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ABSTRACT

Several newer constitutive relations have recently been proposed for

describing the mechanical behavior of metals and alloys under elevated

temperature creep conditions. A salient feature   of the mathemati.cal

structure of many of these relations is that they typically express the

nonelastic strain rates as functions of the current values of stress,

temperature and some other suitably defined state variables.  A cam-

putational scheme is presented in this paper for the inelastic analysis

of metallic structures subjected to both mechanical and thermal loadings and

abeying constitutive relations of the type described above. Several numer-

ical examples for the creep of thick-walled spheres, cylinders and rotat-

ing discs in the presence of thermal gradients are presented.  The par-

ticular constitutive relations used in these calculations are due to

Hart.  The proposed computational scheme is found to be very efficient

fram the view point of both camputational time and effort.  The effects

of previous cold work on the stress redistribution and creep of these

structural elements are discussed.
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INTRODUCTION                      '

The numerous technological applications of metals and alloys at

elevated temperatures have prompted in recent years a great amount of

research interest in the area of their high temperature inelastic behav-

ior.  This growth of interest has led to a remarkable effort in the devel-

opment of constitutive relations for modelling this high temperature in-

elastic behavior of metals which is known to be a time dependent pheno-

menan, highly nonlinear and hereditary in nature.  The classical theories

of creep [1,2] currently in use are found to have serious drawbacks

[3,4,5].  For example, the strain hardening and time hardening theories

1 do not take into account the effect of prior deformation history on sub-

sequent creep behavior and are incapable of representing a softening of

'

the material which accompanies creep recovery.  A variety of newer con-

stitutive relations [6-11] have recently been proposed in order to over-

come the shortcomings of classical theories and represent more faithfully

the mechanical behavior ·of metals at ·elevated temperatures, especially

under conditions of complex time dependent mechanical and thermal loadings.

A salient feature of the mathematical structure of these newer con-

stitutive relations [6-11] is that the nonelastic strain rates are ex-

pressed as functions of the current values of stress, temperature and

certain well defined state variables. These state variable evolve with

deformation according to certain laws in such a way that their rates of

change with time are again functions of stress, temperature and these

dtate variables.  Thus, according to these constitutive relations, the

current values of stress, temperature and same state variables uniquely

determine the nonelastic strain rates and the rates of change of these
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state variables with time.  This particular mathematical feature of

-            these equations leads to a very simple and efficient method of three-

dimensional inelastic analysis of structures which we shall describe

presently.   It is important to note that the mathematical structure

of classical creep theories also fit into this general format if the

time independent plastic strain  in the sense of classical plasticity

is ignored. No such restriction is necessary if any of these newer

theories is used because they treat the so called time independent

strain of classical plasticity and time dependent creep strain of

classical theories as a single quantity called permanent strain which

is regarded as time dependent.

In this paper we present a general computational technique for

three-dimensional inelastic analysis of structures made of materials

that obey constitutive relations of the type described above and sub-

jected to both mechanical and thermal loadings.  The method is illus-

trated for thick-walled spheres, cylinders and rotating discs under

: steady internal and external pressures and radial temperature gradients.

The constitutive relations due of Hart [7,8] are employed to obtain the

numerical results for these problems. The numerical results presented

are discussed in the context of Hart's theory and the computational

-             scheme, and very encouraging conclusions are drawn.

As described in the following section, Hart's theory has a sound

experimental basis for many metals and alloys urider uniaxial loading

[12-19].  A novel feature of this theory is its ability to differenti-

ate in a simple way between geometrically identical specimens with dif-

ferent initial deformation states, e.g. between annealed and cold worked

specimens.  In regard to multiaxial stress conditions, the present
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authors recently analyzed the problem of creep of thick cylinders under

-             internal and external pressures using Hart's theory [20] in the absence

of thermal gradients.  Certain simplifying assumptions that were made in

[21] are relaxed in the present paper and more general loading situa-

tions are considered.  The numerical solutions presented in this

paper are extremely important from the viewpoint of validation of any

general purpose finite element code which may later be developed using

the proposed computational method and Hart's theory.

1.  BRIEF REVIEW OF HART'S THEORY

In this section we present a brief outline of Hart's theory.  A

detailed description can be found in references [6-8].

We shall concentrate our attention on the constitutive laws govern-

ing grain matrix deformation.  For situations under consideration the

contribution due to grain boundary sliding is neglible and is, there-

fore, not included in the present formulation of Hart's theory [7].  The

accumulated total strain due to grain matrix deformation, c, at any time

can be decomposed into four components:

e a P T
(1.1)€  € +€ +€ +€

.             where  €e  is the elastic strain which is related to stress by Hooke's

law; €a  is the anelastic strain, ·a stored strain that is completely

Precoverabld eventually upon unloading; E is the completely irrecover-

able and path dependent permanent strain; and  €T  is.the thermal strain.

a
The anelastic strain rate & is appreciable for relatively short times

following abrupt changes of load and plays a very impoTtant role in non-

monotonic loading.  In case of rel&tively steady loading,  however, we
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1

can use the transient free relationship in which   &a   =   0.       In   this   paper

we consider only steady loading situations so that the anelastic strain

g   is ignored.  Thus  e  is the sum of  €e, €P and  €T.  It should be

pointed out that E represents the completely irrecoverable componentP

of strain and includes the time independent as well as the time dependent

plabtic strains in a classical sense.

Hart, Li and their coworkers have performed experiments on various

metals and alloys at different temperatures [12-19].  They have concluded

that the rate of permanent strain for these materials at any time is given

by the current values of the stress  c, temperature  T  and  a single
*

state variable a called hardness. The hardness characterizes the

present deformation state of the material and differentiates between geo-

metrically identical specimens with'different initial deformation states

e.g. between annealed and cold worked .specimens. The hardness at time

t  depends upon the deformation history upto time  t  and increases with

the amount of cold work. They have also demonstrated that for all the

mate rials tested the growth   rate of hardness        &         is    a    function    of       a,
*
c   and  T  only.  Based upon these experiments, Hart has proposed the

following constitutive equations for steady loading conditions

'P A(o,a ,T) (0*/G)mf exp(-Q/RT) (c/0*) (1.2)€

.*
B (a, 0 , T) ipa*ric,°*) (1.3)a

In the above  f  is an arbitrary coefficient with dimensions of frequency,

R  is the gas constant, G  is the isothermal modulus of rigidity and is a

function of temperature, m  is a material constant with a value between

3 and 8, Q  is a measure of thermal activation energy and is a function
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of tbmperature alone,  T is temperature  (in FK)  and        and   r    are

measured functions of their arguments.  Note that.unlike classical plas-

ticity there is no yield stress· here and that the current values of

'
0, a   and T uniquely determine  2  and   r.

The three dimensional generalization is made by Hart in keeping

with concepts of incremental plasticity. Two invariants are defined as

c  =   (3/2)s··s··  ,  ·ep  =  (2/3);.p·Ep.· (1.4)
1J 1J 1J 1J

where       s. .   =   a. .  -  (1/3)0 8 is the deviatoric stress tensor. As
lJ    lJ        kk ij

usual, a repeated index implies summation over that index and  5..
1J

is the Kronicker delta. It is now assumed that these invariants a  and

*
&P are related to each other through the. scalar hardness c according to

(1.2)  and (1.3). Finally,    a   flow rule relating the permanent strain   rate

. tensor to the deviatoric stress tensor is postulated as

3 ip 3 A(6,0*,T) s (1.5)ip.              -(-) SiJ     2 0  ij     2     a      ij

Equations (1.2) - (1.5) constitute Hart's theory for relatively

steady multiaxial loading.  For nonmonotonic loading conditions consti-

tutive equations including    €a    must· be  used.     The se are given  in  [8].

2.  GENERAL METHOD OF THREE DIMENSIONAL INELASTIC ANALYSIS

We now present a general computational method for analysis of three

dimensional creep problems which is motivated by expressing the govern-

ing differential equations  of the problem in terms of rates as follows:

Kinematic: £
€e + €p + TET (3+2)/2                           (2.1)
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or equivalently, compatibility of total strain rates

V x i xv = a +2 -                    0     (2.2),v - ij,kl    kf,ij   <ik, jl - 8j£,ik

Equilibrium:  7·6 +F     0                                         (2.3)
-.#-

Constitutive: ie (8 - _L eI)/2G (2.4)- 1+V -

.P    3 ap 3 A(a, a*,T) s (2.5)€               -(-) S-    2 0 -    2    0   -

.T      ·e            a TI (2.6)
./ -

.*
(2·7)a B(a,o ,T)

In the above  u  is the displacement,   the gradient operator,  F

the body force per unit volume, v  the Poisson's ratio,  a the coeffici-

ent of linear thermal expansion, e = tr£ = akk 'and  i  the unit ten-
sor. The dot denotes differentiation with respect to time.

a.  Stress rate formulation

The compatibility equation (2.2) can be written as

e             .p          .TV x i  X V  =  -V X€  X V-V X€ X V (2.8)
- - - -              --              -              -

We now replace the strain rates from the constitutive equations
.

(2.4)-(2.6) to get

3 A(a, a*,T)y x  [ (2 :i vel)]  x y=     -y x[2 a
s] x y-v x [aTI] x y  (2.9)

The traction boundary condition is
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(2.10)

where   2   is the unit outward normal to the boundary and  z   the pre-

scribed surface traction vector. The traction is assumed to be a con-

tinuous function of time so that its rate is defined everywhere.  If

discontinuous loading functions are involved, the constitutive realtions

including anelastic strains [8] must be used and elastic unloading

must be taken into consideration. Since in this paper we only con-

sider relatively steady processes, we shall not elaborate further on

this point.

The initial conditions are obtained by specifying the initial

distribution of hardness and by taking the initial permanent strains

to be zero.  Since SP =0  at  t=0, the stresses and strains at  t=0

are given by the corresponding thermoelastic solution of the problem.

Thus

0(x, 0)  =  00(x),  so(x, 0)    .se(x, 0) + ST(x,0)

2(ls, O)    =    O,    O*(15,0)    = 00(E) (2.11)

where  00(x)  and e'(x)  correspond to the thermoelastic solution at

t . 0.  In other words, co, £'  are obtained by solving the following

-             problem:

£0     =     6(20-  -Leo I)   +  a-TO I (2112)1+V

Y x [ G(,00- i veoI] x y+E x [aTII] x y  = 0 (2.13)

F· 00 -Fo  ,  ao. n     To                              (2.14)
-  - 'V



'.
-8-

In the above, T', F'  and L' are the temperature, body force and
I.

traction distributions, respectively  at     t   =   0. a (25,0) would usually

be uniform throughout the material, but nonuniform initial hardness may

be introduced during fabrication of the structure.

b.  Displacement rate formulation

In this case we write the equilibrium equation (2.3) in terms of

displacement rates using (2.1), (2.4-2.6) to get

F       A.(a, ,T)
fi   +  1 * 22'  =   -  3  + 20[3 .sl   +   iE:    2(« i.) (2.15)

G

The corresponding displacement boundary condition is

(2.16)

where  6 is the prescribed displacement vector on the surface of the

body.  Once Fgain we assume  6 to be a continuous function of time.

The initial conditions are obtained in. a manner similar to the stress

rate formulation case.

The observation to be made here is that the resulting boundary value

problem in rates for both of the above cases is linear and has the same

structure as the linear thermoelastic boundary value problem except for

an inhomogeneous term on the right which is uniquely determined by the

*
current values of  a, a and  T.  Thus, stress or displacement rates at

any time are obtained by solving a linear boundary value problem similar

to classical thermoelasticity.  This forms the basis of the computational

method proposed.

-. •: r,r·1----·· r.=='
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c.  Camputational scheme

The initial stresses and strains are first obtained by solving the
*

corresponding thermoelastic problem.  Thus,  £'  and     are known.  The

temperature history is assumed to be prescribed in advance.

Case a.  The stress and hardness rates at t=0 are obtained by solving the set

of linear, inhomogeneous partial differential equations (2.3), (2.9) and

(2.7) subject to the boundary condition (2.10).

Case b.  The displacement and hardness rates at  t=0 are obtained by

 solving (2.15) and (2.7) subject to the boundary condition (2.16).  The

total strain  rate  is now obtained  from   £  =   (5 + 2)/2    and the permanent

 

and thermal strain rates from (2.5) and (2.6).  Now  ie  is obtained by

substracting  iP  and  iT  from  &  and the stress rates from the invert-

ed form of Hooke's Law (2.4).

The stresses and hardness are. obtained at a new time  at  by using,

for example, Euler's method  (rr|   = a'+61   x at etc.) or higher order
W' At          -      -it=o

integration methods such as the fourth-order Runge-Kutta method.  These

new stresses and hardness are now used to obtain the rates at time  at

and so on, and the process continued upto the desired final time. Thus,

kriowing the stress and hardness at time  t, the rates at time  t  are

obtained by solving the appropriate boundary value problem.  These rates

are then used to update the stress and hardness to the time  t + at  by

using a suitable integration scheme. It should be pointed out that the

-             boundary value problem (2.3), (2.9), (2.10)(or, equivalently, (2.15)-(2.16))

may have to be solved by finite difference or finite element methods for

complicated problems. In such cases, the corresponding thermoelastic pro-

blem at zero time may also require use of finite difference or finite
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element methods.  Choice of time step At  is found to be very crucial

in the computation and must be small initially because the rates are

usually high in the beginning.

We have restricted case a to traction and case b to displacement

1

boundary value problems merely for ease of presentation.  Sometimes it

is convenient to use case b (with (2.16) suitably modified) for trac-

tion boundary value problems. Mixed boundary value problems   must  be

handled on a problem by problem basis.

The computational scheme is described above in the context of Hart's

theory.  However, as mentioned earlier, the method is quite general and

can be readily extended to other constitutive relationsby suitably

:

modifying equations (2.5) and (2.7).

3.  ILLUSTRATIVE EXAMPLES

In this section we present formulations for boundary value prob-

lems involving spheres, cylinders and rotating discs. The loads and

temperatures are assumed steady throughout.

(a)  Sphere under internal and external pressures.

-   We consider a thick-walled sphere of internal radius  a  and ex-

ternal radius  b  subjected to steady internal and external presssures

p and q  respectively (see Fig. la).  The inside temperature is  Ta

and the outside temperature  T ' both being invariant in time. Because

of spherical symmetry, the only nonzero component  of displacement is

the radial displacement  u which is a function of the radius  r  and

time. The nonzero components of stress and strain, ar' ae = 04' er
and  ce = €4, are functions of  r  and t  only. The usual notation is

used and the subscripts  r, e and    denote the radial and two mutually

1-                                                                                                                                                                                                                                                                                                                                                                                                                              -
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orthogonal circumferential directions.

The governing differential equations take the form

(3.1)Kinematic:                     €               3;     '      re             <4            rr
I

Bar   2(or-ae)
Equilibrium:

 37  +              r                           o                                        
                                                       (3 0 2)

Cbnstitutive:
<r           (ar-2Vae)/E  +  € 

+ .a T (3.3)

ee ((1-V)%-vor)/E + ce + aT (3.4)

.P  (ap/a)Car-Ge) , (3.5)€
r·

.P .P
(3.6)Ee     €4      (ip/2a)(ae-ar)

In the above  E  is Young's Modulus. To this we must add Hart's consti-

tutive. equations (1.2) and (1.3).

The boundary conditions are given by

ar(a, t)  =  -P .,  ar(b, t)  =  -q (3·7)

T(a, t) = T  ' T(b, t) = T  (3.8)

The initial conditions are given by

a (r, 0) = 00(r) (3.9)

together with the zero time thermoelastic solution to the problem given

.in the appendix A.             -
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Using the displacement rate formulation outlined in section 2b,

we can obtain the displacement rates and then the stress rates. These

are                                                                                

Cr ip 3   3 b ap  1

&r
(I g)< f 1 d'rl- (r3-a ) b- f -I

dTI 
(3.10)       ila TI (b3-a3) r3 a n

rr tp                   'p     op

de             (ifV) <  f  -r   d'1   -   (2'.3,«3 )  b      · :  d'l  + If) (3.11)
la n 2(b3-a3) r  a

The problem can now be solved by using the computational scheme

outlined in Section 2c.

 

(b)    Cylinder with internal and external pressures and axial  load.

We consider a long thick walled cylinder of internal and exter-

'

nal radii  a  and b  subjected to internal and external pressures  p

and q  respectively and an axial force  P (see Fig. la, b).  The inside

and outside temperatures are  T   and  T   respectively and the pres-

sures      p     and     q     and the temperature,    Tg   and  :% are invariant   in   time.

The end effects are neglected and the solution is assumed valid suf-

ficiently far from the ends.  Plane cross sections are assumed to remain

plane.  Under these assumptions, and because of cylindrical symmetry,

-             the tangential displacement component  u  vanishes and the radial dis-

placement  ur  is a function of  r  and  t  only.  The nonvanishing

stresses  and  strains  are    ar'   ae' az' Er' Ee and  E , with € a func-
Z            Z

tion of  t  only and the others functions of  r  and  t.  The usual

cylindrical coordinates are used with  r, e and z  denoting the radial,

tangential and axial directions respectively.

The governing differential equations take the form:
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311 · U                       BUr
Kinematic:                       e                 -3      ,    ' <e -r  , e --2 (3.12)r                             z      Bz

Bar   (a -0 )
Equilibrium: -37

+
r

r e = 0 (3.13)

b

I 2*razdr  =
P (3.14)

a

Constitutive:  r  =  (ar-V(ae+az))/E + €  + a
T (3.15)

<e  =  (ce-V(ar+Gz)/E + €e + a T (3.16)

P
e   =  (a -v(a +a ))/E + e +a T (3.17)z         z     re          z

'.                                                                                                 -

irP = (&920)(2ar-ae-az) (3.18)

2: = (iP/20)(2°e-ar-'z   (3.19)

;P  =
(aP/20)(2az-ar-ae) (3.20)

To this we must add Hart's constitutive equations (1.2) and (1.3)·

The boundary conditions have the same form as (3.7) and (3.8).  The

initial hardness distribution must be specified as in (3.9) and the

initial stresses and strains are obtained from the thermoelastic solu-

tion given in the appendix A.

Using the displacement rate formulAtion outlined in Section 2b, we

can obtain the displacement and then the stress rates. These are
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r r . .p.p i -  b  /.p.p)   1

6         E   < f C€;.-€e, dll- (r2-a2) bz  r  CEr-Ee
r            2 (1-v2 )   1                11                     (b2-a2 ).r2   J              n          d'rl La               a

fr          b,2  2
  E(1-2V) 1/

r (r-a)  r-\   / 712>9- /

">11
(3.21)

2 (1-V2)   r2  1 (b2-a2)    .1                                                                                                   1

f r Cip_ip) - b  (ip-ap   1

de           E <f
,r e (r2+a2) ki  f  ·r  8    \71 dn- '3 "

2 J  , dll2 (1-V2) La (bc-ac' r a

(r , 2 2. b
E< 1-2V)      1      )        r          . n I r+a)  1             E- C  1  11€ d.11+ ' n n  J
2 (1-V2)   r2     .1           L            (bc-ac)      a     '1&3171 

-

(1-v )
o {&P+V&P}  (3.22)

f r -p op 2    b  (aP.ZEP)  3,

. EV   /  r  ter-<33        b     r    r  e
a                           dn-  .0  0,  j          dn  Z

(1-02)    -  a            n                     (b--a  )                     11a

b

  E(2-V)
1

f   nipd'1  +       E 2 (VEP-(1-v)&P} (3.23)
(1-v2) (be-a2) 1

z
(1-V )    *a

The problem can now be solved by using the computational scheme

outlined in Section   2(. The plane strain   case    (ez=O) is given in Appendix   B.

(c)  Rotating disc.

We next consider a thin, uniform, circular disc of internal and

external radii  a  and b, thickness  h, rotating with a constant angular

Velocity e about its axis of symmetry (see Fig. lc). The inside curved·

surface is traction free and the outside curved surface is considered

subjected to a steady radial peripheral stress  q  to simulate the ef-

fect of blade loading. The inside and outside temperatures are ·T anda
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Tb  respectively and are invariant in time.  Plane stress conditions

are assumed to prevail so that the axial stress  az  is zero.  Under

these assumptions, and because of axial symmetry, ue  vanishes and

U   is a function of  r  and  t  only.  The nonvanishing stresses and

.    strains,   ar'    ae'    er'   68     and    E z,   are   functions  of     r     and     t     only.

The mass density of the disc material is  p.

The governing differential equations take the form

(3.24)Kinematic:                     Er            3;    '       e             r

Bar   (ar-ce)     2
Equilibrium: -37 + r

+ P(D r  = 0 (3.25)

Constitutive:
er    =     (or-Vae )/E  +  €P  +

a T (3.26)

Ee  =  (a -Var /E + €P + a T (3.27)

<z     =      -v ( or+Ge )/E   +   €P  +   a
T (3.28)

&p  =
(2P/20)(2ar-ae) (3.29)

&P = (ip/20)(2%-ar  (3.30)

&p =
-(aP/20)(ar+Ge  (3.31)

As usual we must also include Hart's constitutive equations (1.2) and (1.3).

The boundary conditions for the stresses are

Cr(a, t) 0  ,  ar (b,t)     q                           (3.32)
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and those for temperature are of the form (3.8).  The initial hardness

distribution must be specified as in  (3.9)  and the initial stresses  and

strains are obtained from the thermoelastic solution given in the appen-

dix A.

Using the displacement rate formulation outlined in section 2b we

can obtain the displacement and then the stress rates. These are

f r  p_ip, b  (&p-ap)   1
6                     dn -E)  f 'rel (r2-8.2)   bl 1 r e

r     2   J (b2-82)   r2    J              0          dq f a              a

rr        b

+ *  i f   Qi:d    -  t: :2)   f
"p,111'

(3.33)
2r2

a                   a      J

 . r (ip-ip b      (ap- ap)        7
(r2+a2).b2 r 0

&e            5        f         rn   "     d.'1  -   (b2-a2)  7                   4          d'1 fCa               a

E rf 2  2 b

(r +a)  r   .n

-  iy  j    J      "65'1  +   (b2  a2      J      11« dil    - Ei: (3.34)

c a                a

''    -  {t  't':' d, - „6  f ('t':)..                              a

b                -

V+            napdn + ap + vip (3.35)2 2. J  z
(b-a ) a

The change of disc thickness is governed by                                      

A     h&                                                   (3.36)Z

F.·r'=.,=,
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and the problem can be solved by using the computational scheme outlined

,in Section 2c.

4.  NUMERICAL RESULTS AND DISCUSSION

Results of numerical calculations carried out for a sphere, cylinder

and rotating disc are presented in this section,  The particular alloy

chosen is 1100 Aluminum for which data were obtained by Ellis, Wire and

Li [19].  For 1100 Aluminum alloy, equations (1.2) and (1.3) assume the

special forms

dP    (a*/G)mf exp(-Q/RT)[En(a /a) (4.1)1-1/A

6* = KP:Ato/G)8(0*/G)-B (4.2)

where m=5, A= 0.11, 5= 7.82, 0= 12.5, A=4 x 1 0   , f= 2.613 x 1 0  sec  ,
-11 21   -1

G = 3.234 x 106 psi(2.230 x 104 M Pa) at 482°F (250°C), (reference 21),

Q = 1·326 x1O5 Btu. k mole-1(1.404 x105k J·k mole-1),    R = 4.36297 Btu.

kmole-1.0R-1(8.31434 k Jok mole-1, °Kl).   In the above equations,    a and
*
a   are in units of psi (or M Pa) and  t  is in seconds.  The value of

Q here is equal to the activation energy for atomic self diffusion at

*
482° F (250°C).  Equations (4.1) and (4.2) are valid for  a >a (the

*
case where  B <a i s discussed in [8]).  Other parameters required for

-6   -1
-             the thermoelastic (zero time) solution are  v = .358, a = 14.22 x 10   'F

6 -1 3   ,3,(25.6 x.10- °C  ), p = .098 fbm/in3(2.712 x 10 kg/m ).

The appropriate equations are nondimensionalized through the use of

the following dimensionless variables

-

7           7  P (4.3)
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where  7  stands for any variable having the dimensions of stress, e.g.

*
 r' 'e, Gz' 0 , 0, (1, or G, and

E  r/a , K b/a , G u/a  , E h/a. (4.4)

22
For the rotating disc problem, we use  pa) a instead of the internal

pressure p  in (4.3).

Numerical calculations have been carried out for a cylinder (Figs.

2-4), sphere (Figs. 5-7) and rotating disc (Figs. 8-10) made of 1100

Aluminum alloy.  In all cases with thermal gradient the inside tempera-

ture  Ta  is 482°F (250°C) and the outside temperature  Tb  is 437°F (225°C).

In Figs. 8b and 9b we also show the uniform temperature case with  Ta =

Tb = 482°F (250°C). The internal pressure  p  for the cylinder is 1000

psi (6.895 MPa) andthe axial load P= A(a.2p-b2q) to simulate a closed

ended cylinder.  The internal pressure for the sphere is 1500 psi

(10.342 M Pa) except in Fig. 6 where creep at several different pressures

is shown.  The external pressure  q  is taken to be zero in all cases.

The angular speed of the disc is 10,000 rpm (a) = 1047.2 rad/s).  The

values for pressure, angular speed and temperature are chosen such that

the mechanical and therml stresses at zero time are of comparable magni-

b                                                                            *
tude.  Several different distributions of the initial hardness  a (r) are

considered.

The Runge-Kutta method of order four has been used for integrating

forward in time and the trapezoidal rule has been used to evaluate the

spatial integrals appearing in the relevant equations.  The radii  ratio

K  for the cylinder and sphere is  2  and the dimensionless shell thickness

K-1 has been divided into 50 equal segments for these numerical calcula-

tions.  In case of the disc  K = 3, and K-1 has been divided into 100 equal
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segments.  The computations have been carried out on an IBM 370/168 com-

puter.

Figures 2a, 3a and 4a show the redistribution of radial, tangential

and axial stresses in the cylinder during creep.  The stress changes

rapidly in the beginning and this process slows down considerably as

time proceeds.  After 100 hours, the stress distributions become almost

invariant in time.

The effect of initial hardness on stress relaxation is shawn in

Figs. 2b, 3b and 4b.  The initial hardness level characterizes the initial

state of a specimen and is determined by its previous mechanical and ther-

mal history.  We compare two different uniformly hardened cases, one

lightly cold worked and the other with 10%  cold work [19].  We observe,

as expected, that the stresses in the softer cylinder relax faster than                I

in the hardened cylinder.  The effect of initial hardness on the stresses

at long times is, however, found to be negligible.

Figure 5 shows similar results for a spherical shell.  This time we

compare an uniformly hardened  (10 % cold worked) sphere with another  that

is hardened inside and soft outside. The hardness distribution in the

latter case is assumed to be given by  3 (E) = 23(E,0). The stresses

relax much more rapidly in the softer sphere and in this case the long

time value of the stresses are affected by the initial hardness distri-

bution.

The effect of pressure and hardness on creep is shown in Fig. 6.  The

creep of the inner radius of the sphere is shown for four different cases.

For the same pressure (1500 psi i.e. 10.342 M Pa) the softer sphere (III)

creeps more than a sphere with more cold work (IV).  The highly nonlinear

effect of the internal pressure can be seen by comparing the curves I, II

I.--·.  . .           ·        ·                        -1 ---'    ·                 · · .               ---···--'   -        ·                                                                         '..1:r<
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and IV all of which represent the same hardness  (10% cold work).   Simi-

lar curves were obtained by the authors in [20] for a cylinder with no

thermal gradient.

In all cases where the initial hardness is a humed uniform in space,

the structural elements harden but the change of hardness is too small

to be evident within the plotting accuracy.  This is a consequence of the
*

fact that the initial hardness level in these cases is such that  6   in

(4.2) is very small.  However, for the sphere with variable initial hard-

4 ness (a (&) = 23(6,0)), we find (Fig. 7) that appreciable hardening occurs

and the rate of hardening, as expected, slows with time.

Figs. 8 and 9 shaw stress redistribution in a rotating disc with and

without thermal gradient.  Once again the initial uniform hardness level

represents 10% cold work.  The same general characteristics as in the cases

of the cylinder and sphere are observed.  Note that since the initial

mechanical and thermal stresses are of comparable magnitude, the spatial

distributions of stresses with and without thermal gradient are consider-

ably different.

Fig, 10 shows creep of the inside and outside radii and the change

of disc thickness  dh with time in the presence of a thermal gradient.

Outward radial creep is accompanied by thinning of the disc since the in-

elastic portion  of the deformation is assumed  to be incompressible.

Choice of time step is very crucial in the computation and variable

time steps are necessary.  The initial time steps must be small because

the rates are higher in the beginning.  The computational scheme is very

efficient.  Typical computing time for the results presented in Figs. 8-10

for the rotating disc, for example, is approximately 40 seconds on an

IBM 370/168.

-
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5.  CONCLUSIONS

In this paper we have presented a very efficient caqutational scheme

for analysis of inelastic behavior of structures composed of metals and

alloys which obey a broad class of newer constitutive relations.  Several

humerical examples for spheres, cylinders and rotating discs in the pre-            3

sence of thermal gradients are presented.  These results are very import-

ant from the viewpoint of checking any general purpose finite element

code that might be developed in the future for these newer constitutive

relations.

Hart's theory of inelastic deformation gives promising results for

rthe multiaicial problems analyzed here. The ability to distinguish rather

'easily between different initial states is a novel feature of this theory.

There are indications that the extended version of this theory including anelas-

tic strains [8] will provide a better model than presently available

for creep analysis of structures under complex mechanical and thermal

loading histories.
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APPmVDIX A

The thermoelastic (zero time) solutions for the problems discussed

in Section 3 are [22]

(a)  sphere

Gr(r, 0)
fpa,3 (b3-r3)+qi,3 (r3-a.3) 1/r3 (a3-b3 )

+  a E (Ta-Tb)b[l+b-(1+b+1 2)/r+b2/r3]/(1-v )(b3-a.3)

ae(r, 0) I.Pa3(2r3+1)3)+qb3(2r3+a.3) 1/2r3(a.3-1 3)

+  a E (Ta-Tb)b[l+b-(1+b+b2)/2r-b2/2 ]/(1-v)(b3-a.3)

a b
T(r)  =  Tb + (Ta-Tb)b-a(r - 1)

(b)  cylinder

ar(r, 0) = [pa2-qb2-(p-q)a.2.b2/r2]/(b2-a.2)

+  Ea [Tbb2-Taa2-(Tb-Ta)121,2/r2_T(b2_a2)]/2(1_v)(b2-83)

*

2

ae(r,0) /Pa2_qb2+ (p-q)a21,2/r2]/(b2-a2)+E a[Tbb2-Taa•2+(Tb-Ta)8•2b2/r

-T (b2-8.2>. (Tb-Ta) (1,2-a.2)/En(b/a)]/2(1-v)(b2-a2)

 z(r,0)
p/*(b2-8,2)+E a[ (T. b2-Taa2)/(b2-a2)-(Tb-Ta)/2£n(b/a)-T]/(1-v)

T(r) [Tbfh(r/a)+Taln(b/r)]/En(b/a)

- 22 -
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(c)  rotating disc

'r(r,0)
qf (r2-a.2)/r2 (b2-a.2)+Pr2 (3+V) (a2+b2-r2-a2, 2/r2)/8

2 2.

+ Ea[Tbb2-Taa2-(Tb-Ta)a.2.b2»2_T(1,2-8,2)]/2(b a )

ae(r,0)
qb2(r2+a.2)/r2(b2-8.2)+P:,)2[(3+v ) (a.2+b2+a2 2/r2)_(1+3v)r ]/8

+   E  a[Tbb2-Taa2+(Tb-Ta)a.2.b2/r2-T (b2-8,2 )-(T -T )(b2-83)/En(b/a)]/2(b2-a·2)

Temperature distribution for the disc is the same as for the cylinder.

APPENDIX B

In Section 3b we considered a cylinder with internal and external

pressures and axial load. If the end condition is altered and we consider

plane strain case instead, ez = 0.  The governing equations remain the

same except that 3.14 is dropped.  In this case, 6   and  &   are still
r e

given by (3.21) and (3.22).  However, dz  is now given by

f r..p .p.      2   8 (dp-dE) 7
.°                        FN          j       

cer-Ee) 4'1 -    p  j   r' d, z        2. \      9                       9(1-V )1' (b--a-)Ca .a

b

_ Ev(1-2v) 1
f ,%>g +   E 2, [veP-(1-v);P} .

(1.v2) (b2-a2) (1-V )a

0

The initial distribution of a now becomes
Z

-

az(r, 0)  =  v Ia (r. 0)+ae(r, 0)] - E aT(r)r '

where ar(r, 0), ae(r, 0) and T(r) are the same as given in Appendix A for

the cylinder.
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FIGURE CAPTIONS

Figure 1.  Structural elements with loads,

(a)  Sphere  (a, b)  Cylinder  (c)  Disc

Figure 2.  Variation of radial stress in a creeping cylinder, (a) stress

redistribution (b) effect of initial hardness on stress relaxa-

tion (p = 1000 psi (6.395 M Pa), Ta = 482°F (250°C), Tb =

437'F (225'C), K = 2).
Figure 3.  Variation of tangential stress in a creeping cylinder.

(a) Stress redistribution· (b) Effect of initial hardness   on

stress relaxation (p = 1000 psi (6.895 M Pa), Ta = 482°F (250'C),
1 Tb = 437'F (225'C), B = 2).

Figure 4.  Variation of axial stress in a creeping cylinder. (a)  Stress

redistribution (b)  Effect of initial hardness on stress

relaxation (p = 1000 psi (6.895 M Pa), Ta = 482°F (250'C),

Tb = 437'F (225'C), E = 2).
Figure 5.  Effect of initial hardness on the relaxation of radial and

tangential stresses in a creeping sphere (p = 1500 psi

(10.342 M Pa), Ta = 482°F (250'C), T  = 437'F (2250C), E = 2).
Figure 6.  Radial displacement at the inner radius of a creeping sphere

(K = 2) with time for the cases:

(I)    p = 3000 psi (20.684 M Pa), a (6) = 3.53 (i.e. 10% cold work),
g

(II)   p = 2000 psi (13.790 M Pa), 3 (E) = 5.30 (i.e. 10% cold work),

(III)  p = 1500 psi (10.342 M Pa), 3 (6) = 2.0 3(&,0),

(IV)   p = 1500 psi (10.342 M Pa), 3 (E) = 7.07 (i.e. 10% cold work),
b                                 Ta· = 482°F (250'C)  ,  T  = 437'F (225°C).

Figure 7.  Growth of hardness with time at  E = 1.3 in a creeping sphere

(p = 1500psi (10.342 M Pa), T = 4820F (2500 C), Tb =a
437 F    (22 5'C) ,    K   =   2) .

Figure 8.  Redistribution of radial stress in a rotating disc under creep

(N  =  10,000  rpm  (co = 1047.2  rad/s),   <(E)  =  38.14   (i.e.   10%
cold work),  K  =  3,  a =  lin. (2·54  cm)).

(a)  Ta = 482°F (250'C), T  = 4379F (225'C)
(b)       Ta   =Tb=   482° F.
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Figure 9.  Redistribution of tangential stress in a rotating discunder

creep    (N   =   10,000   rpm    (03   =   1047.2   rad/s),    3  (t)   =   3 8.1 4

(i.e. 10% cold work), % =A a=1 in. (2.54 cm)).

(a)  Ta = 482°F (250'C), Tb = 437'F (225'C)
(b)  Ta = Tb = 482°F.

Figure 10. Radial displacement and thickness change at the inner and

outer radii of a rotating disc under creep (N = 10,000 rpm

(0 = 1047.2 rad/s), 3 (E) = 38.14 (i.e. 10% cold work),
T      =   482° F    (250'C),    T    =   437'F    (225'C),    R   =   3,    a   =   1   in.(2.54   cm)).a

g.le:%9'....:
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with time for the cases:

(I)    p   3000 psi (20.684 M Pa), 3 (E) = 3.53 (i.e. 10% cold work),
(II)   p = 2000 psi (13.790 M Pa),  (t) = 5.30 (i.e. 10% cold work),
(III)  p = 1500 psi (10.342 M Pa), 3 (t) = 2.0 3(t,O),
(IV)   p = 1500 psi (10.342 M Pa), 30(&) = 7.07 (i.e. 10% cold work),

.

Ta = 482°F (250°C)  ,  Tb = 437'F (225'C).
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Figure 8. Redistribution of radial stress in a rotating disc under creep (N = 10,000 rpm (a) = 1047.2 rad/s),
-*

- Go(E) = 38.14 (i.e. 10% cold work), E =3, a 1 in.(2·54 cm)).

(a)   Ta =  482°F  (250° ), T  =437*F (225°C) (b)  Ta = Tb = 482°F.
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Figure 9.  Redistribution of tan*ential.stress·in a rotating disc under creep (N = 10 000 rpm                              '

(a) = 1047.2 rad/s), 3 (E) = 38.14 (i.e. 10% cold work), K = 3, a = 1 in. <2.54 cm)).
(a)  T  = 482°F (250'C), Tb = 437'F (225'C) (b)  Ta = Tb = 482°F.
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Figure 10.  Radial displacement and thickness change at the inner and
outer radii of a rotating disc under creep (N = 10,000 rpm
((1) = 1047.2 rad/s), 8*(E) = 38.14 (i.e. 10% cold work),
T  =  482°F  (250°C),  T  = 437'F  (225'C),  E =3,  a=1 in. (2.54  cm)).
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