

To be presented at the 34th Annual
Electron Microscopy Society of
America Proceedings, Miami Beach, FL,
August 8 - 13, 1976

LBL-4963

CONF-760803-3

CLIMB AND GLIDE DISLOCATION SOURCES IN
QUENCHED ALUMINUM ALLOYS

K. H. Westmacott

March 1976

Prepared for the U. S. Energy Research and
Development Administration under Contract W-7405-ENG-48

MASTER

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

LBL-4963

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

K. H. Westmacott

Molecular and Materials Research Division, Lawrence Berkeley Laboratory, Berkeley, CA 94720*

Concentric dislocation loops are observed frequently in slowly quenched aluminum alloys (for a review see 1). In Al-Cu alloys containing Si as an impurity the loops are found to lie in $\{111\}$ planes in configurations that have been inferred to arise from the operation of Frank-Read glide sources. On the other hand, in Al-Mg and Al-Si alloys detailed analysis has shown that the loops form by dislocation climb in the manner proposed by Bardeen and Herring. Recent work has shown that all multiple loop configurations in Al and its alloys have a common origin, and result from dislocation nucleation and/or vacancy condensation in the vicinity of inclusion particles(2). These processes occur to relieve the large compressive strains which are generated in the lattice around the misfitting particle. It is not clear, however, under what specific conditions the various processes, i.e. vacancy condensation, glide or climb loop generation, will operate. In the present paper it is shown that in Al-Si both climb and glide loops can be produced concurrently.

The alloy used in the experiment contained 0.67w/o Si and was quenched into silicone oil at 100°C after a solution treatment at 550°C. Samples for study in the Philips EM 301 were prepared by a chemical polishing technique to eliminate mishandling damage.

The samples contained high concentrations of multiple loops which analysis has shown arise from the operation of climb sources (2). In one instance, however, the detailed contrast analysis (See Fig. 1-4) revealed exceptional behavior. The loop Burgers vectors b were determined in the standard manner by setting up two-beam conditions for various diffraction vectors, g . In Figs. 1-3 the electron beam direction, B , was $[111]$, and the effect of varying g is shown. In Fig 4, $B = [121]$ and $g = [111]$. The dislocation visibility in each condition is summarised in Table 1, while Table 2 shows the possible $|g.b|$ values for vacancy loops with $[111]$ plane normals.

TABLE 1

\bar{g}	Loop 1	Loop 2	Loop 3
$\bar{1}\bar{1}\bar{1}$	in	in	out
$\bar{2}02$	in	in	in
$0\bar{2}2$	in	in	out
$\bar{2}20$	in ($g.b = 2$)	in ($g.b = 2$)	in

TABLE 2

Prismatic				Glide		
$\frac{1}{2}[01\bar{1}]$	$\frac{1}{2}[\bar{1}01]$	$\frac{1}{2}[\bar{1}\bar{1}0]$	$1[010]$	$\frac{1}{2}[\bar{1}01]$	$\frac{1}{2}[0\bar{1}1]$	$\frac{1}{2}[\bar{1}\bar{1}0]$
0	1	0	1	0	1	1
1	0	1	0	2	1	1
0	1	1	2	1	2	1
1	1	0	2	1	1	2

*Permanent Address: Physics Div., Michelson Lab., Naval Weapons Center, China Lake, California 93555.

NOTICE
This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Energy Research and Development Administration nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

A comparison shows that for both outer loops $\bar{b} = \frac{1}{2}[\bar{1}01]$ i.e. they are glide loops, whereas for the inner loop $\bar{b} = \frac{1}{2}[0\bar{1}\bar{1}]$ and it is thus a perfect prismatic loop. By noting the apparent change in size of loops 1 and 2 when the sign of $(g.b)$'s was changed (c.f. Fig. 1 and 3) the Burgers vector was uniquely identified as $\frac{1}{2}[1\bar{1}0]$.

From the results it is concluded that a single inclusion in Al-Si can generate both types of dislocation source to relieve stress. The particular mode which operates probably depends on the particle size and shape. Finally, it is noteworthy that many other glide dislocation segments with the same b were observed near the two outer loops. This suggests that small inclusions may be an important source of dislocations in metals.

I wish to thank the Naval Weapons Center for financial support and Professor G. Thomas for his encouragement and hospitality.

1. Smallman, R.E. and Westmacott, K.H., *Mat. Sci. and Engin.*, 9, 249 (1972).
2. Westmacott, K.H., *Phys. Stat. Sol.* (1976) in press.

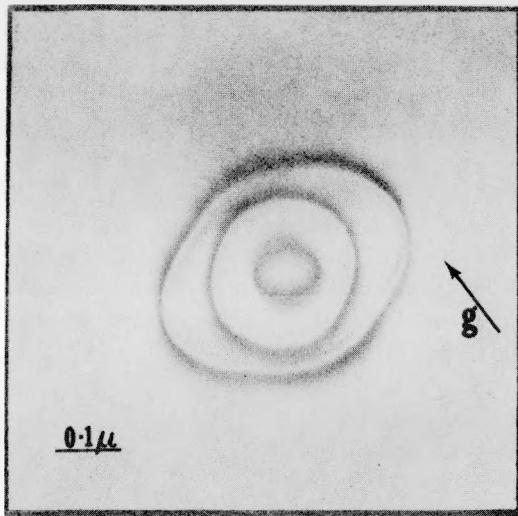


Fig. 1. $B = [111]$ $\bar{g} = [\bar{2}20]$

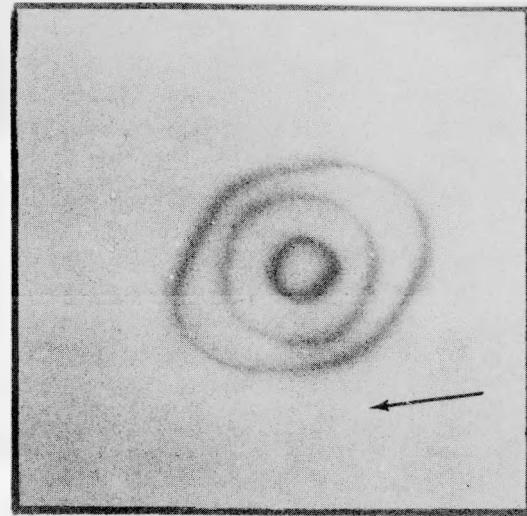


Fig. 2. $B = [111]$ $\bar{g} = [\bar{2}02]$

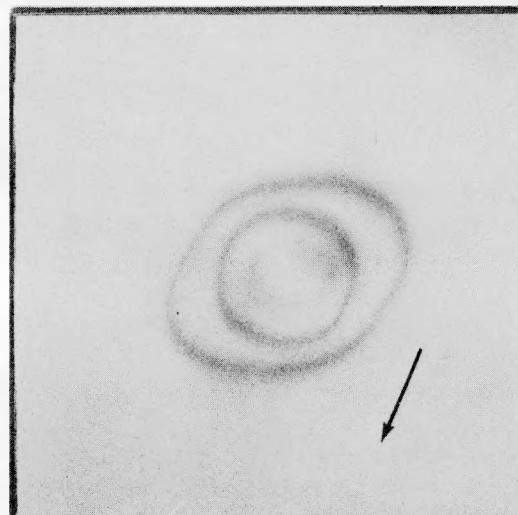


Fig. 3. $B = [111]$ $\bar{g} = [0\bar{2}2]$

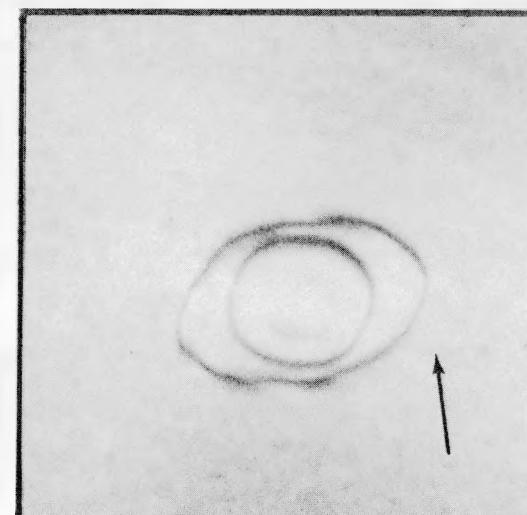


Fig. 4. $B = [121]$ $\bar{g} = [\bar{1}\bar{1}\bar{1}]$

LEGAL NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Energy Research and Development Administration, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

TECHNICAL INFORMATION DIVISION
LAWRENCE BERKELEY LABORATORY
UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720