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1 Introduction

The techniques of automatic differentiation [8, 10, 15] are applied to an example partial differential'
equation arising from the modeling of unsaturated flow. One common paradigm for the numerical solution
to some classes of two-, three.-, or higher-dimensional partial differential equations is as follows:

® Given a PDE and boundary conditions,

• apply finite difference or finite element approximations on some appropriate (frequently nonuniform)
grid, and

® enforce an approximate solution by solving a nonlinear system F(t,) = 0 for the residual by Newton's
method.

The dimension of the nonlinear system F(u) = 0 is proportional to the number of grid points. In

current algorithms, the Jacobian J required by Newton's method is computed by some combination
of hand coding, divided differences, matrix coloring, and partial separability. We present a case study
documenting the steps we took in analyzing a code provided by Robey for modeling unsaturated flow in

porous media. Our purpose was to compute J by automatic differentiation using ADOL-C [12], a tool
for automatic differentiation using overloaded operators in C++. We conclude that

, ADOL-C can be successfully applied to large, complex, existing C codes;

, in this application, the fastest ADOI,-C code ta.kes twice as long as the best finite difference code;
. in this application, the reverse mode takes about twice as

, long as the forward mode; and
, significant efficiencies are possible in the linear system solver.

2 Conventional Methods for Finding J

In this section, we survey briefly some of the conventional methods of computing J.

Hand Coding
The best performance of algorithms is usually achieved when the analytic Jacobian ,I is hand coded.

In general, this is a tedious, time consuming, and error..prone task. In many problems, hand coding
is feasible because many of the dependencies of F on u are linear. If the linear dependencies can be.
separated frorn the nonlinear ones, hand coding of at least portions of J is made crosier.
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" Divided Differences
The Jacobian ,1 can be approxirrlated by backward, centered, or forward divided differences. An appro-
priate choice of step size is dif:Bcult, especially when there may be differences of scale between different

components. Hence, the accuracy of divided-difference approximations is in doubt. A naive coding per-
turbing each _component of u iii turn is easy, but, very expensive, hnplementations usually attempt to
exploit the sparsity structure known to be present.

Matrix Coloring
One technique for exploiting the sparsity structure of J is matrix colcring [3]. If two columns of J have
nonzero elements only in disjoint sets of rows, then those two columns can be computed simultaneously,
using either divided-difference or automatic differentiation techniques. Suppose that J has the sparsity
structure
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at roughly half the cost and storage compared to computing J directly. The number of separate columns
of J, S that must be computed is usually of the order of the number of points in the stencil used to

construct tile finite-element or the finite-difference approximation to the PDE. tlence, the chroInatic
nurnl_er is often indepe..ndent of the grid spacing. Hence tile cost of computing J grows linearly with the
number of grid points, instead of quadratically as suggested by the dimensions of J.

Partial Separability
A function f : R.n _ Ii. is called partially separable [13] if' it can be expressed as a linear combination
f(u) = _f_(u). Often, each fi depends on only a few of the components of u. Partially separable
functions arise frequently in optimization. In the context of PDEs, many residual functions F are partially
separable because they are the sum of residuals Iron'_ various components of the model. When the flmction

F is partially separable, it is much faster to compute the smaller Jacobians of each function fi separately,
and then add them together. Furt.hcr savings are often possible by coloring the smaller Jacobians with
fewer colors than were required for d.

In many PDE applications, including the case studied here, some of functions fi are linear. Their
Jacobiahs are constant and may be coded analytically or computed once and reused. Only the Jacobians

of the nonlinear f_'s must be recomputed, whether hand coding, divided difference approximation, or
automatic diff :rentiation is used.

3 Automatic Differentiation

We illustrate automatic differentiation with an example. Assume that we have the saint)le program J
shown in Figure 1 for the computation of a function f : R 2 _ R 2. Here, tile vector x contains the
independent variables, and the vector y contains the dependent, variables. The fllnction described by this

program is defined except at x(2) = 0 and is differentiable except at. x(:t) = 2. We can transform the
progran_ in Figllre I into one for computing derivatives by associating a derivative object Vg with every
variable t. Assume that V't contains the derivatives of t with respect to the independent w_riables x,

(0t o'c ) 7'Vt = o_l)' 5-x(-_-_i We propagate these derivatives by using elementary differentiation arithmetic
based on the chain rule [8, 15] for computing the derivatives of y(a) and y(2), as shown in Figure 2. In
this exar,_ple, each a.ssignl_lent to a derivative is actually a vector assignment of length 2.
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' if x(1) > 2 then if x(1) > 2.0 then
a = x(1) + x(2) a = x(1) + x(2)

Va = Vx(1) + Vx(2)
else else

a = x(1) * x(2) a = x(1) * x(2)
Va = x(2) * Vx(1) + x(t) * Vx(2)

endif endif
do i = 1, 2 do i = 1, 2

temp = a
a = a * x(i) a = a * x(i)

_Ta= x(i) * Va + temp * Vx(i)
end do end do

y(1) = a / x(2) y(1)= a / x(2)

V'y(1) = 1.0 / x(2) * _a
- a / (x(2) * x(2)) * Vx(2)

y(2) = sin (x(2)) y(2) = sin (x(2))
Vy(2) = cos (x(2)) • Vx(2)

Figllre 1. Sample function f : x _---y Figure 2. Augmented with derivative code

This :node of automatic differentiation, where we maintain tile derivatives with respect to the inde-
pendent variables, is called the forward mode of automatic differentiation. The reverse mode of automatic

differentiation maintains the derivative of the final result with respect to intermediate quantities, usually
referred to as adjoints, which measure the sensitivity of the final result with respect to some intermediate
quantity. The reverse mode requires fewer operations than the forward mode if the number of indepen-

dent variables is larger than the number of dependent variables. This is exactly the case for computing
a gradient, which can be viewed ms a Jacobian matrix with only one row. This issue is discussed in more

detail in [8, 11, 12].

Wolfe observed [17], and Baur and Strassen confirmed [1], that if care _s taken in handling quantities
that are common to the (rational) function and its derivatives, then the cost of evaluating a gradient
with _l components is a small multit_le of' ttle cost of evaluating the underlying scalar function. Despite
the advantages of tile reverse mode from the viewpoint of complexity, the implementation for the general
case is quite complicated. It, requires the ability to access in reverse order the instructions performed

for the computation off and the values of their operands and results. Current tools (see [14]) achieve
this by storing a record of every computation performed. An interpreter performs a backward pass on
this "tape." The resulting overhead often dominates the complexity advantage of the reverse mode in
an actual implemenl, ation (see [5]). We also note that even though we showed the computation only of

first derivatives, the automatic differentiation approach can easily be generalized to the computation of
univariate Taylor series or }Iessians and multivariate higher-order derivatives [2, 9, 15].

This discussion is intended to demonstrate that the principles underlying automatic differentiation
are not, complicated: We just _ssociate extra computations (which are entirely, specified on a statement-

by-statement basis) with the statements executed in the original code..As a result,, a variety of imple-
mentations of automatic ditferentiation have been developed over tile years (see [14] for a survey),

4 Unsaturated Flow Problem

We study a two-dimensional unsaturat_.d ttow in a porous medium. Steady-state porous media tlow

involw's an elliptic partial differential equation that contains a conductivity coeffcient [6, 16]. The coefli-
cierit is typically discontinuous across different materials and carl vary greatly. For unsaturated ttow, the
conductivity is usually taken to be a function of pore pressure, which introduces a nonlinearity into the

problem. For materials such as tuff, the no:llirloarity can become severe enough to do:liinate the l:)roblem,
ms conductivity can chalige rliarkedly with a small change in pressure. Our interest is in niodelirig tlow iil a
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region consisting of fractured tuff with conductivities that vary by ten or more orders of magnitude, often
over very short distances. T_'o code uses a mixed finite-element approach with a qua.si-Newton iteration
to handle tile very high nonlinearity. The nonlinear equations are contained in the C function dual(x, f).

Cex_t,ered differences are used to calculate a very sparse 1989 x 1989 Jacobian J. The resulting linear
equation is solved by a biconjugate gradient algorithm.

We approached the code hoping to demonstrate the superiority of the ADOL-C [12] implementation
of automatic differentiation over the centered difference approximations used in Robey's original code.
The high degree of nonlinearity waz felt to be a potential cause of inaccuracy using centered differences,

and we hoped that automatic differentiation could improve accuracy and speed.
The test problem considered here is a one-dimensional test problem exhibiting a particularly simple

structure. We hope to develop strategies that generalize to higher-dimensional problems of practical
interest.

5 Exploitation of Structure

It is well known that J haz a very regular sparse structure arising from the underlying discretization grid
(see Figure 3).
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Figure 3. Sparsity structure of J

The matrix B = J(0..935, 0..935)is block diagonal. The diagonal blocks are 4 x 4 blocks of the form

242 1
c_. 1 2 4 2 "

2 1 2 4

The nlatrix D = J(936..1286,0..935) is built of 3 x 8 blocks along the slanted diagonal. The slanted

diagonal haz slope 3/8. The matrix /) = J(0..935,936..1286) is equal to D T in the limit as the non-
linear perturbation approaches zero. It is D that will be our focus in computing J. The matrix

C1 = J(1287..1519,0..935) haz four slanted diagonals, each with slope 1/4. The upper two diagonals

have values -.2, while the lower two diagonals have values +2. The matrix C..e:-. J(1519..1988,0..935)
has slanted diagonals with slopes 1/2 and values _1.

Robey recognized that f depends only linearly on z, except for the dependence of f0..9:,s on zga6..l_s6.

That is, he coded most of the elements of J as linear functions of z. Only the elements of,] that belong
to 1) are more cornplicated to compute. In principle, the elements of D could be computed analyt.ically
since they involve only sums and products of components of z. However, this appraoch was taken because

it is too hard to recogni3,e and code the patt, erns of which components of z impact which components
of f. The 351 rows of D can be computed in only six passes. The combination of partitioning J and
coloring f.) reduced the time requirod to approximate J from about 31 minutes to about 5.78 seconds



on a SPARCstation 1+. The six-pass finite-difference code formed the b_is for the further explorations
described below.

6 Conversion to ADOL-C

In this section, we describe t,he steps involved in converting the. original code to generate J using ADOL-C.
More details of tile conversion can be found in [4].

6.1 Step 1: Convert to C+-F

Tlle program unsat w_s first converted to run with the GNU G++ implementation of C++. The following
modifications were necessary:

• Remove system-dependent graphics capabilities that had no significance to the mathematical prob-
lems of computing derivatives and solving a system of linear equations.

• Convert all function headers from their acceptable C form

inr step(x,s)

double *x,*s;

to a form accept, able to C++

inr step (double *x, double *s)

In addition, some diagnostic print statements were removed, some were added, and system-dependent

timing instrumentation w'ts added. The resu!ting code required 5.78 seconds on a SPARCstation 1+ to
evalllat(:_ the nonlinear part of tile Jacobian D.

Study of the structure of _f) suggested that it could be computed with three colors instead of the six

colors used by Robey. [!sing tl_ree colors reduced tile time required to compute .D from 5.78 seconds to
2.87 seconds (see Table 1).

6.2 Step 2: Convert the Function dual to Use Type adouble

Now we were ready to explore the use of automatic differentiation. In the unsaturated flow code, the func-
tion to be differentiated is isolated in tnt dual (double *xr, double *r) which calls double konduct

(double *xr, ing elem). In dual, xv contains the independent variables, and r contains the depen-
dent variables. Both dua'l and konduc'¢ are called from several places in the code, so we needed to leave

the original functions, while providing new ones ca,lied adual and akonducl: to be called from s'cep to
compute the Jacobian. In ADOL-C, independent variables, dependent variables, and any other variables
requiring derivative objects must be declared as type adouble. In each function, some of the double
variables requi:e derivatives, while others do not.

No ,:lmnges of any kind were re_luired to the body of either function, ltowever, we removed

fronl adual code that is r,:,quired to compute the value of i but that is not required to compute the
element.s of D, which req_lire only r[0,.93s].

6.3 Step 3: Record the "Tape"

The next step wa.s to modify the three-color finite ditference code in s'cep3, c to use autoHtatic ditfermlti-

ation instead. We followed the instructions in [12] first for the forward mode of automatic (lit[erenti_ttion.
\Ve removed the finite ditference code from step3, c ms shown in Figure 4.



/* Nonlinea.r part */

stepsize=l. Oa-7 ;

for (i=O;i<3;i++) {

for (j=O;j<elements;j++) {

del% ax [j]= (labs (xr [8*element s+3, j+i] )> I.0)

? stepsize*fabs(xv[8*elements+3,j+i]) : stepsize;

xv [8*alaments+3*j +i] +=del% ax [j] ;

}

k=dual(xv.r);

if (k<O) return(-2);

for (j=O;j<8*elemants;j++) df[j]=r[j];

for (j=O ;j<elements;j++)

xv [8*eIamen% s+3*j +i] =x [8,el emen% s+3,j + i]

-deltax[j] ;

k=dual (xr .r) ;

if (k<O) return(-2);

/* Store Jacobian in a sparse structure. ,/

} /* end for (i */

for (i=O;i<dim;i++) xv [i] =x [i] ;

Figure 4. Jacobian by finite differences

We added include files:

#include "adouble .h"

#include "adutils .h"

We ret)la.ced the tlnite-difference code with code to do the tbllowing:
I. Declare variables for A DOL-C.

:2. Insert calls to trace_on and trace_c, ff to mark the active section of the code.

3. Nominate independent variables.

4. <;ali adual within the active section to record the "tape." The function value is computed at this
point.

,5. Nominate dependent variables,

6. Make three passes in the forward mode:

(i) Initialize independent and dependent derivative objects.
(ii) (.:ali forward.
(iii) Extract derivatives.

The derivative values computed by AD()L.C as shown in Figure ,5 were extracted from Depend_Y and
stored in the original data structure for J. Tlm resulting code required 5.,53 seconds to evaluate I), or
twice as long as the three-color finite-difference code.



unsigned short Tape_Tag = I;

inr Keep = O;

inr degree = i;

double **Indep_X = new double_,[dim];

double *_Depend_Y = new double*[dim] ;

adouble ad_xv [dim] ;

adouble ad_r[dim] ;

inr adual (adouble ,, adouble *);

for (j = O; j < dim; j ++) {

Indep_X[j] = new double[2];

Depend_Y[j] = new double[2];

}
/* Compute right hand side vector f ,/

f=(double *) calloc(dim,sizeof(double));

if (f==NULL) return(-l);

trace_on (Tape_Tag, Keep);

for (i = O; i < dim; i ++) {

if ((i <= 935) II (128"r<= i)) {
ad_xv[i] = x[i];

}
else {

// Nominate independent variables

ad_xv[i] <<= x[i];

}
}

k = adual (ad_xv, ad..r);

if (k<o) return(-2);

for (i = O; i < dim; i ++) {

if (i < 8*elements) {

// Nominate dependent variables

ad_r[i] >>= f[i] ;

}
else {

f[i] = value (ad_r[i]);

}
}
trace_off () ;

/* Nonlinear part */

for (i = O; i < 3; i ++) {

for (j = O; j < 351; j ++) {

Indep_X [j] [O] = x[8*elements+j];

Indep_X[j] [I] = 0.0;

}
for (j = O; j < 8*elements; j ++) {

Depend_Y[]][O] = 0.0;

Depend Y[j] [I] = 0.0;

}



for (j=O;j<elements;j++){
Indep_X[3*j+i][i]= 1.0;

}

forward(Tape_Tag,8*elements_3519degree,
Keep,Indep_X,Depend_Y);

/* Store Jacobianin a sparsestructure.,/

} // end for (i

Figure 5. Jacobian by 3-color, forward-mode ADOL-C

6.4 Reverse Mode

ADOL-C can also evaluate derivatives in the reverse mode. The reverse mode is usually faster than

the forward mode whe,,_ there are more in_iependerit variables than there are dependent variables. The
entire Jacobian is square, but the block D that we are computing is composed of 3 x 8 blocks. This
configuration implies that the forward mode (or finite differences) can be computed in three passes, while
the reverse mode requires eight passes. We write three versions of step using the reverse mode. None of
these versions was as fast as the three forward sweeps.

step6, c: Eight reverse sweeps. Similar to the three forward sweeps.
i

step2, c: Eight-vector reverse. The eight reverse sweeps are ali performed at once.

step'7', c: Eight-vector short reverse. The eight reverse sweeps are all performed at once, taking advantage
(as in the three forward sweeps) of the fact that we do not need to differentiate with respect to all
x, nor are we required to differentiate ali dependent variables.

7 Results

Table 1 gives the timing comparisons of the various versions of step described above. These are the times
in seconds on a SPARCstation l+ required to compute/), the nonlinear portion of the Jacobian J. The

"tape" for the three--color forward-.mode evaluation was 1.5 megabytes long.
In general, the derivatives computed by automatic differentiation are more accurate than those com..

puted by finite differences. In some applications, the improved accuracy enables Newton's method to
converge in fewer iterations.

Table 1. CPU Times for Jacobian Computation

Method Seconds

Six-color finite differences 5.78
Three-color finite differences 2.87

Three-color forward mode ,5.53

Eight sweeps of reverse mode 18.78
Eight-vector reverse mode 11.15

Eight-vector short reverse mode 11.12



8 Discussion

• ADOL-C can be applied to existing C codes that are large and complicated enough to have real
scientific interest.

• In this application, the fastest ADOL-C code takes twice as long as the best finite difference code.

• In this application, the reverse mode takes about twice as long as the forward mode, while it must
perform nearly three times as many sweeps (8 vs. 3).

• In this application, the vector reverse is about 1./3 faster than the corresponding number of reverse
sweeps performed separately.

• Sh, ,rr vectors can be used for the independent and the dependent variables, but this approach saves

only an insignificant amount of time and is more complicated to code.

9 Linear Equation Solver

In truth, we have been looking at the wrong problem so far. lt takes less than three seconds to compute
the nonlinear part of J, but it takes up to 430 seconds to solve the system of linear equations. The

original intent was to explore the application of ADOL-C, but we also pass along observations about
linear equation solvers. The existing code stores J as a sparse matrix and solves the linear equation to
find the Newton step using a biconjugate gradient iterative algorithm.

One alternative is to use the general direct sparse solver. Another alternative is to take better
advantage of the structure of J, putting J into a banded form by suitable interchanges of rows and
columns so that a banded solver can be used.

The problems we are really interested in solving are two-dimensional. The bands described in Section 5
do not generalize to two-dimensional problems. While both B and D are banded in the two-dimensional
problem, C is not. The variation of conductivities is greater for two-dimensional problems than one-

dimensional problems because of the increased dimension and flow paths.
The Jacobian of this problem is rank deficient because of the form of the flux boundary conditions.

The rank deficiency is caused by not being able to specify the pressures at the flux boundaries. The
problems of real interest are not necessarily rank deficient. Itowever, the rapid changes in conductivities

can cause poor conditioning of the Jacobian or possibly rank deficiency. One can handle rank deficiency
by adding some constraints to define a solution uniquely. Alternatively, one should take into account the
suggestions of Griewank [7] on the behavior of Newton's method and its variation for singular systems.

Two different situations must be distinguished. In the first case, there is (locally) a smooth solution
manifold of dimension p, and the rank of the Jacobian drops by exactly p at the solutions. In that case,
Newton's method and va,riations have been observed to converge quite rapidly in terms of the residual
norm, even though the iterates may wander up and down the solution manifold a bit. In the second

case, when the rank drop of the Jacobian exceeds the dimension of the (largest) solution manifold, the

situation is completely different. For any fixed point iteration of the form xnew = G [Xold, f(xold) ] with
f = 0, the algebraic system being solved converges from almost ali starting points sublinearly if G is
differentiable with respect to the residual vector f. The only way to maintain at least linear convergence
is to use Newton's method without bounding the inverse or to append the linear system by equations
that enforce singularity. (R-sublinear convergence means that the k-rh root of the k-th residual norm

tends to one in theory. In practice, that amounts to the iteration's stalling completely.)
Another approach to improving the performance of the linear equation solver is to al)ply a suitable

preconditioner. Most simple preconditioners require either a positive definite matrix or diagonal domi-
nance, which do not al)ply to this problem. Work on implementing a more complicated preconditioner
that takes advantage of the structure of the Jacobian is in progress.
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