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Overview of QUICKSILVER

Charged-particle simulations in three dimensions are now performed routinely in the Pulsed
Power Sciences Directorate at Sandia with the QUICKSILVER suite of codes. QUICKSILVER
is a multitasked, finite-difference, three-dimensional, fully relativistic, electromagnetic, particle-
in-cell code developed at Sandia. It is targeted for use on current and near-term supercomputers,
such as the Cray X-MP/416, which are characterized by large, shared central memories and
multiple processors. QUICKSILVER has already been used to simulate ion diodes, magnetically
insulated transmission lines, microwave devices, and electron beam propagation.

QUICKSILVER is actually a suite of codes; in addition to the main simulation code there
are several support codes. The problem geometry is generated with a preprocessor and the
simulation results are examined with one or more postprocessors. The MERCURY preprocessor
assists the user in defining the mesh, boundary conditions, and other input parameters. The
FLASH and AVS!:2 postprocessors are used to examine a wide variety of simulation output,
including 3D rendering of particle positions, conductor surfaces, and scalar and vector quantities.
The PLOTPFF postprocessor displays 2D slices and 1D pencils derived from 3D scalar and
vector quantities. Additionally, time histories of various simulation quantities can be examined
and manipulated with the IDR? postprocessor. Each code in the QUICKSILVER suite may be
run on the hardware platform for which it is best suited. Currently, QUICKS};LVER isrunon a
Cray X-MP/416, FLASH and AVS on a Stardent 3D graphics workstationz and MERCURY,
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IDR, and PLOTPFF on a VAX computer. A robust and functional computer network then ties
the suite together. All codes in the suite adhere to standards as much as possible in order to ease
porting to different hardware platforms.

Before describing the suite in detail, it is worthwhile to highlight some salient architectural
features of the QUICKSILVER simulation code. Al grid-related quantities (electromagnetic
fields and current density, for example) are stored in central memory and particle information may
be stored out of memory if there is not sufficient central memory. In order to squeeze the largest
possible simulation into central memory, large conductor volumes in which fields are always zero
must not be stored. This necessitates constructing the simulation region from "blocks" logically
connected along arbitrary planes. The overhead required to accomplish this block connection in
the field-solving routines uses a very small percentage of the total processing time. After the
grid-related arrays have been allocated in memory, the remainder of the memory is used to cache
particle information. When this cache is full, it is necessary to shuffle particle information in and

out of the memory cache and onto disk or other out-of-memory storage.

The MERCURY Preprocessor

The process of generating input data for three-dimensional simulations is difficult and
error-prone. MERCURY is a menu-driven preprocessor that is used in defining the variably-
zoned, finite-difference mesh, the problem geometry, the boundary conditions, the dielectric
volumes and other input parameters. MERCURY allows free-format input and provides on-line
help. All input for a QUICKSILVER simulation is processed and checked for errors and
inconsistencies.

QUICKSILVER uses a nonuniform, multiple-block, finite-difference mesh with staggered
full and half grids. A nonuniform mesh defined by the relationship between the grid index i and

the physical grid location x

2,53

X(i) = x5 + ai + bi® + ci
is supported by MERCURY. Different regions of the mesh can have different descriptions of the

relationship between i and x. Across any interface between such mesh regions, the function x(i)



must be continuous in order to retain accuracy in the field solution. The MERCURY mesh
generator ensures that this condition is met as the mesh is produced. Logically connected blocks,
i.e., multiple conformal regions of space with a local mesh, are also supported. MERCURY can
also interactively plot the generated mesh. Cartesian, cylindrical, and spherical coordinate system
meshes can be generated by MERCURY. Figure 1 shows a two-dimensional slice of a multiple-
block, variably-zoned, finite-difference mesh. The MERCURY mesh generator is also used to
generate meshes for other finite-difference simulation codes at Sandia.

Conducting surfaces and volumes and dielectric volumes are easily generated with
MERCURY by adding or removing objects, such as a cylinder, from a library of simple, solid
objects. MERCURY then fits the object to the finite-difference mesh. The generated surfaces can
then be viewed interactively. Figure 2 shows a coaxial conductor generated on a Cartesian mesh.

MERCURY also allocates memory for arrays in QUICKSILVER so that only the minimal
memory required for a simulation is used. This is accomplished using FORTRAN parameter
statements and requires recompilation of some QUICKSILVER modules for each simulation.
This memory-conservation feature reduces memory charges, which for some simulations, can

exceed CPU charges.

The QUICKSILVER Fields Solver

The minimization of the central memory required to store grid-related arrays is further
enhanced in the electromagnetic fields solver by storing each multiple-block array in a single,
one-dimensional array. Each of these one-dimensional arrays is partitioned, by the use of simple
offsets, into arrays containing the component for the various blocks. At the highest levels of
QUICKSILVER, these one-dimensional arrays, which have three dimensions implicitly
embedded, are used. At the lower levels of the field-solving routines, where the bulk of
computations are performed, these grid-related components are referenced as local, single-block,
three-dimensional arrays. This simplifies the coding in QUICKSILVER, and greatly improves its
readability. After the grid arrays have been allocated in memory, the remainder of the memory is

used to cache particle information. A buffer surface, one cell in thickness, is used for each mesh



block to ease connectivity of blocks in the field-solving algorithms. Any grid-related array not
needed in a simulation (for example, charge density in a fields-only simulation) has its length set
to one to further conserve memory.

The QUICKSILVER fields solver utilizes explicit4 and implicit5 finite-difference, leap-
frog algorithms. Multiple dielectric volumes are allowed for regions with no particles, Available
boundary conditions include conductors, inlet and outlet boundaries, mirror symmetry and
periodic symmetry. Simulations can be performed in Cartesian, cylindrical or spherical
coordinate systems. Currently, the inlet boundary condition will drive multiple, independent
TEM modes and the outlet boundary condition will handle all modes with a fixed wave velocity.
More general inlet and outlet boundary conditions are being developed. Conductor boundary
conditions are implemented directly in the fields solver using bit-wise operations. The fields
solver has been optimized for the vector hardware of the X-MP/416 which can overlap I/O from
central memory as well as overlap floating point operations. No nonstandard FORTRAN is
necessary for this optimization, only for the bit-wise operations. The algorithms operate at an
average rate of 130-140 MFlops. This is slightly more than one floating point calculation per
clock cycle, on average. The nesting order of do-loops is set internally for optimal vector length
and to avoid memory bank conflicts.

To fully utilize the capability of a multiple-processor supercomputer such as the X-MP/416,

6,7 is used to

multitasking of the fields solver is employed. The Los Alamos Autotasking Library
implement multitasking on the Cray X-MP. This library is based upon a multitasking model in
which indistinguishable tasks (processors) subdivide the work of a single program in a self-
scheduling manner. All multitasking is incorporated into the code via directives to the Autotask
pre-compiler. In the field-solve algorithms, processing is done block-by-block. All processors
work on each block simultaneously using a "concurrent-outer-vector-inner" method (COVI) on
the do-loops. In this parallelization method, the outer loop is performed in parallel and the inner
loop is vectorized. To facilitate load balancing in the fields solver which has 3 levels of loops, the
two outer loops are combined into one to increase the number of concurrent iterations. Another
way to visualize this multitasking approach, is to to think of the three-dimensional field arrays in

each block as two-dimensional arrays of vectors (1D arrays). The algorithm is parallelized by

requesting that the available tasks individually and exhaustively process the entire array of vectors



in a self-scheduling manner. When all the vectors are processed in one block, the tasks are
synchronized and then proceed to the next block. The only multitasking overhead required is the
task synchronization between blocks. Algorithms for treating boundary conditions, which are
over two-dimensional surfaces, employ an analogous COVI approach by treating 2D arrays as 1D
arrays of vectors. Correspondingly, task synchronization is required between each surface
processed.

The most pessimistic measure of multitasking speedup is defined as the CPU time for a
unitask job with no multitasking constructs divided by the CPU time for the multitasked job.
Using this measure, speedup of the fields solver on a Cray X-MP with 4 processors is 3.2. This
speedup takes into account overhead due to serial calculations as well as system overhead for
implementing multitasking. Measuring speedup as CPU time for a multitasked job using one
processor divided by CPU time for a multitasked job using multiple processors, the speedup on a
Cray X-MP with 4 processors is 3.66. This implies that over 97% of the calculations in the fields
solver are performed in parallel. This also implies that the autotasking library introduces
approximately 10-15% intrinsic overhead to coordinate the scheduling of tasks to do parcels of

work. On an Alliant computer using 4 processors, speedup was 3.4 by either measure.

The QUICKSILVER Particle Handler

The physics features of the QUICKSILVER particle handler include advancing particle
positions with three-dimensional, fully-relativistic kinematics. Multiple particle species with
particle creation via preloading, beam injection and space-charge-limited field emission are
allowed. The particle handler supports the same boundary conditions and coordinate systems as
the fields solver. For most applications of the code, the particle handler will consume by far the
most resources; consequently, it has been written to be fast and efficient while retaining as much
clarity and ANSI-standard coding as possible. Particle I/O to and from central memory employs
multiply-buffered memory caching for high efficiency. In addition, a low overhead scheme for
packing particle information is used in order to reduce the large amount of storage required for

particle data. The particle handler operates at an average rate of 35-40 MFlops on an X-MP.



Multiple algorithms for charge conservation will be available, including a local exact

8 which diffuses errors in the charge to the

conservation algorithm and a pseudo-current algorithm
simulation boundaries.

In the particle-handling algorithms of QUICKSILVER, multitasking is less straightforward
to implement than in the fields solver, primarily for two reasons. Every particle can be advanced
("pushed”) independently of all others. Thus, at the most basic level of multitasking, the entire set
of particles is segregated into a large number of bins typically with a only a small number of these
bins in central memory at one time. Then each processor pushes all particles in the bin, allocates
their motion to the current density array, allocates their charge to the charge density array, and
then puts them into a cache for output back to disk. The first multitasking difficulty arises
because accessing particle data is complicated when much of the data are stored out-of-memory.
This introduces problems because the inflow and outflow of particles to and from disk is not
synchronized due to particle attrition during the particle-pushing stage. The second difficulty is
that shared memory in a Cray X-MP computer introduces fundamental obstacles to rigorous
multitasking; multiple tasks processing independent particles can potentially attempt to increment
the same location in the charge and/or current density arrays simultaneously (collide), with the
result that all but one of the particles’ contributions will be lost.

The first difficulty mentioned above can be circumvented by forcing synchronization of
particles moving to and from disk. This requires implementing one additional memory cache
layer in the particle-caching algorithm. Several solutions to the second difficulty suggest
themselves; we have chosen to implement four in QUICKSILVER. First, particles can be
partially sorted in such a way that particles processed by simultaneous tasks cannot collide in the
density arrays. The sort used is an efficient bucket sort which scales linearly in the number of
particles. Although this approach preserves simulation integrity, we incur the overhead of the sort
and the possibility that we can’t sort enough to safely utilize all of the available processors. A
second solution is to provide separate current density arrays for each task, and then sum them
after all particles have been pushed. This approach is guaranteed to safely utilize all available
processors but often entails prohibitive memory costs. A third solution is to ignore collisions in
the hope that they are rare and thus have a negligible effect. While this is certainly the most

efficient approach, it has inherent integrity problems. Finally, the fourth solution is to allow all



processors to push particles, but only allow one to allocate the current and charge density arrays.
This entails a fixed memory overhead, which for a large grid can be much less than providing
separate current density arrays, while eliminating the need for sorting. This method, which is not
yet implemented, is an alternative to the second one and the choice of this method or the second
one would be dictated by memory cost and availability.

In tests of the particle multitasking algorithms, we have made several interesting
observations. We have found that the overhead required to partially sort particles is typically less
than 1 %. However, if the grid is not sufficiently large, it is often not possible to sort enough to
safely use all available processors in a load-balanced fashion. In our tests of the option that
ignored particle collisions in the density arrays, we have never observed a resultant significant
error. In fact, the errors we have seen were in all cases smaller than variations introduced by
standard statistical techiques for allocating current and charge. We have made an initial
measurement of speedup in the particle handler on a Cray X-MP using 4 processors and found it
to be 3.0 by the more pessimistic measure. In that simulation, the number of particles was quite
small compared to the number expected in a production multitasked simulation. Also, the
number of emitted particles per timestep was unrealistically large compared to the total number in
the simulation. This added atypical serial overhead since the emission algorithm does not execute
concurrently.

Given the inherent difficulties described above in multitasking the particle handler, it might
seem best to just forego concurrency in favor of the simpler, serial algorithms. However, there
are two basic reasons that multitasking is necessary. First, multitasking when a single job can
acquire dedicated use of more than 1 processor will give the user an answer as quickly as
possible. Second, if a single job requires all of a resource on a computer, then multitasking will
reduce the cost. Such a monopolizing job will undoubtedly be charged for use of the entire
machine since no one else can make simultaneous use of it. It is for this second reason that
multitasking has been implemented in QUICKSILVER. QUICKSILVER simulations will often
require nearly all of the memory on a computer and so multitasking will reduce charges, as well
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Postprocessors and Data Visualization

"Visualizing" (that is, comprehending through visual renditions) the data produced by
QUICKSILVER has proven difficult, mainly because the data are defined on the four-
dimensional domain of space and time. These data are a nontrivial extension over what has been
regarded in the past as three-dimensional data, namely a scalar variable on a two-dimensional
grid. At the extreme, QUICKSILVER data can be as complex as three-vector data on the four-
dimensional domain. The software we use consists mainly of two applications: FLASH, a
graphics workstation based postprocessor written at Sandia as an integral part of the
QUICKSILVER suite; and AVS, a scientific visualization, three-dimensional graphics application
written by Stardent Computer, Incorporated. Both are built upon the PHIGS ANSI-standard
graphics package, the proposed ANSI-standard PHIGS+ extensions, and the market-standard
X Windows software, so they are fairly portable. Our techniques demand very fast computer
hardware, We are currently using a Stardent graphics workstation as our hardware platform.

Data from QUICKSILVER have five elementary forms, each with time-dependence: scalar
values on the grid, such as charge density; vector values on the grid, such as current density;
unordered points with no grid dependence, such as particle positions; unordered vectors with no
grid dependence, such as particle momenta; and complex surfaces which are conformal with the
grid, such as conductor boundary conditions. The first difficulty in comprehending objects in
three-dimensions is representing the distance from the object to the viewer (depth) using visual
information. We use the following methods to represent depth: perspective-viewing; depth-
cueing, where the color of objects fades to the background color as depth increases; and
z-buffering, where an object will mask portions of objects behind it in the line-of-sight. Stereo-
viewing, where a stereoscopic image is produced using a color monitor and special viewing
glasses, will be employed in the future. Further, manipulation of objects with a high degree of
interactivity is required for the viewer to completely understand the three-dimensional structure of
the object. Real-time rotations, translations, and scaling utilizing a mouse or set of dials are
employed for this purpose. Finally, time dependence is displayed by showing consecutive time

snapshots of the same data type at a fast rate, typically 3 to 4 frames per second.



The display of particle positions in space, unordered points with no grid dependence, is
perhaps the easiest to render. We display them as dots or as 3D spheres. Spheres give more
depth information, at the expense of reduced transformation speed, since they shrink as depth
increases due to the perspective viewing. Different particle species, such as electrons and protons,
are displayed with different colors. The particle density (the fraction of the total which are
actually visible) can be modified to accentuate gross features (low density) or fine features (high
density) of the particle field. By sorting the particle field so that only particles between two
closely spaced, parallel planes are visible, it becomes possible to "look inside" the particle field by
rapidly moving the location of the planes (like looking at each slice of a loaf of bread in rapid
succession). We plan to display particle momenta, unordered vectors with no grid dependence,
by attaching a line segment to each sphere. The orientation and length of a segment will
correspond to the direction and magnitude of the particle’s momentum.

Conducting surfaces, which are quite complicated in the typical QUICKSILVER
simulation, are at the next degree of difficulty for visualization. We use multiple light sources
and smooth shading of a surfaces to show the interrelationships of the conducting surfaces.
Figure 3 shows a plot of a complex conductor. In addition, the viewer often wishes to display
data, such as a particle field, with the conductor data for a better frame of reference. Figure 4
shows a plot of about 10,000 electrons in a simulation represented as spheres overlaid on the
conductor shown in Figure 3. When overlaying data with conducting surfaces, the user can make
the surfaces nearly transparent. This allows the viewer to "see through" any surface that might
otherwise occlude data, such as particles, while leaving enough of the conductor image to provide
orientation information.

Scalar data defined on the finite-difference grid, for example, charge density, is displayed
using small objects at the locations of the data on the grid. These objects may be crosses, dots, or
spheres. The hue color assigned to each object is then tied to the corresponding scalar value.
Values at the lower end of the scale are blue, changing to cyan, green, yellow, and finally red for
values at the upper end of the scale. In this manner, a field of objects in three dimensions is
presented to the viewer to represent the scalar field. Unfortunately, it is difficult to "look inside"
the field, as well as determine iso-surfaces (arbitrary surfaces upon which the scalar field is

constant). To "look inside” the field, the viewer can display individual planes of the scalar field.



Iso-surfaces of the data are rendered by determining a set of points with scalar values equal to the
iso-surface value and then "tiling" the set of points with triangles to represent the iso-surface” .

Vector data defined on the grid, for example, current density, can be displayed using the
scalar data techniques above if one wishes to view only one component of the vector field or its
magnitude. Visualizing all the information in the three-vector field at once on a color monitor is
extremely difficult since there are now three physical quantities at each point on the three-
dimensional grid. One technique we use is to display each vector quantity using short, equal-
length line segments at each grid point with the orientation of each segment corresponding to the
direction of the vector quantity. The vector magnitude is incorporated as the hue of each segment
instead of variations in the length of the segments. This is because long segments interfere with
others in the 3D vector field rendition. Also, the use of equal-length line segments allows the
viewer to apply the relative foreshortening of the line as a visual cue to a vector’s orientation in
space. To "look inside" the volume of vector data, one can again pick out individual planes of
these line segments.

Many hardcopy formats from the Stardent workstation are available. We have the
capability to convert the video from the workstation to NTSC format, either composite, Y/C, or
RGB. These signals can then be recorded onto video laser disks or videotape. The laser disk
units can be controlled by the workstation for unattended, frame-by-frame recording. Hardcopy
can be produced on 300 dot per inch black and white or color plotters or as very high quality
35mm or 8x10 slides on a Dicomed system.

The IDR postprocessor is a VAX computer-based application that allows manipulation and
display of the following time history data from QUICKSILVER: electromagnetic field values,
line, surface and volume integrals of field quantities, particle counts, charge and energy by
species, and various performance monitors. IDR has extensive tools for manipulating time
history data. These tools include addition, subtraction, multiplication, division, differentiation,
integration, filtering, Fourier transformation, time shifting, and overlays.

The PLOTPEFF postprocessor is also VAX-based and allows manipulation and display of
two-dimensional slices and one-dimensional pencils of scalar grid data and magnitudes and
components of vector grid data. PLOTPFF also can apply Fourier transforms to these data,

integrate the data, display two-dimensional contour plots, and extract one-dimensional pencils



from the two-dimensional slices. In the future we will merge the capabilities of PLOTPFF into

the AVS software and discard the VAX version.

Inter-Machine Transfer of Postprocessing Data

The transfer of the large data files generated on the Cray X-MP to the Stardent workstation
or VAX computer for postprocessing requires a file format that is portable among machines with
vastly different word structures and that is minimal in size. It is quite easy to generate millions of
64-bit words of data from a QUICKSILVER job that must be postprocessed. To address this, the
Portable File Format (PFF) and supporting library of modules has been developed. The PFF
module library consists of low and high level routines which write data into a file (and of course,
read it back) in a format which is easily passed between machines. Typically, only a few of the
low level routines must be modified when porting to new machines. The high level routines,
which are the only ones directly called by a user writing an application, are completely portable.
Both FORTRAN and C versions of the PFF library are available. Using the library, all data are
written to the PFF file as two-byte integers. The format of a PFF file is extensible to accomodate
most any data type desired. For instance, besides supporting the types of QUICKSILVER data
described in the section above, image-processed data formats are also supported. PFF is currently

undergoing a major modification to enhance its extensibility.
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Figure I.  An example of a nonuniform, two-block, finite-difference mesh generated by MERCURY




Sample MERCURY output showing a coaxial conducting structure overlaid on the mesh

Figure 2.
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Figure 3. A sample plot of a conducting surfaces produced by the AVS software




Figure 4. A sample plot produced by the AVS software showing particle positions overlaid with conducting surfaces




