

10
2-21-90 51 (2)

SANDIA REPORT

SAND89-1971 • UC-705

Unlimited Release

Printed October 1989

Certification of ANVIL 5000 Mass Properties, ANVIL 5000 Version 1.2 Simple Homogeneous Shapes and Point-Mass Assemblies

Richard H. Robison, MTS

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550
for the United States Department of Energy
under Contract DE-AC04-76DP00789

DO NOT MICROFILM
COVER

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States Government, any agency thereof or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from
Office of Scientific and Technical Information
PO Box 62
Oak Ridge, TN 37831

Prices available from (615) 576-8401, FTS 626-8401

Available to the public from
National Technical Information Service
US Department of Commerce
5285 Port Royal Rd
Springfield, VA 22161

NTIS price codes
Printed copy: A03
Microfiche copy: A01

SAND89-1971
Unlimited Release
Printed: October, 1989

SAND--89-1971
DE90 006464

**CERTIFICATION OF ANVIL 5000 MASS PROPERTIES
ANVIL 5000 Version 1.2
Simple Homogeneous Shapes and Point-Mass Assemblies**

Richard H. Robison, MTS
Project Design Definition IV and Applications Software
Division 2854

Sandia National Laboratories
Albuquerque, New Mexico

ABSTRACT

This document evaluates the accuracy of mass properties computations from the ANVIL 5000 CAD system. Mass property results and a measure of their accuracy are given for both individual solid model components and for point-mass assembly sums. The mass properties' accuracies were determined by comparing the results obtained from ANVIL 5000 with either theoretical values or with results from another trusted software package.

ACKNOWLEDGEMENTS

The author wishes to acknowledge a similar study completed by Gregory N. Barnes, a HBCU student from Prairie View A&M University, supervised by Steve Bacca (2833) and mentored by Greg Neugebauer (2854) at Sandia during the Summer of 1988. Barnes' work provided a guideline for this report including the general outline and the geometric shapes used in section 3.1. Also, point mass component data was contributed by Roxy Sippio (2854), and point mass assembly results used for comparisons in section 3.2 were provided by Irene Kolb (2858).

Summary

This report evaluates the accuracy of ANVIL 5000 v1.2 mass properties computations for both solid model components and point-mass assemblies. The accuracy of component mass properties was determined by comparing ANVIL 5000's results with textbook values for several standard shapes. The assembly mass properties were evaluated by comparing ANVIL 5000's results with those from another trusted software package.

For component accuracy, the following table shows the percent error for each mass property averaged across all tested shapes:

**AVERAGE PERCENT ERROR
FOR ALL EIGHT STANDARD SHAPES**

Volume	0.046
Weight.....	0.034
Center of Mass	
xt.....	0.09
yt.....	0.04
zt.....	0.10
Moments of Inertia	
xt.....	0.56
yt.....	0.26
zt.....	0.91

From the above table it was concluded that ANVIL 5000 can compute mass properties within approximately a +/- 1 percent error band.

In the case of assemblies, it was concluded that ANVIL 5000 can sum assembly mass properties with no significant error.

Table of Contents

1.0	Introduction.....	1
2.0	Method and Procedure	2
3.0	Results	3
3.1	Individual Components.....	3
3.1.1	Right Circular Cylinder.....	3
3.1.2	Right Circular Cone.....	6
3.1.3	Right Rectangular Pyramid.....	8
3.1.4	Rectangular Prism.....	10
3.1.5	Sphere.....	12
3.1.6	Hemisphere.....	14
3.1.7	Thin Circular Cylindrical Shell.....	16
3.1.8	Thin Spherical Shell.....	18
3.1.9	Discussion.....	20
3.2	Point-mass Assemblies	22
3.2.1	Ballasts (Assembly #1)	22
3.2.2	Components (Assembly #2).....	24
3.2.3	Mtplates (Assembly #3).....	25
3.2.4	Discussion.....	26
4.0	Conclusions.....	27

1.0 Introduction

Mass properties analysis at Sandia is critical when packaging sub-assembly components in highly sophisticated weapon systems. Sandia's Mass Properties Laboratory measures component mass properties and uses the results to stabilize the weapon systems. A thorough computer-aided mass properties analysis in the early design phase can save substantial amounts of time and money during the laboratory prototype testing process and during the entire product design cycle.

MCS's (Manufacturing Consulting Services) ANVIL 5000 MCAD system is the proposed tool for performing mass properties analysis during the design phase. ANVIL 5000 is currently used at SNLA for all mechanical design layout and detail drawings and is also used extensively by manufacturing personnel in numerical control machining. SNLA currently has over 140 VAX workstations licensed to run ANVIL 5000 which together release hundreds of engineering drawings annually.

ANVIL 5000, a floating point based system, interfaces to several engineering analysis packages including PATRAN for finite element analysis and DRAM for kinematic analysis. Regarding mass properties analysis, ANVIL 5000 has the ability to read point-mass data from externally generated ASCII files for use in summing assembly mass properties. This capability allows designers to incorporate mass property data previously generated by external sources into their analyses on ANVIL 5000. Furthermore, user's can easily share their mass property data.

The objective of this report is to determine the accuracy of ANVIL 5000's current mass properties computations before releasing the software to design engineers for the specific task of analyzing mass properties. This includes 1) outlining a method for thoroughly testing all ANVIL 5000's current mass properties capabilities, and 2) using the test results to make the above determination.

2.0 Method and Procedure

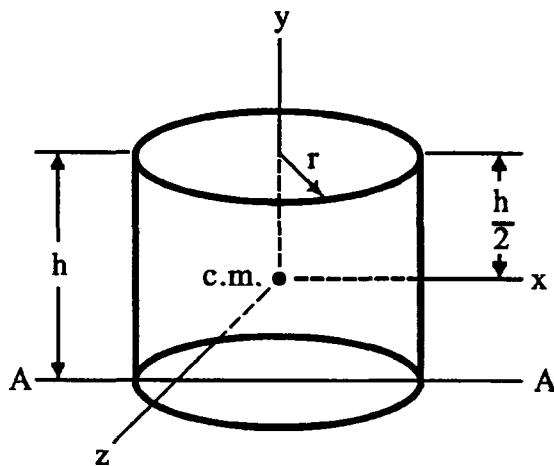
This section describes the method followed for evaluating the accuracy of ANVIL 5000's mass properties computations. ANVIL 5000 currently computes mass properties for both individual components and component assemblies. For both of these, the proposed test method was to compare results from ANVIL 5000 with values from another source known to be valid. The percent error was then determined between the actual values and those given by ANVIL 5000.

For individual components, the exact mass properties were calculated by explicit textbook formulas for several standard shapes, using two cases per shape. Each case was also modeled as a solid model part using Omnisolids, ANVIL 5000's solid modeler. ANVIL 5000 then computed the mass properties for each of these solid model parts, and the results were compared to the theoretical values.

For component assemblies, three point-mass assemblies were modeled on both ANVIL 5000 and on Schlumberger's Applicon Image system which was used by SNLA prior to ANVIL 5000. The resulting ANVIL 5000 assembly mass properties results were then compared with results from The Applicon system. Assembly mass properties were computed on the Image system using a software package called UCMD 92 (UCMD, User Command, is Applicon's CAD applications programming environment), a proven assembly mass properties analyzer.

3.0 Results

This section presents the mass properties test results for each test case from both ANVIL 5000 and the comparison source. The following units apply to all mass properties analysis:


Length	inches (in)
Mass	Pounds mass (lbm)
Density (ρ)	pounds mass per inch cubed (lbm/in ³)
Moment of Inertia	pounds mass inches squared (lbm-in ²)

The following material properties were used for the individual component mass properties analysis:

Case 1	Aluminum 6061	$\rho = .098$
Case 2	Tungsten	$\rho = .681$

3.1 Individual Components

3.1.1 Right Circular Cylinder

$$I_{xx} = I_{zz} = \frac{m}{12} (3r^2 + h^2)$$

$$I_{yy} = \frac{1}{2} mr^2$$

$$I_{AA} = \frac{m}{12} (3r^2 + 4h^2)$$

Case 1: $r = 30$ $h = 60$ $\rho = .098$

Theoretical

$$\begin{aligned} I_{xx} &= I_{zz} = 872826.868 \\ I_{yy} &= 7481388.745 \end{aligned}$$

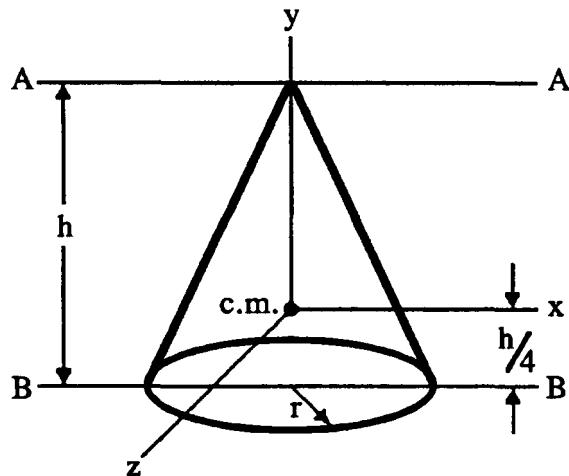
Computed by ANVIL 5000

COMPONENT MASS PROPERTIES		
ID NUMBER	1	
NAME	RTCIRCYL1	
TYPE	OMNISOLID	
SURFACE AREA	16963.7778	
VOLUME	169635.8324	
WEIGHT	16624.3116	
DENSITY	0.098	
CENTER OF MASS XT		
YT	29.99936	
ZT	-0.0000226	
AXIAL MOMENTS OF INERTIA I (XX)		
I (YY)	8647205.4986	
I (ZZ)	8644244.9877	
	7476840.0262	

Case 2: $r = .25$ $h = .5$ $\rho = .681$

Theoretical

$$\begin{aligned} I_{xx} &= I_{zz} = .002437495 \\ I_{yy} &= .002089282 \end{aligned}$$


Computed by ANVIL 5000

COMPONENT MASS PROPERTIES		
ID NUMBER	1	
NAME	RTCIRCYL2	
TYPE	OMNISOLID	
SURFACE AREA	1.1780	
VOLUME	0.09817	
WEIGHT	0.06685	
DENSITY	0.681	
CENTER OF MASS XT		
YT	-0.0000219	
ZT	.24999995	
	-0.000000	
AXIAL MOMENTS OF INERTIA I (XX)		
I (YY)	0.002415	
I (ZZ)	0.002088	
	0.002414	

Percent Error Results

<u>Component</u> <u>Property</u>	<u>Percent Error</u>		
	<u>Case 1</u>	<u>Case 2</u>	<u>Average % Error</u>
Volume	.006	.006	.006
Weight	.005	.006	.0055
Center of Mass			
xt	0	0	0
yt	0	0	0
zt	0	0	0
Moments of Inertia			
Ixx	.93	.93	.93
Iyy	.06	.06	.06
Izz	.96	.96	.96
TOTAL AVERAGE ERROR (TAE)			1.96

3.1.2 Right Circular Cone

$$I_{xx} = I_{zz} = \frac{3m}{80} (4r^2 + h^2)$$

$$I_{yy} = \frac{3}{10} mr^2$$

$$I_{AA} = \frac{3m}{20} (r^2 + 4h^2)$$

$$I_{BB} = \frac{m}{20} (3r^2 + 2h^2)$$

Case 1: $r = 30$ $h = 60$ $\rho = .098$

Theoretical
 $I_{xx} = I_{zz} = 1496277.749$
 $I_{yy} = 1496277.749$

Computed by ANVIL 5000

COMPONENT MASS PROPERTIES

ID NUMBER	1
NAME	RTCONE1
TYPE	OMNISOLID
SURFACE AREA	9148.4358
VOLUME	56540.4425
WEIGHT	5540.9634
DENSITY	0.098

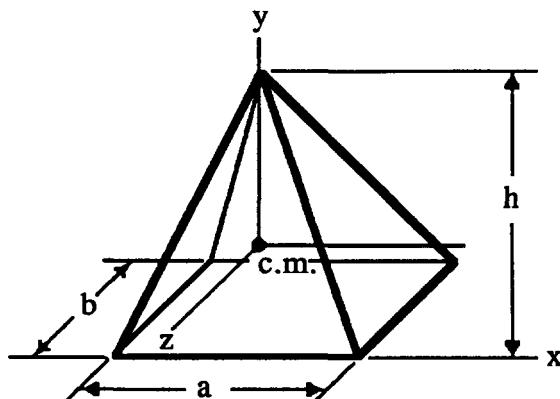
CENTER OF MASS	XT	-0.0058
	YT	45.0000
	ZT	-0.000075

AXIAL MOMENTS OF INERTIA	$I_{(XX)}$	1495374.1237
	$I_{(YY)}$	1492356.8916
	$I_{(ZZ)}$	1493042.8770

Case 2: $r = .25$ $h = .5$ $\rho = .681$

Theoretical

$I_{xx} = I_{zz} = .0004178$
 $I_{yy} = .0004178$


Computed by ANVIL 5000

COMPONENT MASS PROPERTIES		
ID NUMBER	1	
NAME	RTCONE2	
TYPE	OMNISOLID	
SURFACE AREA	0.6353	
VOLUME	0.0327	
WEIGHT	0.02228	
DENSITY	0.681	
CENTER OF MASS XT -0.00005		
	YT	0.375000
	ZT	-0.00000
AXIAL MOMENTS OF INERTIA I (XX)		0.0004176
	I (YY)	0.0004168
	I (ZZ)	0.0004170

Percent Error Results

Component	Percent Error		
<u>Property</u>	<u>Case 1</u>	<u>Case 2</u>	<u>Average % Error</u>
Volume	.014	.014	.014
Weight	.014	.018	.016
Center of Mass			
xt	0	0	0
yt	0	0	0
zt	0	0	0
Moments of Inertia			
I_{xx}	.06	.07	.065
I_{yy}	.26	.26	.26
I_{zz}	.22	.22	.22
TOTAL AVERAGE ERROR (TAE)			0.58

3.1.3 Right Rectangular Pyramid

$$I_{xx} = \frac{m}{80} (4b^2 + 3h^2)$$

$$I_{yy} = \frac{m}{20} (a^2 + b^2)$$

$$I_{zz} = \frac{m}{80} (4a^2 + 3h^2)$$

Case 1: $a = b = h = 60$ $\rho = .098$

Theoretical

$$I_{xx} = 2222640$$

$$I_{yy} = 2540160$$

$$I_{zz} = 2222640$$

Computed by ANVIL 5000

COMPONENT MASS PROPERTIES

ID NUMBER 1

NAME PYRAMID1

TYPE OMNISOLID

SURFACE AREA 12656.0753

VOLUME 72000.0000

WEIGHT 7056.00000

DENSITY 0.098

CENTER OF MASS XT .3820349

YT .3820349

ZT 15.00000

AXIAL MOMENTS OF INERTIA $I_{(XX)}$ 2204568.2676

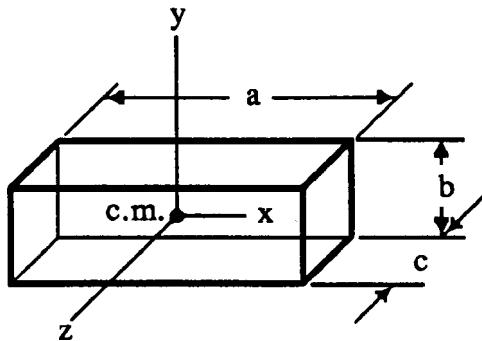
$I_{(YY)}$ 2535527.5533

$I_{(ZZ)}$ 2139872.9529

Case 2: $a = b = h = .5$ $\rho = .098$

Theoretical

$I_{xx} = 0.0000620703$
 $I_{yy} = 0.000709375$
 $I_{zz} = 0.000620703$


Computed by ANVIL 5000

COMPONENT MASS PROPERTIES	
ID NUMBER	1
NAME	PYRAMID2
TYPE	OMNISOLID
SURFACE AREA	0.9080
VOLUME	0.0417
WEIGHT	0.0284
DENSITY	0.681
CENTER OF MASS XT 0.0032	
	YT 0.0032
	ZT 0.1250
AXIAL MOMENTS OF INERTIA I(XX) 0.0006157	
	I(YY) 0.0007081
	I(ZZ) 0.0005976

Percent Error Results

Component <u>Property</u>	Percent Error		
	<u>Case 1</u>	<u>Case 2</u>	<u>Average % Error</u>
Volume	0	0	0
Weight	0	0	0
Center of Mass			
xt	.64	.60	.62
yt	0	0	0
zt	.64	.60	.62
Moments of Inertia			
I_{xx}	.8	.8	.8
I_{yy}	.18	.18	.18
I_{zz}	3.7	3.7	3.7
TOTAL AVERAGE ERROR (TAE)			5.92

3.1.4 Rectangular Prism

$$I_{xx} = \frac{m}{12} (b^2 + c^2)$$

$$I_{yy} = \frac{m}{12} (a^2 + c^2)$$

$$I_{zz} = \frac{m}{12} (a^2 + b^2)$$

Case 1: $a = 60$ $b = c = 30$ $\rho = .098$

Theoretical

$$I_{xx} = 793800.0$$

$$I_{yy} = 1984500.0$$

$$I_{zz} = 1984500.0$$

Computed by ANVIL 5000

COMPONENT MASS PROPERTIES

ID NUMBER 1

NAME RECTPRISM1

TYPE OMNISOLID

SURFACE AREA 9000.0000

VOLUME 540000.0000

WEIGHT 5292.0000

DENSITY 0.098

CENTER OF MASS XT 0.0000

YT 0.0000

ZT 0.0000

AXIAL MOMENTS OF INERTIA I(XX) 781076.0452

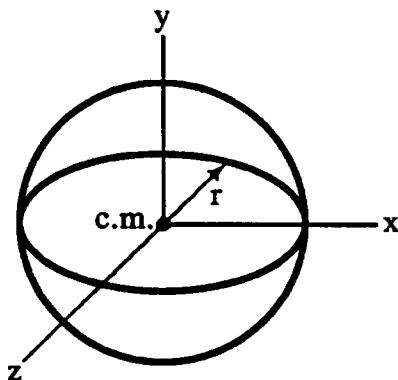
I(YY) 1952690.1129

I(ZZ) 1952690.1129

Case 2: $a = .5$ $b = c = .25$ $\rho = .098$

Theoretical

$I_{xx} = 0.00022168$
 $I_{yy} = 0.000554199$
 $I_{zz} = 0.000554199$


Computed by ANVIL 5000

COMPONENT MASS PROPERTIES	
ID NUMBER	1
NAME	RECTPRISM2
TYPE	OMNISOLID
SURFACE AREA	0.6250
VOLUME	0.03125
WEIGHT	0.02128
DENSITY	0.681
CENTER OF MASS XT 0.0000	
	YT 0.0000
	ZT 0.0000
AXIAL MOMENTS OF INERTIA I(XX) 0.0002181	
	I(YY) 0.0005453
	I(ZZ) 0.0005453

Percent Error Results

Component <u>Property</u>	Percent Error		
	<u>Case 1</u>	<u>Case 2</u>	<u>Average % Error</u>
Volume	0	0	0
Weight	0	0	0
Center of Mass			
xt	0	0	0
yt	0	0	0
zt	0	0	0
Moments of Inertia			
I_{xx}	1.6	1.7	1.65
I_{yy}	1.6	1.6	1.6
I_{zz}	1.6	1.6	1.6
TOTAL AVERAGE ERROR (TAE)			4.85

3.1.5 Sphere

$$I_{xx} = I_{yy} = I_{zz} = \frac{2}{5}mr^2$$

Case 1: $r = 60$ $\rho = .098$

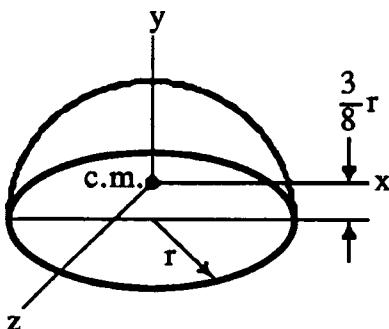
Theoretical
 $I_{xx} = I_{yy} = I_{zz} = 127682367.9$

Computed by ANVIL 5000

COMPONENT MASS PROPERTIES	
ID NUMBER	1
NAME	SPHERE1
TYPE	OMNISOLID
SURFACE AREA	45195.3051
VOLUME	904057.0796
WEIGHT	88597.5938
DENSITY	0.098
CENTER OF MASS XT -0.000304	
	YT 0.0000
	ZT -0.0239
AXIAL MOMENTS OF INERTIA I(XX) 127586737.1443	
	I(YY) 127577950.6801
	I(ZZ) 127687897.8238

Case 2: $r = .5$ $\rho = .681$

Theoretical
 $I_{xx} = I_{yy} = I_{zz} = 0.035657077$


Computed by ANVIL 5000

COMPONENT MASS PROPERTIES		
ID NUMBER	1	
NAME	SPHERE2	
TYPE	OMNISOLID	
SURFACE AREA	3.1386	
VOLUME	0.5232	
WEIGHT	0.3563	
DENSITY	0.681	
CENTER OF MASS XT -0.0000		
	YT 0.0000	
	ZT -0.0001	
AXIAL MOMENTS OF INERTIA I (XX) 0.035630		
	I (YY) 0.035628	
	I (ZZ) 0.03567	

Percent Error Results

Component Property	Percent Error		
	Case 1	Case 2	Average % Error
Volume	.08	.08	.08
Weight	.08	.08	.08
Center of Mass			
xt	0	0	0
yt	0	0	0
zt	.04	.04	.04
Moments of Inertia			
I_{xx}	.07	.07	.07
I_{yy}	.08	.08	.08
I_{zz}	.004	.004	.004
TOTAL AVERAGE ERROR (TAE)			0.354

3.1.6 Hemisphere

$$I_{xx} = I_{zz} = \frac{83}{320} mr^2$$

$$I_{yy} = \frac{2}{5} mr^2$$

Case 1: $r = 60$ $\rho = .098$

Theoretical

$$I_{xx} = I_{zz} = 41397017.75$$

$$I_{yy} = 63841183.99$$

Computed by ANVIL 5000

COMPONENT MASS PROPERTIES

ID NUMBER 1

NAME	HEMISPHERE1
TYPE	OMNISOLID
SURFACE AREA	33859.5031
VOLUME	450940.4174
WEIGHT	44192.1609
DENSITY	0.098

CENTER OF MASS XT 0.0469

YT 22.5961

ZT -0.0964

AXIAL MOMENTS OF INERTIA I (XX) 4107739.6905

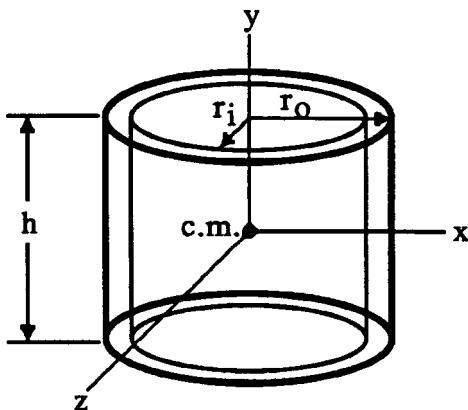
I (YY) 63583388.0621

I (ZZ) 41230255.7382

Case 2: $r = .5$ $\rho = .681$

Theoretical

$I_{xx} = I_{zz} = .011560693$
 $I_{yy} = .017828538$


Computed by ANVIL 5000

COMPONENT MASS PROPERTIES		
ID NUMBER	2	
NAME	HEMISPHERE2	
TYPE	OMNISOLID	
SURFACE AREA	2.3476	
VOLUME	0.2618	
WEIGHT	0.1783	
DENSITY	0.681	
CENTER OF MASS XT	-0.0000	
YT	0.1880145	
ZT	-0.0000	
AXIAL MOMENTS OF INERTIA I(XX)	0.0115334	
I(YY)	0.0178304	
I(ZZ)	0.0115309	

Percent Error Results

Component Property	Percent Error		
	Case 1	Case 2	Average % Error
Volume	.32	.03	.18
Weight	.32	.02	.17
Center of Mass			
xt	.08	0	.08
yt	.43	.27	.35
zt	.16	0	.16
Moments of Inertia			
I_{xx}	.8	.24	.52
I_{yy}	.40	.01	.20
I_{zz}	.40	.26	.33
TOTAL AVERAGE ERROR (TAE)			1.99

3.1.7 Thin Circular Cylindrical Shell

$$I_{xx} = I_{zz} = \frac{\rho \pi r_o^2 h}{12} (3r_o^2 + h^2) - \frac{\rho \pi r_i^2 h}{12} (3r_i^2 + h^2)$$

$$I_{yy} = \frac{\rho \pi h}{2} (r_o^4 - r_i^4)$$

Case 1: $r_o = 32$ $r_i = 28$ $h = 60$ $\rho = .098$

Theoretical

$$I_{xx} = I_{zz} = 3333928.505$$

$$I_{yy} = 4007807.66$$

Computed by ANVIL 5000

COMPONENT MASS PROPERTIES

ID NUMBER	1
NAME	CYLSHELL1
TYPE	OMNISOLID
SURFACE AREA	24127.4170
VOLUME	45238.5459
WEIGHT	4433.3775
DENSITY	0.098

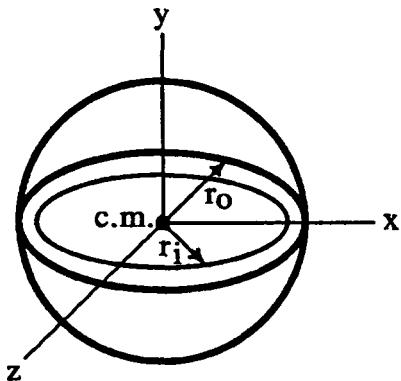
CENTER OF MASS XT	-0.0033
YT	29.9999
ZT	-0.0000

AXIAL MOMENTS OF INERTIA I(XX)	3313324.3586
I(YY)	4007746.3083
I(ZZ)	3311810.1107

Case 2: $r_0 = .6$ $r_1 = .4$ $h = .25$ $\rho = .681$

Theoretical

$$\begin{aligned} I_{xx} &= I_{zz} = .014463402 \\ I_{yy} &= .027812520 \end{aligned}$$


Computed by ANVIL 5000

COMPONENT MASS PROPERTIES	
ID NUMBER	1
NAME	CYLSHELL2
TYPE	OMNISOLID
SURFACE AREA	2.8274
VOLUME	0.1571
WEIGHT	0.1070
DENSITY	0.681
CENTER OF MASS XT	
YT	-0.0000
ZT	0.12499
AXIAL MOMENTS OF INERTIA I (XX)	
I (YY)	-0.0278113
I (ZZ)	0.0144486

Percent Error Results

Component	Percent Error		
Property	Case 1	Case 2	Average % Error
Volume	0	.001	0
Weight	0	.001	0
Center of Mass			
xt	0	0	0
yt	0	0	0
zt	0	0	0
Moments of Inertia			
I _{xx}	.62	.03	.33
I _{yy}	.002	.004	.003
I _{zz}	.66	.1	.38
TOTAL AVERAGE ERROR (TAE)			0.713

3.1.8 Thin Spherical Shell

$$I_{xx} = I_{yy} = I_{zz} = \frac{8\rho\pi}{15} (r_o^5 - r_i^5)$$

Case 1: $r_o = 32$ $r_i = 28$ $\rho = .098$

Theoretical
 $I_{xx} = I_{yy} = I_{zz} = 2683704.725$

Computed by ANVIL 5000

COMPONENT MASS PROPERTIES	
ID NUMBER	1
NAME	SPHEREHELL1
TYPE	OMNISOLID
SURFACE AREA	22698.0865
VOLUME	45266.9582
WEIGHT	4436.1619
DENSITY	0.098
CENTER OF MASS XT -0.0002	
YT -0.0092	
ZT 0.0000	
AXIAL MOMENTS OF INERTIA I(XX) 2680911.6032503	
I(YY) 2683821.6682562	
I(ZZ) 2680726.9239911	

Case 2: $r_0 = .6$ $r_i = .4$ $\rho = .681$

Theoretical
 $I_{xx} = I_{yy} = I_{zz} = .077042106$

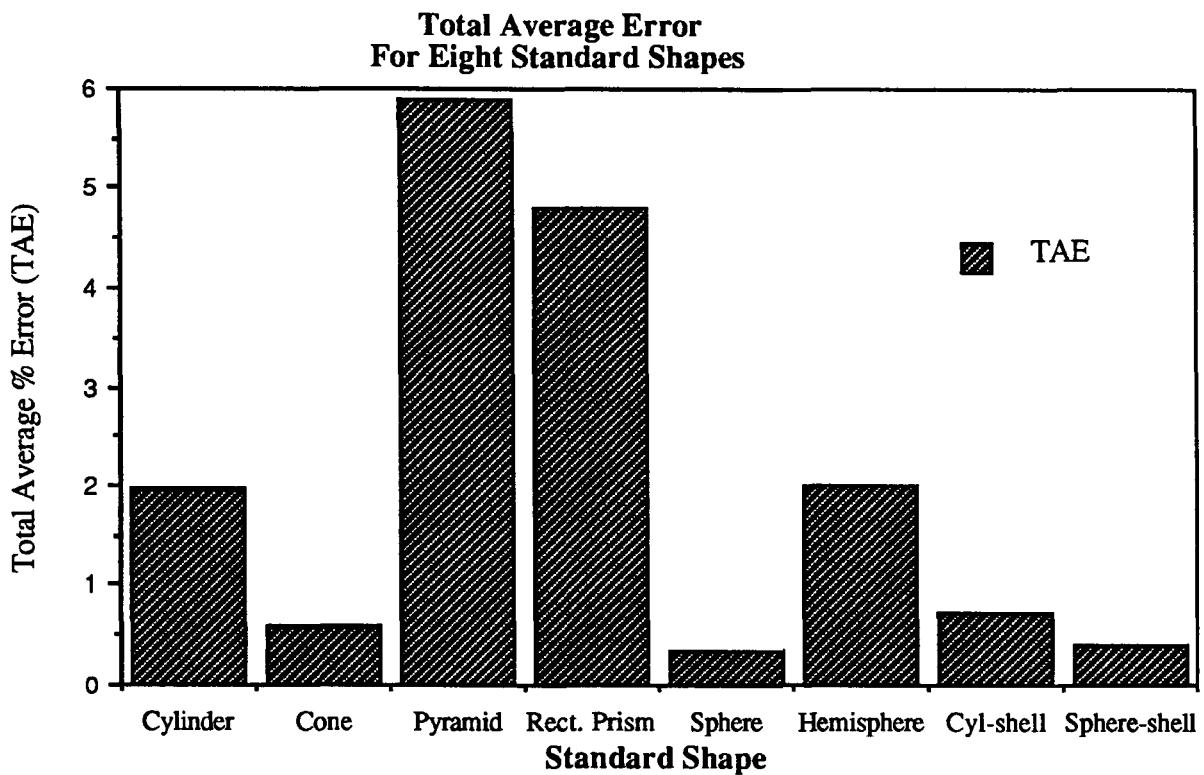
Computed by ANVIL 5000

OMNISOLIDS COULD NOT PERFORM NECESSARY BOLLEAN OPERATION
 WITH PRIMITIVES OF THIS SIZE!

Percent Error Results

Component <u>Property</u>	Percent Error		
	<u>Case 1</u>	<u>Case 2</u>	<u>Average % Error</u>
Volume	.09	-	.09
Weight	.09	-	.09
Center of Mass			
x_t	0	-	0
y_t	0	-	0
z_t	0	-	0
Moments of Inertia			
I_{xx}	.1	-	.1
I_{yy}	.004	-	.004
I_{zz}	.1	-	.1

TOTAL AVERAGE ERROR (TAE) 0.304


3.1.9 Discussion

From the above results, it is seen that on the average ANVIL 5000 can compute most component mass properties with relatively little error. However, the average error for the axial moments of inertia, particularly the zt component, is great enough for concern. The following table shows the average percent error across all eight standard shapes for each mass property:

AVERAGE PERCENT ERROR FOR ALL EIGHT STANDARD SHAPES

Volume	0.046
Weight.....	0.034
Center of Mass	
xt	0.09
yt	0.04
zt	0.10
Moments of Inertia	
xt	0.56
yt	0.26
zt	0.91

It is also evident that ANVIL 5000 computes the mass properties for some shapes more accurately than others. For each standard shape a factor of Total Average Error (TAE) was calculated as the sum of the average error of each mass property. The TAE for each standard shape is included in each shape's percent error table. The following graph compare the TAE for each standard shape:

From the above graph, it is seen that ANVIL 5000's computed mass properties are the most accurate for a sphere and least accurate for a pyramid. As would be expected, ANVIL 5000's mass properties computations are most accurate for shapes with rotational symmetry.

3.2 Point-mass Assemblies

For each test assembly, all components were modeled as point-masses in both the ANVIL 5000 and IMAGE UCMD 92 systems. The resulting mass properties for these assemblies are presented below.

3.2.1 Ballasts (Assembly #1)

Point-mass Component List (ANVIL 5000 FORMAT)

Component #1

COMP TYPE = POINT MASS	ID NO = 2	NAME = SC379153B
SURF AREA = 0.0000000	I(XX) = 1.3510000	PI(X) = 0.0000000
VOLUME = 1.8651000	I(YY) = 0.6699600	PI(Y) = 0.0000000
WEIGHT = 1.2155000	I(ZZ) = 0.6957700	PI(Z) = 0.0000000
DENSITY = 0.6517080	I(XY) = 0.0000000	DIR X = 1.0000 0.0000 0.0000
XT C OF M = -11.14100	I(XZ) = 0.0000000	DIR Y = 0.0000 1.0000 0.0000
YT C OF M = -0.0122430	I(YZ) = -0.183760	DIR Z = 0.0000 0.0000 1.0000
ZT C OF M = -0.0235880		ANGLE = 0.0000000

Component #2

COMP TYPE = POINT MASS	ID NO = 11	NAME = SC376526E
SURF AREA = 0.0000000	I(XX) = 22.767000	PI(X) = 0.0000000
VOLUME = 2.7412000	I(YY) = 7.1375000	PI(Y) = 0.0000000
WEIGHT = 1.7865000	I(ZZ) = 15.702000	PI(Z) = 0.0000000
DENSITY = 0.6517220	I(XY) = 0.0000000	DIR X = 1.0000 0.0000 0.0000
XT C OF M = -6.498200	I(XZ) = 0.0000000	DIR Y = 0.0000 1.0000 0.0000
YT C OF M = -0.0001362	I(YZ) = 0.0008166	DIR Z = 0.0000 0.0000 1.0000
ZT C OF M = -0.0004962		ANGLE = 0.0000000

Component #3

COMP TYPE = POINT MASS	ID NO = 12	NAME = SC381848B
SURF AREA = 0.0000000	I(XX) = 0.1578700	PI(X) = 0.0000000
VOLUME = 0.2851000	I(YY) = 0.0032245	PI(Y) = 0.0000000
WEIGHT = 0.0869550	I(ZZ) = 0.1548700	PI(Z) = 0.0000000
DENSITY = 0.3049980	I(XY) = 0.0000268	DIR X = 1.0000 0.0000 0.0000
XT C OF M = 1.2431000	I(XZ) = 0.0000120	DIR Y = 0.0000 1.0000 0.0000
YT C OF M = -0.629930	I(YZ) = 0.0045381	DIR Z = 0.0000 0.0000 1.0000
ZT C OF M = 2.8679000		ANGLE = 0.0000000

Component #4

COMP TYPE = POINT MASS	ID NO = 2	NAME = SC376595C
SURF AREA = 0.0000000	I(XX) = 5.7263000	PI(X) = 0.0000000
VOLUME = 4.1198000	I(YY) = 2.8867000	PI(Y) = 0.0000000
WEIGHT = 2.6849000	I(ZZ) = 2.8867000	PI(Z) = 0.0000000
DENSITY = 0.6517060	I(XY) = 0.0000000	DIR X = 1.0000 0.0000 0.0000
XT C OF M = 6.2640000	I(XZ) = 0.0000000	DIR Y = 0.0000 1.0000 0.0000
YT C OF M = 0.0000000	I(YZ) = 0.0000000	DIR Z = 0.0000 0.0000 1.0000

ZT C OF M = -0.0235880

ANGLE = 0.0000000

Component #5

COMP TYPE = POINT MASS ID NO = 14 NAME = SC385114A
 SURF AREA = 0.0000000 I(XX) = 8.9848000 PI(X) = 0.0000000
 VOLUME = 1.3478000 I(YY) = 0.3141700 PI(Y) = 0.0000000
 WEIGHT = 0.8783700 I(ZZ) = 8.7610000 PI(Z) = 0.0000000
 DENSITY = 0.6517060 I(XY) = 0.2676500 DIR X = 1.0000 0.0000 0.0000
 XT C OF M = 4.4205000 I(XZ) = -0.0000266 DIR Y = 0.0000 1.0000 0.0000
 YT C OF M = 1.1061000 I(YZ) = -0.0013018 DIR Z = 0.0000 0.0000 1.0000
 ZT C OF M = -0.0000926 ANGLE = 0.0000000

Component #6

COMP TYPE = POINT MASS ID NO = 15 NAME = SC379107J
 SURF AREA = 0.0000000 I(XX) = 305.38000 PI(X) = 0.0000000
 VOLUME = 41.269000 I(YY) = 156.49000 PI(Y) = 0.0000000
 WEIGHT = 27.000000 I(ZZ) = 200.18000 PI(Z) = 0.0000000
 DENSITY = 0.6542440 I(XY) = 5.1182000 DIR X = 1.0000 0.0000 0.0000
 XT C OF M = 3.1291000 I(XZ) = -5.667800 DIR Y = 0.0000 1.0000 0.0000
 YT C OF M = 0.0564230 I(YZ) = -2.779300 DIR Z = 0.0000 0.0000 1.0000
 ZT C OF M = -0.532170 ANGLE = 0.0000000

Component #7

COMP TYPE = POINT MASS ID NO = 16 NAME = SC377554G
 SURF AREA = 0.0000000 I(XX) = 21.987000 PI(X) = 0.0000000
 VOLUME = 9.9975000 I(YY) = 10.905000 PI(Y) = 0.0000000
 WEIGHT = 6.5900000 I(ZZ) = 13.129000 PI(Z) = 0.0000000
 DENSITY = 0.6591650 I(XY) = 0.0337310 DIR X = 1.0000 0.0000 0.0000
 XT C OF M = -0.804200 I(XZ) = -0.039718 DIR Y = 0.0000 1.0000 0.0000
 YT C OF M = 3.5461000 I(YZ) = -8.458400 DIR Z = 0.0000 0.0000 1.0000
 ZT C OF M = 3.4613000 ANGLE = 0.0000000

Component #8

COMP TYPE = POINT MASS ID NO = 17 NAME = SC377555G
 SURF AREA = 0.0000000 I(XX) = 73.315000 PI(X) = 0.0000000
 VOLUME = 16.237000 I(YY) = 55.840000 PI(Y) = 0.0000000
 WEIGHT = 10.580000 I(ZZ) = 20.759000 PI(Z) = 0.0000000
 DENSITY = 0.6515980 I(XY) = 0.2380700 DIR X = 1.0000 0.0000 0.0000
 XT C OF M = -0.788820 I(XZ) = 0.3386500 DIR Y = 0.0000 1.0000 0.0000
 YT C OF M = -2.204600 I(YZ) = 24.422000 DIR Z = 0.0000 0.0000 1.0000
 ZT C OF M = 1.9741000 ANGLE = 0.0000000

ANVIL 5000 Assembly Results

ACTIVE ASSEMBLY ID NO = 10 NAME = BALLASTS
 SURF AREA = 0.0000000 I(XX) = 815.2661433PI(X) = 741.1967692
 VOLUME = 77.862500 I(YY) = 882.7689046PI(Y) = 905.9307232
 WEIGHT = 50.822225 I(ZZ) = 1063.653025PI(Z) = 1114.5605806
 DENSITY = 0.6527176 I(XY) = 55.5719324 DIR X = 1.8951 0.3372 0.3850
 XT C OF M = 1.3084537 I(XZ) = -123.174866DIR Y = -0.37630.9260 0.0287
 YT C OF M = -0.3677379 I(YZ) = 15.9727532 DIR Z = 0.3468 0.1696 -0.922
 ZT C OF M = 0.5813814 ANGLE = 0.0000000

IMAGE UCMD 92 Assembly Results

NAME: BALLASTS	TYPE CELL	
XCG= 1.30845	YCG=-0.367768	ZCG= 0.581381
IXX= 815.266	IYY= 882.769	IZZ= 1063.65
IXY= 55.5718	IXZ= -123.175	IYZ= 16.1381
WT = 50.8222	VOL= 77.8625	RHO= 0.652718

3.2.2 Components (Assembly #2)

Point-mass Component List (ANVIL 5000 FORMAT)

Component #1

COMP TYPE = POINT MASS	ID NO = 3	NAME = SA2977
SURF AREA = 0.0000000	I(XX) = 0.0000000	PI(X) = 0.0000000
VOLUME = 0.1000000	I(YY) = 0.0000000	PI(Y) = 0.0000000
WEIGHT = 0.1000000	I(ZZ) = 0.0000000	PI(Z) = 0.0000000
DENSITY = 0.1000000	I(XY) = 0.0000000	DIR X = 1.0000 0.0000 0.0000
XT C OF M = -3.656000	I(XZ) = 0.0000000	DIR Y = 0.0000 1.0000 0.0000
YT C OF M = 0.0000000	I(YZ) = 0.0000000	DIR Z = 0.0000 0.0000 1.0000
ZT C OF M = -4.120000		ANGLE = 0.0000000

Component #2

COMP TYPE = POINT MASS	ID NO = 4	NAME = SA3523
SURF AREA = 0.0000000	I(XX) = 0.0000000	PI(X) = 0.0000000
VOLUME = 0.0870000	I(YY) = 0.0000000	PI(Y) = 0.0000000
WEIGHT = 0.0870000	I(ZZ) = 0.0000000	PI(Z) = 0.0000000
DENSITY = 0.0870000	I(XY) = 0.0000000	DIR X = 1.0000 0.0000 0.0000
XT C OF M = 1.1620000	I(XZ) = 0.0000000	DIR Y = 0.0000 1.0000 0.0000
YT C OF M = -2.157000	I(YZ) = 0.0000000	DIR Z = 0.0000 0.0000 1.0000
ZT C OF M = -4.842000		ANGLE = 0.0000000

Component #3

COMP TYPE = POINT MASS	ID NO = 5	NAME = RIMU
SURF AREA = 0.0000000	I(XX) = 142.00000	PI(X) = 0.0000000
VOLUME = 19.340000	I(YY) = 181.00000	PI(Y) = 0.0000000
WEIGHT = 19.340000	I(ZZ) = 181.00000	PI(Z) = 0.0000000
DENSITY = 19.3400000	I(XY) = 0.0000000	DIR X = 1.0000 0.0000 0.0000
XT C OF M = -2.244000	I(XZ) = 0.0000000	DIR Y = 0.0000 1.0000 0.0000
YT C OF M = -0.082000	I(YZ) = 0.0000000	DIR Z = 0.0000 0.0000 1.0000
ZT C OF M = -0.039000		ANGLE = 0.0000000

Component #4

COMP TYPE = POINT MASS	ID NO = 6	NAME = SA2456R
SURF AREA = 0.0000000	I(XX) = 0.0000000	PI(X) = 0.0000000
VOLUME = 0.7600000	I(YY) = 0.0000000	PI(Y) = 0.0000000
WEIGHT = 0.7600000	I(ZZ) = 0.0000000	PI(Z) = 0.0000000
DENSITY = 0.7600000	I(XY) = 0.0000000	DIR X = 1.0000 0.0000 0.0000
XT C OF M = 1.9400000	I(XZ) = 0.0000000	DIR Y = 0.0000 1.0000 0.0000
YT C OF M = 1.3400000	I(YZ) = 0.0000000	DIR Z = 0.0000 0.0000 1.0000
ZT C OF M = 3.9350000		ANGLE = 0.0000000

Component #5

COMP TYPE = POINT MASS	ID NO = 8	NAME = SA24561
SURF AREA = 0.0000000	I(XX) = 0.0000000	PI(X) = 0.0000000
VOLUME = 0.7600000	I(YY) = 0.0000000	PI(Y) = 0.0000000
WEIGHT = 0.7600000	I(ZZ) = 0.0000000	PI(Z) = 0.0000000
DENSITY = 0.7600000	I(XY) = 0.0000000	DIR X = 1.0000 0.0000 0.0000
XT C OF M = 1.9400000	I(XZ) = 0.0000000	DIR Y = 0.0000 1.0000 0.0000
YT C OF M = -1.340000	I(YZ) = 0.0000000	DIR Z = 0.0000 0.0000 1.0000
ZT C OF M = 3.9350000		ANGLE = 0.0000000

ANVIL 5000 Assembly Results

ACTIVE ASSEMBLY	ID NO = 10	NAME = COMPONENTS
SURF AREA = 0.0000000	I(XX) = 171.5000682	PI(X) = 160.8802639
VOLUME = 21.047000	I(YY) = 233.1863652	PI(Y) = 220.4211115
WEIGHT = 21.047000	I(ZZ) = 209.9156694	PI(Z) = 233.3007274
DENSITY = 21.047000	I(XY) = -0.0901926	DIR X = 0.9065 0.4209 0.0307
XT C OF M = -1.934464	I(XZ) = 22.8122901	DIR Y = 0.0089-0.0918 0.9957
YT C OF M = -0.084266	I(YZ) = 1.3407310	DIR Z = -0.422 0.9024 0.8700
ZT C OF M = 0.2087559		ANGLE = 0.0000000

IMAGE UCMD 92 Assembly Results

NAME: COMPONENTS	TYPE	CELL
XCG= -1.93446	YCG= -0.842656E-01	ZCG= 0.208756
IXX= 171.500	IYY= 233.186	IZZ= 209.916
IXY= -0.901926E-01	IXZ= 22.8123	IYZ= 1.34073
WT = 21.0470	VOL= 21.0470	RHO= 1.00000

3.2.3 Mtplates (Assembly #3)**Point-mass Component List (ANVIL 5000 FORMAT)****Component #1**

COMP TYPE = POINT MASS	ID NO = 91	NAME = SC379108F
SURF AREA = 0.0000000	I(XX) = 13.068000	PI(X) = 0.0000000
VOLUME = 9.8844000	I(YY) = 11.427000	PI(Y) = 0.0000000
WEIGHT = 0.9686700	I(ZZ) = 1.6842000	PI(Z) = 0.0000000
DENSITY = 0.0979999	I(XY) = 0.0000000	DIR X = 1.0000 0.0000 0.0000
XT C OF M = -1.757900	I(XZ) = -0.0000805	DIR Y = 0.0000 1.0000 0.0000
YT C OF M = 3.8953000	I(YZ) = 0.0365710	DIR Z = 0.0000 0.0000 1.0000
ZT C OF M = -0.046546		ANGLE = 0.0000000

Component #2

COMP TYPE = POINT MASS	ID NO = 92	NAME = SC379108F
SURF AREA = 0.0000000	I(XX) = 13.457000	PI(X) = 0.0000000
VOLUME = 9.5909000	I(YY) = 11.796000	PI(Y) = 0.0000000
WEIGHT = 0.9399100	I(ZZ) = 1.6991000	PI(Z) = 0.0000000
DENSITY = 0.0980002	I(XY) = -0.0002926	DIR X = 1.0000 0.0000 0.0000
XT C OF M = -1.758000	I(XZ) = 0.0000198	DIR Y = 0.0000 1.0000 0.0000
YT C OF M = -3.807100	I(YZ) = 0.0018794	DIR Z = 0.0000 0.0000 1.0000
ZT C OF M = 0.0001716		ANGLE = 0.0000000

Component #3

COMP TYPE = POINT MASS	ID NO = 93	NAME = SC375246S
SURF AREA = 0.0000000	I(XX) = 526.73000	PI(X) = 0.0000000
VOLUME = 47.744000	I(YY) = 273.91000	PI(Y) = 0.0000000
WEIGHT = 31.100000	I(ZZ) = 298.54000	PI(Z) = 0.0000000
DENSITY = 0.0980002	I(XY) = 1.9335000	DIR X = 1.0000 0.0000 0.0000
XT C OF M = -3.357100	I(XZ) = -1.592200	DIR Y = 0.0000 1.0000 0.0000
YT C OF M = 0.0788130	I(YZ) = 0.2036400	DIR Z = 0.0000 0.0000 1.0000
ZT C OF M = -0.076577		ANGLE = 0.0000000

Component #4

COMP TYPE = POINT MASS	ID NO = 94	NAME = SC375247S
SURF AREA = 0.0000000	I(XX) = 458.56000	PI(X) = 0.0000000
VOLUME = 49.411000	I(YY) = 144.49000	PI(Y) = 0.0000000
WEIGHT = 32.300000	I(ZZ) = 331.01000	PI(Z) = 0.0000000
DENSITY = 0.6537010	I(XY) = 2.4941000	DIR X = 1.0000 0.0000 0.0000
XT C OF M = 1.2220000	I(XZ) = 1.8927000	DIR Y = 0.0000 1.0000 0.0000
YT C OF M = -0.176320	I(YZ) = 0.1413700	DIR Z = 0.0000 0.0000 1.0000
ZT C OF M = -0.600900		ANGLE = 0.0000000

ANVIL 5000 Assembly Results

ACTIVE ASSEMBLY	ID NO = 90	NAME = MTPLATES
SURF AREA = 0.0000000	I(XX) = 1045.737827	PI(X) = 741.1967692
VOLUME = 116.63030	I(YY) = 781.9866750	PI(Y) = 905.9307232
WEIGHT = 65.308580	I(ZZ) = 998.1222122	PI(Z) = 1114.5605806
DENSITY = 0.5599624	I(XY) = -14.3615846	DIR X = 0.0540 0.4825 0.8742
XT C OF M = -1.054229	I(XZ) = -38.3201765	DIR Y = 0.9985-0.0246 0.0480
YT C OF M = -0.0466879	I(YZ) = 2.4222703	DIR Z = 0.0016 0.8755-0.4831
ZT C OF M = -0.3343441		ANGLE = 0.0000000

IMAGE UCMD 92 Assembly Results

NAME: MTPLATES	TYPE CELL	
XCG= -1.05423	YCG=-0.466879E-01	ZCG= -0.334344
IXX= 1045.74	IYY= 781.987	IZZ= 998.122
IXY= -14.3616	IXZ= -38.3202	IYZ= 2.42227
WT = 65.3086	VOL= 116.630	RHO= 0.559962

3.2.4 Discussion

From the above results, it is seen that for all the mass properties in all three assemblies, there is no error between the ANVIL 5000 results and those from IMAGE's UCMD 92.

4.0 Conclusions

From the above results, it is concluded that ANVIL 5000's mass properties analysis for basic solid shapes is reliable within the limits of approximately +/- 1 percent worst case error. This value can be used to determine whether or not ANVIL 5000's mass properties analysis is sufficiently accurate for the particular part being modeled.

Also, it is concluded that ANVIL 5000 can sum assembly mass properties for point-mass component assemblies with the same accuracy as IMAGE's UCMD 92, the system currently in use. Therefore, all assembly mass properties analysis planned to be performed on the IMAGE system can be done on ANVIL 5000, assuming that the model can be accurately created on ANVIL 5000.

Distribution

2542	R. N. Harris
2814	P. F. Chavez
2814	D. P. Peterson
2850	D. L. McCoy
2851	L. K. Grube
2852	D. J. Klinetobe
2853	R. L. Williams
2854	R. E. Thompson
2854	S. F. Cancilla
2854	S. J. Fellows
2854	Y. M. Holling
2854	G. L. Neugebauer
2854	T. M. Rice
2854	G. M. Rodriguez
2854	S. E. Wagner
2855	J. A. Lovato
2857	W. B. Bopp
2858	W. Drozdick
3141	S. A. Landenberger (5)
3141-1	C. L. Ward (8) for DOE/OSTI
3151	W. I. Klein (3)
7483	W. C. Burd
8524	J. A. Wackerly

**DO NOT MICROFILM
THIS PAGE**