one of ten axial locations. Due to small misalignments,
only 80% of the cross section could be traveised. St. Pierre states that this
limitation would tend to give higher void fractions for the downstream
portion of the test section where convex void fraction distributions were
present and lower fractions near the inlet where concave distributions were
present.

We modeled the experiment with 10 cells in the heated section with 2 cells
on either end for a total of 14 cells. Time steps of 5 ms were used. The
water was initialized with a uniform pressure and temperature. The wall
heat flux activated at cycle 5 after the gravity head in the water had built up.
We used the "maximum" model for bubble coalescence. Most of the runs
were 500 cycles long and from the results, steady state was reached by 300
cycles. Bubbles were released from the wall when their radius exceeded 1
mm. Their initial radius was 0.001 mm. The turbulence parameter was set
to zero, i.e., there was no turbulence model for these ruus. The runs were
made with 10 active nucleation sites on the wall. The nucleation sites were
randomly picked.
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8.2. St. Pierre Run 10 Comparisons

Run 10 had an inlet subcooling of 7.0 K. Fig. 3 shows a comparison of the
DISCON2 calculation with the experimental data. We put £10% error bars
on the experimental data, as recommended by St. Pierre. The data for the
calculation are averaged over 100 cycles, from cycle 400 to 500. The
experimental data is above the calculation is good over most of the range.
The calculated void has a general tendency to be under the experimental
data in the uipper end of the channel.

Void (%)

Fig. 3.

St. Pierre Run 10 Comparison

40

J |——a— DISCON2
® Experiment {

0 =y Y

0 20 40 50 80 100 120
Elevation (cm)

Comparison of Averaged Void Fraction for St. Pierre Run
10 and DISCON2 Calculation.
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Fig. 4 shows the total number of bubbles at each cycle in the simulation of
Run 10. Since we activated 10 nucleation sites in each of the 10 cells, 100
of these bubbles were on the wall at nucleation sites. That leaves about 1000
bubbles in the free stream after the initial transient has dissipated (after
cycle 100) None of the bubbles released from the wall collapsed in the free
stream. Evidently, they all coalesced with existing bubbles in the free
stream before they had time to collapse. The fluctuation in the number of
bubbics gives an indication of the statistical nature of the calculation. A
repeat of this calculation with a different set of wall nucleation sites could
easily result in a different number of bubbles at each cycle.

St. Pierre Run 10 DISCON2 Comparison
2500

2000 A

1500 -

1000 -

No. Bubbles

500 -

S B e S
200 300 400 500
Cycle No.

v L)
0 100

Fig. 4. Total Number of Bubbles in the Channel for the DISCON2
Simulation of the St. Pierre Experiment Run 10.
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Fig. 5 shows the liquid, wall, and saturation temperatures for the DISCON2
simulation of Run 10. Since the wall heat flux is constant and the wall
temperature is almost parallel with to the saturation temperature, we see
that the hme portion of the Chen correlation is the dominating term in the
wall temperature model. There is some slight curvature of the wall
temperature at the entrance, which indicates that if the subcooling was
larger, the hmac portion or the Chen correlation would come into play and
the wall temperature would parallel the liquid temperature. (See Fig. 5.1 in
Collier [Collier, 1972}).

St. Plerre Run 10 DISCON2 Comparison

550
5 E '—-—-—(M
o e | iqUid
2 540 ~ ——ye  \Nal|
2 ——@—=  Saturation
-4
E
@
-
530 4 T ¥ B ]

W ¥ v l L4 L ' L
0 20 40 60 80 100 120
Elevation (em)

Fig. 5. Liquid, Saturation, and Wall Temperatures for the
DISCON2 Simulatfon at Cycle 500 of the St. Pierre
Experiment Run 10.

- 97 -

ey

]

g

L



8.3. St. Pierre Run 1 Comparisons

Run 1 had an inlet subcooling of 0.28 K. Fig. 6 shows a comparison of the
DISCONZ2 calculation with the experimental data. We again put +10% error
bars on the experimental data. The DISCON2 data shown are averaged over
100 cycles, from cycle 400 to 500. The agreement of the calculation with
the experiment is good over most the channel length. There is some under
prediction of the experimental data around 40 cm and again at 100 cm.

St. Pierre Run 1 Comparison

50

1]|—=— DISCON2
40 o Experiment }

Void Fraction (%)

0 v v ML v T d 1

e e
0 20 40 60 80 100 120

Elevation (ecm)

Fig. 6. Comparison of Averaged Void Fraction for St. Plerre Run 1
and DISCON2 Calculation.

9. CONCLUSIONS

The discrete particle two-phase flow model is able to dynamically predict
the evolution of both the flow topology and energy partitioning as the
bubbles form on the wall and merge due to wake effects. Many more
simulations are required, however, including larger subcooling experiments
and the transition from long Taylor bubbles to annular flow. Our goal is "o be
able to simulate a boiling experiment that has subcooled water at the
entrance and superheated steam at the exit. However, before this
simulation can be done, we need to add the continuous gas phase with its
discrete drops. We also need to improve the heat transfer models for
bubbles attached to wall nucleation sites. Work along these lines is in
progress and will be reported in due course.
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