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Overview of QUICKSILVER

Charged-particle simulations in three dimensions are now performed routinely in the Pulsed 

Power Sciences Directorate at Sandia with the QUICKSILVER suite of codes. QUICKSILVER 

is a multitasked, finite-difference, three-dimensional, fully relativistic, electromagnetic, particle- 

in-cell code developed at Sandia. It is targeted for use on current and near-term supercomputers, 

such as the Cray X-MP/416, which are characterized by large, shared central memories and 

multiple processors. QUICKSILVER has already been used to simulate ion diodes, magnetically 

insulated transmission lines, microwave devices, and electron beam propagation.

QUICKSILVER is actually a suite of codes; in addition to the main simulation code there 

are several support codes. The problem geometry is generated with a preprocessor and the 

simulation results are examined with one or more postprocessors. The MERCURY preprocessor 

assists the user in defining the mesh, boundary conditions, and other input parameters. The 

FLASH and AVS^ postprocessors are used to examine a wide variety of simulation output, 

including 3D rendering of particle positions, conductor surfaces, and scalar and vector quantities. 

The PLOTPFF postprocessor displays 2D slices and ID pencils derived from 3D scalar and

vector quantities. Additionally, time histories of various simulation quantities can be examined
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and manipulated with the IDR‘ postprocessor. Each code in the QUICKSILVER suite may be 

run on the hardware platform for which it is best suited. Currently, QUICKSILVER is run on a 

Cray X-MP/416, FLASH and AVS on a Stardent 3D graphics workstation, and MERCURY,
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IDR, and PLOTPFF on a VAX computer. A robust and functional computer network then ties 

the suite together. AH codes in the suite adhere to standards as much as possible in order to ease 

porting to different hardware platforms.

Before describing the suite in detail, it is worthwhile to highlight some salient architectural 

features of the QUICKSILVER simulation code. All grid-related quantities (electromagnetic 

fields and current density, for example) are stored in central memory and particle information may 

be stored out of memory if there is not sufficient central memory. In order to squeeze the largest 

possible simulation into central memory, large conductor volumes in which fields are always zero 

must not be stored. This necessitates constructing the simulation region from "blocks" logically 

connected along arbitrary planes. The overhead required to accomplish this block connection in 

the field-solving routines uses a very small percentage of the total processing time. After the 

grid-related arrays have been allocated in memory, the remainder of the memory is used to cache 

particle information. When this cache is full, it is necessary to shuffle particle information in and 

out of the memory cache and onto disk or other out-of-memory storage.
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The MERCURY Preprocessor

The process of generating input data for three-dimensional simulations is difficult and 

error-prone. MERCURY is a menu-driven preprocessor that is used in defining the variably- 

zoned, finite-difference mesh, the problem geometry, the boundary conditions, the dielectric 

volumes and other input parameters. MERCURY allows free-format input and provides on-line 

help. All input for a QUICKSILVER simulation is processed and checked for errors and 

inconsistencies.

QUICKSILVER uses a nonuniform, multiple-block, finite-difference mesh with staggered 

full and half grids. A nonuniform mesh defined by the relationship between the grid index i and 

the physical grid location x

x(i) = x0 + ai + bi^ + cP

is supported by MERCURY. Different regions of the mesh can have different descriptions of the 

relationship between i and x. Across any interface between such mesh regions, the function x(i)



must be continuous in order to retain accuracy in the field solution. The MERCURY mesh 

generator ensures that this condition is met as the mesh is produced. Logically connected blocks, 

i.e., multiple conformal regions of space with a local mesh, are also supported. MERCURY can 

also interactively plot the generated mesh. Cartesian, cylindrical, and spherical coordinate system 

meshes can be generated by MERCURY. Figure 1 shows a two-dimensional slice of a multiple- 

block, variably-zoned, finite-difference mesh. The MERCURY mesh generator is also used to 

generate meshes for other finite-difference simulation codes at Sandia.

Conducting surfaces and volumes and dielectric volumes are easily generated with 

MERCURY by adding or removing objects, such as a cylinder, from a library of simple, solid 

objects. MERCURY then fits the object to the finite-difference mesh. The generated surfaces can 

then be viewed interactively. Figure 2 shows a coaxial conductor generated on a Cartesian mesh.

MERCURY also allocates memory for arrays in QUICKSILVER so that only the minimal 

memory required for a simulation is used. This is accomplished using FORTRAN parameter 

statements and requires recompilation of some QUICKSILVER modules for each simulation. 

This memory-conservation feature reduces memory charges, which for some simulations, can 

exceed CPU charges.

The QUICKSILVER Fields Solver

The minimization of the central memory required to store grid-related arrays is further 

enhanced in the electromagnetic fields solver by storing each multiple-block array in a single, 

one-dimensional array. Each of these one-dimensional arrays is partitioned, by the use of simple 

offsets, into arrays containing the component for the various blocks. At the highest levels of 

QUICKSILVER, these one-dimensional arrays, which have three dimensions implicitly 

embedded, are used. At the lower levels of the field-solving routines, where the bulk of 

computations are performed, these grid-related components are referenced as local, single-block, 

three-dimensional arrays. This simplifies the coding in QUICKSILVER, and greatly improves its 

readability. After the grid arrays have been allocated in memory, the remainder of the memory is 

used to cache particle information. A buffer surface, one cell in thickness, is used for each mesh
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block to ease connectivity of blocks in the field-solving algorithms. Any grid-related array not 

needed in a simulation (for example, charge density in a fields-only simulation) has its length set 

to one to further conserve memory.

The QUICKSILVER fields solver utilizes explicit^ and implicit^ finite-difference, leap­

frog algorithms. Multiple dielectric volumes are allowed for regions with no particles. Available 

boundary conditions include conductors, inlet and outlet boundaries, mirror symmetry and 

periodic symmetry. Simulations can be performed in Cartesian, cylindrical or spherical 

coordinate systems. Currently, the inlet boundary condition will drive multiple, independent 

TEM modes and the outlet boundary condition will handle all modes with a fixed wave velocity.

More general inlet and outlet boundary conditions are being developed. Conductor boundary 

conditions are implemented directly in the fields solver using bit-wise operations. The fields 

solver has been optimized for the vector hardware of the X-MP/416 which can overlap I/O from 

central memory as well as overlap floating point operations. No nonstandard FORTRAN is 

necessary for this optimization, only for the bit-wise operations. The algorithms operate at an 

average rate of 130-140 MFlops. This is slightly more than one floating point calculation per 

clock cycle, on average. The nesting order of do-loops is set internally for optimal vector length 

and to avoid memory bank conflicts.

To fully utilize the capability of a multiple-processor supercomputer such as the X-MP/416, 

multitasking of the fields solver is employed. The Los Alamos Autotasking Library*^ is used to 

implement multitasking on the Cray X-MP. This library is based upon a multitasking model in 

which indistinguishable tasks (processors) subdivide the work of a single program in a self- 

scheduling manner. All multitasking is incorporated into the code via directives to the Autotask 

pre-compiler. In the field-solve algorithms, processing is done block-by-block. All processors 

work on each block simultaneously using a "concurrent-puter-vector-inner" method (COVI) on 

the do-loops. In this parallelization method, the outer loop is performed in parallel and the inner 

loop is vectorized. To facilitate load balancing in the fields solver which has 3 levels of loops, the 

two outer loops are combined into one to increase the number of concurrent iterations. Another 

way to visualize this multitasking approach, is to to think of the three-dimensional field arrays in 

each block as two-dimensional arrays of vectors (ID arrays). The algorithm is parallelized by 

requesting that the available tasks individually and exhaustively process the entire array of vectors



in a self-scheduling manner. When all the vectors are processed in one block, the tasks are 

synchronized and then proceed to the next block. The only multitasking overhead required is the 

task synchronization between blocks. Algorithms for treating boundary conditions, which are 

over two-dimensional surfaces, employ an analogous COVI approach by treating 2D arrays as ID 

arrays of vectors. Correspondingly, task synchronization is required between each surface 

processed.

The most pessimistic measure of multitasking speedup is defined as the CPU time for a 

unitask job with no multitasking constructs divided by the CPU time for the multitasked job. 

Using this measure, speedup of the fields solver on a Cray X-MP with 4 processors is 3.2. This 

speedup takes into account overhead due to serial calculations as well as system overhead for 

implementing multitasking. Measuring speedup as CPU time for a multitasked job using one 

processor divided by CPU time for a multitasked job using multiple processors, the speedup on a 

Cray X-MP with 4 processors is 3.66. This implies that over 97% of the calculations in the fields 

solver are performed in parallel. This also implies that the autotasking library introduces 

approximately 10-15% intrinsic overhead to coordinate the scheduling of tasks to do parcels of 

work. On an Alliant computer using 4 processors, speedup was 3.4 by either measure.

The QUICKSILVER Particle Handler

The physics features of the QUICKSILVER particle handler include advancing particle 

positions with three-dimensional, fully-relativistic kinematics. Multiple particle species with 

particle creation via preloading, beam injection and space-charge-limited field emission are 

allowed. The particle handler supports the same boundary conditions and coordinate systems as 

the fields solver. For most applications of the code, the particle handler will consume by far the 

most resources; consequently, it has been written to be fast and efficient while retaining as much 

clarity and ANSI-standard coding as possible. Particle I/O to and from central memory employs 

multiply-buffered memory caching for high efficiency. In addition, a low overhead scheme for 

packing particle information is used in order to reduce the large amount of storage required for 

particle data. The particle handler operates at an average rate of 35-40 MFlops on an X-MP.
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Multiple algorithms for charge conservation will be available, including a local exact
O

conservation algorithm and a pseudo-current algorithm0 which diffuses errors in the charge to the 

simulation boundaries.

In the particle-handling algorithms of QUICKSILVER, multitasking is less straightforward 

to implement than in the fields solver, primarily for two reasons. Every particle can be advanced 

("pushed") independently of all others. Thus, at the most basic level of multitasking, the entire set 

of particles is segregated into a large number of bins typically with a only a small number of these 

bins in central memory at one time. Then each processor pushes all particles in the bin, allocates 

their motion to the current density array, allocates their charge to the charge density array, and 

then puts them into a cache for output back to disk. The first multitasking difficulty arises 

because accessing particle data is complicated when much of the data are stored out-of-memory. 

This introduces problems because the inflow and outflow of particles to and from disk is not 

synchronized due to particle attrition during the particle-pushing stage. The second difficulty is 

that shared memory in a Cray X-MP computer introduces fundamental obstacles to rigorous 

multitasking; multiple tasks processing independent particles can potentially attempt to increment 

the same location in the charge and/or current density arrays simultaneously (collide), with the 

result that all but one of the particles’ contributions will be lost.

The first difficulty mentioned above can be circumvented by forcing synchronization of 

particles moving to and from disk. This requires implementing one additional memory cache 

layer in the particle-caching algorithm. Several solutions to the second difficulty suggest 

themselves; we have chosen to implement four in QUICKSILVER. First, particles can be 

partially sorted in such a way that particles processed by simultaneous tasks cannot collide in the 

density arrays. The sort used is an efficient bucket sort which scales linearly in the number of 

particles. Although this approach preserves simulation integrity, we incur the overhead of the sort 

and the possibility that we can’t sort enough to safely utilize all of the available processors. A 

second solution is to provide separate current density arrays for each task, and then sum them 

after all particles have been pushed. This approach is guaranteed to safely utilize all available 

processors but often entails prohibitive memory costs. A third solution is to ignore collisions in 

the hope that they are rare and thus have a negligible effect. While this is certainly the most 

efficient approach, it has inherent integrity problems. Finally, the fourth solution is to allow all
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processors to push particles, but only allow one to allocate the current and charge density arrays. 

This entails a fixed memory overhead, which for a large grid can be much less than providing 

separate current density arrays, while eliminating the need for sorting. This method, which is not 

yet implemented, is an alternative to the second one and the choice of this method or the second 

one would be dictated by memory cost and availability.

In tests of the particle multitasking algorithms, we have made several interesting 

observations. We have found that the overhead required to partially sort particles is typically less 

than 1 %. However, if the grid is not sufficiently large, it is often not possible to sort enough to 

safely use all available processors in a load-balanced fashion. In our tests of the option that 

ignored particle collisions in the density arrays, we have never observed a resultant significant 

error. In fact, the errors we have seen were in all cases smaller than variations introduced by 

standard statistical techiques for allocating current and charge. We have made an initial 

measurement of speedup in the particle handler on a Cray X-MP using 4 processors and found it 

to be 3.0 by the more pessimistic measure. In that simulation, the number of particles was quite 

small compared to the number expected in a production multitasked simulation. Also, the 

number of emitted particles per timestep was unrealistically large compared to the total number in 

the simulation. This added atypical serial overhead since the emission algorithm does not execute 

concurrently.

Given the inherent difficulties described above in multitasking the particle handler, it might 

seem best to just forego concurrency in favor of the simpler, serial algorithms. However, there 

are two basic reasons that multitasking is necessary. First, multitasking when a single job can 

acquire dedicated use of more than 1 processor will give the user an answer as quickly as 

possible. Second, if a single job requires all of a resource on a computer, then multitasking will 

reduce the cost. Such a monopolizing job will undoubtedly be charged for use of the entire 

machine since no one else can make simultaneous use of it. It is for this second reason that 

multitasking has been implemented in QUICK SILVER. QUICKSILVER simulations will often 

require nearly all of the memory on a computer and so multitasking will reduce charges, as well 

as reduce the amount of time the machine is monopolized. nisn aimfu
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Postprocessors and Data Visualization

"Visualizing" (that is, comprehending through visual renditions) the data produced by 

QUICKSILVER has proven difficult, mainly because the data are defined on the four­

dimensional domain of space and time. These data are a nontrivial extension over what has been 

regarded in the past as three-dimensional data, namely a scalar variable on a two-dimensional 

grid. At the extreme, QUICKSILVER data can be as complex as three-vector data on the four­

dimensional domain. The software we use consists mainly of two applications: FLASH, a 

graphics workstation based postprocessor written at Sandia as an integral part of the 

QUICKSILVER suite; and AVS, a scientific visualization, three-dimensional graphics application 

written by Stardent Computer, Incorporated. Both are built upon the PHIGS ANSI-standard 

graphics package, the proposed ANSI-standard PHIGS+ extensions, and the market-standard 

X Windows software, so they are fairly portable. Our techniques demand very fast computer 

hardware. We are currently using a Stardent graphics workstation as our hardware platform.

Data from QUICKSILVER have five elementary forms, each with time-dependence: scalar 

values on the grid, such as charge density; vector values on the grid, such as current density; 

unordered points with no grid dependence, such as particle positions; unordered vectors with no 

grid dependence, such as particle momenta; and complex surfaces which are conformal with the 

grid, such as conductor boundary conditions. The first difficulty in comprehending objects in 

three-dimensions is representing the distance from the object to the viewer (depth) using visual 

information. We use the following methods to represent depth: perspective-viewing; depth- 

cueing, where the color of objects fades to the background color as depth increases; and 

z-buffering, where an object will mask portions of objects behind it in the line-of-sight. Stereo­

viewing, where a stereoscopic image is produced using a color monitor and special viewing 

glasses, will be employed in the future. Further, manipulation of objects with a high degree of 

interactivity is required for the viewer to completely understand the three-dimensional structure of 

the object. Real-time rotations, translations, and scaling utilizing a mouse or set of dials are 

employed for this purpose. Finally, time dependence is displayed by showing consecutive time 

snapshots of the same data type at a fast rate, typically 3 to 4 frames per second.



The display of particle positions in space, unordered points with no grid dependence, is 

perhaps the easiest to render. We display them as dots or as 3D spheres. Spheres give more 

depth information, at the expense of reduced transformation speed, since they shrink as depth 

increases due to the perspective viewing. Different particle species, such as electrons and protons, 

are displayed with different colors. The particle density (the fraction of the total which are 

actually visible) can be modified to accentuate gross features (low density) or fine features (high 

density) of the particle field. By sorting the particle field so that only particles between two 

closely spaced, parallel planes are visible, it becomes possible to "look inside" the particle field by 

rapidly moving the location of the planes (like looking at each slice of a loaf of bread in rapid 

succession). We plan to display particle momenta, unordered vectors with no grid dependence, 

by attaching a line segment to each sphere. The orientation and length of a segment will 

correspond to the direction and magnitude of the particle’s momentum.

Conducting surfaces, which are quite complicated in the typical QUICKSILVER 

simulation, are at the next degree of difficulty for visualization. We use multiple light sources 

and smooth shading of a surfaces to show the interrelationships of the conducting surfaces. 

Figure 3 shows a plot of a complex conductor. In addition, the viewer often wishes to display 

data, such as a particle field, with the conductor data for a better frame of reference. Figure 4 

shows a plot of about 10,000 electrons in a simulation represented as spheres overlaid on the 

conductor shown in Figure 3. When overlaying data with conducting surfaces, the user can make 

the surfaces nearly transparent. This allows the viewer to "see through" any surface that might 

otherwise occlude data, such as particles, while leaving enough of the conductor image to provide 

orientation information.

Scalar data defined on the finite-difference grid, for example, charge density, is displayed 

using small objects at the locations of the data on the grid. These objects may be crosses, dots, or 

spheres. The hue color assigned to each object is then tied to the corresponding scalar value. 

Values at the lower end of the scale are blue, changing to cyan, green, yellow, and finally red for 

values at the upper end of the scale. In this manner, a field of objects in three dimensions is 

presented to the viewer to represent the scalar field. Unfortunately, it is difficult to "look inside" 

the field, as well as determine iso-surfaces (arbitrary surfaces upon which the scalar field is 

constant). To "look inside" the field, the viewer can display individual planes of the scalar field.



Iso-surfaces of the data are rendered by determining a set of points with scalar values equal to the 

iso-surface value and then "tiling" the set of points with triangles to represent the iso-surface^.

Vector data defined on the grid, for example, current density, can be displayed using the 

scalar data techniques above if one wishes to view only one component of the vector field or its 

magnitude. Visualizing all the information in the three-vector field at once on a color monitor is 

extremely difficult since there are now three physical quantities at each point on the three- 

dimensional grid. One technique we use is to display each vector quantity using short, equal- 

length line segments at each grid point with the orientation of each segment corresponding to the 

direction of the vector quantity. The vector magnitude is incorporated as the hue of each segment 

instead of variations in the length of the segments. This is because long segments interfere with 

others in the 3D vector field rendition. Also, the use of equal-length line segments allows the 

viewer to apply the relative foreshortening of the line as a visual cue to a vector’s orientation in 

space. To "look inside" the volume of vector data, one can again pick out individual planes of 

these line segments.

Many hardcopy formats from the Stardent workstation are available. We have the 

capability to convert the video from the workstation to NTSC format, either composite, Y/C, or 

RGB. These signals can then be recorded onto video laser disks or videotape. The laser disk 

units can be controlled by the workstation for unattended, frame-by-frame recording. Hardcopy 

can be produced on 300 dot per inch black and white or color plotters or as very high quality 

35mm or 8X10 slides on a Dicomed system.

The IDR postprocessor is a VAX computer-based application that allows manipulation and 

display of the following time history data from QUICKSILVER: electromagnetic field values, 

line, surface and volume integrals of field quantities, particle counts, charge and energy by 

species, and various performance monitors. IDR has extensive tools for manipulating time 

history data. These tools include addition, subtraction, multiplication, division, differentiation, 

integration, filtering, Fourier transformation, time shifting, and overlays.

The PLOTPFF postprocessor is also VAX-based and allows manipulation and display of 

two-dimensional slices and one-dimensional pencils of scalar grid data and magnitudes and 

components of vector grid data. PLOTPFF also can apply Fourier transforms to these data, 

integrate the data, display two-dimensional contour plots, and extract one-dimensional pencils



from the two-dimensional slices. In the future we will merge the capabilities of PLOTPFF into 

the AVS software and discard the VAX version.

Inter-Machine Transfer of Postprocessing Data

The transfer of the large data files generated on the Cray X-MP to the Stardent workstation 

or VAX computer for postprocessing requires a file format that is portable among machines with 

vastly different word structures and that is minimal in size. It is quite easy to generate millions of 

64-bit words of data from a QUICKSILVER job that must be postprocessed. To address this, the 

Portable File Format (PFF) and supporting library of modules has been developed. The PFF 

module library consists of low and high level routines which write data into a file (and of course, 

read it back) in a format which is easily passed between machines. Typically, only a few of the 

low level routines must be modified when porting to new machines. The high level routines, 

which are the only ones directly called by a user writing an application, are completely portable. 

Both FORTRAN and C versions of the PFF library are available. Using the library, all data are 

written to the PFF file as two-byte integers. The format of a PFF file is extensible to accomodate 

most any data type desired. For instance, besides supporting the types of QUICK SILVER data 

described in the section above, image-processed data formats are also supported. PFF is currently 

undergoing a major modification to enhance its extensibility.

Acknowledgements

We would like to acknowledge Alex Siegel, presently at Cornell University, and Dan 

Shawver, presently at the University of New Mexico, for their contributions to the development 

of the FLASH postprocessor. Also, much of the background work for generating video 

recordings at Sandia was done by John Mareda and the software for generating Dicomed plots 

from the Stardent workstation was written by Constantine Pavlakos.



- ' - - ' .

This work was supported by the U.S. Department of Energy under Contract 

No. DE-AC04-76DP00789

References

1. C. Upson, T. Faulhaber, D. Kamins, D. Laidlaw, D. Schlegel, J. Vroom, R. Gurwitz, and 

F. Moss, IEEE Computer Graphics and Applications, "The Application Visualization 

System: A Computational Environment for Scientific Visualization", (July 1989).

2. Application Visualization System User's Guide and Developer's Guide, Stardent 

Computer Inc., Newton, Massachusetts, 1989.

3. W. B. Boyer and L. B. Bishop, "IDR — Operations Manual for the Interactive Data 

Reduction Program," Sandia National Laboratory, May 1988, unpublished.

4. O. Buneman, Relativistic Plasmas, O. Buneman and W. Pardo, eds. (Benjamin, New 

York, 1968), p. 205.

5. B. B. Godfrey, Proc. 9th Conf. on Numerical Simulation of Plasmas, Northwestern 

University, paper OD-4 (1980).

6. F. W. Bobrowicz, "Autotasking on Cray-XMP Supercomputers," Los Alamos National 

Laboratory, LA-UR-88-3269 (1988).

7. F. W. Bobrowicz, S. H. Dean, D. A. Mandell, and W. H. Spangenberg, "LANL 

Multitasking Overview," Los Alamos National Laboratory, LA-UR-87-759 (1987).

8. Barry Marder, J. Comp. Phys. 68,48 (1987).



• ... . . . ' .

9. W. Lorenson and H. Cline, "Marching Cubes: A High Resolution 3D Surface 

Construction Algorithm", Computer Graphics (Volume 21, Number 4, July 1987).

X Windows is a trademark of MIT.



Figure 1. An example of a nonuniform, two-block, finite-difference mesh generated by MERCURY



Figure 2 Sample MERCURY output showing a coaxial conducting structure overlaid on the mesh
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Figure 3. A sample plot of a conducting surfaces produced by the AVS software
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Figure 4. A sample plot produced by the AVS software showing particle positions overlaid with conducting surfaces


