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Abstract

This paper and a companion paper show that the
traditional limits on amplitude and frequency that
can be generated in a laboratory test on a
vibration exciter can be substantially extended.
This is accomplished by attaching a device to the
shaker that permits controlled metal to metal
impacts that generate a high acceleration, high
frequency environment on a test surface. A
companion paper (Reference 1) derives some of the
mechanical relations for the system. This paper
shows that a sinusoidal shaker input can be used to
excite deterministic chaotic dynamics of the system
yielding a random vibration enviromment on the test
surface, or a random motion of the shaker can be
used to generate a random vibration environment on
the test surface. Numerical examples are presented
to show the kind of environments that can be
generated in this system.

Introduction

Traditional methods for laboratory vibration
testing on shakers can be used to produce
environments with limits that are associated with
the shaker size and capacity. Generally,
electrodynamic shakers can generate environments
with amplitudes up to hundreds of g’'s (on the
shaker head) and with frequency content up to 2000,
3000, or perhaps 5000 Hz.

A companion paper (Reference 1) has described a
mechanical system that can be used to extend the
limits of environments that can be generated on
shakers. A schematic of the system is shown in
Figure 1. The system is composed of two
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horizontal, large, flat metal plates, equal in
area, that are separated from one another by
relatively small space on the order of one inch.
The plates are held together along all edges with
elements that keep the space between the plates (at
least along the edges) constant. The bottom plate
is attached to the shaker head. A relatively soft
elastic material is attached to the top of the
lower plate and the space between the top of the
soft elastic material and the bottom of the upper
plate is divided into compartments. The size of
each compartment is approximately one half inch on
a side. A steel sphere is placed in each
compartment. The size of the steel sphere must be
compatible with the compartment size and the space
between the elastic material above the lower plate
and the bottom of the top plate.
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Figure 1. Schematic of experimental dynamic testing
system.

When a vertical motion is induced in this
system by movement of the shaker head, motions on
the top surface of the top plate are also induced.
The top surface of the top plate is the test
surface, The motion of the test surface is
composed of three component parts. The first
component of motion is related to the dilatational
shock waves that travel through the plate when a
sphere strikes the underside of the top plate. The
second component of motion is the part induced by
flexural response of the top plate responding to
impacts that occur when the metal spheres hit the
underside of the top plate. The third component of
motion is induced by the motion at the perimeter of
the top plate. The dynamics of all three of these
types of motion were investigated in Reference 1
Specifically, Reference 1 established the impulse

response functions and frequency responge fun?tions
of the three components of motion.
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In this paper we consider (1) the dynamics of
the elastic sphere moving between the soft elastic
material attached to the top of the lower plate and
the top plate, and (2) the spectral demsity of
motion on the top surface of the top plate related
to the three components of motion. We consider two
types of motion excited by the vibration exciter.
First, we consider sinusoidal motion, and then we
consider random motion. We show that when the
vibration exciter is used to excite a sinusoidal
input, the response of the sphere can be made
chaotic. When the response of the sphere is
chaotic it strikes the upper plate at times whose
intervals are unpredictable. This creates a motion
in the upper plate, two of whose components are
quasi-random.

The second input generated with the vibration
exciter is a stationary random process. A
stationary random process causes the motion of the
sphere to also be a stationary random process.
When the motion of the sphere is a stationary
random process it impacts the upper plate at random
times and the forces generated when the sphere
impacts the upper plate form a shot noise type
random process.

Numerical examples are presented which
demonstrate the typical behavior of the
experimental dynamic testing system. It is shown
that when the vibration exciter is used to generate
very nominal environments, the component of
response due to shockwave generation is very
substantial. Specifically, low displacement, very
high acceleration and high frequency environments
are generated. For example, environments with
frequency content well beyond 10,000 Hz and with
rms acceleration beyond 100,000 g’s are generated.

Description of the System

One aspect of the experimental dynamic testing
system to be analyzed in this paper is the motion
of a sphere between the top plate and the elastic
material attached to the bottom plate. The dynamic
model for this system is shown in Figure 2. In
that system the sphere has mass m and is assumed to
move vertically between a massless base plate, atop
a spring with stiffness k and damper with damping
value ¢, and the upper plate. The distance between
the top of the sphere and the upper plate when the
system is in static equilibrium is denoted d. The
distance between the upper plate and lower plate is
assumed to be held fixed. This is clearly an
approximation since both the upper and lower plates
are flexible, but it is a good approximation
because the motion of the upper and lower plates is
small relative to the motion of the sphere. The
motion of the sphere is denoted by z(t), where z(t)
is the absolute displacement of the sphere. The
motion of the plate system is denoted by x(t).

The equation of motion of the sphere can always
be given by

L N 1 . I¥3
Y= - o Ry +x, (L

Where y=z-x, and dots denote differentiation with
¢ 3 v

respect to time. R(y,y) is the restoring force for

the system. Two forms for the restoring force and
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Figure 2. Model of the system to be analyzed.

two forms of excitation will be considered in the
following. Other forms of the restoring force will
also be discussed.

Chaotic Vibrations of a Fundamental System

The first system to be be considered has the
displacement restoring force shown schematically in
Figure 3 and sinusoidal excitation. The equation
of motion for the system is given by

" c . k
y + 4 + b S -Xo sin(wft), y=<0 (2)

where Xg is the amplitude of the acceleration input
and wr is its frequency (in units of rad/sec).
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Figure 3. Restoring force of the first system.

In this system the space between the top of the
sphere and the bottom of the upper plate in static
equilibrium is set to zero., It is assumed that the
spring and the damper, below the sphere behave
linearly, and that the collisions between the
sphere and the upper plate are elastic.

References 2 through 6 consider the nonlinear
vibrations of this system in great detapil
Reference 2 recommends that the vibrations of this
system be considered in a normalized form. It is
recommended that Equation 2 be nondimensionalized
in the following way. First, define the period of
the system as

T - n{(m/k), (3)
This corresponds to a system natural frequency
defined

© = 2%/T = ] (K/m), “




Where K is the equivalent system stiffness and is
given by

K = 4k, (5)

A critical damping for the system can be defined

ce = 2mw, (6)
and the system damping factor is
§ = c/cc = c/2mo, )

Now, a ratio of input forcing frequency to natural
frequency for the system can be defined as

n = wf/v, (8

The displacement response can be nondimensionalized

chaotic vibrations occur in the experimental
system. Some chaotic responses of the normalized
system were calculated, This was accomplished
using a Runge-Kutta fourth order approach, with
variable step size. (See Reference 7.) The
results of one calculation that show the
nondimensionalized relative displacement response
of the system over a period of nondimensionalized
time are shown in Figure 4,

Several things are apparent from this short
time segment of response. First, the response
appears random because the displacement does not
follow any set pattern, however, the input is not
random and none of the system parameters are

random. Therefore, the response cannot be
considered to be truly random. This 1is a
characteristic of chaotic response. This type of

behavior is sometimes called quasi-random. Second,

by dividing through by the quantity mXg/K. This the response appears to be limited in amplitude
yields and, indeed, being a chaotic response, it is.
Third, the impacts occur at unpredictable times

y with unpredictable velocities.

Y= —, (9

(mX . /K) References 2 through 6 characterize the
0 behavior of this system using standard measures
Further, the time base of the system can be applied’ in chaotic vibration analysis. For

example, they present measures of the system gain
for various values of n (forcing frequency to
system equivalent natural frequency ratio). They
present time histories of the response, and they
present Poincare maps. However, they do not
present two aspects of the system response which

nondimensionalized by defining
7 = wft, (10)

With these changes the equation of motion becomes

¢ 1 1 . are very important in the present application,

N 2 ’ - -

Y42 n Y+ 2 Y g SIn T, ¥=0, Qan namely, the characteristics of impact time
K n intervals and impact velocities.

where a prime denotes differentiation with respect

to the variable r. We

used our own numerical analyses to
investigate these quantities. We found that the
average impact time interval for the
nondimensionalized response, Y(r), 1is 20 (time
units). This implies that the average impact rate

for the actual response, y(t), is

It is shown References 2 through 6 that chaotic
vibrations occur in this system at about g=4.5,.
This implies that when the forcing frequency is
given by the value
A = 0.05 wr, (13) .

wf = 4.5 w =9 |(k/m), (12)
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Figure 4. Segment of chaotic response of the system
shown in Figure 2. Relative displacement and time
are nondimensionalized. n=4.5, ¢(=0.1
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This 1is the average frequency of impacts of the
chaotically vibrating system. Further, our
investigations showed that the mean and standard
deviation of the nondimensionalized impact velocity
are 0.018 and 5x10-4 (displacement unit)/(time
unit), respectively. This implies that the mean
and variance of the actual impact velocity for the
system in chaotic vibration are

py = 0.365 Xg/wg, oy = 0.453 Xg/wrf, (14)
The V subscript denotes impact velocity. The units
on both these quantities depend on the units of Xg
and might be, for example, in/sec.

The impact time intervals of the response were
plotted on exponential probability paper to
establish whether or not they might have an
exponential probability distribution. The results
indicate that the interarrival times of the impacts
do not follow an exponential distribution.

In summary, the results presented here imply
that a wide range of chaotic impact behaviors can
be established for this system. Equation 12 shows
that when the system mass and stiffness are chosen,
the frequency of the input that causes chaos is
established. Equation 13 shows that the frequency
of impacts is about one twentith the input
frequency. Equation 14 shows that the mean and the
variance of the impact velocity can be set simply
by varying the amplitude of the input motion Xg.

Random Vibration of the Experimental Dynamic
Testing System

When the experimental system is excited with a
random input, the motion of the sphere is a random
process. We excited the nondimensionalized system
with a stationary white noise random process whose
root-mean-square (rms) value is equal to the rms of
the sinusoidal input in the previous section.
Specifically, we replaced the term, sin r, in
Equation 11 with a term r(r), where r(r) is a white

[}

noise random process with with rms value 1/]2. The
system response was again computed using the Runga-
Kutta, variable step size algorithm, and a
realization of the response random process is shown
in Figure 5.

) The character of this response is somewhat
different from that shown in Figure 4, the chaotic
response. In theory, the random response 1is
unbounded, though the response of actual systems is
obviously always bounded. As in the chaotic
response, the impact times are unpredictable, and
in this case, they are actually random. The impact
velocities are also random. The mean rate of
impacts in the randomly driven system is

A =0.035 wf, (15)
That is, the rate of impact is lower than in the
chaotically driven system. The mean and standard
deviation of impact velocity are

py = 0.541 Xp/wf, oy = 1.07 Xg/wf, (16)
On the average, the impacts of the randomly driven
system are more severe and have greater
variability. The correlation between impact time
intervals and impact velocities was calculated in
both cases and shown to be very small, essentially
zero. Further, the correlation between consecutive
impact times was calculated in both cases and shown
to be approximately zero.

The impact time intervals of the response were
plotted on exponential probability paper to
establish whether or not they might have an
exponential probability distribution. The results
indicate that the interarrival times of the impacts
are exponentially distributed in this case. This
indicates that the impact force random process is a
shot noise random process. (See Reference 8.)
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Figure 5 Segment of random vibration response of
the system shown in Figure 2. Relative

displacement and time are nondimensionalized.

n=4.5, ¢=0.1
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Chaotic ;;d ééﬁdom Vibrations of Other Systems

The behavior of some other systems were
evaluated for comparison to those shown in the
previous two sections. The first system considered
was one in which the gap between the top of the
sphere and the bottom of the upper plate in static
equilibrium was set at some small value. It was
shown when the excitation provided by the vibration
exciter was sinusoidal, chaotic modes of vibration
do occur in the system.

The random vibration response of the sanme
system was also computed. Again, the random input
was taken to be a stationary random process whose
spectral density is white. Response calculation
showed that the random vibration response is
similar to the chaotic response.

Other systems with nonlinear base spring
restoring forces were investigated, and it is
believed that chaotic type responses occur with
this type of system, also.

Spectral Density of Dynamic Test System Motion

It was shown in Reference 1 that the motion at
the surface of the test system (atop a location
where a sphere impacts) is composed of three
components. These three components are (1) the
shock wave component related to dilatational motion
excited by impact of the sphere against the bottom
of the top plate, (2) the flexural motion at a
point caused by impacts of spheres at multiple
points on the bottom of the top plate, and (3)
flexural related motion at a point on the surface
of the top plate excited by motion of the vibration
exciter at the base of the system, The
displacement response at the surface of the top
plate can be expressed

t
u(y,z,t) = J hl(t-r) fl(r) dr

t
+ }: }: J-th(y’z’gjl’”Jz’t") £,(3113,.7) or
3132

t
+ J h3(y,z,t-1) r(r) dr,

O<y=<a, Oxzsb, -o<t<wo (17)

where hi, hy, and hi are the displacement impulse
response functions for the three components of
motion developed in Reference 1. The function hjp
depends on the location where the response is
analyzed, (y,z), and the location where the input
is generated, ({j1,732). The function h3j depends
only on (y,z). fLe anccions f1(t) and £2(j1.j2.t)
refer to forces on the bottom of the upper plate.
The j1 and jo refer to the location of the input
force. The function r(t) refers to the
acceleration induced through the boundary. The
quantities y, z, &, and n are coordinates on the
surface of the plate. The plate has length a and
width b.
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To establish the spectral density of the
structural response it is necessary to finite
Fourier transform the displacement response. The
finite Fourier transform of the displacement
response is given by

U(y,z,w) = Hl(w) Fl(w)

+ Z Z Hz()’yz»fjl,ﬂjz,“’) F2(j11j21w)
33,

+ H3(y,z,w) R(w),

O<y<a, 0<z<b, -ow<=» (18)

where Hj}, Hg, and H3 are system frequency response
functions and are the Fourier transforms of the
impulse response functions, hjy, hp, and h3. Fq,
Fg, and R are the Fourier transforms of the inputs
f1, f2, and r.

The next step in computing the spectral density
of the response is to establish the modulus squared
of the finite Fourier transform. This is
established by multiplying each side of the above
equation by its complex conjugate. The result is

107, 2,01° = 18 @17 [F @)1

) Hy(72.85 1y 0) Fpldp.dgie)
13,

2

+ (H3(y,z,w)|2 IR(W)l2 + (cross-terms),

O<y=<a, 0=<z=<b, -w<w<w (19)

The cross-terms in the above relation are not
written out because they vanish in the final
expression.

In order to establish the spectral density of
the response at a point on the top of the plate, we
take the expected value on both sides in Equation
19. Next, we multiply both sides by x/Tf, where Tg¢
is the duration of the finite Fourier transform,
and then we take the limit as Tgow, In our
analysis, we assume that the various forces
appearing in the above equations are uncorrelated.
This causes the expected value of the cross terms
in the above expression to vanish. This includes
not only the cross terms listed explicitly, but
also the cross terms that are generated when the
modulus squared of the second term is computed.
When the experimental system is responding either
in chaotic vibrations or in random vibrations this
is probably a reasonable assumption.

The spectral density of the response at a point
on the top plate over a sphere is

2
S (y,z,w) = [Hi(w)|™ S (w)
uu 1 FF)

2
+ZZ IH2(y,z,€j1,r)j2.w)| SFZFZ(jl,jz.w)
3y 3, )
2
4 H(y,2,0) |7 S (@),
sk (20)

Osy<a, 0=<zzb,




The spectral densities appearing in the first and
second components of the above equation are
identical because they are simply the spectral
densities of the forcing function random process
related to impact of a sphere on the bottom of the
upper plate. (Recall that component 1 is the
dilatational response to the impact of one sphere,
and component 2 is the flexural response to the
impacts of all spheres on the bottom of the top
plate.) The spectral density appearing in the
third component of the above equation is simply the
spectral density of the base motion, and it is
assumed that this is known because it is controlled
in any experiment. In the following, we pursue the
derivation of the impact force random process
spectral density.

Reference 9 shows that when an elastic sphere
impacts a massive elastic object the force time
history is approximately

A sin(wot), OSCSw/wO
£,.(0) = (21)
¢ 0, elsewhere
p3 0.2
2 1.2
where A = 1.33 R — v s
0 62
. 0.297 v°-2
0" 0.4
Ro(pS)_
where Rp is the radius of the sphere, p is the

mass density of the materials, V is the impact
velocity, and 6-(1-V2)/Ew is a parameter for a
material with Poisson’s ratio v and modulus of
elasticity E. Therefore, the impact force random
process can be represented

fl(t) - }: flcj(t-Tj), 0<t<e (22)
j=1

where the j_ subscript on flcj(t-Tj) indicates the
fact that the amplitude, A, "in Equation 21 is a

random variable, Aj, j=1,2,3,..., in the impact
force random process, and the Tj, j=-1,2,3,..., are
the random variables denoting impact times for the
sphere on the upper plate. The finite Fourier

transform of this random process is

Np

£
Fl(w) - }: exp(-inj) Flcj(w), - 0<w<o (23)
j=1

Where Fjcj(w) is the finite Fourier transform of
Equation 21, and the exponential is included to
show that the Fourier transforms of the individual
pulses simply equal the Fourier transform of
Equation 21 times a phase shift. The limit on the
above sum is denoted Nyg. Npf is a random variable

equal to the number of impacts in the time interval
(0,Tg).

The spectral density of the impact force random
process is the limit as Tg+o, of n/Tf times the
expected value of the modulus squared of F1(w).
This is

PROCEEDINGS - Institute of Environmental Sciences

lim
Tf*m

Sp g (@) =

2
E(N, ] E[|F,, (@]%], -odue
1F1 Tg Led

(24)

To establish this expression it is assumed that (1)
the number of impacts in the time interval (0,Tf)
is independent the random impact amplitudes, and
(2) the interarrival times of the impacts are
independent random variables.

To evaluate the second expected value in Equation
24 it is necessary have an expression for jthe
modulus squared of Ficj(w). This is

2
) A2 sinigg(w-wo) sinigg(w+wo)
- .
Py @1 = =1
(-0 (g
- o<l (25)

The above expression is a random variable because
it depends on the impact velocity V, which is a
random variable. The form of the dependence is
given in the expressions following Equation 21, and
it is apparent that the dependence 1is quite
complex.

There are several approaches that might be
taken to estimate the mean value of this
complicated function of the random variable V, but
a direct (and usually quite accurate) method is to
write a Taylor series expansion for the function in
the variable V, truncate this expression following
the quadratic terms, then take the expected value
of the result. The result is

2

ELIF, . (@)12] = gloi) + L g (orp), e
[Fyey@ g(w,ny 5 8" (w.ny),

(26)

where g(w,V) is the function on the right-hand side
in Equation 25, g'’(w,V) is its second derivative
with respect to V, and the moments of the impact
velocity, V, are given in Equations 14 and 16.

To evaluate Equation 24 it is now only
necessary to establish thé expected value of Nrg,
the number of impacts in the time interval (0,Tg).
The quantity ), given in Equations 13 and 15 is the
average number of impacts in the system per unit
time. The average of Nrf is simply

EN, ] =2T (27)

£ f

Based on this result, the spectral density of the
impact force random process is

2
g

v Tt
SF1F1(W) = ople,py) + R (CHEA

- 0L <o (28)

Use of this expression in Equation 20 completely
establishes the spectral density of the
displacement response on the surface of the test
system.




" To determine the spectral density of the
acceleration response on the surface of the test
system we merely multiply the above expression by
the quantity w4, This is

O (29)

It will be shown in the example to follow that the
spectral density related to the first component of
response (i.e., that due to passage of dilatational
waves through the top plate) is very substantial.

Numerical Example

A numerical example corresponding to the one in
Reference 1 is presented here. The impulse
response and frequency response functions for the
dynamic test system were derived in Reference 1,
and plots of these were shown for a specific case.
The system considered uses steel plates and steel
spheres. The material parameters are

E = 30x106 psi
p = 7.36x10-%4 lb-secZ/in%
v =0.3

The dimensions of the steel plates are

a = 15 inches
b = 9 inches
thickness = 0.5 inch

The spheres have a diameter of 0.25 inch, and there
are 15 of them placed on a cartesian grid with y
locations 1.5, 4.5, 7.5, 10.5, and 13.5 inches, and
z locations 1.5, 4.5, and 7.5 inches. The elastic
material attached to the lower plate is assumed to
have stiffness k = 1 1b/in.

For the case of the chaotic vibrations, the
input is given the amplitude Xg =52g=20000 in/secZ.
With all the other parameters, this indicates that
the parameters of the chaotic vibration are

wf = 3665 rad/sec (583 Hz)
A = 183 impacts/sec

py = 1.99 in/sec

oy = 2.47 in/sec

These system and input parameters combine to
yield an impact force random process whose one-
sided spectral density is that shown in Figure 6,
over the frequency interval (0,10000)Hz. The first
two components of the response excited by the force
random process (Equation 20) are shown in Figures 7
and 8. The rms value of the first component
(including only that mean square power in the

frequency interval (0,10000)Hz) is 1.12x105g. This
seems extraordinarily high, but when it is noted
from Equation 21 and Reference 1 that the peak
acceleration excited by the average impact is about
17000g, and the rate of occurrence is about 183
impacts/sec, the response is understandable.
Further, this is the rms response of the free
surface. When a test item is attached to the plate
surface ‘the severity of motion will decrease as a
function of the test item impedance.
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Figure 6. Spectral density of the force random
process for the example.
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Figure 7. Acceleration spectral density of
component 1 of the response random process for the
example.
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The second component of motion has an rms value
of 72g. While this is high by many standards, it
is completely overwhelmed by the first component.
The component of motion caused by the base input is
a 583 Hz sinusoidal component with amplitude of
70g. This component contributes 50g to the rms
response, and is also completely overwhelmed by the
first component of response.

It is important to keep in mind that the first
component of the plate surface motion (the
predominant component) is not a continuous
vibration signal, but rather a random sequence of
pulses like a shot noise random process. A time
history for this type of random process is shown in
Figure 9. This is similar to the sort of time
history that component 1 in this example might
execute, in the sense that acceleration pulses with
amplitudes of 10000 to 20000g are realized.
However, it is different from the sort of time
history that might be realized in connection with
component 1, in the sense that the average
frequency of impacts in Figure 9 is 35000
impacts/sec. (This change was made in the
generation of Figure 9 so that some character of
the accelaration pulses could be shown, and so that
several pulses could be shown in one time history.)

Random vibration of the dynamic test system was
also considered. The only substantial difference
between this and the chaotic vibrations case is
that the impact statistics are slightly changed.
Specifically, the impact rate and velocity
statistics are

X = 127 impacts/sec
py = 2.95 in/sec
oy = 5.83 in/sec

These parameters combine to yield an impact force
random process whose spectral density 1is
practically identical to that shown in Figure 6,
therefore, the primary component of response is

10K

g)

essentially the same as in the chaotic vibrations
case.

Conclusions

Reference 1 and the present paper propose a
mechanical system for the generation of test
environments that have high frequency, 1low
displacement, and high acceleretion. It is shown
that shot noise type acceleration environments with
frequency content well beyond 10000 Hz and rms
acceleration beyond 105g are possible. The
possibility of generating these types of
environments in the vibration laboratory
establishes the potential for testing small
components to extreme mechanical environments.

This approach does have limitations, though.
First, it does not appear possible to shape the
test spectrum in an arbitrary manner because the
displacement environment is primarily a shot noise
type environment, and this simply has a white
spectral density. (The spectral density is band-
limited because the displacement pulse has finite
duration, and the bandwidth can be controlled, to
some extent, through choice of the parameters of
the plates and the spheres.) Second, it only
appears feasible, at present, to test relatively
small components because large components will
substantially reduce the test environment.

Several aspects of this and similar test
systems bear further investigation. First, the
effects on the test environments caused by system
and input parameter variations should be
investigated. Second, the effects on the test
environment caused by the presence of various test
items must be investigated. Third, the possibility
of generating environments using similar test
devices should be considered. Finally, a vibration
test system should be built and evaluated in the
laboratory.
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