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Abstract

System identification for the purpose of robust control design involves estimating a
nominal model of a physical system and the uncertainty bounds of that nominal model via
the use of experimentally measured input/output data. Although many algorithms have
been developed to identify nominal models, little effort has been directed towards
identifying uncertainty bounds. Therefore, in this document, a discussion of both nominal
model identification and bounded output multiplicative uncertainty identification will be
presented.

This document is divided into several sections. Background information relevant to system
identification and control design will be presented. A derivation of eigensystem realization
type algorithms will be presented. An algorithm will be developed for calculating the
maximum singular value of output multiplicative uncertainty from measured data. An
application will be given involving the identification of a complex system with aliased
dynamics, feedback control, and exogenous noise disturbances. And, finally, a short
discussion of results will be presented.
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1.0 Introduction

In this section, a brief discussion of controllability, observability, system duality and robust
stability will be presented. Knowledge of this information is fundamental to future
discussions.

1.1 System identification for the purpose of control design

There are many researchers, scientists, and engineers working in the area of system
identification, and each of these individuals interprets the field of system identification
relative to his own interests. Therefore, to establish commonality, a short discussion of
system identification relative to control design follows.

Although there are many methods of control design, discussions in this document will
focus on the use of popular, model based, modern, control design methods. In these
methods, a first order mathematical model of system dynamics must be determined before
a controller can be constructed. This mathematical model is determined from measured
input/output data.

In Figure 1.1, a control design problem is illustrated. In this figure, a lithography fine
stage[1] is instrumented with a set of actuators and sensors. The actuators apply force loads
to the system, and the sensors measure some time derivative of vibratory displacement.
This vibratory displacement is due to actuator force and exogenous disturbance force
loadings.

Actuators are driven by power amplifiers which are driven by a set of Digital to Analog
Converters (DAC’s). The input to the DAC'’s is a stream of numerical input data, « (i) .

Sensors drive preamplifiers which drive amplifiers which drive anti-aliasing filters which
drive Analog to Digital Converters (ADC’s). The output of the ADC’s is a stream of

numerical output data y (i) .

Control is performed by numerically relating inputs, u (i) , to outputs, y (i) , via a control
law. The physical device used to implement this control law is called a processor. Together,
the actuators, sensors, amplifiers, filters, ADC’s, DAC’s and processor are referred to as
the control system.

To derive a control law, a model of system dynamics from « (i) to y (i) must be found.
This control law is designed to change system dynamics so as to achieve a desired
objective. For example, in the Figure 1.1 lithography fine stage system, the control law is
designed to minimize stage settling time. In most model based modern control design

methods the model from u (i) to y (i) isrequired to be in first order state space form. That
is,
x(i+1) = Ax(i) + Bu (i) (1.1a)
y (i) = Cx (i) +Du(i) (1.1b)
- x1 1
where u (i) € R™ is the input vector, y(i) € R™™ is the output vector,

n x1 | n xn n,. . XN; n, xn
x (l) G R states ls the State Vector, A e R states Slﬂl!.\', B e R states Hl’ C e R out Jlﬂl(.\" and

n__xXn.
De R ™ ™ are state matrices, n;, is the number of DAC inputs, n_,, is the number of




ADC outputs, n is the number of states, and i is a discrete time index. It is assumed

states

that data is sampled at even intervals of time separated by the temporal increment Atf.
Equation 1.1a,b is called the nominal model.
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Figure 1.1 Active vibration control of a magnetically levitated
lithography fine stage

1.2 The role of model uncertainty in control design

The equation 1.1ab nominal model represents a linear, factorizable, proper, time invariant
system of finite order. A linear system is one for which the principle of superposition
applies. That is, in a linear system, the response of the system to the sum of two distinct
inputs will be the summed response of the system to each input acting alone. Non-linear
systems dynamics such as backlash, saturation, and stiffness hardening will force system
response not to behave in this fashion. Factorizable implies that the z domain transfer
function between any DAC input and any ADC output can be represented in terms of poles



and zeros. Dynamics such as pure time delays cannot be represented using models of this
form. Proper implies that the magnitude of the frequency domain transfer function between
any input and any output is bounded as frequency approaches infinity. Strictly proper
implies that this magnitude goes to zero as frequency approaches infinity. A strictly proper
system is proper, but a proper system is not necessarily strictly proper. All real systems are
strictly proper. Time invariant implies that state matrices are constant. And finite order

implies that n, .- is a positive integer less than infinity. No physical system dynamics can

be represented exactly by a linear, factorizable, time invariant, finite order model, but,
many physical systems can be approximated by linear, factorizable, proper, time invariant,
finite order, nominal models. The degree to which a nominal model represents the physical
system is quantified by an uncertainty bound.

A control law is designed from a nominal model, and that model, as stated above, never
accurately represents the physical system to be controlled. Therefore, when the control law
is implemented, it must act upon well modeled dynamics with certainty so as to produce
effective system responses while acting upon poorly modeled dynamics with uncertainty
s0 as not to produce instabilities and degraded performance.

For example, Figure 1.2 shows the transfer function of a typical structural dynamic system.
At low frequencies, the modes of the system are well spaced and easily identified. At high
frequencies there are an infinite number of uncertain modes. No numerical model can
represent the dynamics of all these high frequency modes. Therefore, a compromise
between identification and control is made. At low frequencies, the control system acts
upon well modeled dynamics with certainty to produce effective system responses, and at
high frequencies the control system acts upon poorly modeled dynamics with uncertainty
s0 as not to produce instabilities. At high frequencies the control system is robustly stable.
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Figure 1.2 Transfer function response of a vibrational system

Robust stability is usually imposed by gain stabilizing the closed loop system. Using Figure
1.3, gain stabilization can be explained for a Single Input, Single Output, (SISO), system.




In this figure numerical input data, u (i) , and the numerical output data, y (i) , have both

been transformed into the z domain as u (z) and y (z) respectively [2], and DAC/ADC,
input/output dynamics are represented in the z domain by the function

H(z) =yv(2)/u(2).

The output of H(z) , ¥ (z), is subtracted from a zero reference signal, x (z) = 0 to
produce an error signal, e (z) . This error signal is input to the control law, G (z) , whose
output is u (z) . The control law is designed such that ¥ (z) follows x (z) . That is, the

closed loop system produces command following. For the case when r (z) = 0, good
command following implies good disturbance rejection to any exogenous disturbance,

w(jo) .

exogenous disturbance

w(jo)
lr(z) o+~ ¥ u(z) X |—>» N v (2)
e | 7V

T -~ Control Law

Figure 1.3 An active control system

. e e . j©OA
Gain stabilization simply reduces the magnitude of GLz =" t) to be near zero over

poorly modeled frequency bands". Therefore, little or no control effort is used over these
bands and no change in stability from open loop stability can occur due to uncertainty.

Robustness, achieved through gain stabilization, has a significantly effect on performance.
Achieving robust stability through gain stabilization is the same as driving the magnitude
of the closed loop transfer function towards zero over poorly modeled frequency bands.

That is, if T (jw) is the closed loop transfer function, then

- y((z _ e](oAt) G(Z _ e](OAt)H( 7= e]O)At)
(o) = - = ~ - - = (1.2a)
r(z _ e](DAt) 1+ GLZ = eJmAt)H(z _ ejO)AtJ

must be zero or small over the frequency band of uncertain dynamics since G (z) is zero

or small over this band.

Good performance implies good command following and good command following
joa

e

implies that eL z= t) is zero over the bandwidth of well modeled dynamics. If S (o)

. . i0A joA
is the transfer function from r(z =° t) to e(z =¢° XJ , then

S(jo) = ele=d™)_ L« \ (12b
rLZ _ eijt) 1+ G(z - eijt)H(Z _ eijz)

*This is a very simplified explanation. More detail is given at the end of this section and in Appen-
dix A.



must be zero or small over this band. From the above equations it can be seen that T (jw)

and S (jw) cannot both be zero over all frequencies since T (j®) + S (jo) = 1. Thus,
when robustness is high, performance is low, and when performance is high, robustness is
low.

For “real” dynamics neither T (jo) nor S(j®) can be made to go to zero over an
infinitesimally small A®. Therefore, as shown in Figure 1.4, three frequency bands exist.
In the first band |S (jo)| is small and |T (j®)| is near unity. This is the performance band.
In the second band, |7 (j®)| and |S (jo)| are neither small nor near unity. This is the
transition band. In the third band, |T (jo)| is small and |S (jo)| is near unity. This is the
robustness band.

Magnitude of Transfer Functlon H (s) vs. Frequencyl
[ performance band """" j'jj';‘(transmon band r robustness band

...................................

.- increasing frequency

. : : L
10" 10° 10

Figure 1.4 Performance, transition, and robustness bands

To determine the amount of uncertainty which can be included in the nominal model before
instability occurs, model uncertainty must be represented mathematically and quantified.
One representation of this uncertainty is shown in Figure 1.5.

1+G(2)H(2)

true system dynamics H(2)

g

S

E ’ Am (2)
z 5“» &(2)

5 =

8 -G (2)H

= - (2) H (2)
A

[&]

2

m

b)

Figure 1.5a,b Output multiplicative uncertainty
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Figure 1.5a is the Figure 1.3 system with H(z) = (1+A (z)) H(z) where A, (2) is

called the output multiplicative uncertainty of the nominal model, H (z) . Figure 1.5b is the
loop reduction of Figure 1.5a.

If both T (jo) and A, (z) are stable”, then from the Nyquist stability theorem (derived in
appendix A), a bound for stability is given by

1T Gw)| <; 1 (1.3a)

‘ 'o)At\' ’
2, 2= &)
Equation 1.3a can be understood from the standpoint of energy production. If both T (j®)
and A (z) are stable systems, then the net storage of energy in each of these systems is

bounded. Moreover, if the net production of energy from any system input to any system
output is also bounded, then the system is stable since total energy (stored energy +
produced energy) will also be bounded. Therefore, for a SISO system, if
IT(]’O))”Asz = eimAt)l is less than one for any ® and if both A, (z) and T(jo) are
stable, then the system must be stable. This is a statement of equation 1.3a.

Equation 1.3a can be extended to Multiple Input/Multiple Output (MIMO) systems by the
use of singular values[3]. If equation 1.3a is valid for every possible combination of loops
in a MIMO system, the system will be stable. Singular values are used to bound the
maximum magnitudes of every possible combination of loops.

For a system, R (z) where v (z) = R(z)r(z) , the square root of the ratio of energy out

. tho . . .
of the system over energy into the system due to the i input is given by

H
MSQZ where z = eiwm, RH(z)R(z) = ¢HA¢, q)Hq) =],
r; (2)r;(2)

¥, (z) =
o 2 2 2 2, 2, 2 H H H H
A = diag 01,05 03... ), 0, 20,205...,r(z) = 1 (2) 15 (D) o P n (2) , and

n,

v(z) = Zvi (2) . Therefore, 0? (o) 1is an upper bound on the ratio of the sum energy
i

out of R (z) overenergy into R (z) duetoany r;(z) . Moreover, it must also be a bound
on the ratio of energy out of any output over energy in to any input. Thus, ¢, (j©) is a

bound on the magnitude of the transfer functions contained in R (z) . The parameter
0, (jo) is called the maximum singular value of R (z) . Functionally, it is written as

6, (j®) = 5(R(2)).
Therefore, for a MIMO system, if

s (T(w)) < (1.3b)

__t
X (4,(2))

*If both H (z) and H () are stable, then A, (z) is stable.
6



where ¥ (A, (z)) is an energy production bound from any input to any output of A, (2),
then the net production of energy around any loop in the MIMO loop must be decreasing,

A A A —1
andif 7(jo) = H(z)G(z) I+H(2)G(z)) and A (z) are also stable, then the
closed loop system is stable.
1.3 A discussion of controllability and observability

When using feedback control, inputs, u (i) , force the system in such a way that outputs,
y (i) , are driven to a desired response. To do this, the system must be both controllable and
observable. For time invariant systems, state controllability implies that there exist some
input u (i) which, over some time, NA?, will drive the states of the system, x (i) , to some
desired state, x . State observability implies that by measuring y (i) over some past time,
NAt, the state of the system can be determined exactly at NAt¢ time in the past*. The

following subsections discuss the mathematical conditions required for controllability and
observability.

These conditions will be used in sections 2.3 to 2.5 to derive algorithms for the purpose of
identifying a nominal model.

1.3.1 Controllability in discrete systems

There are two parts to the solution of a linear matrix difference equation. The first part of
the solution is the homogeneous solution and the second part is the particular solution. The

particular solution is the response of the system to input u (i) for zero initial state
conditions (i.e. x (0) = & ). This input will produce a particular state response, X, @),

which can be deduced from equation 1.1a. The homogeneous state response, x,, (£) , is the

state response for zero input, and some initial state condition, x;. For discrete systems
x, (i) = A'x; and x, () = x(i) A x.

Controllability implies that there is a set of u (i) ‘s which will drive the state response,
x (i) , to a desired state response, x,, in a finite amount of time, NAz. If u (i) is the set of
inputs required to drive x (i) to x, in NAt time, and if x; is known, then u (i) can be

calculated from equation 1.1a. Table 1 gives x (i) for arbitrary u (i) as a function of i and
initial state x;. As can be seen from this table, to determine a « (i) that will produce a x g

at NAt, the set of equations,
T
x,;~A"x, = [B|AB|A’B|A’B|.. AYB] [W" V), " (N-1), " (D] (4w

must be solvable. In order for a solution to exist, the matrix [B]AB|A2B|A3B| ...ANB]

must be of rank »n If it is not, then there is no u (i) which will drive x (i) to x 4 in

states *

*This is only true for time invariant system. If the system time invariant, this is the definition of re-
constructibility.




NAt time. When N is greater than or equal to n -1, the matrix

states

[B |AB |AzB |A3B | ...ANB] = W is called the controllability matrix. If the controllability

matrix has rank less than n there will be no input which will drive x (i) to x, inany

states’
amount of time. In this situation, the system is said to be uncontrollable.

i x (i) —AVx; u (i)
0 Bu (0) | u(0)
1 ABu (0) +Bu(1) | u(1)

A°Bu (0) +ABu (1) +Bu(2) | u(2)
A’Bu(0) +A“Bu (1) +ABu(2) +Bu(3) | u(3)
A*Bu(0) + A’Bu(1) +A7Bu(2) + ABu(3) +Bu(4) | u(4)

Hl WL

N | AYBu(0)...A’Bu(N=3) +A°Bu(N-2) + ABu(N—1) + Bu(N) | u(N)

Table 1: Response to arbitrary input, u (i)
1.3.2 Observability in discrete systems

The homogeneous response of the system to an initial condition is tabulated in table 2.
From table 2, the initial condition, x;, can be found by solving the set of equations

70,5 (1),y" @), ..y’ ] = [cT]a"c"|a? .. ANTCT]Tx. (1.4b)

T AT
where N2>n — 1. For this solution to exist the matrix I: T|A CTlA CTI A" CT]

states

must have rank n The matrix | C"ja” 74> .4 ¢ ]T = V is called the

states

observability matrix. If the rank of the observability matrix is n then the system is

states
observable and the state response at some time NAt in the past can be deduced from past
inputs, u (i) , and outputs, y (i)..

il oy@ [ x(@)-x,(w(N),u((N-1)...)) | u(i)
0 Cx, Xy 0’s
1| cax, Ax, 0’s
2 | ca*s, A’x, 0’s
N | ca'x, A'x, 0’s

Table 2: Response to inifial condition, x,



1.3.3 The dual of the system

Notice that if the observability matrix has rank Nares» the  matrix
T T
':CTIATCTIA2 CTI ..AY CT] must also have rank n_, . . This matrix is identical to the
controllability matrix of the system
x(i+1) = ATx () + Ty (i) (1.52)
u(i) = B'x(i) +DTy (i) . (1.5b)

Moreover, if the controllability matrix of the equation 1.1a,b system has rank »n then

states’

T
the matrix [BIAB|A2B [ ...ANB] must also have rank n This is the observability

matrix of the equation 1.5a,b system. The equation 1.5a,b system is called the dual of the
equation 1.1a,b system. The dual system is controllable if the original system is observable,
and the dual is observable if the original system is controllable. Therefore, observability of
a system can be checked by determining the controllability of its dual, and the
controllability of a system can be check by determining the observability of its dual.

The dual of the system will be used in section 2.6 to define model reduction parameters.

states ®




2.0 Eigensystem realization type algorithms

In this section, the Eigensystem Realization Algorithm (ERA) and the Eigensystem
Realization Algorithm with Data Correlations (ERA/DC) will be derived. Both of these

algorithms will produce first order state space realizations” of a system from measured
input/output data. Uncertainty bounds, required for robust control design, will also be
derived.

2.1 Markov parameters

Markov parameters are used in both the ERA and the ERA/DC algorithms. The Markov
parameters of a system are derived from a redistribution of system impulse response data.
Therefore, they can be physically measured. Table 3 gives the impulse responses of the

equation 1.1a,b system.The Markov parameters, Y (i) ,are D, CB, CAB, CA2B ...etc. In
compact form they are given by

Y(0) =D (2.1a)

i
2
o

Y(i+1) (2.1b)

i Y (i) x (1) u (i)

0 D 0’s
1 CB B
2 CAB AB

3| ca’B A’B

N| caA"B AVB

Table 3: Impulse response of a matrix first order system
2.2 Calculation of Markov parameters

To measure the Markov parameters of a physical system, the system must be excited by a
probe signal excitation, the response of the system must be collected and averaged to

minimize the effects of noise, estimates of cross and auto spectral response matrices must
be produced, transfer function matrices must be calculated, and impulse response functions

determined. Figure 2.1 shows this situation when a feedback controller, G (z) , is present.

*a nominal model
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Realization
[ Balance model reduction .
and noise mode elimination :> nominal model

Figure 2.1 Nominal model calculation
2.2.1 Probe signal excitation

To determine Markov parameters, the physical system, H (z) , is excited by a probe signal
excitation, p (i) . Some of the characteristics of probe signal excitations are;

1) Root mean square to peak level- The root mean square level of the probe signal
excitation is proportional to the total amount of energy placed into the system for the
purpose of identification. Since peak excitation levels are bounded by the clipping of
amplifiers, DAC’s or actuators, a signal with a high root mean square to peak level
will be able to place more energy into the system than one with a low root mean
square to peak level. Therefore, for set noise levels, higher root mean square to peak
probe signal levels imply a higher signal to noise ratio.

2) Distortion- As stated in section 1.2, all systems have some non-linear, time variant
dynamics associated with them. Nevertheless, when determining the transfer
functions of a system, it is assumed that the system is linear and time invariant.
Therefore, transfer functions estimates will be distorted. Different types of probe
signals will produce different levels of distortion.

3) Leakage- Leakage is due to the finite truncation of a sampled, infinite duration
response. This truncated sampled response is used in the Discrete Fourier Transform
(DFT) algorithm to produce approximate system spectral responses in the z domain.
Different types of probe signals will produce different levels of leakage.

11




Data is collected from a system in data blocks. A block of data is a sampling of the input
signal, u (i) , and the output signal, y (i) , for a sequential, finite number of evenly space
time steps. Probe signal excitations are defined relative to these data blocks. An explanation
of some possible types of random probe signal excitations follow. Similar type of
excitations are available for sinusoidal excitations.

1) Pure random excitations- This type of excitation is a continuously random excitation.

input data stream, p (i) output data stream,y (i)
Ist block 2nd block 3rd block Istblock 2nd block 3rd block
ofinput ofinput of input of output  of output  of output
data data data data dat: data

Therefore, no two blocks of noiseless data are identical. Leakage is a serious problem
with this type of excitation, but can be minimized by the use of time windows[4].

2) Pseudo random excitation- In this type of excitation, the same random input is
repeated every block. Therefore, the output stored in all blocks after the first block is
the same, and leakage from one block is absorbed into the next so that the net leakage
effect in all blocks, except the first block, is minimized.

input data stream,p (i) output data stream, y (i)
Istblock 1st block 1st block Istblock 2ndblock 2nd block
ofinput of input of input of output of output  of output

) data data data

data  data

3) Periodic random excitation- Periodic random excitation is a series of back to back
pseudo random excitations. In periodic random excitation, a random block input is
repeated a set number of times and then another random block input is repeated the
same number of times, and so on.

4) Burst random excitation- In this type of excitation, a random excitation excites the
system for a fraction of the block length and no excitation excites the system for the
rest of the block. This allows the output response to die output before the end of the
block and therefore, leakage is minimized. Burst random excitations have low root

input data stream,p (i) output data stream, y (i)
Ist block 2st block 3st block Istblock  2nd block 3nd block
ofinput ofinput of input of output  of output of output
data tdata  : data data data data

mean square to peak levels.

The type of probe signal excitation used to measure Markov parameters will be dependent
upon the type of system that is being identified and hardware data acquisition limitations.
For example, in acoustic systems, sinusoidal excitations are often used due to there high
root mean square to peak levels. Nevertheless, for structural mechanical systems which
include rubber mounts or bolted connections, random excitations tend to produce less
distortion.

12



2.2.2 Data collection and averaging

To estimate the transfer functions of a system, data must be collected and stored. If this data
is corrupted by noise, averaging must also be performed. Depending on the type of
excitation, averaging can occur in the time domain or after DFTing, in the z domain.

2.2.3 Markov parameter estimation

Transfer functions can be estimated by using a H ,a H2 or a H, calculation. The

derivation of the H 12 Hy, and H, calculation is given in reference 5. If
H(z) = C (zI+A) _IB + D is the nominal model, U, (z) is the z transform of the mth

input (u (i) ) datablock,and Y, (z) is the z transform of the mth output (y () ) data block,

then an H, calculation is given by

i) = Y7, U @ (ZUm QU7 () )’1 (2.20)

and an H, calculation is given by

H(z) = )Y, (2) YZ(z) (Z U, (2) YmH (2) )—l (2.2b)

where the superscript H stand for conjugate transpose. The calculation of H is given in
the reference 5. A H, calculation is computationally more intensive than a H 1»oraH,

calculation, but it is also more accurate. A H, computation requires that

S U, (2)7," (z) is invertible.
m

If Y (k) is the inverse z transform of C (zI+A) B+ D, then Y (k) is the k" Markov
parameter of the system. Inverse and forward z transforms are computed by using the
inverse and forward DFT.

2.3 Hankel matrix construction

Markov parameters are assembled into a matrix called a Hankel matrix, A (k) . This matrix
is used in ERA and ERA/DC to form a realization. This matrix is formed by stacking
Markov parameters into a matrix as

Y(k+1) Y(k+2) Y(k+3) ®°
Y(k+2) Y(k+3) Y(k+4) ®°

H(k) = |Y(k+3) Y(k+4) Y(k+5) ° °|- (2.32)

‘The Markov parameters are arranged in this fashion since
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Hk) =

CA
CA

k

CA B CA

k+1BCA

k+zB CA

=]

(o]

k+1
k+2
k+3

(o]

=]

BCAk+2

B CAk+3

BCAk+4

=]

o

BOO
BOO

BOO

o

(o]

=VA W. (2.3b)

where, from equation 1.4a,b, V and W are the controllability and observability matrices of
the system.

2.4 The Eigensystem Realization Algorithm (ERA)

Once the Markov parameters of the system have been measured, a nominal model can be
determined by using ERA or ERA/DC and model reduction. In this section and the next,
the derivation of ERA and ERA/DC is presented. In section 2.6 a singular value model
reduction method with be described.

The singular value decomposition of a real valued matrix M € R™ s given by

M = PdQ".
where
. . . Ixl mxl T Ixl
ifm2Ithend = diag (06,,0,,05...0) € R" ,Pe R ,0 €R",
PP = 070 = 00" = I,, and I, is an identity matrix,
and
if m<1Ithen Pe R™", d = diag(0,,6,0,...6,) € R™", 0" e R™,

T T T . . . . .
Q Q=PP=PP =1,andagain ] isan identity matrix[3].

As in section 1.2, the values G, G,, 05...0, are called singular values. These values are

real and positive and are usually sorted such that 6, 20,2 0,... 26,20.

The singular value decomposition of H (0) gives H(0) = PdQT = VW . Therefore, one
possibility for W and V is given by
1
[B|aB|A%B|A’B|...A"B] = w = &°Q"
1
T T T =
[cTlA"CT|a* T)..a" ] = v = P&

(2.4a)

(2.4b)

Notice two aspects of the above equations. First, this selection of V and W is not unique.
This is reasonable considering that C, B ,or A are not unique for a given set of dynamics.
Second, the number of rows or columns of d must equal the number of columns in V and

the number of rows in W, and this row or column dimension must be equal to n states’
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Also notice that if the singular value decomposition of H (0) produces singular values

equal to zero forall n,<n<n rows and columns of P, d, and Q associated with

. states’

these zero singular values can be truncated and the product Pd QT will still exactly equal

H (0) . Thus, the loss of states associated with these zero singular values does not change
modeled dynamics. By eliminating these non-contributing states, a model with a minimal
number of states will be produced. A model which contains a minimal number of states is
called a minimal realization.

Minimal realizations exist for idealized analytical systems, but seldom for real systems.
This is due to the fact that real systems are seldom linear, factorizable, time invariant and
of finite order. Therefore, they cannot be represented exactly by equation 1.1 and, as a
result, produce a continuous distribution of non-zero singular values.

By knowing V, W, n; and n_,,, the B and C matrices can be determined as

out?’

B = WE, (2.52)
C = ECV (2.5b)

where E B and £ c are matrices of zeros and ones used to filter B and C from the 2.4a, and
2.4b observability and controllability matrices. Substituting equations 2.4a,b into equation
2.2, solving for Ak, and letting k = 1 gives
1 1

A=d*PTH(1)04 2. 2.50)
Equation 2.1a, and 2.5a,b,c is the ERA algorithm[6]. ERA is implemented by calculating
Markov parameters from experimental data, assembling the H (0) and H (1) Hankel
matrices, performing a singular value decomposition of H (0) , and using equation 2.1a,
and 2.5a,b,c to calculatea D, B, C,and A.

2.5 The Eigensystem Realization Algorithm with Data Correlation (ERA/DC)
In both ERA and ERA/DC a Hankel matrix is used to produce a system realization.
Nevertheless, in ERA a singular value decomposition on H (0) is performed, whereas in

ERA/DC a singular value decomposition on R (0) = H (0) H (0) is performed when

H (k) has more columns than rows, and on R (0) = H (0) H(0) when H (k) has more
rows than columns. This results in the decomposition of a matrix which is dimensionally
small. Therefore, for large variations in the number of rows and columns of the Hankel

matrix, ERA/DC is numerically more efficient. The matrix, R (k) = H (k) H (0) ,is
called the correlation matrix.

If H (k) has more columns than rows, this decomposition become

R(0) = PdQ" = H(O)H' (0) = VWW V' = VW,
1 1
where Wc = WWTVT Therefore, letting V = sz, and Wc = szT gives
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1
C = EPd, (2.60)
1 1

and since R (k) = H (k) H' (0) = VA'WW'V = va'w_ = pd’A*a’Q", then
L 1
A=d*PTH(1)04 2. (2.6b)
1 1
Moreover, since H(0) = VW = Pd°W then W = d “PTH (0) and
1
B=d’PHOE, . (2.60)

On the other hand, if H (0) has more rows than columns then the matrix
R(k) = H(0) H (k) is used. Following a similar approach gives
1
B =dQ'Eg, (2.64)
1

C = E.H(0)Qd (2.60)
and equation 2.6b for A . Equation 2.1a, and 2.6a,b,c,d,e is the ERA/DC algorithm([7].
2.6 State elimination using a balanced realization

As stated in the previous section, if a state has a zero singular value, then it does not
contribute to system response and can be eliminated from the model. Nevertheless, no real
world system has states with zero singular values. Therefore, the contribution of a state to
system response must be ranked by testing system dynamics.

If impulsive loads are applied to nominal model inputs (i.e. u (i) = I9,) then state

response for i >0 will be given by the columns of the controllability, matrix, W.
Therefore, the correlated state response matrix is given by

N
p= Y x@)x () = WW .
i=1
This matrix, P, is called the controllability grammian. From equation 2.4a,
1 1
p=WW =d0od=d

since QTQ = I. The matrix d is a diagonal matrix containing ranked singular values.

N n;,
Therefore, if the k’h singular value is large, then 2 [ z x2kj (i) } is large where x, j (i)

i=1%j=1
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. h . . th . . . .
is the k" state response for an impulse into the ]t input. Vice versa, if the K" singular

value is small, then the k'h state response is also small. Thus, if the contributions of all
states to all outputs were equal, then those states with small singular values could be
eliminated from the model since they would contribute little to system response.

Unfortunately, the contribution of all states to all outputs is not equal. Therefore, the
observability of the system must be determined. This can be determined by working with

the dual system described in section 1.3.3. If impulsive loads (i.e. u (i) = I9,) are applied

to the inputs of the nominal model dual, state response will be equal to the transpose of the
block rows of the observability matrix, V . The correlated state matrix response of the dual
system is given by,
N
0= Y x(®)x (k) = V'V

k=0
This matrix, Q, is called the observability grammian. From equation 2.4b, Q is also equal
tod. :

Therefore, for ERA, the controllability and observability grammians are equal and
diagonal. This is called a balanced realization[8,9]. In this type of realization, the
contribution of the states to the output are equally ranked to the response of the states to the
input. Thus, states which do not contribute significantly to system response will have
“small” singular values and dynamics which can be eliminated from the realization.

ERA produces a balanced realization, whereas ERA/DC does not produce a balanced
1 1

realization. In ERA/DC, ® = d°P'R (0) Pd*,and @ = d when H (k) has more columns
1 1

than rows, and P = d, and Q = szTR (0 de when H (k) has more rows than
columns. Therefore, it is not obvious that a realization obtained through ERA/DC is
balanced. Nevertheless, the singular values in ERA/DC can be related to a system response
for which it is balanced. Thus, in a fashion similar to ERA, model reduction by the deletion
of small singular values is usually performed.

2.7 Determining nominal model uncertainty bounds

A nominal model can be constructed by using ERA or ERA/DC to form a realization
(sections 2.4 and 2.5), and by using singular values to perform model reduction (section
2.6). This nominal model will represent most, but not all, physical system dynamics.
Therefore, without checking for instabilities caused by nominal model uncertainty, a
controller designed from this nominal model will not necessarily produce closed loop
stability. To assure stability in the presence of model uncertainty, a measured bound on
nominal model uncertainty is required.

Equation 1.3b was derived from the MIMO representation of Figure 1.5b. This equation is
a mathematical statement which, if satisfied, will assure the stability of the closed loop
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system in the presence of uncertainty, A (z) . To use equation 1.3b, the bound,
X (A, (z)) , must be found. This is performed by exciting each inputinto A, (z) , § (2) ,

separately and measuring the resulting outputs of A, (z) , €(z) . The bound, ¥ (A, (2)) ,

is the maximum ratio of energy out over energy in on a frequency by frequency basis. This
can be calculated from power spectrums of §(z) and €(z) .

The difficulty with using this approach is that both § (z) and € (z) are parameters internal

to the system and therefore, cannot be directly excited or measured. Therefore, they must
be indirectly excited or calculated from measured data. The parameter y (z) is excited by

determining a filter F (z) such that H (z) F (z) is equal to a diagonal matrix with non-
zero magnitude response. If there is no control feedback, then for a random excitation,

P(z) = [p,(2),p,(2),...]1 wherep, (z) = 0forallnzm,$, (z) = O foralln=m

where § (z) = [§,(2),9,(2),...] T - H () F (2) P (2) . Therefore an input,
u(z) = F(z)P(z), can be constructed which will excite only one inputto A, (z) ata
time. The output of A, (z) , €(z) can then be calculated from the equation

e(z) =¥(2) -¥(2) (2.72)
where

¥(z) = H(z)u(z). (2.7b)
The block diagram of this system is shown in Figure 2.2.

probe signal true system dynamics H(z)
excitation P S i 2 .
\ i nomjnal Ay (2)—1E(2)
ulz) mociel § +

P(2) — F@Q) = E(2)
random R DRSS Y.
excitation which P ¥(2) €(2)
15 ziarg.for ‘LH Inpnts > EQ@) multiplicative - multiplicative
excluding the m - input uncertainty input uncertainty

output

Figure 2.2 System excitation for the purpose of
calculating output multiplicative uncertainty

One way to calculate a filter F (z) is to solve a series of control problems which will
suppress all $, (z) forall n# m.If the dynamics of §, (z) are not strongly coupled to the

dynamics of all other $, (z) ,then , (z) will be non-zero. These control problems can be

solved by using a Linear Quadratic Regulator (LQR)[12] solution for each element in

3,(@) .M H(z) = C(zI+A) _lB + D then LQR can be used to determine a matrix %,
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K-1

~ T A~
such that lim lim 1 Z y, (i+1) y (i+1) +'yuT(i) u (i) is minimized for
Y- 0K — ooKi ~o n n
u(i) = —-4%,u(i) where 2m (i) isequal to $ (i) except for the deletion of its mth Iow.

This problem is solved for every row of ¥ (i) . Therefore, the resulting filter, F (s) , is
) -1
givenby F (s) = [F;(2),F,(z)...]whereF, (z) = - %, (zI-A-B¥%,) B, +D,,

Bm is the mth column of B, and Dm is the mth column of D.
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3.0 An application - the magnetically levitated lithography stage

In this section, the identification and control of the flexible body dynamics of a
magnetically levitated lithography fine stage is described. The stage, shown in Figure 1.1,
consists of an aluminum platen suspended in space by a distribution of electro-magnets. A
rigid body controller is used to control the rigid body position of the stage. The bandwidth
of this rigid body controller determines the speed at which the stage can be moved in space.
Nevertheless, this bandwidth is limited by the destabilization of flexible body modes.
Therefore, a flexible body controller was constructed to reduce this destabilization so that
rigid body bandwidth, and therefore speed, could be increased

3.1 A model of the Figure 1.1 system

In this section, a model of the Figure 1.1 system will be presented. System identification
will be performed on this model. This model contains attributes which are expected to fully
and realistically test the limitations of any system identification algorithm. These attributes
are; 1) modally dense flexible body dynamics forced by rigid body motion, ii) non-
linearities due to actuator saturation effects, iii) feedback control, iv) aliased modal
dynamics, and v) external noise excitations correlated with plant dynamics.

A model of the Figure 1.1 pictorial was constructed using Simulink[10]. Block diagrams of
this model are shown in Figures 3.1a to 3.1d.The innermost dynamics of this mode] are
shown in Figure 3.1a. In this figure a 60th order continuous time state space system
representing the rigid and flexible body dynamics of the platen is shown cascaded with
piezo-electric actuator and anti-aliasing filter dynamics.

This 60th order continuous time first order system was constructed from a 20,000 DOF
Finite Element (FE) model”. This FE model had sixteen actuator force inputs,

16x1 . . . . .
f, (1) eR =, corresponding to sixteen electromagnetic actuators, three piezoelectric
. 3x1 . . . .
force inputs, fp (t) eR *, corresponding to the three piezoelectric actuators[11], six
.. . o 6xl : .
capacitive sensor displacement outputs, d_ (f) € R **, and three collocated piezoelectric

velocity outputs, v, (1) € R*™ . This large order FE model was reduced down to a 30 DOF

FE model using component mode synthesis, and modal truncation. The result was then
transformed into the 60th order continuous time state space model shown in Figure 3.1a.
The modal frequencies and damping for the reduced FE model is shown in table 4.
Damping was assumed to vary linearly with frequency between 0.1% critical damping at
0.97kHz to 5.0% critical damping at 18.01kHz.

*This model was developed by Garth Reese of department 1434 Sandia.
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Figure 3.1a Continuous time, fine stage dynamics
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natural percent natural percent
mode # || frequency | damping || mode # || frequency | damping
(kHz) (%) (kHz) (%)
1-6 0.00 0.00 19 7.11 1.86
7 0.97 0.10 20 747 1.97
8 1.66 0.30 21 7.81 2.06
9 1.78 0.33 22 8.47 2.25
10 2.87 0.65 23 9.49 2.54
11 3.18 0.73 24 10.20 2.75
12 3.39 0.79 25 10.33 2.75
13 3.84 0.93 26 13.22 3.62
14 3.94 0.95 27 14.03 3.86
15 4.33 1.07 28 15.28 4.21
16 522 1.32 29 16.45 4.55
17 5.51 1.40 30 18.01 5.00
18 5.80 1.49

Table 4: Natural frequencies and damping

The 60th order continuous time state space model was cascaded with a set of second order
filters with natural frequencies at 18KHz, and damping ratios at 1.0. These filters
represented the dynamics of the piezoelectric actuators and amplifiers. The 60th order
model was also cascaded with a set of 6 pole Butterworth anti-aliasing filters with break
frequencies at 2kHz. After a low authority rate feedback controller was applied to damp
high frequency modes, the cascaded model was then transformed into discrete time using
a sampling frequency of 20kHz. The reduced order, cascaded, discrete time state space
model was 84th order.

A magnitude plot of the transfer functions from the third piezoelectric amplifier input to all
piezoelectric velocity sensor outputs is shown in Figure 3.1a. Notice that the high
frequency response is attenuated by the use of the anti-aliasing filters, and that there are
many modes above the break frequency of the anti-aliasing filters. Moreover, from table 4,
notice that there are 7 modes with natural frequencies above the Nyquist frequency.

Figure 3.1b shows the next highest level of Simulink modeling. The discrete time
representation of the reduced order, augmented model shown in Figure 3.1a is contained in
the block represented by

x(n+1) = Ax{(n) +Bu(n)
y(n) = Cx(n) +Du(n)
Dis. State-space
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19x1 , . . .
where the vector, u (n) € R * isan input vector whose first sixteen elements contain the
sixteen force inputs from the electromagnetic actuators and whose last three elements

. . . e 9x1
contain the three piezoelectric actuator amplifier inputs. The vector, y (n) € R x ,isa
discrete output vector whose first six elements are the six capacitive sensor displacement
outputs and whose last three elements are the collocated piezoelectric velocity outputs. The

. . .. 84x84 84x19 9x84
parameter, n, is a discrete time increment, and A € R * ,Be R * ,CeR * , and

9x19 .
De R’ are state matrices.

[<n<1)-Axtn)« Buto)
Y{n)=Oxn)+Du(n}
3. Stals-space

3

Figure 3.1b Simulink fine stage model

The sixteen electromagnetic actuators are used to move the fine stage in rigid body
directions. These actuators were mono-directional and therefore were paired in order to
produce bi-directional rigid body motion. This actuator pairing was modeled by the blocks
u %
D =
——p lit !
Demux_>

FY mx FY %2

where U, is the force produced by a pair of actuators, u, is the force produced by the first

actuator in the pair, and u, is the force produced by the second actuator in the pair. If
u,> O,u = u, and u, = 0, otherwise U, = u, and u; = 0 where the second actuator
pulls in the opposite direction of the first.

Saturation effects are also included in this model and are represented by the block

f max up
— -le =
7, max

Saturation
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where f,  is the maximum force which an electromagnetic actuator can apply to the

platen. For 10pum step excitations, it was assumed that f, = = 151bf*.

Saturation blocks are driven by the transformation blocks,

UL

Muxt»| K Demux
rbf2act

which relates rigid body forces and torques to forces applied to the eight actuator pairs.
Moreover, capacitive measurements drive the transformation blocks,

HiL

Mux K t=»{Demux
cs2rb

which relates displacements at each capacitor to three rigid body translations and three rigid
body rotations to form six rigid body outputs.

Figure 3.1b is called the fine stage model. The fine stage model was imbedded into another
model called the lithography machine model. The lithography machine model is shown in
Figure 3.1c where the masked block labeled “fine stage” is given by Figure 3.1b.

>
]
S&nl  S-Funcion - KXo
Susg S-Funttont |
Som) S-Fution? " —
3o —— ]
Sued S-Funstond
7 —
TS S-Functient —
m Sud S-Funcion$ . R —
commix 11 Simulink _]
“@“ block Ithography machine
D) —0 representation
wpons Ouzen .
B— L@ of lithography
B __(“E“‘ machine dynamics
:].——-. Oepon2
i Xl

Figure 3.1c Simulink lithography machine model

In Figure 3.1c, the blocks labeled “PD slow” are discrete, Proportional and Derivative (PD)
rigid body controllers. These controllers control the six rigid body degrees of freedom of
the fine stage. These controllers run at a 200Hz sampling rate (a tenth of the sampling rate
of the flexible body controller). If the fine stage had no flexible body dynamics, the rigid
body controllers would change the dynamics of the system in each rigid body direction to
that of a second order system with a 2Hz bandwidth and a 0.707 damping ratio. This low
bandwidth was required to hold the magnetically levitated fine stage in place while system
identification is being performed. Once flexible body dynamics have been identified and a

*A complete description of the rigid body controller is not provided in this document due to its con-
fidentiality. Therefore, assumptions as to saturation levels are required.
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flexible body controller designed and implemented, rigid body control bandwidth will be
moved up to as large of a value as possible.

The Figure 3.1c lithography machine model was include into the Figure 3.1d system ID/
vibration control model. This figure represents the highest level of model of the Figure 1.1
system.

Clock  To Workspace noise Input

plant response  ——
>
acluator noise 1 >
Mux Demux >
actuator noise 2 noise
noise 3 oE emid P
>t » save sum cutput
Sumi3
Demux <M »
Noise Gen Sumi4
»f+ » i
M »
Damusi sumis ——
Ithography machine MuxS
e— -—b—'
Mix fe— M Pi feedback_sum = 1
> ’:}"‘- dD>— Flexible
save sum input P save sum feedback bOdy COHtrO]
Mt
Mux3
Demux < IOOP S

flexiibe body feedback
probe input Demwe y VoA

Figure 3.1d Simulink system ID/vibration control model

In this model, a set of control loops, called the flexible body control loops, relate
piezoelectric actuator velocities to piezoelectric actuator amplifier inputs through the block
labeled “flexible body feedback”. In this document, two types of controllers can be used in
this model. The first controller is a rate feedback controller, and the second controller is a
Linear Quadratic Gaussian (LQG) controller. System identification is performed while one
of these flexible body controllers are operating.

In rate feedback and LQG control, it is assumed that the controller takes the form,
x (i+1) =Ax (i) +B_.y(i)
u(i) = Cx_ (i) +D_y (i) .

In this document, the rate feedback controller is derived from a Linear Quadratic Regulator
(LQR) solution[12].

The LQR problem statement is;
given that x(i+1) = Ax (i) + Bu (i)
y (i) = Cx (i) + Du (i)

where u (i) is a vector of force excitations and y (i) is a vector of collocated velocity
feedbacks,

find an F where ~Fx (i) = u (i) such that
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K-1
lim %‘;O(x(n 1) 0xT (i + 1) +u (i)RuT(i))

K—soo

is minimized for given Q and R.

To derive arate feedback controller, the realization is placed into modal coordinates and Q
and R are matrices chosen to weight modes of greatest importance. Then, from a single
Riccati equation LQR solution F is determined. With F a least squares estimate of K is
determined such that K ~ FC where X is diagonal and positive semidefinite.The final
solutionisAC=O,BC=O,CC=O,anch=—K. ’

The LQG problem statement is;
given x(i+1) = Ax(i) +Bu (i) + Gw (i)
y(i) = Cx (i) + Du (i) + Hv (i)
where w (i) and v (i) are white noise Gaussian processes of known statistics,

find a compensator (A o Bo Cs D) such that

K— e

K-1
E{ lim Il{;‘o(x(n l)QxT(i+ 1) +u(i)RuT(i) )}

is minimized for given Q and R.
Again, the solution involves placing the realization into modal coordinates and choosing

the Q and R matrices to weight modes of greatest importance. Then a two Riccati equation
solution is used to solve for the optimal compensator. A more complete description of LQG
is given reference 12.

The system ID/vibration control model shown in Figure 3.1d was augmented with a
number of blocks for the purpose of performing system identification. Blocks labeled
“Noise Gen”, “save sum input”, save sum output”, and “save sum feedback” were added to
produce periodic random probe signals excitations and to save averaged measured response
data for the purpose of identifying system dynamics from piezoelectric amplifier inputs to

piezoelectric velocity sensor outputs.

Noise was added to the system at the rigid body actuators. This noise not only excited the
flexible body dynamics but also the rigid body dynamics. Therefore, a low bandwidth rigid
body controller was needed to limit rigid body modal response while system identification
was being performed. Signal to Noise Ratios (SNR’s) at the PZT outputs were set to -6, 0,

or 6 dB™.

root mean square level of signal
root mean square Ievel of noise
for a lithography machine stage. Nevertheless, they used with an alternative applications in mind.

*SNR=2Ologl 0 . These number are completely unrealistic
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3.2 Accuracy of solution with variations in feedback and noise

Figure 3.2 contains a comparison of test data from the Figure 3.1 model for variations in
noise and control. Each element in Figure 3.2 is calculated from the metric I". This metric
is defined from the impulse responses of the exact solution and the impulse responses of

. N . . h
the realization. If y, (i) is the impulse response of the exact solution between the K

. h ~ R . e

input and the m' output, and $, (i) is the impulse response of the realization between

h . h
the k' input and the m' output, then

where e, () =y, (i) =9, (D) .
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Figure 3.2 Nominal model error for variations in control and noise

To construct Figure 3.2, the Figure 3.1 model was excited with periodic random excitation
and output data was stored in 1024 point blocks which were averaged 325 times. An H,

calculation was then used to produce transfer functions which were used to produce
Markov parameters which were used to produce a nominal model realization. The singular
values of the realization were truncated by using two methods. In the first method (min.
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SV), only states associated with singular values whose value divided by the maximum
singular value was greater than 0.0001 were retained in the model. In the second method
(Accum. Sum), only those states associated with singular values which when summed with
all larger singular values divided by the sum of all singular values produced a number less
than 0.999, where retained in the model.

Variations in Figure 3.2 show that for higher noise levels, nominal model identification
error increases, but for higher controller feedback, little variation in error occurs. Any of
the values in Figure 3.2 could have been made smaller by producing more averages.

3.3 Stability in the face of model uncertainty

Figure 3.2 shows nominal model error for variations in noise and control. A controller can
be designed from this nominal model and nominal stability can be checked. Nevertheless,
to assure closed loop stability in the face of model uncertainty, the maximum singular value
of the multiplicative uncertainty must be determined. If one over this singular value is
greater than the complementary sensitivity function at every frequency, then the closed
loop system will be stable. If it is not greater, the system can be either stable or unstable.
Figure 3.3 shows the maximum singular value of the multiplicative uncertainty of a
nominal model identified for the Figure 3.1 model with a SNR of -6dB, and a series of
complementary sensitivity functions defined by various LQG controllers. The stability of
each closed loop system is also shown. Notice that for the complementary sensitivity
functions which are less than one over the uncertainty bound, the system is stable. This
agrees with equation 1.3b..

10° ¢ ;
UL (A, (2)—m
10'
100 D I T —_-_..;-_-_-;___'_U
. -
2 40| stable syste
g s
Pt -7
g - stable system
—2 . -
10°¢ At high frequencies e L3
i the the dotted line T
J system violates the T,
107} equation 1.b stability b
condition "
10_4 i n 1 i n L 1 " i A
10° 10° 10*
Frequency (Hz)

Figure 3.3: Stability relative to model error
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4.0 Discussion of results

In this document, a discussion of some of the aspects of system identification as they relate
to robust control design were presented. A few comments are given below.

In section 2.6, it was shown that ERA produces a realization which can be used to order the
importance of states relative to an impulsive input. Nevertheless, the selection of model
order relative to this ordering is subjective, since the state response to an impulsive load
may be a poor indicator of the importance of that state to closed loop performance. The
form of the realization which produced this ordering was called a balanced realization.

Also in section 2.6, it was stated that ERA/DC does not produce a balanced realization, yet
model reduction relative to its singular values is still performed. Just how this model
reduction relates to control performance is a research issue.

In section 3.2, it was shown that system identification could be performed in the presence
of noise and feedback control. It should be noted again, that any of the elements in the
Figure 3.2 matrix could have been lowered by further averaging.

In section 3.3, it was shown that for a system without control feedback, uncertainty bounds
could be measured which can be used to assure stability in the face of model uncertainty.
These uncertainty bounds determine frequencies in the closed loop system where energy
can be added without causing instability, or where energy can be removed to impose
stability. In essence, this uncertainty bound shows the control designer how to shape the
loop on the system so as to obtain the best closed loop stable response. Determining these
uncertainty bounds for system with outputs which have closely coupled dynamics, and
systems with control feedback, is a matter of research.

This report represents the final aspects of work performed on the NCAICM phase 1
program on autormated system identification.
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Appendix A Nyquist Stability

The Nyquist stability theorem is used to determine the robustness, and stability of a single
input, single output system in the presence of feedback control. Figure A.1 shows a closed

G(s)H (s)
1+Gs)H(s)
The characteristic equation of this system is obtained from the denominator of the closed
loop transfer function, 1 + G (s) H (s) = 0. If the zeros of this equation are in the right
hand plane, the homogeneous response of this system to any input will be unbounded, and
therefore, the system will be unstable. Nevertheless, looking at the zeros of the
characteristic equation gives limited information about closed loop robustness. For this
purpose, the Nyquist stability theorem is used.

loop system. The closed loop response of this system is given by 7 (s) =

+

»%G(s) H(s)

Figure A.1 A single Input, Single Output Feedback Control System

Before the Nyquist stability theorem can be derived, a simple relationship used in the
mapping of complex functions must first be examined. This relationship states that the
number of clockwise encirclements about zero of a closed locus of points in the s domain

mapped into the F (s) domain will be equal to the number of encircled poles of F (s)
minus the number of encircled zeros of F (s) . Figure A.2 illustrates this. The function

F (s) hastwo poles and one zero in the closed S domain contour. If this contour of S values
is mapped into the F (s) domain, then it will also produce a closed F (s) domain contour
which will encircle the zero F (s) location only once in a clockwise fashion.

A (s) Aim (F (s))
°~ >Re () >
X Re (F(s))
Poles and

Zeros of F (s)

Figure A.2 Mapping from the s Domain to the F (s) Domain

This can be proven by determining an expression for ¢_.dZ (F (s)) where is an
P s s

integral around a closed contour in the s domain. Since
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1
F(s)ds

§Sd1n (F(s)) = §SF( )dF(s) = §Sd1n|F(s)|+J§Sd4(F(s))

Lin(F(5) = 57 2F (5) = S1alF ()] +j5 £ (F (5)) 10},

and since §Sd1n|F(s)| must always be real, §Sd4 (F(s)) = Im(§>s G )dF(s)).
But, from Residue theory [11],

SgSF_(ls_)dp(s) - Sas(l%%zr(s) )ds = —j21tZRes(l%s)(%F(s)),

therefore,%dé (F(s)) = —ZRZRes(F(l s —F (s ))

If F (s) is factorizable,

Z K‘
[IG-2) A

_ i=1
then F (s) = A - and F(s)ds

H(S~P,-) i i=1

i=1

. th . th . o th .
where z; is the i zero, p; 1is the i pole, K; is the multiplicity of the i zero, and M, is

the multiplicity of the i" pole.

1 d
F(s)ds

From above ZRes( F(s) ) =n,-n,
where n » is the number of poles of F (s) encircled by the closed contour in s and n, is the

number of zeros of F () encircled by the closed contour in s. Thus, if . is the number of

clockwise encirclements of zero in the F (s) domain, then

~§dZ(F(s)) = 2mn, = 2m(n,—n) AQ)

Equation A(2) states that the number of clockwise encirclements of zero in the F (s)
domain is equal to the number of zeros minus the number of poles of F (s) encircled in the
s domain.

In Nyquist, the number of zeros of 1+ G (s) H(s) in the right half s plane is determined
from A(2). If this number is greater than zero, then the system is unstable. Thus, as shown
in figure A3, the closed s domain contour should encircle the entire right half s plane.
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Moreover, notice that the same results can be obtained by choosing F (s) to equal
1+ G (s) H(s) and counting encirclements, n_, about zero, as can be obtained by

choosing F (s) toequal G (s) H (s) and counting encirclement, n_, about -1. Therefore,

for simplicity, F (s) is chosen to equal G (s) H (s) , and the number of encirclements
about -1 are counted. By using equation A(2), the number of zeros in the right half s plane
is given by

n, = np +n, A(3)
where n_ is the number of encirclements about the -1 location, and since the poles of
1+ G (s) H(s) arethe same as the poles of G (s) H (s) , n, is simply the number of poles
of G (s) H(s) in the right half s plane. Equation A(3) is the Nyquist Stability theorem.

More specifically, from Nyquist, if G (s) H (s) is strictly proper and has no poles in the
right half s plane, then, for the closed loop system to be stable, the Nyquist diagram of
G (s) H(s) should not encircle -1. Figure A3 shows this situation for both a stable and
unstable system

AIm (G(s)H(s))

ZAG (s)H (S)

»Re (5) L

Re (G (s)H(s))
>

en this system is stable
and this system is unstable

Figure A.3 Stable and Unstable Closed Loop Systems

As was discussed in section 1.2, Figure 1.5b shows a closed loop system in feedback with
multiplicative uncertainty. Notice that the stability of this system can also be determined

by Nyquist. In particular, ifboth A, and T (s) are both stable, and strictly proper, then the
Nyquist diagram of A (j®) T (j®) must not encircle -1, or, as a conservative bound on

stability, |A,, (jo) | |T (jw)| < 1. This leads directly to equation 1.3a
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