Cond-0310310 -~
SSCL-Preprint-547
December 1993
Distribution Category: 400

| J. Huang

SSCL-Preprint-547

Bridging Fortran to
Object Oriented Paradigm for
HEP Data Modeling Task

RELEASE O
pPROVED FOR OR.P TEN £ ;RQ«“P

UBL\CﬁQ—VO) ,«DATE ;../j- Lo
Yno.“....‘......

Superconducting Super Collider
Laboratory

Disclaimer Notice

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government or any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility
for the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to
any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States Govermment or any agency thereof. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States Govemnment or any
agency thereof.

Superconducting Super Collider Laboratory is an equal opportunity employer.

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document. »

SSCL-Preprint-547

Bridging Fortran to Object Oriented Paradigm for
HEP Data Modeling Task*

J. Huang

Superconducting Super Collider Laboratory®
2550 Beckleymeade Ave.
Dallas, TX 75237, USA

December 1993

*Presented at the Third International Workshop on Software Engineering, Artificial Intelligence and Expert
Systems for High Energy and Nuclear Physics, October 4-8, 1993, Oberammergau, Germany.

fOperated by the Universities Research Association, Inc., for the U.S. Department of Energy under Contract
No. DE-AC35-89ER40486.

DISTRIBUTION OF THIS DOCUMENT 1 UNL:MWEDQM MASTE R

THIRD INTERNATIONAL WORKSHOP ON

SOFTWARE ENGINEERING, ARTIFICIAL INTELLIGENCE AND
EXPERT SYSTEMS FOR
HIGH ENERGY AND NUCLEAR PHYSICS

October 4 - 8, 1993
OBERAMMERGAU, Oberbayern, Germany
Under the Sponsorship of the

GERMAN PHYSICAL SOCIETY and

EUROPEAN PHYSICAL SOCIETY

BRIDGING FORTRAN TO
OBJECT ORIENTED PARADIGM FOR
HEP DATA MODELING TASK

Jean Huang

Superconducting Super Collider Laboratory,
2550 Beckleymeade Avenue,
Dallas, Texas 75237, USA
Jhuang@ssc.gov

ABSTRACT

Object oriented (OO) technology appears to offer tangible benefits to the high energy physics (HEP)
community. Yet, many physicists view this newest software development trend with much reserva-
tion and reluctance. Facing the reality of having to support the existing physics applications, which
are written in FORTRAN, the software engineers in the Computer Engineering Group of the Physics
Research Division at the Superconducting Super Collider Laboratory have accepted the challenge of
mixing an old language with the new technology. This paper describes the experience and the tech-
niques devised to fit FORTRAN into the OO paradigm (OOP).

1. Background

Traditionally, physicists who design and implement particle physics experiment software use
the FORTRAN language. While FORTRAN is well-suited to writing algorithms, its homogeneous
elements of ARRAY and COMMON BLOCK are very inadequate for complex data structure de-
sign. To compensate for the data-structuring deficiency in the FORTRAN language, the high en-

ergy physics (HEP) community has developed several solutions of their own. ZEBRAI, the

hierarchical structure; YBOSZ, the list of banks; and ADAMO3, the relational model, are among
the most commonly used data-management systems.

Since the 1980s, different approaches have been taken to implement the complex algorithm
and data abstraction for physics application software. Instead of hanging onto the FORTRAN lan-
guage with its constraint of old technology, groups of physicists have adapted the newest trend in

the computer industry, the object oriented (OO) approach. The PION project4 at CERN, has used
Object Oriented Paradigm (OOP) techniques for a specialized graphics application; the SLAC Rea-

son project5 ’6, has implemented a graphical interactive analysis environment; and recently the Gis-

mo project7’8’9, originally developed on a NeXT computer using Objective-C, utilized OOP
techniques. These projects were not only successful in testing the OO technology, their works are
having a significant influence in changing the way physics applications are designed and devel-
oped.

From the computing point-of-view, it is inevitable to seriously consider using object oriented
technology if the tangible benefits offered by the computer industry are to be realized. The physics

applications map quite well to the object oriented paradigm, since the original concepts are of an
abstract nature; however, technology migration of any sort is a gradual process. It takes years to
complete such a transition. Many physicists will continue to devote their energy to analyze HEP
data using the Fortran language and will view this newest software development trend with reser-
vation and reluctance. Facing the reality of having to support FORTRAN applications, the physi-
cists and software engineers in the Computer Engineering Group (CEG) of the Physics Research
Division (PRD) at the Superconducting Super Collider Laboratory (SSCL) have accepted the chal-
lenge and have done some experiments that mix the old language with the new technology.

The following sections describe various approaches to bridge the language to the object ori-
ented paradigm, as well as lessons learned from the experiments. The experience will be applied
to the data-modeling project, the objectives of which are to provide a data-modeling environment
and to establish a standardized data model and its repository systems for supporting physics com-
puting activities.

2. Generic Interface Approach

The first experiment done by the PRD computer engineering group was the Object Class Li-
brary for the SZ++ Package by Dr. B. Traversat. This package is an initial C++ version for hierar-
chical data structure memory management services that was originally provided by the ZEBRA
Management System. It organized ZEBRA banks into a double-linked list class, and further de-
fined bank attributes through derived classes. The initial work started with six classes. Figure 1
shows the inheritance of the classes. The following list is a brief description of each class:

Double-linked List Base Class implements a generic double-linked list.

Zebra Bank Base Class derived from the dblink. It adds basic ZEBRA bank information.
bank_head Class derived from the bank class. It serves as a link point.

bank_fix Class derived from the bank class. It implements a fixed-size bank.

bank_var Class derived from the bank class. It implements variable-size banks.

SZ Class manages the entire event structure and implements the SZ API to Fortran.

The organization of the data bank is separated from the design of the application programming
interface. This approach leads to the design of a platform that spares the user from worrying about
the underlying details of data-management systems. The following are the application interface
subroutines of the SZ++ package for the Fortran language:

szbini() initializes the SZ control structure.
szfill() fills a bank.

szget() gets bank value.

szdrop() drops a bank.

szsurv() displays structure of a bank.

szshow() displays content of a bank.

A

szexist() tests whether a bank tree name exists.
sznum() returns the max bank number.
szwipe() wipes out a bank.

Although the SZ++ package provides a generic Fortran interface to the object oriented realm,
due to its close relationship with the ZEBRA package, the design is very much bank-oriented.

dblink

bank_head bank_fix bank_var

Sz

Figure 1: SZ++ Classes

3. Ad Hoc Approach

There are several projects in PRD that involve programs written in mixed languages of For-
tran, C, and C++. They come in two different forms: the C or C++ main program calls Fortran sub-
routines, or vice versa. These projects are usually concentrated on the database and graphical user
interface designed for storing and retrieving data with a limited set of functionality.

These projects were able to take advantage of the most updated computer technology of the
databases and graphical user interface, but none of them put much consideration into providing a
unified platform that would allow Fortran applications to work freely. Most of the time, a small
modification in the header file structure requires changes to be made in the Fortran subroutine to
reflect the mapping. This volatility renders impossible large-scale projects that require services for
the general applications.

Figure 2 shows the call pattern of the ad hoc approach.

Physics Application Graphical User
Interface

Sophisticated Data Management
Systems

Figure 2: Ad Hoc Approach

4. Bridging Concerns

When bridging the Fortran language to the OO paradigm, the major concern is how to com-
municate with the more sophisticated data-structuring facility of a OO-suitable language. Both ge-
neric and ad hoc approaches encounter problems related to naming of routines, parameter passing
and call positioning:

» Naming

This problem is usually solved by adding an underscore to the subroutine names on the For-
tran side.

e Calling

The concern is which language should be used for writing the main program, and its associ-
ated linking considerations.

« Parameter passing

This deals with the matching between the scattered parameters of the Fortran and the at-
tributes defined in a more sophisticated language.

All the issues stated above are compiler-dependent. Porting software between systems may
require some attention to the differences between compilers. According to the experience gained
in experimental projects done in the Physics Research Computing Department (PRCD), it is not
difficult to mix the Fortran language with C++ or C.

5. Conclusion

Lessons learned from these OO experiments will be applied to the development tasks of the
joint Data Modeling (DM) Project effort of the Gamma, Electrons, and Muons (GEM) Collabora-
tion, Solenoidal Detector Collaboration (SDC), and PRCD. The purpose of the DM Project is to
develop the standardized data-modeling environment and HEP data models necessary to support
computing activities of GEM and SDC.

Since mixing the programming languages is not a difficult task, the future DM effort will fo-
cus on the HEP data-model design and a generic platform that provides data-access services to soft-
ware developers. Eventually, this data-modeling environment, which also includes tools for data

analysis, data design, and data definition, will be integrated with the SSCL Framework!? Object
Management Services environment and the Physics Research Integrated Computing Development

Environment (PRIDE)H.

With the increasing complexity and advancing pace of computer technology, it is obvious that
the tools and services provided by the DM environment will be acquired mostly from the computer
industry, research, and academic institutions. Evidently, object oriented technology continues to
gain momentum in setting the direction of today’s computer software development. In order to take
advantage of the technology offered by industry, the object oriented approach has been chosen for
development work of the Data Modeling project.

The C++ language will most likely be used due to its close relationship with the OO technol-
ogy and its wide acceptance by the software community. The development of computer technology
in the physics community, however, is perceived in different shades of light. Changing from one
programming language to another in a community with diversified awareness is a slow process. To
best serve the GEM/SDC collaboration, an access mechanism that supports mapping of multiple
programming languages, especially the Fortran language, is necessary until the majority has made
the transition.

6. References

1. R.Brun,etal., ZEBRA — Kernel Data Structure Management System, CERN Computer
Center Program Library Long Write-Up, Q100.

2. David Quarrie, et al., YBOS programmers reference manual, Fermilab, CDF Note No.
156.

S.M. Fisher, The ADAMO data system, CERN/ECP/PT xx/yy Real..., November 1991.

4.] Bettels and D. Myers, The PIONS Graphics System, IEEE Computer Graphics and
Applications, Vol. 6, No. 7 (July 1986).

5. W.B. Atwood, et al., The Reason Project, SLAC-PUB-5242 (April 1990) 11p.

6. Paul F. Kunz, Physics analysis tools, SLAC-PUB-5520 (April 1990) 11p.

7. 'W.B. Atwood, et al., GISMO: An object oriented program for high-energy physics event
simulation and reconstruction, CERN Preprint ECP 91-15.

8. W.B. Atwood, et al., Gismo: C++ Classes for HEP, C++ Report, March-April 1993.

9. W.B. Atwood, et al., The Gismo Project — C++ at work in high energy physics.

10. S. Frederiksen, et al., Framework Software Project Assignment Plan and Framework
Software Project Execution Plan, SSCL, PRCD R40-000010.

w

11. J. Burton, et al., Physics Research Integrated Development Environment (PRIDE), pre-
sented at the Third International Workshop on Software Engineering, Artificial Intelli-
gence and Expert Systems for High Energy and Nuclear Physics, October 1993.

