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Abstract 

This paper and a companion paper show that the 
traditional limits on amplitude and frequency that 
can be generated in a laboratory test on a 
vibration exciter can be substantially extended. 
This is accomplished by attaching a device to the 
shaker that permits controlled metal to metal 
impacts that generate a high acceleration, high 
frequency environment on a test surface. A 
companion paper (Reference 1) derives some of the 
mechanical relations for the system. This paper 
shows that a sinusoidal shaker input can be used to 
excite deterministic chaotic dynamics of the system 
yielding a random vibration environment on the test 
surface, or a random motion of the shaker can be 
used to generate a random vibration environment on 
the test surface. Numerical examples are presented 
to show the kind of environments that can be 
generated in this system. 

horizontal, large, flat metal plates, equpl in 
area, that are separated from one another by 
relatively small space on the order of one inch. 
The plates are held together along all edges with 
elements that keep the space between the plates (at 
least along the edges) constant. The bottom plate 
is attached to the shaker head. A relatively soft 
elastic material is attached to the top of the 
lower plate and the space between the top of the 
soft elastic material and the bottom of the upper 
plate is divided into compartments. The size of 
each compartment is approximately one half inch on 
a side. A steel sphere is placed in each 
compartment. The size of the steel sphere must be 
compatible with the compartment size and the space 
between the elastic material above the lower plate 
and the bottom of the top plate. 

bottom 
plate 

spheres -ferial dividers' 

Introduction 

Traditional methods for laboratory vibration 
testing on shakers can be used to produce 
environments with limits that are associated with 
the shaker size and capacity. Generally, 
electrodynamic shakers can generate environments 
with amplitudes up to hundreds of g's (on the 
shaker head) and with frequency content up to 2000, 
3000, or perhaps 5000 Hz. 

A companion paper (Reference 1) has described a 
mechanical system that can be used to extend the 
limits of environments that can be generated on 
shakers. A schematic of the system is shown in 
Figure 1. The system is composed of two 

* This work was sponsored by the U.S. Department 
of Energy under contract number DE-
AC04-706-DP00789. Paper No. SAND90-C835C. 

Figure 1. Schematic of experimental dynamic testing 
system. 

When a vertical motion is induced in this 
system by movement of the shaker head, motions on 
the top surface of the top plate are also induced. 
The top surface of the top plate is the test 
surface. The motion of the test surface is 
composed of three component parts. The first 
component of motion is related to the dilatational 
shock waves that travel through the plate when a 
sphere strikes the underside of the top plate. The 
second component of motion is the part induced by 
flexural response of the top plate responding to 
impacts that occur when the metal spheres hit the 
underside of the top plate. The third component of 
motion is induced by Che motion at the perimeter of 
the top plate. The dynamics of all three of these 
types of motion were investigated in Reference 1 
Specifically, Reference 1 established the impulse 
response functions and frequency responŝ e functions 
of the three components of motion. ^ 
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In this paper we consider (1) the dynamics of 
the elastic sphere moving between the soft elastic 
material attached to the top of the lower plate and 
the top plate, and (2) the spectral density of 
motion on the top surface of the top plate related 
to the three components of motion. We consider two 
types of motion excited by the vibration exciter. 
First, we consider sinusoidal motion, and then we 
consider random motion. We show that when the 
vibration exciter is used to excite a sinusoidal 
input, the response of the sphere can be made 
chaotic. When the response of the sphere is 
chaotic it strikes the upper plate at times whose 
intervals are unpredictable. This creates a motion 
in the upper plate, two of whose components are 
quasi-random. 

The second input generated with the vibration 
exciter is a stationary random process. A 
stationary random process causes the motion of the 
sphere to also be a stationary random process. 
When the motion of the sphere is a stationary 
random process it impacts the upper plate at random 
times and the forces generated when the sphere 
impacts the upper plate form a shot noise type 
random process. 

Numerical examples are presented which 
demonstrate the typical behavior of the 
experimental dynamic testing system. It is shown 
that when the vibration exciter is used to generate 
very nominal environments, the component of 
response due to Shockwave generation is very 
substantial. Specifically, low displacement, very 
high acceleration and high frequency environments 
are generated. For example, environments with 
frequency content well beyond 10,000 Hz and with 
rms acceleration beyond 100,000 g's are generated. 

Description of the System 

One aspect of the experimental dynamic testing 
system to be analyzed in this paper is the motion 
of a sphere between the top plate and the elastic 
material attached to the bottom plate. The dynamic 
model for this system is shown in Figure 2. In 
that system the sphere has mass m and is assumed to 
move vertically between a massless base plate, atop 
a spring with stiffness k and damper with damping 
value c, and the upper plate. The distance between 
the top of the sphere and the upper plate when the 
system is in static equilibrium is denoted d. The 
distance between the upper plate and lower plate is 
assumed to be held fixed. This is clearly an 
approximation since both the upper and lower plates 
are flexible, but it is a good approximation 
because the motion of the upper and lower plates is 
small relative to the motion of the sphere. The 
motion of the sphere is denoted by z(t), where z(t) 
is the absolute displacement of the sphere. The 
motion of the plate system is denoted by x(t). 

The equation of motion of the sphere can always 
be given by 

V-~- iR(y,y) +'x, (1) 

Where y-z-x. and dots denote differentiation with 
respect to time. R(y,y) is the restoring force for 
the system. Two forms for the restoring force and 

Figure 2. Model of the system to be analyzed. 

two forms of excitation will be considered in the 
following. Other forms of the restoring force will 
also be discussed. 

Chaotic Vibrations of a Fundamental System 

The first system to be be considered has the 
displacement restoring force shown schematically in 
Figure 3 and sinusoidal excitation. The equation 
of motion for the system is given by 

^ • ' ^ y + s y - - ^ 0 =^"(v>' ŷ ° (2) 

where XQ is the amplitude of the acceleration input 
and (jf is its frequency (in units of rad/sec). 

R(y) 

Figure 3. Restoring force of the first system. 

In this system the space between the top of the 
sphere and the bottom of the upper plate in static 
equilibrium is set to zero. It is assumed that the 
spring and the damper, below the sphere behave 
linearly, and that the collisions between the 
sphere and the upper plate are elastic. 

References 2 through 6 consider the nonlinear 
vibrations of this system in great detail 
Reference 2 recommends that the vibrations of this 
system be considered in a normalized form. It is 
recommended that Equation 2 be nondimensionalized 
in the following way. First, define the period of 
the system as 

T - TTJ (ra/k) , (3) 

This co r r e sponds to a system n a t u r a l frequency 
defined 

- 2jr/T - J (K/m) . W 
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Where K is the equivalent system stiffness and is 
given by 

K - 4k, (5) 

A c r i t i c a l damping for the system can be defined 

Cc - 2mci), ( 6 ) 

and the system damping factor is 

f - c/cc - c/2mu, (7) 

Now, a ratio of input forcing frequency to natural 
frequency for the system can be defined as 

Uf/W, (8) 

The displacement response can be nondimensionalized 
by dividing through by the quantity mXo/K. This 
yields 

(mX^/K) 
(9) 

F u r t h e r , t h e t ime base of the system can be 
nondimensionalized by defining 

T = (Jft, (10) 

With these changes the equation of motion becomes 

Y" + 2 ^ Y- + -^ Y - -^ sin T, Y<0, (11) 
'' 1 V 

where a prime denotes d i f f e r e n t i a t i o n with respec t 
to the va r i ab l e r . 

I t i s shown References 2 through 6 t h a t chaot ic 
v i b r a t i o n s occur in t h i s system a t about r)-4.5. 
This impl ies t h a t when the forcing frequency i s 
given by the value 

c h a o t i c v i b r a t i o n s o c c u r i n the e x p e r i m e n t a l 
system. Some chao t ic responses of the normalized 
system were c a l c u l a t e d . This was accomplished 
u s i n g a Runge-Kutta fou r th order approach, with 
v a r i a b l e s t e p s i z e . (See Reference 7 . ) The 
r e s u l t s of one c a l c u l a t i o n t h a t show t h e 
nondimensional ized r e l a t i v e displacement response 
of the system over a per iod of nondimensionalized 
time a re shown in Figure 4 . 

Severa l t h ings a re apparent ' from t h i s sho r t 
time segment of r e s p o n s e . F i r s t , the response 
appears random because the displacement does not 
follow any s e t p a t t e r n , however, the input i s not 
random and none of the system p a r a m e t e r s a r e 
r andom. T h e r e f o r e , t h e r e s p o n s e c a n n o t be 
c o n s i d e r e d t o be t r u l y random. T h i s i s a 
c h a r a c t e r i s t i c of chao t ic response. This type of 
behavior i s sometimes c a l l e d quasi-random. Second, 
the response appears to be l imi ted in amplitude 
and, i n d e e d , b e i n g a c h a o t i c response , i t i s . 
Th i rd , the impacts occur a t unpred ic tab le times 
with unpred ic t ab le v e l o c i t i e s . 

R e f e r e n c e s 2 t h r o u g h 6 c h a r a c t e r i z e t h e 
behav io r of t h i s system us ing s tandard measures 
a p p l i e d ' i n c h a o t i c v i b r a t i o n a n a l y s i s . For 
example, they p re sen t measures of the system gain 
for v a r i o u s v a l u e s of rj ( f o r c i n g frequency to 
system equ iva len t n a t u r a l frequency r a t i o ) . They 
p re sen t time h i s t o r i e s of the response, and they 
p r e s e n t P o i n c a r e maps. However, t hey do no t 
p r e sen t two aspec t s of the system response which 
a r e v e r y impor tan t in the p r e sen t a p p l i c a t i o n , 
n a m e l y , t h e c h a r a c t e r i s t i c s of i m p a c t t i m e 
i n t e r v a l s and impact v e l o c i t i e s . 

We u s e d o u r own n u m e r i c a l a n a l y s e s t o 
i n v e s t i g a t e these q u a n t i t i e s . We found t h a t the 
a v e r a g e i m p a c t t i m e i n t e r v a l f o r t h e 
n o n d i m e n s i o n a l i z e d r e sponse , Y ( T ) , i s 20 ( t ime 
u n i t s ) . This impl ies t h a t the average impact r a t e 
for the a c t u a l response , y ( t ) , i s 

wf - 4.5 w - 9 J(k/m). (12) 0.05 wf. (13) . 

NornHlized Time 

Figure 4. Segment of chaotic response of the system 
shown in Figure 2. Relative displacement and time 
are nondimensionalized. ?7-4 . 5 , f-0.1 
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This is the average frequency of impacts of the 
c h a o t i c a l l y v i b r a t i n g system. Fur ther , our 
investigations showed that the mean and standard 
deviation of the nondimensionalized impact velocity 
are 0.018 and 5x10"^ (displacement uni t ) / ( t ime 
uni t ) , respectively. This implies that the mean 
and variance of the actual impact velocity for the 
system in chaotic vibration are 

fiTj - 0.365 Xo/uf, ay - 0.453 Xo/wf, (14) 

The V subscript denotes impact velocity. The units 
on both these quantities depend on the units of XQ 
and might be, for example, in/sec. 

The impact time intervals of the response were 
plotted on exponential probability paper to 
establish whether or not they might have an 
exponential probability distribution. The results 
indicate that the interarrival times of the impacts 
do not follow an exponential distribution. 

In summary, the results presented here imply 
that a wide range of chaotic impact behaviors can 
be established for this system. Equation 12 shows 
that when the system mass and stiffness are chosen, 
the frequency of the input that causes chaos is 
established. Equation 13 shows that the frequency 
of impacts is about one twentith the input 
frequency. Equation 14 shows that the mean and the 
variance of the impact velocity can be set simply 
by varying the amplitude of the input motion XQ. 

Random Vibration of the Experimental Dynamic 
Testing System 

When the experimental system is excited with a 
random input, the motion of the sphere is a random 
process. We excited the nondimensionalized system 
with a stationary white noise random process whose 
root-mean-square (rms) value is equal to the rms of 
the sinusoidal input in the previous section. 
Specifically, we replaced the term, sin r, in 
Equation 11 with a term r(r), where r(T) is a white 

noise random process with with rms value 1/J2. The 
system response was again computed using the Runga-
Kutta, variable step size algorithm, and a 
realization of the response random process is shown 
in Figure 5. 

The character of this response is somewhat 
different from that shown in Figure 4, the chaotic 
response. In theory, the random response is 
unbounded, though the response of actual systems is 
obviously always bounded. As in the chaotic 
response, the impact times are unpredictable, and 
in this case, they are actually random. The impact 
velocities are also random. The mean rate of 
impacts in the randomly driven system is 

X - 0.035 uf, (15) 

That is, the rate of impact is lower than In the 
chaotically driven system. The mean and standard 
deviation of impact velocity are 

Hy - 0.541 Xo/uf, ^v " 1-07 Xo/uf, (16) 

On the average, the impacts of the randomly driven 
system are more severe and have greater 
variability. The correlation between impact time 
intervals and impact velocities was calculated in 
both cases and shown to be very small, essentially 
zero. Further, the correlation between consecutive 
impact times was calculated in both cases and shown 
to be approximately zero. 

The impact time intervals of the response were 
plotted on exponential probability paper to 
establish whether or not they might havfe an 
exponential probability distribution. The results 
indicate that the interarrival times of the impacts 
are exponentially distributed in this case. This 
indicates that the impact force random process is a 
shot noise random process. (See Reference 8.) 

IStormalized Time 

Figure 5 Segment of random vibration response of 
the system shown in Figure 2. Relative 
displacement and time are nondimensionalized 
r;-4.5, f-0.1 
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Chaotic and Random Vibrations of Other Systems 

The behavior of some other systems were 
evaluated for comparison to those shown in the 
previous two sections. The first system considered 
was one in which the gap between the top of the 
sphere and the bottom of the upper plate in static 
equilibrium was set at some small value. It was 
shown when the excitation provided by the vibration 
exciter was sinusoidal, chaotic modes of vibration 
do occur in the system. 

The random vibration response of the same 
system was also computed. Again, the random input 
was taken to be a stationary random process whose 
spectral density is white. Response calculation 
showed that the random vibration response is 
similar to the chaotic response. 

Other systems with nonlinear base spring 
restoring forces were investigated, and it is 
believed that chaotic type responses occur with 
this type of system, also. 

Spectral Density of Dynamic Test System Motion 

It was shown in Reference 1 that the motion at 
the surface of the test system (atop a location 
where a sphere impacts) is composed of three 
components. These three components are (1) the 
shock wave component related to dilatational motion 
excited by impact of the sphere against the bottom 
of the top plate, (2) the flexural motion at a 
point caused by impacts of spheres at multiple 
points on the bottom of the top plate, and (3) 
flexural related motion at a point on the surface 
of the top plate excited by motion of the vibration 
exciter at the base of the system. The 
displacement response at the surface of the top 
plate can be expressed 

u(y,z,t) ^(t-r) f̂ (r) dr 
•' -00 

^^|\(y.z,c.^.-,.^.t-Of2(JiJ2.0 dr 

hh 
h2(y,z,t-T) r(r) dr. 

0<y<a, 0<z<b, -«><t<«j (17) 

where h^, h2, and h3 are the displacement impulse 
response functions for the three components of 
motion developed in Reference 1. The function h2 
depends on the location where the response is 
analyzed, (y,z), and the location where the input 
is generated, (Til.'?!2)- The function h3 depends 
only on (y,z). The functions fi(t) and f2(Jl.J2>'-) 
refer to forces on the bottom of the upper plate. 
The ji and J2 refer to the location of the input 
force. The function r(t) refers to the 
acceleration induced through the boundary. The 
quantities y, z, f, and rj are coordinates on the 
surface of the plate. The plate has length a and 
width b. 

To establish the spectral density of the 
structural response it is necessary to finite 
Fourier, transform the displacement response. The 
finite Fourier transform of the displacement 
response is given by 

U(y,z,o)) - Hĵ ((j) Fĵ (u) 

+ ̂ ^ H 2 ( y . z , | ,, ,.) F2(j,,J2.-) 

J1J2 

+ H2(y,z,u) R(u), 

0<y<a, 0<z<b, -<»<<<)<«> (18) 

where H]^, H2, and H3 are system frequency response 
functions and are the Fourier transforms of the 
impulse response functions, h^, h2, and h3. F̂ , 
F2, and R are the Fourier transforms of the inputs 
f1, f2, and r. 

The next step in computing the spectral density 
of the response is to establish the modulus squared 
of the finite Fourier transform. This is 
established by multiplying each side of the above 
equation by its complex conjugate. The result is 

|U(y,z,u)|^ - |Ĥ (a>)|̂  |F^(u)|^ 

+ |X^H2(y,z,f.^,,.^,.)F2(j,.i2,o,) I 

J'l J2 

2 2 
+ |H (y,z,w)| |R(w)| + (cross-terms), 

0<y<a, 0<z<b, -«o<oj<eo (19) 

The cross-terms in the above relation are not 
written out because they vanish in the final 
expression. 

In order to establish the spectral density of 
the response at a point on the top of the plate, we 
take the expected value on both sides in Equation 
19. Next, we multiply both sides by ff/Tf, where Tf 
is the duration of the finite Fourier transform, 
and then we take the limit as Tf-»». In our 
analysis, we assume that the various forces 
appearing in the above equations are uncorrelated. 
This causes the expected value of the cross terms 
in the above expression to vanish. This includes 
not only the cross terms listed explicitly, but 
also the cross terms that are generated when the 
modulus squared of the second term is computed. 
When the experimental system is responding either 
in chaotic vibrations or in random vibrations this 
is probably a reasonable assumption. 

The spectral density of the response at a point 
on the top plate over a sphere is 

Syy(y,z,<o) - |Ĥ (<̂ )| Sp p (u) 

Ji h 

0<y<a, 0<z<b, -<x><uK« (20) 
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The spectral densities appearing in the first and 
second components of the above equation are 
identical because they are simply the spectral 
densities of the forcing function random process 
related to Impact of a sphere on the bottom of the 
upper plate. (Recall that component 1 is the 
dilatational response to the impact of one sphere, 
and component 2 is the flexural response to the 
impacts of all spheres on the bottom of the top 
plate.) The spectral density appearing in the 
third component of the above equation is simply the 
spectral density of the base motion, and it is 
assumed that this is known because it is controlled 
in any experiment. In the following, we pursue the 
derivation of the impact force random process 
spectral density. 

Reference 9 shows that when an elastic sphere 
impacts a massive elastic object the force time 
history is approximately 

Sp F ('-) 
1 1 

i'lEIN^ ] E[|F^^.(<o)|2] -<o<<j<o= 

(24) 

To establish this expression it is assumed that (1) 
the number of impacts in the time interval (0,Tf) 
is independent the random impact amplitudes, and 
(2) the interarrival times of the impacts are 
independent random variables. 

To evaluate the second expected value in Equation 
24 it is necessary have an expression for i the 
modulus squared of Fxcj M• This is 

I F , , . (<.)!' 

A 2 
J 

(27r)^ 

3in_(a,-c .Q) s i n 2 ^ ( c ^ o ) 

( U - U Q ) (OJ+UQ) 

flc(^> 

A sin(uQt), 

0 , 

r 3 
P 

where A - 1 .33 R! 
0 

0 . 2 

0.297 

•"o" 
,0.2 

RQ(PS) 
0 . 4 

0 < t < 7 r / u 

elsewhere 
(21) 

.1.2 

where RQ i s the radius of the sphere, p i s the 
mass densi ty of the mater ia l s , V i s the impact 
v e l o c i t y , and S~(.l-i'^)/Eir i s a parameter for a 
material with Poisson's ra t io i/ and modulus of 
e l a s t i c i t y E. Therefore, the impact force random 
process can be represented 

-aXXiyZco (25) 

The above expression is a random variable because 
it depends on the impact velocity V, which is a 
random variable. The form of the dependence is 
given in the expressions following Equation 21, and 
it is apparent that the dependence is quite 
complex. 

There are several approaches that might be 
taken to estimate the mean value of this 
complicated function of the random variable V, but 
a direct (and usually quite accurate) method is to 
write a Taylor series expansion for the function in 
the variable V, truncate this expression following 
the quadratic terras, then take the expected value 
of the result. The result is 

fj^(t) -z 
j - 1 

'lcj('-^J^' 
0<t<« (22) 

where the j_ subscript on ficj(t-Tj) indicates the 
fact that the amplitude. A, in Equation 21 is a 
random variable, Aj , j-1,2,3 in the impact 
force random process, and the Tj, j-1,2,3,..., are 
the random variables denoting impact times for the 
sphere on the upper plate. The finite Fourier 
transform of this random process is 

F]^(u.) I 
j-1 

exp(-iuT.) F, .(<j), 
J Icj 

-«><a><«> (23) 

Where Fxcj(w) is the finite Fourier transform of 
Equation 21, and the exponential is included to 
show that the Fourier transforms of the individual 
pulses simply equal the Fourier transform of 
Equation 21 times a phase shift. The limit on the 
above sum is denoted N-pf. Nxf is a random variable 
equal to the number of impacts in the time interval 
(0,Tf). 

The spectral density of the impact force random 
process is the limit as Tf", of 7r/Tf times the 
expected value of the modulus squared of Fi(ai). 
This is 

E[lF^,^(a.)|2] g(".My) + ("./̂ V̂ ' 
-'0<u<,a> 

(26) 

where g(a),V) is the function on the right-hand side 
in Equation 25, g''((0,V) is its second derivative 
with respect to V, and the moments of the impact 
velocity, V, are given in Equations 14 and 16. 

To evaluate Equation 24 it is now only 
necessary to establish the' expected value of Nxf, 
the number of impacts in the time interval (0,Tf). 
The quantity X, given in Equations 13 and 15 is the 
average number of impacts in the system per unit 
time. The average of Nxf is simply 

E[N ] - A T., 
f 

(27) 

Based on this result, the spectral density of the 
impact force random process is 

S (w) - nX 
1 1 

g(u,/Jy) + -2 g " (W,/Jy) 

-«><U?<«) (28) 

Use of t h i s expression in Equation 20 completely 
e s t a b l i s h e s t h e s p e c t r a l d e n s i t y of t h e 
displacement response on the surface of the t e s t 
system. 
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To determine the spectral density of the 
acceleration response on the surface of the test 
system we merely multiply the above expression by 
the quantity ixh. This is 

Suu<"^ 
J^ S (u), 

UU ' 
-CO<ti)<<» (29) 

It will be shown in the example to follow that the 
spectral density related to the first component of 
response (i.e., that due to passage of dilatational 
waves through the top plate) is very substantial. 

Numerical Example 

A numerical example corresponding to the one in 
Reference 1 Is presented here. The impulse 
response and frequency response functions for the 
dynamic test system were derived in Reference 1, 
and plots of these were shown for a specific case. 
The system considered uses steel plates and steel 
spheres. The material parameters are 

E - 30xl06 psi 
p - 7.36x10-* lb-sec2/in* 
1/ - 0.3 

The dimensions of the steel plates are 

a - 15 inches 
b - 9 inches 
thickness - 0.5 inch 

The spheres have a diameter of 0.25 inch, and there 
are 15 of them placed on a cartesian grid with y 
locations 1.5, 4.5, 7.5, 10.5, and 13.5 inches, and 
z locations 1.5, 4.5, and 7.5 inches. The elastic 
material attached to the lower plate is assumed to 
have stiffness k - 1 lb/in. 

For the case of the chaotic vibrations, the 
input is given the amplitude XQ -52g-20000 in/sec2. 
With all the other parameters, this indicates that 
the parameters of the chaotic vibration are 

a.f - 3665 rad/sec (583 Hz) 
X - 183 impacts/sec 
PV - 1.99 in/sec 
<7v - 2.47 in/sec 

These system and input parameters combine to 
yield an impact force random process whose one­
sided spectral density is that shown in Figure 6, 
over the frequency interval (0,10000)Hz. The first 
two components of the response excited by the force 
random process (Equation 20) are shown in Figures 7 
and 8. The rms value of the first component 
(including only that mean square power in the 

frequency interval (0,10000)Hz) is 1.12xl05g. This 
seems extraordinarily high, but when it is noted 
from Equation 21 and Reference 1 that the peak 
acceleration excited by the average impact is about 
17000g, and the rate of occurrence is about 183 
impacts/sec, the response is understandable. 
Further, this is the rms response of the free 
surface. When a test item is attached to the plate 
surface ̂ the severity of motion will decrease as a 
function of the test item impedance. 
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Figure 6. Spectral density of the force random 
process for the example. 

10-

o 

0) 

g • 

'^lo-^" ^ 

10^ 10^ 10^ 

Frequency (Hz) 
10^ 

F i g u r e 7 . A c c e l e r a t i o n s p e c t r a l d e n s i t y of 
component 1 of the response random process for the 
example. 
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F i g u r e 8. A c c e l e r a t i o n s p e c t r a l d e n s i t y of 
component 2 of the response random process for the 
example. 
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The second component of motion has an rms value 
of 72g. While t h i s i s high by many s t anda rds , i t 
i s completely overwhelmed by the f i r s t component. 
The component of motion caused by the base input i s 
a 583 Hz s i n u s o i d a l component with amplitude of 
70g. This component con t r ibu tes 50g to the rms 
response, and i s a lso completely overwhelmed by the 
f i r s t component of response. 

I t i s important to keep in mind t h a t the f i r s t 
component of t h e p l a t e s u r f a c e m o t i o n ( t h e 
p r e d o m i n a n t component ) i s n o t a c o n t i n u o u s 
v i b r a t i o n s i g n a l , but r a t h e r a random sequence of 
pulses l i k e a shot noise random process . A time 
h i s t o r y for t h i s type of random process i s shown in 
Figure 9. This i s s imi la r to the s o r t of time 
h i s t o r y t h a t component 1 in t h i s example might 
execute, i n the sense t ha t acce l e ra t ion pulses with 
a m p l i t u d e s of 10000 to 20000g a r e r e a l i z e d . 
However, i t i s d i f f e r e n t from the s o r t of time 
h i s t o r y t h a t might be r ea l i zed in connection with 
component 1, i n t h e s e n s e t h a t t h e a v e r a g e 
f r e q u e n c y of i m p a c t s i n F i g u r e 9 i s 5000 
i m p a c t s / s e c . ( T h i s change was made i n t h e 
genera t ion of Figure 9 so t ha t some cha rac te r of 
the acce l a r a t i on pulses could be shown, and so t ha t 
severa l pu l ses could be shown in one time h i s t o r y . ) 

Random v i b r a t i o n of the dynamic t e s t system was 
a l so considered. The only s u b s t a n t i a l d i f ference 
between t h i s and the chaot ic v ib r a t i ons case i s 
t h a t the impact s t a t i s t i c s a re s l i g h t l y changed. 
S p e c i f i c a l l y , t h e impac t r a t e and v e l o c i t y 
s t a t i s t i c s are 

X - 127 impacts/sec 
^V - 2.95 i n / s ec 
Of] - 5.83 i n / s ec 

These parameters combine to y i e l d an impact force 
r andom p r o c e s s whose s p e c t r a l d e n s i t y i s 
p r a c t i c a l l y i d e n t i c a l to tha t shown in Figure 6, 
t h e r e f o r e , the primary component of response i s 

e s s e n t i a l l y the same as in the chaot ic v i b r a t i o n s 
case . 

Conclusions 

Reference 1 and the p resen t paper propose a 
m e c h a n i c a l sys tem fo r t h e g e n e r a t i o n of t e s t 
e n v i r o n m e n t s t h a t have h i g h f r e q u e n c y , low 
displacement, and high a c c e l e r e t i o n . I t i s shown 
tha t shot no ise type a c c e l e r a t i o n environments with 
frequency con t en t wel l beyond 10000 Hz and rms 
a c c e l e r a t i o n beyond lO^g a r e p o s s i b l e . The 
p o s s i b i l i t y of g e n e r a t i n g t h e s e t y p e s of 
e n v i r o n m e n t s i n t h e v i b r a t i o n l a b o r a t o r y 
e s t a b l i s h e s t h e p o t e n t i a l f o r t e s t i n g s m a l l 
components to extreme mechanical environments. 

This approach does have l i m i t a t i o n s , though. 
F i r s t , i t does not appear poss ib le to shape the 
t e s t spectrum in an a r b i t r a r y manner because the 
displacement environment i s p r imar i ly a shot noise 
type env i ronment , and t h i s simply has a whi te 
s p e c t r a l dens i t y . (The s p e c t r a l dens i ty i s band-
l im i t ed because the displacement .pulse has f i n i t e 
du ra t ion , and the bandwidth can be c o n t r o l l e d , to 
some e x t e n t , through choice of the parameters of 
the p l a t e s and the s p h e r e s . ) Second, i t only 
appears f e a s i b l e , a t p re sen t , to t e s t r e l a t i v e l y 
smal l components because l a r g e components w i l l 
s u b s t a n t i a l l y reduce the t e s t environment. 

S e v e r a l a s p e c t s of t h i s and s i m i l a r t e s t 
systems bear f u r t h e r i n v e s t i g a t i o n . F i r s t , the 
e f f e c t s on the t e s t environments caused by system 
and i n p u t p a r a m e t e r v a r i a t i o n s s h o u l d be 
i n v e s t i g a t e d . Second, the e f f e c t s on the t e s t 
environment caused by the presence of va r ious t e s t 
items must be i n v e s t i g a t e d . Third, the p o s s i b i l i t y 
of g e n e r a t i n g envi ronments u s i n g s i m i l a r t e s t 
devices should be considered. F i n a l l y , a v i b r a t i o n 
t e s t system should be b u i l t and evaluated in Che 
l abo ra to ry . 
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Figure 9. Realization of a shot noise random 
process. 
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