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~ ABSTRACT

Several newer constitutive reidtioﬁs have recently been proposed for
describing:the mechanical beha&ior of metals and alloys under elevated
A,temperdture creep conditions. ‘A salient feature of thg[mathemafical |
:structﬁre of many of these relations is that‘they typically express the
‘nonelastic stfain rates as fqnctions of the current values of stress,
temperafure and some othef Suitably defined state variables. A com-
‘putational scheme is presented in this paper for the inelastic analysis
‘of metéllic structures sﬁbjécted to both mechanical and thermal loadings‘and
obeying constitutive relations of thé type_described.abové. Sevéral numer-
iqal examplés»for'the creep of fﬁick—walled spheres; cylinders and rotat-
ing discs in the'presencé of thermal gradients are presented. -The par-
ticular constitutive relations used in thesevcalculations are due to
Harf. The proposed computatibnai séheme,iS'found to be very efficient
from the'View point of both computational time and effort. The effects

-df previous cold work on the stressAredistribution.and creep of these

. structural elements are discussed.



INTRODUCTION

The numerous technological applications of metals and alloys at
elevated temperatures have prompted in recent years a great amount of
research interest in the area of their high temperature inelastic behav-

ior. . This growth of interest has led to a remarkable effort in the devel-

- opment of constitutive relations for modelling this high temperature in-

elastic behavior of metals which is known to be a time dependent pheno-

menan, highly nonlinear and hereditary in nature. The classical theories

: of_creep'[l,2] currently in use are found to have serious drawbacks

[3,4,5]. For example, the strain hardening and time hardening theories
do not take into account the effect of prior deformation history on subQ

sequent creep behavior and are incapable of représenting a softening of

the material which accompanies creep recovery. A variety of newer con-

stitutive relations [6-11] have récently been proposed in order to over-
come the shortcomings of classical theories and represent more faithfully
the méchanical behavior -of metals at elevated temperatures, especially
under conditions of complex time . dependent mechanicai and thermal loadings.
A salient feature of the mathematical structure of these newer cbn;
étitutive relatibné [6-11] is that the nonelastic strain rates are ex;
pressed as functions of the current values of stress, temperature and
certain well defined state variables;‘ These state variable evolve with.
deformation acéording to certain laws in such a way that their rates of

change with time are again functions of stress, temperature and these

" §tate variables. Thus, acc¢ording to these constitutive relations, the

current values of stress, temperature and some state variables uniquely

determine the nonelastic strain rates and the rates of change of these

-1 -



. étate variables with time. This particuler mathematical feeture of
these equations leads to a very simple and efficient method of three-~
dimensienal-inelastic analysis of structures which we shall describe
presently; "It is important tovnote that the mathematieal structure
of classical creep theories also fit into thie éeneral format if the
time independent plastic strain in the sense of classical plasticity
isv'ignored. No such restriction is necessary if any of these newer
theoriee is-used because they treat the so called time independent
strain of classical plesticity and time dependent creep strain ef
clessieal theories as a single quantity called permanent strain which
" is regarded as time dependent. |

In this paper we present a general computational technique fon
tnnee-dimensional inelastic analysis of structures made of materials
that obey constitutive relations of the type described‘above and sub-
Jected to Both mechanical and thermal loadings. The method is illus-
‘trated for thick-walled spheres, cylinders and rotating discs under
. Steady internal and external pressures and radiel temperature gradients.
The constitutive.relations due of Hart [7,8] are employed to obtain the
numerical results for these problems. The numericel results presented
are discussed‘in the context of Hart's theory and the computational
scheme, and very encouraging conclusions are drawn.

. As described ih tne following section, Hart's theory has a sound
experimental basis for many metals and alloys under uniaxial loading
.'[12;19].. A novel feature of this theory is its ability to differenti-
-ate in a simple way between geometrically identical specimens with dif-
ferent initial deformation states, e.g. between annealed and cold worked

specimens. In regard to multiaxial stress conditions, the present



“authors recently analyzed the proBlem of creep of thick cylinders under
internal and external pressures using Hart's theory [20] in the absence
of thermél gradients. Certain simplifying assumptions that were made ih

- [21] are relaxed in the presenf paper and more general loading'éituaq

 tioné are considered. The numerical solutions presented in this

paper are extremely importaﬁt»from the viewpoint of wvalidation of any

‘geﬁéral purbose finite element code which‘may later be developed using

the proposed computational method and Hart's theory.

1. BRIEF REVIEW OF HART'S THEORY

In this section we present a brief outline of Hart's theory. A
detailed description can be found in references [6-8].

We shall concentrate our attention on the constitutive léws govern-
ing grain(matrix deformation. For situatibns ﬁnder consideration the
contriﬁution due to grain boundary sliding is neglible and is, there-
fore, not included in the present formulation of Hart's theory [7]. The
.accumulated total strain due to grain matrix deformation, €, at any time

can be decomposed into four components:

e = Caret Pt A ' . (1.1)

where ¢° 1is the elastic strain which is related to stress by Hooke's
law; ea“ is the anelastic strain, 'a stored strain that is completely

P is the completely irrecover-

recoverable eventually upon unloading; €
able and path dependent permanent strainj; and eT is the thermal strain.
The anelastic strain rate éa is appreciable for relatively short times

following abrupt changes of load and plays a very impoptant role in non-

monotonic loading. In case of relatively steady loading, however, we



\

can use the transient free relationship in which éa =~ 0. In this paper

we consider only steady loading situations so that the anelastic strain

a . . s e
€ is ignored. Thus € 1is the sum of €, ep

b

4and eT. It should be

. pointed out that ¢ pepresents the completely irrecoverable component

‘of strain and includes the time .independent as well as the time dependent

plastic strains in a classicai sense.

- Hart, Li and their coworkers have performed experiments on varlous
metals and alloys ét different temperatures [12-19]. .Théy have concluded
that.the rate of permanent strain for these materials at any time is given .
by the'current values of the stress ¢, temperature T and a single
state variable o* called Hardneés.'.The hardness characterizes the
pfesent deformation state of the material and differentiates between geo-
petficglly identical specimens with different initial deformation sfates

é.g. between annealed and cold worked specimens. The hardness at time

't dependsAupon‘the deformation history upto time ¢ andAincreases with

the amount of cold work.’ They have also demonstrated that for all the

LK, .
materials tested the growth rate of hardness ¢ 1is a function of .o,
* ; .
o and T only.. Based upon these experiments, Hart has proposed the

following constitutive'equations for steady loading conditions

& = A(0,05,T) = (0 /6)" exp(-/RD)b(o/c) - (1-2)

Q
I

B(o,0,T) = &0 T{o,0) | (1.3)

In the above f is an arbitrary coefficient with dimensions of frequency,
R is the gds constant, G 1is the isothermal modulus of rigidity and is a

fﬁhction of temperature, m is a material constant with a value between

3 and 8, Q@ 1is a measure of thermal activation energy and is a function



of tEmrerature alone, T -is.temperature (in°K) and ¢ and' ' are
measured functions of their arguments. Note that unlike classical plés-
ticity there is no yield stress here and that the current values of

O, c* and T uniquely determine ép_ and &*.

The three dimensional generalization is made by Hart in keeping

with concepts of incremental plasticity. Two invariants are defined as

wpere-'sij = cij--(l/3)ckkaij is the deviatoric stress tensor. As
usual, a repeated index implies summation over that index and Bij
is the Kronicker delta. It is now assumed that these invariants ¢ and .
L3 * '

‘ep "are related to each other through the. scalar hardness ¢ according to

(1.2) and (12.3). Finally, a flow rule relating the permanent strain rate

. tensor to the deviatoric stress tensor is postulated as

€. o = =
1J-

P - 3, - AAme.D), (1.5)

2 g ’71] 2 c ij ' )
Equations (1.2) - (1.5) constitute Hart's theory for relatively

steady multiaxial loading. For nomnmonotonic loading conditions consti-

tutive equations including ¢ must be used. These are given in [8].

2. GENERAL METHOD OF THREE DIMENSIONAL INELASTIC ANALYSIS
We'now'present a general computétional method for analysis of three
-dimensional creep problems which is motivated by expressing the govern-

ing différential equations-of the problem in terms of rates as follows:

Kinematic: € = & Py & = (vorav)/2 ' (2.1)



or e'quivalently, compatibility of total strain rates

VxéExV €53,k + €es,i3 ~ Sil, 50 " €50,ik 0 (2.2)
-~ Equilibrium: y“g + E = 0 (2.3)
' PN - B ' S : '
Constitutive: & (5 - 1+v —— 8I)/2G o (2.4)
p _ 3.&° 3 Alg0,T) |
P _ 3/&\. _ 3 Alg,o _ 4
s - 2( [o] )ns.a - 2 [0 I\S.a ' (2‘5)
&' = oz o (2.6)
o¥ * ’ ' :
g = B(o,o,T) . . (2.7)

In the above u 1is the displacement, -V the gradient operator, F
the body force per unit volume, v the Poisson's ratio, ' the coeffici-
ent of linear thermal expansion; ® = trg = O ? and I the unit ten-

sor. The dot denotes differentiation with respect to time.

a. Stress rate formulation

The compatibility equation (2.2) can be written as

'gxéexy= -Vxéng—Yxész - (2.8)

~

We now replace the strain rates from the constitutive equations.

-

(2 4)-(2.6) to get
Ux[55(g-=0I)] x Y = -Vx[3JM—£ls]xg-gx[ac'r;]xg (2.9)

2G '~ .. 1+v

The traction boundary condition is



g-n = 1 3 _ ' (2.10)

where n is the unit outward normal to the boundary and T the pre-
scribed surface traction vector. The traction is assumed to Be a coﬁ-
:tinﬁous function of time so thaf its rate is defined everywhere;“.If
discontinuous loading functions are invﬁlved, the constitutive reéltions
including anelastic strains [8] must be used and élastic unloading

- must be taken into consideratioﬁ. Since in this paper we only con-
sider rélatively steady processes, we shall hot elaboraté further on
this point.

The initial cbndifions are obtained by specifying the initial

distribution of hardness and by taking the initiai permanent strains

 to be zero. ‘Since gp =0 at t =0, the stressés and strains at t =0

are given‘by‘the corresponding thermoelastic solution of the problem.

Thus
. . |
g(x,0) = go(g), 50(5,0)_‘ = ',e;e(x,O) + ¢ (x,0)

.g."(g,sﬁf - 0, o' (%0) = o(x) | (2.11)

where go(g) and 50(5) correspond to the thermoelastic solution at

-t = 0. In other words, go, go are obtained by solving the following

problem:
o 1,0 Vv .0 0 g .
£ = QG(E - l+v® I) +.0~T p (2112)
l, 0 Yy 0. | i o . B o
Z X [2(}(9 - ]_+V8' 2:,] X Y + ,Y X [aT ;[,] X ,Y = 0 (2.13)
V"O'o - _EO , gO'B - ,IO . g (2..1)4)
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In the above, T°, F°

and 1? are the temperature, body force and
- *

traction distributions, respectively at t = 0. ¢ (5,0) would usually

be uniform throughout the material, but nonuniform initial hardness may

be introduced during fabrication of the structure.

b. Displacement rate formulation

In this case we write the equilibrium equaﬁion (2.3) in terms of

displacement rates using (2.1), (2.4-2.6) to get

Qe

. . > A 2 .
P + 1%2‘) __E, %[%ngg_ﬂls] + B va ) | (2.15).

The corresponding displacement boundary condition is

(2.16)

u = A
~ ~

where 4 1is the prescribed displacement vector on the surface of the
body. Once again we assume A to be a continuous function of time.

The initial conditions are obtained in. a manner similar to the stress

‘rate formulation case.

The-observétion to be made here is that the' resulting boundary value
problem in rates for both of the above cases is iinear and has the same
structure as the linear thermoelastic boundary value problem except for
an inhomogeneous term on the right which is uniqﬁ;ly'determined by the
current values of o, c*> and T. Thus, stress 6r displacement rates at
any time are obtained by solving a linear boundary Qalue problem similar

to classical thermoelasticity. This forms the basis of the computational

method proposed.




c. Computational scheme

" The initial stresses and strains are first obtained by solving the
corresponding thermoelastic problem. Thus, g? and bo -are known. The

temperature history is assumed to be prescribed in advance.

Case a. The stress and hardness rates at t = O are obtained by solving the set
of linear, inhomogeneous partial differential equations (2.3), (2.9) and

(2.7) subject.to the boundary condition (2.10).

Case b. The displacement and hardness rates at t = O are obtained by

'solving (2.15) and (2.7) subject to the boundiry condition (2.16). The

total strain rate is now obtained from €= (Wu+uv)/2 and the permanent
and thermal strain rates from (2.5) and (2.6). Now e® ie obtained by
substracting ¢® and éT. from € and the stress‘rates from the invert-
ed form of Hooke's Lew (2.4).

. The'sﬁresses and hardness are. obtained at a new time At by using,
for example, Euler's method (E|A¢ = g°+é|t=0x At ete.) or higher order
- integration methods such as the fourth-order'RungefKutta method. These
new stresses and hardness are now used to obtain the rates at time At
and so on, and the process continued upto the desired final time. Thus,.
knowing the stress and hardness at time t, the fates at fime t are

. ebtained by solving the abpropriate boundary value problem. These rates
are then used to update the stress and hardness to the time ¢t + At by
using a suitable integration scheme. It should be pointed out that the
boundary value problem (2.3), (2.9), (2.10)(or, equivalenfly, (2.15)-(2.16))
may have to be solved by finite difference or finite element methods for

complicated problems. In such cases, the corresponding thermoelastic pro-

blem at zero time may also require use of finite difference or finite



element methods. Choice of time step At is found to be very crucial

/

~in the computation and must be small initially because the rates are

usually high in the beginning.

‘We have restricted case a to traction and case b to displacement

" boundary value problems merely for eése of presentation. Sometimes it

is convenient to use case b (with (2.16) suitably modified) for trac-
tion boundafy value problems. Mixed boundary value problems must be
handled on a problem by problem basis.

.The coﬁputational scheme is described above in the context of Hart's
theory. However, as mentioned earlier,‘thb method is quite general and
can be reédily extended to othér constitutivé relationsby suitably

ﬁodifying equations (2.5) and (2.7).

3. TLLUSTRATIVE EXAMPLES

| In this section we present formulations for boundary value prob-
lems-involving épheres, cylinders and rotating discs. The loads and
temperatures are assumed steady thrdughout.‘
(a) Sphere under internal and external pressures.

We consider a thick-walled sphere of internal'radius a and ex-

térpal’radius b subjectéd to steady internal and external presssures
p and g respectively (see Fig. la). fhe inside temperature is T

a

and the outside temperature Tb, both being invariant in time. Because

of spherical symmetry, the only nonzero componeﬁt of displacement is

the radial displacement u which is a function of the radius r and.

time. The nonzero components of stress and strain, 0 Og = c¢, €.

and € = e¢, are functions of r and t only. The usual notation is

used and the subscripts r, 6 and ¢ denote the radial and two mutually'




- orthogonal circumferential directions.

The'governing differential equations take the form
R . . du u ‘
'Klnematlc. | & =& ’ % = e¢ = 3 : (3.1)

aor 2(°r'°e)";

Emuhbﬁmy | S+ = = 0 ‘ . (3.2)
' Constitutive: €. .5 (cr-evae)/E + ef + QT | ' 1 (3.3)
| oA = '((l—v)ce-vqf)/E + eg + aﬁ? ' (3.4)
42 éf, = (ép/c)(crfoe) , | ~ (3.5)
| & - éi’, - (ép/e;)(&e-cr) | | (3.‘6):

~In the above  E 1is Young's Modulus. To this we must add Hart's consti-
" tutive equations (1.2) and (1.3).

The boundary conditions are given by
.Gr(a’.t) =-=p ., Ur(b,t)‘ = "qg' (3-7)
CTa,t) = T, , T(b,t) = T, ' ; - (3.8)

The initial conditions are given by

0 (1,0) = o () | (39)

together with the zero time thermoelastic solution to the problem given

.in the appendix A. -




_Using the displacement rate formulation outlined in section 2b,

we can obtain the displacement rates and then the stress rates. These

a_.re
A . ,.p . .
o = (Ey{fZan ) gr g, (310
r 1-v a n (b3 a3) I‘3 a n )
.p : . P Y
o - {{Fa-fmmslies) e

The problem can now be solved by using the computational scheme

outlined in Section 2c.

(v) Cylinder with internal and eiternal pressures and axial load.

| - We conéider a long thick walled cylinder of internai and exter- .
nal radii a and b subjected.to.internal and external pressures D
- and ‘q respectively and an axial force f (see Fig. la,b). The inside
and oﬁfside temperatures are Ta and Tb réspepfivgly and the prés-
sures p and q and the temperature, Ta and TB are invariant in.time;
The eﬁd effects.aré neglected and the solution is assumed valid suf-
ficiently far from the ends. - Plane éross sections are‘assumed to remain
plaﬁe._ Under these assumptions, and because of cyiindrical symmetry; |
the tangential displacement component Ug vanishes and the radial dis-
placement u is a function of r and t only. ' The nonvanishing
stresses and strains are cr,‘ce, 0,5 €. €g and ¢, with eé a func-
ﬁion of t only and the ofhers functions of r and t. The usual
cylindrical coordinates are uéed with r, 8 and z denoting the radial,
tangential and axiél directioné respectively.

The governing differential equations take the form: -
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. . _ auf Uy auz

Kinematic: G = 3 % = F 0 % = ™= ) (3.12)
Equilibrium: a;: + (Ur;ce/ = 0 . 3 _ V(3.13),

v : | A
i 2ﬂr§zd# = P . ' | . o Bab
c_onstitutivé: e, = (a,v(ggt0,))/E . ?+ar | | (3:15)
€ = (ce-v(or+oz)/E +>e§ +aT ' 1 (3-16)‘
€, = ‘(?zjv(cr+ce))/é.+ es + T .l- (3.17)
4éf. = .(ép/éc)(ch-oe-oé) | o o (3.18)
& = (£/20) (20570, S G
&P = (‘ép/zc)(éoz-cr-ce)' - ~ (3:20)

To this we must add Hart's constitutive equétions (1.2) and (1.3).
The-bouhdary conditions have the same form as (3.7) and (3.8). The
.initiai hardnéss.distribution_must be specified as in (3.9) and the
initial stresses and strains are obtained from the thermoelastic solu-
tion given in the apbendix A. | : | .
Using the displacement_réte formulétion outlined in Section 2b, we

‘can obtain -the displacement and then the stress rates. These are
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.D_.D b .p
. E f(er €9‘) q (re—a ) b2 (¢ e an |
T o(1-v9) n ! (b°-a%) r° n k
a a
r b
EQ-2v) 1 f néPan- r-a) f néPan (3.21)
2(1-'\}2) 2 zZ (b2 3.2 Z
A r a : a
(&2-&2) 2 o, .2 B (PP
A E2 f red_§r+a22}_)__f redn
o 209 n ©%-a%) 4 "
) . r 5 o b ’
E(1-2v) 1 . + ' . E .D. .
(BB 5 O J welen 8225 [ ke ) i) Gee2)
2(1%) 2 | 4 (v%-a?) (1-v%)
r p_. b .D_.D
. EvV (er eg) b2 (er €9)
o'z = ) 1 dn- SRR n d'ﬂ
(1-v9) . . (b-a a
b
PEE) 1 ey b B (2P ()R (3.23)
(1-v°) (»°-a o (1-v7) ‘ : _

The problem can now be solved by using the éomputatibnal scheme

outlined in Section 2c. .The=plane strain case (ez=0) is given in Appendix B.

(c) Rotating disc.

We next consider a thin, uniform, circu:'!.ar disc of internal and
external radii a and b, thickness h, rotating with a constant angular
velocity o about its axis of symmetry (see Fig. 1lc). The inside.curved'
surface is traction free and the outside curved surface is considered

subjected to a steady radial peripheral stress q to simulate the ef-

- fect of blade loadirig. The inside and outside temperatures are ”Ta, and
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. Tb respectively and are invariant in time. Plane stress conditions
are assumed to prevail -so that the axial stress o, is zero. . Under

. these assumptions, and because of axial symmetry, Ug vanishes and

u is a function of r and t only. The nonvanishing stresses and

strains c € €
:Ur; g’ Sy’ Sp

The mass density of the disc material is p.

and €, are functions of r and t only.

»

The governing differential equations take the form
. . du u
Kingmatlc. €. = 5 ° S = T A (3.24)

aUr (cr-ce) + 2

Equilibrium: St o pw T _ 0 - - (3.25)
.Constitutiv.e: €. = ‘-(or-Vce)/E + “-ff + a_T . | (3.26)'

€ = (°é'vér)/E‘+ eg + QT | (3.27)

€, = .-V(or+ce)/E + es +QaT | (3i28)

- | | :L—.f = (ép/2c)(2qr-ce) | | - (3.29)
ég = (ép/Qo)(2oe-orj - | '~ | (3.30)

éi’ - _(éP/205(§r+oe) | {3.31)

. As usual we must also include Hart's constitutive equations (1.2) and (1.3).

The boundary conditions for the stresses are

Ur(a)t) = 0 , Ur(b:t) = q (3-32)
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and those for temperature are of the form (3.8). The initial hardness

distribution must be specified as in (3.9) and the initial stresses and

strains are obtained from the thermoelastic solution given in the appen-

~dix A.

Using the displacement rate formulation outlined in section 2b we

can obtain the displacement and then the stress rates. These are

: T .D_.Dy b .P_.D
. E €& (r2-a°) p° (&,-&)
°% T 2 1 I 2 2, 2 —T— dn
, (b"=a") r
.a : a
E r P rg-a.2 F P '
+ =5 f 'q'ezdn - 55 f nézdn ' (3.33)
. 2 a (b -.-a. ) a ) .
T (ePeP 2. 2, .2 B (PP
. . E [ r 6 g4 (rf+a”) 7 r 67 4
] 2 . ) (b2_a2 2 - n
- r . _ o o b y A
- -——E2 f nézdn + L__)_r2+a2 f négdn - Eég (3.3%4)
2r a (v°-a a ‘
r (.P.D b (.p .P
(e¥-¢&%) 2 EE-¢&7)
. r 6 b r 6
€ = - dT] - d'f]
Z | 2 2 1
' a (b"-a") a
b - N
v f .D .D . _.D -
+ -_——(bz-ag né,dn + & + vég . | (3-35)

The change of disc thickness is governed by

hoeon, - G
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and ﬁhe problem can be solved by using the computational scheme outlined

_in Section 2c.

4. NUMERICAL RESULTS AND DISCUSSION

Results of numerical calcuiations carried out for a sphere;”éylinder
and'rotating disc are presented in this section, The particular élloy
chosen is 1100 Aluminum for which data were obtained by Ellis, Wire and
Li [19]. For 1100 Aluminum alloy, equations (1.2) and (1.3) assume the

special forms

& . (6%/0)" exp(-a/RT)[#n(s" /o)1 ()
& = &Poa(o/0)2(c" /)P o (e)
where m =5, A= 0.11, & = 7.82, B = 12.5, A= k x 10‘11, f = 2.613 x 10 " se

G = 3.234 x 1o6 psi(2.230 x thlM Pa) at 482°F (250°C), (reference 21),

Q= 1.326 x10° Btu. k mole-l(l.hoh xlosk Jk mole-l), R = 4.36297 Btu.

.k mole-l;°R-l(8.31h3h k J°k mole—l} °KJ). In the above equations, ¢ and

a* are in units of psi (or M Pa) and t is in seconds. The value of
Q here is equal to the activation energy for atomic self diffusion at
482° F (250°C). Equations (4.1) and (4.2) are valid for ¢ >a (the
case where b* < o is discussed in [8]); Other parameters required for
the thermoelastic (zero time) solution are v = .358, a = 14.22 x‘10'6 °

60071y, o = .098 gom/in3(2.T12 x 10° ke/m).

(25.6 x.10~
The appropriate equations are nondimensionalized through the use of

the following dimensionless variables

-y = 7/p o _ ,‘ (1.3)

21

P

-1

2
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where } stands for any variable having the dimensions of stress, e.g.

- *
" O,y Ogy O, O, C or G, and
.. 9pr Ogs O,s s Oy 4 )

¢ =.'r/a , kK = bfa , 4 = ua , h = hfa. NURS)

For the rotating disc problem, we use pw?a? instead of the internal |
pressure p in (4.3).
.Numerical calculations have been carried out for a cylinder (Figs.
2-l), sphere (Figs. 5-T) and rotating disc (Figs. 8-10) made of 1100
Aluminum alloy. In all cases with thermal gradient the inside tempera=-
ture T, is LB2°F (250°C) and the outside temperature T, is U3T°F (225°C).
In Figs. 8b and 9b we also show the uniform temperature case with Ta =
Tb'= hBQﬁF (250°C). The internal pressure p for the cylinder‘is 1000
psi (6.895 M Pa) and the axial load P = n(azp-baq) to simulate a closed
‘ended cylindéf. The internal.pressure for the sphere is 1500 psi
(10.3h2,M.Pa) except in Fig. 6 where creep at several different pressures
is shown. The external pressure ¢q 1is taken to be zero in all cases.
The angular speed of the disc is 10,000 rpm (w = 1047.2 rad/s). The
values for pressure, angular speed and temperature are chosen such that
thé mechanical and therml stresses at zero time are of comparable magni-
. tude;' Several different distributions of the initial hardness oZ(r) are
considered.
The Runge-Kutta method of order four has been used'fof integrating
forward in time and the trapezoidal rule has been used to evaluate the
"spatial integrals appearing in the relevant equations. The radii ratio |
k for the cylinder and sphere is 2 and tﬁe dimensionless shell thickness
k-1 has been divided into 50 equal segments for these numerical calcula-

| : tions. In case of the disc k = 3, and k-1 has been divided into 100 equal
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'segmgnts. The computations have been cafried out on an IBM 370/168 com-
puter. |

Figures 2a, 3a and ha shoﬁ the redistribution of radial, tangential
and axial stresses in the cylinder dufing creep. The stress changes
rapidl& in the beginning and this process slows dowh considerably és
.time proceeds. After 100 hours, the stress distributions become almost
invariant in time.

The effect of initial hardness on stress relaxaﬁion is shown in
Figs. 2b, 3b and bb. The initial hardness level characterizes the initial
state of a specimen and is determined by its previous mechanical and ther-
mal history. We compare two different uniformly hardened cases, one
lightly cold worked and the other with 10% cold work [19]. We observe,

as expected, that the stresses in the softer cylinder relax faster than

in the hardened cylinder. The effect of initial hardness on the stresses

at long times is, however, found to be negligible.

Figure 5 shows similar results for a spherical shell. This time we
éémpare an uniformly‘hardened (10% cold worke&) sphere with another that
is hardened inside and soft outside. The hardness distribution in the
latter case is assumed to be given by 5:(§) = 20(t,0). The stresses
rélax'much more rapidly in the softer sphere and in this case the long
time value of the stresses are affected'by the initial hardness distri-
bution.

The_effect of pressure and hardne;s‘on creep is shown in Fig. 6. The

'creep of the inner radius of‘the sphere is shown for four different cases.
For the same pressure (1500 psi i.e. 10.342 M Pa) the softer sphere (III)

creeps more than a sphere with more cold work (IV). The highly nonlinear

effect of the internal pressure can be seen by comparing the curves I, II
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and IV all of which represent the same hardness (lo%ciﬂd.workj. Simi-
lar curves were obtained by the authors in [20] for a cylinder with no
thermal gradient.

In all caseé where the initial hardness is as8umed uniform in space,
the structural elements harden but the change of hardness is too small
to be evident within the plotting accuracy. This is a consequence of the
fact that the initial hardness level in these cases is such that 8*_ in
(4.2) is very small. However, for the sphere with variable initial hard-
ness (Ei(g) = 20(t,0)), we find (Fig-. T7) that appreciable hardening occurs
and the rate of hardening,as expected, slows with time.

Figs. 8 and 9 show sfress redistribution in a rotating disc with and

without thermai gradient. Once again the initial uniform hardness level

' represents 10% cold work. The same general characteristics as in the cases

- of the cylinder and sphere are observed. Note that since the initial

mechanical and thermal stresses are of comparable magnitude, the spatiai
distributions of stresses with and withbut‘thermal gradient are consider-
aﬁly different. | .

- Fig. 10 éhows cfeep of the inside and outside radii and the change
of disc thickness Ah with time in the presence of é thermal gradient.
Outward radial creep is accompanied by thinnihg of the disc since the in-
elastic portion of theldeformation is assumed to be incompressible.

Choice of time step is very crucial in the computation and variable

-

time steps are necessary. The initiai'time steps must be small because

the rates are higher in the beginning. The computational scheme is very

efficient. Typical computing time for the results presented in Figs. 8-10
for the rotating disc, for example, is approximately 40 seconds on.an

IBEM 370/168.



5. CONCLUSIONS

'Iﬁ this paper we have ﬁresented a very efficient camutational scheme
for analysis of inelastic behavior of structures composed of metals and
alloys which obey a broad class of newer constitutive relations. Several
: humerical examples for spheres, cylinders and rptating discs in the pre-

sénce of thefmal gradients are presented. These results are very import-
'antAfrom the Qiewpoint of checking any general purpose finite element
code that might be developed in the future for these newer constitutive
felations.

Hart's theory of inelastic deformation gives promising results for
“the multiakial problems analyzed here. The ability to distinguishlrather
‘easily between different initial states is a novel feature of this theory.
There are indications that the extended &ersion of this theory including anelas-
A;tic,éfrains.fB] will provide a better model thanhpresently available
for creep analysis of structures under complex mechanical and thermal

locading histories.
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APPENDIX A

' The thermoelastic (zero time) solutions for the problems discussed

in Section 3 are [22]

(a) 'sphere

o, (x,0) [pa3 (5313 )+ qbs (r3-a3)1 /r3(a3-b°)
e E(Ta-Tb)b[1+b-(1+b+b2)/r+b2/r3]/(l-v)(b3-a3)

0g(£,0) = [-pad(@r’std)eapd(er’sad)]/er (a3 0%)

+ a'E(Ta-Tb)b[1+b-(1+b+b2)/2r-b2/2r3]/(1-v)(b3-a3)

nr) = T + (0 -1 )22 - 1)

a "b’b-a’'r

‘(b) cylinder

of(r,O) [paz-qbe-(p-q)azbz/rz]/(befae)

+ Eﬁx[Tbﬁe-Taaz-(Tb-Ta);?bz/rg-T(bg-aQ)]/2(1-v)(b2-a2)

&e(r,é) = [§a2-§b2+(p-q)azbe/rgl/(bz-a2)+E a[stz-T;a2+(Tb-Ta)a2b2/r2
-stz—ae)(Tb-Ta)(ba—ae)/Zn(b/a)]/2(l—v)(b2—a2)
0, (r,0) = P/ﬂ(£2-a2)+E a[(T5b2-£aa2)}(be-ag)-(Tb-Ta)/zzn(b/a)-T]/(1-v)
T(r) = [szn(r/a)+Tazn(b/r)]/zn(b/a)

- P2 -

S e e EEETY
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(¢} rotating disc
| Ur(r’o) - aFEP- 2)/r2(b2-a?)+pw?(3+v)(a2+b2-r2-a2b2/r2)/8

+Ea [Tbe-Taaa— (Tb-Ta)a2b2 /r2 -T (b2-a2 Y1/2 (b2a2

0p(r,0) = abP(x+a?)/r® (20 )epef [ (34v) (P40°+a 07 /1) - (143v)271/8

+ E a[Tbbz-Taa2+(Tb-Ta)azbz/rz-T(be-az)-(Tb-Ta)(b2-a?)/£n(b/a)] /2(b2-a2 :

Temperature distribution for the disc is the séme'as for the cylinder.

-APPENDIX'B
In Section 3b we considered a cylinder-with.internal and external
pressures and axial load. If the end condition is altered and we consider
‘plane strain case instead, €, = 0. The govérning'equations remain the
same except that 3.14 is dropped. In this case, &r gnd &e are still

given by (3.21) and (3.22). However, 6Z is now given by

T D _:D b .D_:D
. By (er—ee) b2 (er- 5)
6, = —p5 - 53 ﬂ dn
(1-v7) o (®°-a") 3
o 5 |
- Ev(l-gv) 21 5 jﬁ négdn . 2‘{vé£-(l-v)é§} .
(1-v7) (v -2 . (1-v7)

0

. The initial distribution of Gz now becomes

-

oz(r,Q) = Q[or(r;0)+09(r,0)] - EaT(r) -

vhere or(r,O), ce(f,O) and T(r) are the same as given in Appendix A for

the cylinder.
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Figure 1.

A Figure 2.

Figuré 3.

Figure L.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

FIGURE CAPTIONS

Structural elements with loads,
(a) Sphere (a,b) Cylinder (c) Disc

Variation of radial stress in a creeping cylinder, (a) stress
redistribution (b) effect of initial hardness on stress relaxa-
tion (p = 1opo psi (6.395 M Pg), T, = 482°F (250°C), T, =

437°F (225°C), & = 2).

Variation‘of tangential stress in a creeping cylinder.

(a) Stress redistribution- (b) Effect of initial hardness on

 stress relaxation (p = 1000 psi (6.895 M Pa), T = LB2°F (250°C),

Tb = ’4-37°F (225°C), K = 2).

Variation of axial stress in a créeping cylinder. (a) Stress
redistribution (b) Effect of initial hardness on stress
relaxation (p = 1000 psi (6.895 M Pa), T, = 482°F (250°C),

T, = U37°F (225°C), k = 2).

Effect of initial hardness on the relaxation of radial and
tangential stresses in a creeping sphere (p = 1500 psi
(10.34%2 M Pa), T, = 482°F (250°C), T, = U37°F (225°C), k = 2).

Radial displacement at the inner radius of a creeping sphere
(k = 2) with time for the cases:

%
3000 psi (20.684 M Pa), o (&)

(1) P = = 3.53 (i.e. 10% cold work),

(II) p = 2000 psi (13.790 M Pa), Ei(g) = 5.30 (i.e. 10% cold work),

(III) p = 1500 psi (10.342 M Pa), a§<g) = 2.0 o(t,0),

(Iv) p = 1500 psi (10.342 M Pa), Eﬁ(g) = 7.07 (i.e. 10% cold work),
T, = 482°F (250°C) , T. = U3T°F (225°C).

b
Growth of hardness with.time at & = 1.3 in a cfeeping sphere
(p = 1500psi (10.342 M Pa), Ta = 482°F (250°C), Tb =

W3T°F (225°C), k = 2).

Redistribution of radial stress in a rotating disc under creep
—%

(N = 10,000 rpm (w = 1047.2 rad/s), oo(g) = 38.14 (i.e. 10%

cold work), k = 3, a = 1 in.(2.54 cm)).

(a) T, L82°F (250°C), T, = L37T°F (225°C)

() T, =T = L82°F.

i
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Figure‘é. Redistribution of tangential stress in a rotating discunder
o %
creep (N = 10,000 rpm (o = 1047.2 rad/s), oo(g) = 38.14
(i.e. 10% cold work), k = 3, a = 1 in.(2.54 cm)).
(a) T, = L82°F (250°C), T, = U37°F (225°C)
(b) T, =T, = 482°F.

Figufe 10. Radial displacement and thickness change at the inner and
' outer. radii of a rotating disc under creep (N = 10,000 rpm
(w = 1047.2 rad/s), Bz(g) = 38.14 (i.e. 10% cold work),
T, = L82°F (250°C), T, = L37°F (225°C), k = 3, a = 1 in.(2.54 cm)).
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Figure'l. Structuial elements with loads
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Figure 2. Variation of radi,a_l‘stress in a creeping cylinder, (a) stress redistribution
(b) effect of initial hardness on stress relaxation (p = 1000 psi (6.395 M.Pa),

T, = L82°F (250°C), T, = 437°F (225°C), k = 2).
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Figure 3. Variation of tangential stress in a creeping cylinder. (a) Stress redistri-
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bution (b) Effect of initial hardness on stress relaxation (p = 1000 psi
(6.895 M Pa), T, = L82°r (250°C), T, = U37°F (225°C), &k = 2).
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Figure L. vVariation of axial stress in a creeping cylinder. (a) Stress redistri-
bution. (b) Effect of initial hardness on stress relaxation (p = 1000 psi
(6.895 M Pa), T, = 4L82°F (250°C), T, = L3T°F (225°C), k = 2).
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Figure 5. Effect of initial hard.ness on the relaxation of radial and tangential - stresses in a creeping sphere
(p = 1500 psi (10.342 M Pa), T, = U82°F (250°C), T, = LW37°F (225 C), x = 2) :
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‘ ~ Figure 6. Radial displacement at the inner radius of a creeping sphere (k = 2)
- ~with time for the cases: .

(I) p = 3000 psi (20.684 M Pa), Ga(t) = 3.53 (i.e. 10% cold work),

(II) ©p = 2000 psi (13.790 M Pa), G,(&) = 5.30 (i.e. 10% cold work),

(III) p = 1500 psi (10.342 M Pa), oa(t) = 2.0 o(,0),

(IV) p = 1500 psi (10.342 M Pa), on(t) = 7.07 (i.e. 10% cold work),
T, = L82°F (250°C) , T, = 437°F (225°c_). '
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Figure 7. Growth of hardness with time at ¢ = 1.3 in a creeping sphere
(p = 1500 psi (10.342 M Pa), T, = L8o°F (250 c),
= U3T°F (225°C), &k = 2).
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Figure 8. Red_lstrlbutlon of radial stress in a rotatlng d_'Lsc under creep (N = 1O 000 rpm (co = lOlV( 2 rad/s),
' .0 (g) = 38.14 (i.e. 10% cold Work), k =3, & = 1 in. (2. Sh cm)). _
(a) T, = 482°F (250°), T, =U3T°F (225°C) (v) T = T, = 482°F.
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Figure 9. Redlstrlbutlon of tangential. stress in a rotat:mg d_'LSC under creep (N = 10,000 rpm
(w = 1047.2 rad/s), c (¢) = 38.14 (i.e. 10% cold work), k = 3, & = 1 in. (2 54 cm)).

(a) T, = 482°F (250°c), T = U3T°F (225°C) (b) T, =T, = l+82‘ F.
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Figure 10. Radial displacement and thickness change at the inner and
outer radii of a rotatlng disc under creep (N = 10,000 rpm
(0 = 1047.2 rad/s), 5 *(¢) = 38.14 (i.e. 10% cold work),
T, = 482°F (250°¢C), T = L3T°F (225°C), « _3, a = 1 in.(2.54% cm)).




