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SUMMARY

Analyses of the stress and strain fields around smoothly blunting
crack tips in both non-hardening and hardening elastic-plastic materials,
under contained plane strain yielding and subject to mode I opening loads,
have been carried out by a finite element method suitably formulated to
admit large geometry changes. The results include the crack tip shape and
neér-tip deformation field, and the crack tip opening displacement has been
related to a parameter of the applied load, the J-integral. The hydrostatic
stresses near the crack tip are limited due to the lack of constraint on the
blunted tip, limiting achievable stress levels except in a very small region
around the crack tip in power law hardening materials. The J-integral is
found to be path independent except very close to the crack tip in the
region affected by the blunted tip. Models for fracture are discussed in
the light of these results including one based on the growth of voids. The
rate of void growth near the tip in hardening materials seems to be little
different from the rate in non-hardening materials when measured in terms
of crack tip opening displacement, which leads to a prediction of higher
toughness in hardening materials. It is suggested that improvement of this
model would follow from better understanding of void-void and void-crack
coalescence and void nucleation,and some criteria and models for these are
discussed. The implications of the finite element results for fracture
criteria based on critical stress, strain or both is discussed with respect
to transition of fracture mode and the angle of initial crack growth.
Localization of flow is discussed as a possible fracture model and as a

model for void~crack coalescence.
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1. INTRODUCTION

When an elastic-plastic body with a sharp crack is subject to a mon-
tonically increasing load of the mode I type (i.e., tensile opening),
blunting of the tip by intense straining will occur until some mechanism
of crack extension gradually or abruptly takes over. Study of slip line
configurations around crack or notch tips such as shewn by McCLINTOCK
(1971, pp. 158-159) and RICE and JOHNSON (1970) (henceforth referred to as
RJ), leads one to conclude that two types of blunting are possible. The
first type is vertex blunting,where localized shearing singularities on
the tip give rise to a blunted tip shape of two or more vertices connected
by straight segments,and the second type is where blunting gives rise to a
smoothly curved tip shape. The fact that both types occur is confirmed by
an observation by McCLINTOCK (1871, p. 159) of the first type in a
specimen of 1100 aluminum with a groove with a flat tip,and an observaticn
by RAWAL and GURLAND (1976) of the second type,which arose from a pre-
fatigued crack in spheroidized steel. The type of blunting which arises in
a specific case may depend on considerations of strain hardening and
stability (pp. 158-160, McCLINTOCK, 1971). However the smooth blunting
case, which may be viewed as the limiting case of a very large number of
vertices on the blunted tip, has features of some generality,and has the
advantage of being amenable to solution by an ordinary, plane strain
continuum, finite element method suitable for large deformations such as
thaf of McMEEKING and RICE (1975). The smooth blunting case was solved for
near-tip stresses and deformations by that method for both hardening and
non-hardening materials with boundary conditions simulating the situation

of plastic yielding contained near the tip of the crack.
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In their work RJ noted that the severe stpetching ahead of the crack
tip can be predicted only by an analysis of crack blunting such as they
carried out for non-hardening materials. Studies,such as those of RICE
(1968), RICE and ROSENGREN (1968), HUTCHINSON (1968), RICE and TRACEY (1973}
and TRACEY (1873, 1976), ignoring large geometry change but based on strain
singularities at the tip predict only intense shearing above and below the
tip and a state of triaxial stress immediately ahead of the crack tip. The
blunting analysis,however,reveals that this stress triaxiality cannot be
maintained at the blunted surface of the crack. Thus an understanding of

some phenomena observed to be associated with rupture may have to be based

on a large geometry change analysis of the near tip behavior, (e.g., straight

ahead crack growth; angled crack growth; plastic void growth, which is known
to be heavily influenced by the hydrostatic component of stress as shown

by McCLINTOCK (1968a) and RICE and TRACEY (1969)). This point seems to be
confirmed bonbservations by RJ and RICE (1973) ,based on metallographic
studies of ductile fracture by BIRKLE, WEI and PELLISSIER (1966) and
PELLISSIER (1968) in high strength steel and VAN STONE, MERCHANT and LOW
(1974) in aluminum alloys, all of which indicate that the crack tip

opening displacement at fracture in small scale yielding compares in size
with typical distances between particles which seem to nucleate voids play-
ing a primary role in fracture. Study of the fracture surfaqes near the
transition region between the crack and the fast fracture area in these
materials indicates that events such as nucleation of smaller voids,take
place near the tip on a size scale much smaller than a crack tip opening
displacement ,and in an area certainly affected by blunting. On the other
hand ,if the critical event at fracture ié based on a size scale much larger
than a crack tip opening displacement,then blunting will play little or no

~ role. Such a case arises for a model developed by RITCHIE, KNOTT and RICE
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(1973) for predicting slip nucleated cleavage in mild steel,based on a
requirement that a critical stress for cleavage be achieved over some
distance measured from the crack tip. It turns out that the best correla-
tion occurs when the critical distance coincides with two grain sizes,and

at the low temperature end of the data this size is about 50 times the crack
tip opening displacement at fracture.

After a déscription of the solution procedure and the results of the
finite element analysis of smooth crack tip blunting presented in the next
two sections, brief comments are made concerning vertex blunting. Then the
results of a void growth model for ductile fracture already developed by RJ
are discussed ,especially concerning what it implies for hardening materials
and how it might be improved by better modeling of void—crack coalescence
and void nucleation. In addition, fracture criteria based on aéhieving a
critical stress, a critical strain or a combination of critical stress and
strain are discussed in relation to the stresses and plastic strains around
the blunted crack tip. In addition, localization of flow in narrow bands
is discussed both as a model for ductile fracture and for the coalescence of

voids.
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2, PLANE STRAIN NOTCH BLUNTING SOLUTIONS BY FINITE ELEMENTS

It was intended that the finite element calculations should model the
blunting of an initially sharp crack,but the initial crack tip singular
behavior rules out any simple method of accurately starting such a computa-
tion. To overcome this problem,the calculations were carried out for a
notch with a semi-circular tip in the undeformed configuration. It was
expected that a steady state solution for contained yielding,largely
independent of original notch geometry,would arise after a sufficient amount
of load was applied. Here and henceforth the phrase 'steady state solution"
for the blunting of an iﬁitially sharp crack will be used to mean a
continuous series of evolving,self-similar states,having the property that
when displacements and lengths are normalized by a loading parameter
K2/00E,a solution unchanging in time is obtained. In the loading parameter,
K is the strength of the elastic crack tip singularity which would arise
from the applied loads if the material was linear elastic (IRVWIN, 1960),

, is the yield strength in tension of the actual material and E is Young's
modulus. The term K2/U°E has dimensions of length,and the crack tip opening
displacement may be used instead as the normalizing parameter,since, on
dimensional grounds, the crack tip opening displacement is equal to K2/00E
times a function of dimensionless groups of material properties.

The expectation that a steady state solution would arise was based on
the work of RJswho found that the shape of the tip of the notch, smoothly
blunted by loads representing small scale yielding, could be obtained at ali
times from the shape of a sharp crack blunted by the same loads by adding
to the sharp crack bluntéd shape in a certain constant way the original

notch shape. This procedure is equivalent to the superposition in Henky
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nets discussed by HILL (1967). As the total notch width grows to several
times the original notch width,the difference between the blunted notch
shape and the shape of a sharp crack blunted by the same boundary conditions
becomes negligible,and so the notch results may then be used as a good
approximation for the blunting of a sharp crack. The results of RJ were
derived by the slip line method (HILL, 1950, pp. 128-160),and are therefore
strictly applicable only to non-hardening materials. However, the steady
state solution for the sharp crack case in RJ does not arise as a consequence
of the lack of hardening, but rather because the crack tip opening displace-
ment is the only length of significance in the near tip field in small scale
yielding, and so 21l distances in the solution scale with crack tip opening
displacement. This feature will carry over to hardening materials, and so
the results for rotch blunting should achieve a steady state which can be
interpreted appropriately for initially sharp cracks. The interpretation of
the results on the blunted surface for power law hardening materials requires
some care,since blunting from sharp cracks involves infinite plastic strains
and consequently infinite flow stress on the blunted surface while blunting

from a notch will cause only large but finite strains,

2,) The finite element mesh

To provide the information required in the solution,the mesh must contain
near the initial notch tip elements which are much smaller in typical dimen-
sion than the radius of the original notch tip. On the other hand, the
problem geometry must be sufficiently large compared to the notch tip radius
so that boundary conditions may be applied to represent the situation of
small scale yielding around a crack tip. This mandates a mesh with a

dramatic refinement near the tip in order to keep the mesh size at an
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acceptable level. Another problem is that the solution should still have
accuracy after blunting, say, to five times the original crack tip opening
displacement,after which the near tip elements would have experienced a
change in a particular dimension of order five times that dimension. This
difficulty was overcome by choosing the original near tip element shape so
that,as an element deformed,it would experience an extensional strain along
the side originally short and a shortening strain along the side originally
long. Then the shape of a highly strained element throughout its loading
history would be kept to a sequence of shapes and sizes considered acceptable
for the purposes of calculating gradients of stress and plastic strain.

A mesh used is shown in fig. 1 in its undeformed configuration. This
mesh, designated mesh I, contains 316 nodes and 260 plane strain isoparametric
quadri;ateral elements with four stations for the integration of stiffness
(ZIENKIEWICZ, 1971 pp. 129-153)., Another mesh, mesh II, was used with an
extra ring of elements around the outer radius of mesh I. Mesh II had 329

nodes and 272 elements.

2.2 Boundary conditions for notch blunting

The notch bl&nting solution for émall scale yielding was achieved by
applying traction free boundary conditions on the notch surface and displace-
ment boundary conditions elsewhere imposing an asymptotic dependence on the
mode I elastic crack tip singular field of IRWIN (1960). This was done
indirectly by actually using in a manner described below displacements
calculated from the small strain finite element results of RICE and
TRACEY (1973) and TRACEY (1973, 1976), who accounted for phenomena occurring

at the crack tip due to plasticity in both non-hardening and hardening
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materials by using special crack tip elements; These imposed the
characteristic near tip displacement behavior derived by HRR., The conditions
applied at the circular boundaries of their meshes were the displacements

of the elastic singular field,so that crack tip plasticity is accounted

for in the manner of a boundary layer formulation as discussed by RICE (1967a,
1968). In these finite element calculations, steady state solutions

develop and persist as long as the plastic zones lie weli within the outer
boundaries of the mesh. These steady state solutions have the feature
discussed above that displacements and characteristic distances scale

with crack tip opening displacement. This result may be stated as

Eu(R,6)/6,8) = E'u'(R', 0)/6,'5.)

[}
by
~
o

R/, = e (1)

where u' is the steady state displacement at position R',¢ in polar

coordinates with origin at the crack tip,at the time when the crack tip

opening displacement is 6% in a material of Young's modulus E' and tensile
yield stress Go',and u is the steady state displacement at R,¢ for crack tip
opening displacement Gé,Young's modulus E, tensile yield stress LA and all
other material properties identical to those in the prime (') material. The
factors E/oo and E'/oo' enter (1) in the way they do because universal
solutions to problems formulated with conventional small strain assumptions
exist and are phrased in terms of Eg/oo, g/oo, dimensionless groups of material
properties other than co/E and a suitable length measure ( c is the stress

tensor).

The displacement history at a fixed point R,¢$ in the unprimed material




can thus be calculated from the displacements in the primed material steady

state solution at some fixed crack tip opening displacement Gt' through
B(R’M = (E'O'OR/(EOO'R')) B'(R"M . (2)

where R' is taken from « towards zero to develop the history. When R' exceeds
the radius of‘the mesh of finite elements used in RICE and TRACEY (1973) and
TRACEY (1573, 1976), the displacements u' are intérpreted as the elastic crack
tip singular displacements. This history of displacements can thus serve

as the sequence of conditions applied to the boundary of the finite element
mesh used for the blunting calculations, with R the outer radius of that mesh.
As long as the area affected by the blunting remains small compared to the size
of the mesh, the solution will be an accurate boundary layer formulation of

the blunting of a notch under conditions of small scale yielding. In view of
the comments at the beginning of section 2, no difficulty arises in the boundary
layer formulation concept from starting with a finite radius tip, since, when
viewed on the size scale of the mesh, its influence is simply a blunting effect

introduced initially rather than allowed to rise naturally.

2.3 TFinite element formulation and constitutive relations

The up-dated Lagrangian method of McMEEKING and RICE (1975) for large
deformation of elastic-plastic materials was used, modified according to
appendix 2 of NAGTEGAAL, PARKS and RICE (1974) to free the mesh of artificial
constraint. A variational principle, based on a reference state coincident
instantaneously with the current state, but derived from the principle of HILL
(1958) for arbitrary reference state, is used to formulate the tangent

stiffness of a mesh of elements representing
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the current shape of the body. The finite element equations are solved in an
incremental fashion and the nodes are moved after each incremental‘solutioﬁ to
represent a new shape of the body. An elastic solution is always carried out
first in which one element is permitted to reach yield and then plasticity

is allowed to develop gradually. In yielded elements the partial stiffness
approach of MARCAL and KING (1967),as modified by RICE and TRACEY (1973) and
TRACEY (1973,1976),is used to calculate the stiffness based on a modification

of the Prandtl-Reuss equations for isotropically hardening materials (HILL, 1950,
pp. 15-39). The constitutive law accounts for rotation of principal deformation

axes and is

) - E
& 3,1 ' =
th.=E Do+ v D 8. - 913%e ke (TR
ij —-— |13 kk "ij
1+v 1-2v -2 2 E
20 (3h + —~
1+v

(3)

for plastic loading and
T.. = E v
I [Dij * 1 Dk 815
for elastic loading or any unloading, where v is Poisson's ratio, ¢ is true

stress, T is the Kirchhoff stress defined by

T = IFI o

where |F| is the ratio of volume in the current state to volume in the

reference state, D is the rate of deformation tensor defined as the symmetric

-~

part of the spatial velocity gradient, Gij is the Kronecker delta,
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h is the slope of the uniaxial Kirchhoff stress versus logarithmic plastic

.

strain curve and"denofes the Jaumann or corotational stress rate. In

(3), T:j is chosen rather than o:j to géneralize Hill's stress rate because
the formulation then leads to a symmetric stiffness. The difference
‘between the two generalizations of the law is in any case of order stress
divided by elastic modulus compared to unity (McMEEKING and RICE, 1875).

The variational principle mentioned previously is

' b3 1
J [r55(D) 8D 4 - 5 055 8020y, Dy = vy 5 vy 500 &Y
(%)
= J £, 8v.dS ,
. by 1
s

where V and S are the volume and surface respectively of the bedy in the

current state, v = avk/axi where %z is the current position vector of

k,i
a material point, f is the nominal surface traction rate referred to a
reference state which is the current state and ¢ denotes an arbitrary
virtual variation. The modification of NAGTEGAAL et al. (1974) is based on
a Lagrange multiplier method, in which elemsnt dilation is treated as an
independent degree of freedom, It is implemented by changing the defini-
tion of D in the term T:j(q) 6Dij in (4) in a straightforward mamner

(NAGTEGAAL et al., 1974, pp. .165-167 and 175-176).
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3. RESULTS OF PLANE STRAIN NOTCH TIP BLUNTING BY FINITE ELEMENTS

The calculations were carried out for a material with v = 0.3,
oo/E = 1/300 and a non-hardening (N = 0) uniaxial Kirchhoff stress-
logarithmic tensile strain curve. In addition calculations for power law
hardening materials were processed with N = 0.1 and N = 0.2 in a wniaxial

stress-strain law of the Fform

(f/to)l/N = ?/ro + 3G€p/ro , - (5)

1 1

where ?2 = > Ty is the tensile yield stress in terms of Kirchhoff

2 Tij Tij
- . 1/2 . P .

stress, G is the shear modulus and &P = J(%-DEjD?j) / dt, i.e. &P is the

tensile equivalent plastic strain. When the deformation is one of pure

shear in the absence of spin in which DJ2 = D2l = v/2 = ?p/2 + 96/2,
where ?p and ?e are respectively the plastic and elastic parts of v,

eP becomes y??g and t is v¥2 v, .. In addition T = Gye and denoting the

12 12
Kirchhoff yield stress in shear as T, F To//3, it follows from (5) that
- N , S :

Typ *© rs(y/yo) , where Y, = 1S/G. The calculations for all the above
materials used mesh II, while a further calculation with mesh I was

undertaken in which 0o,/E = 1/100, v = 0.3 and the stress strain curve was

non-hardening.

- 3.1 Blunted tip shapes

If the tip shapes achieved in the notch blunting solutions, shown
in figure 2a, were to be drawm so that the intercept of the x-axis with
each crack surface coincided, it would be seen that the tip shapes for the
four different materials are almost identical. The shapes in figure 2a
are for blunting to about five times the original notch width,and they

represent a shape that has remained wnchanged since the notch had a width
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of three times the original notch width.

Differences between the shapes do arise behind the tip,with the non-
hardening materials basically having flanks almost parallel to the x-axis
and the hardening materials showing an angled flank whose slope becomes
steeper with larger values of N. Very far back,outside the plastic zone,
the slopes for each case, hardening and non-hardening, approach the same
small value. The two non-hardening materials do exhibit different behavior
on the flank,with the higher tensile yield strain (oo/E) material showing
a distinct hump close to the tip. In view of the absence of the hump from
the tip shape of the lower yield strain material, it does not appear to be
entirely an artifact of element arrangement, although thg top of the hump.
does coincide with the change in element size at the node marked A in
figure 2. That node is the material point where the straight flank in the
undeformed mesh meets the curved notch surface. A possibility is that there
is a real non-uniqueness of blunted notch shape ir non-hardening materials,
a point of view supported by the non-uniqueness of velocities along the
crack surface in slip line solutions for sharply tipped cracks. The
actual shape that arises in the blunted notch case could then be influenced
by element arrangement.

It is clear in figure 2 that the calculafed value for the width of the
notch, b, depends on the choice of position chosen to define notch width.
However, when points between the deformed position of node A (marked A' in
figure 2) and the elastic-plastic boundary on the notch surface are used
for defining notch widths, the range of widths involved is small compared
to the widths themselves. The arbitrariness of choice in the definition of
b is apparent in figure 2,since a choice of a position other than A' for

defining b would have changed the tip sizes relative to each other. In
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addition,the shapes in figure 2a are drawn as if the point on the x-axis at
a distance 2b in front of the intersection of the notch tip and the x-axis
in the deformed configuration was stationary.
The blunted tipvshape calculated using the slip line method outlined
by ﬁJ for the semi-circular notch,when the width of the notch is five times
the initial notch width.has been included in figure 2a,and it can be seen
to be almost identical to the shapes calculated by finite elements. The
slip line pattern around such a notch is shown in the inset of figure 7
and the displacements are calculated relative to the point S which is at a
distance about two notch widths ahead of the tip in the deformed configura-
tion. A significant distinction can be seen between the x-displacement of
the notches relative to the point two crack widths ahead,and implies a
différence in average logarithmic strain of 6x10—2 between the crack tip
and the point two crack widths ahead when the finite element results are
compared with the slip line msults. Since the elastic strains are of
order lO‘s,the difference cannot be attributed to the elastic terms in the
finite element calculations alene. The implication is that fhe»plastic
part of the logarithmic strain falls off from about ln(b/bo) on the tip more
rapidly in the finite element solution, where bo is the undeformed notch'width.
The shape for a blunted initially sharp crack,calculated by RJ,is drawn
in figure 2b and it differs from all shapes in figure 2a by only negligible
amounts. Since the shapes in the finite element calculations have prevailed
for several increments of load, the solution must have reached the stage at
which the original notch shape is of no significance to the solution for near
tip velocities. Thus the increment of displacement of the point on the
blunted notch tip lying on the x-axis méy be divided by the increment of

notch width to predict the amount,in terms of crack tip opening displacement,
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that an initially sharp crack would be pﬁiled forward towards the point two
crack widths ahead of the tip. On this basis the shapes from the finite
element solutions have been drawn in figure 2b as the shapes for blunted
initially sharp cracks,since the negligible difference in shape between

the results for blunted shabe of a notch and of a sharp crack,as deduced

from RJ, indicates that this may be done.

3.2 Stress and plastic strain distributions around blunted notch tips

In figures 3-6 the trues stress o (see inset figure 3) is plotted

06
against the distance from the notch tip in the undeformed configuration for
each of the four materials for which calculations were carried out. The
distance is normalized by the current notch width,which allows results from
the later increments of the finite element calculations to be plotted to-
gether (McMEEKING, 1976). As the notch tip is approached at a given angle
to the crack line in the undeformed configuration,the stress rises in all
cases due to increasing triaxial strain. However, the hydrostatic stress
cannot be maintained on the blunted notch surface and as a result there is
a maximum for Tgg° coinciding with a maximum for hydrostatic stress, some
distance from the notch tip. As the crack line (8 = 0) is approached on a
circular arc of any radius R starting from 6 = n/2,the stress 996 rises in

each material,and so the o,, stress at the stress maximum point on 8 = 0 is

66
the largest principal stress except for étresses near the blunted tip in the
hardening materials,

One effect of power law hardening is to raise the magnitude of the stress
at the maximum on each angle to the crack line and to move the positions of
the stress maxima closer to the notch tip. Another hardening effect is the

upturn in stress close to the notch surface in figure 5, which arises from

the elevation of flow stress by the large plastic strains in this area.
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The effect, although only apparent in the strongly hardening material of

the finite element calculations, would be present in any power law hardening
material over a small area,and its absence from figure 4 is just a result

of elements on the notch surface relatively large compared to the small area
of stress elevation. In fact,when a sharp crack in a power law hardening
material is blunted to a finite width, infinitely large stress on the notch
surface will arise,but again the large stresses will appear only over a
distance small compared to the blunted crack width.

For comparison the stress oee/oo on the crack line (6 = 0) from the RJ
slip line solution for the initially sharp crack has been plotted on figures
3 and 5. This is derived from the slip line field shown in the inset, figure
7 and the point at which the stress reaches 300 coincides with the point S
at the outer extent of the spiral slip line region. The stress levels for
the power law hardening materials,based on the RJ solution,shown in figures
4 and 5 are approximations in which the plastic strain of the slip line
soluticn is used to calculate the deviatoric stress from the harden-
ing law. The equilibrium equations are integrated, subject to the known
deviatoric stress and the traction free boundary condition on the crack
surface, to obtain the hydrostatic part of the stress. The agreement between
the finite element results and the slip line results and approximations is
quite close as far as the position and magnitude of the stress maximum is
concerned. This would seem to confirm that the finite element results for
the initial notch have developed to the extent that they represent quite
well the situation for the blunted initially sharp crack. This suggests
that the RJ slip line solution and approximation for the sharp crack under-
estimates the magnitude of 006/00 at the maximum by 8% for N = 0,1,

oo/E = 1/300 and by 6% for N = 0.2, OO/E = 1/300,and establishes the position

of the maximum to within 5%. In view of this the results for stress
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aee/ao on 8 = 0 derived by RJ for various values of N and UO/E are plotted
in figure 7. The distance scale in this figure has been developed using the

relationship

5, = 0.61(2[/%(1+v)(l+N)00/(NE)]N/(OOE)

as discussed in section 3.5 rather than 6t>= 0.61K2/0°E as‘used by RJ to
develop their figure 10.

Further from the notch tip than the stress maxima,the stresses cal-
culatéd by finite elements in figures 3-6 agree with the small geometry change
finite element calculations of RICE and TRACEY (1973) and TRACEY (1973,1976),.

The maximum values of mean normal stress in the notch blunting finite element

calcﬁlations are 2.#00 (N =0), 3.110 (N = 0.1) and 4.1300 (N = 0.2) and all
lie on 6 = 0. When these quantities are divided by the flow stress at the
point where they occur,the resulting numbers are close to the predictions of
HRR for the maximum valuec of the ratio of mean normal stress to flow stress
on 8 = 0 near the crack tip in the respective materials.

The plastic strain plots shown in figures 3-6 are composites of the
results from the later increments in the finite element solutions
(McMEEKING, 1976). They show clearly that the strains are small except where
close to.the blunted tip. Outside of the near tip region the larger plastic
strains are on the lines at an angle to the crack line,in agreement with
known shapes of the plastic zones for plane strain conditions. However,
very close to the blunted surface, in the region where the strains are too
large to appear in the figures, the plastic strain at a givgn value of R on
the crack line is greater than the plastic strain in positions at angles to
the crack line at the same distance from the tip,R. ‘There is little

difference between the plastic strain distributions arising in the four
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different materials for which finite element calculations were made,and the
plastic strain on 8 = 0 in each case is similar to the plastic strain om

6 = 0 in the RJ slip line solution as plotted in figures 3 and 6. This lack
of difference of plastic strains between the different materials, hardening -
and non-hardening,indicates why RJ's approximations for stress in hardening
materials, as plotted in figure 4 and 5,turn out to be so accurate when

compared to the finite element results.

3.3 Steady state solution

The results discussed in the previous two sections confirm that steady
state solutions as discussed in section 2 have arisen in the later increments
of the finite element solutions. Of importance to this conclusion afe the
facts that the blunted tip shapes change only in size rather than shape in
the later increments,and that the stresses and plastic strains from these later
increments all fall on one plot,when distance from the tip is normalized by
notch width. As a consequence,the shapes in figure 2 and the plots in
figures 3-6 may be used as results for blunted sharp cracks with the quantity
b in figures 3-6 interpreted as the crack tip opening displacement Gt.

One difficulty arises in comparing the results for blunted sharp cracks
with those for notches. That difficulty is the elevation of flow stress on
the blunted surface for power law hardening materials as discussed in
section 3.2. This problem is not considered to be severe in view of various
aspects of the physical problem being modelled,as follows; (a) the area- over
which the singularity dominates in the sharp crack case is small, i.e. over
an area lying within at/u of the notch surface in the underformed configura-
tiqn in the most severe case (N = 0.2); (b) power laws as models for
hafdening have the consequence that infinite plastic strains produce infinite

flow stresses, whereas a saturation to constant flow stress after large
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plastic strains seems more likely; (c) few cracks are likely to be atomisti-
cally sharp and the finite radius at the tip of most real cracks will lead to

only large but finite plastic strains at the tip.

3.4 Relationship of crack tip opening displacement to applied load

As discussed in section 3.1, the shapes of the blunted notches in
figure 2 allow no unique .definition of notch width. An arbitrary choice of
definition point for notch width has been made for figure 8, in which the
notch width has been measured at the node which lay at the intersection of
the straight flank and the semi-circular tip of the undeformed notch., In
figure 8, the notch width so defined is plotted versus Japp’ the value of the
J-integral (RICE, 1968) computed on a remote path around the notch tip. The
‘definition‘of the J-integral is

du
J = f [wax2 - Tem—ds] , (6)

] BXl
where T is a path in fhe undeformed configuration from the bottom surface of
the notch through material to the upper surface of the notch, X is the position
of a material point in the undeformed configuration, u is displacement,
T = n-t where n is the outward normal to the integration path and'f is the
nominal (lst Piola-Kirchhoff) stress tensor(tij = ij 8<i/ax , dS is an
element of path length and

" - Iaui/ax .

J t d(du,/a3x,
" l/ J)

° J

A consequence of the definition of J is that the integral is path independent

for elastic materials (linear or non-linear). In addition the relationship

- - 2 2
Japp (1 - v9)K°/E (7)
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applies to linear elastic materials and to elastic-plastic materials with
small scale yielding.

The value of Japp used in figure 8 was inferred from the finite element
results of RICE and TRACEY (1973) and TRACEY (1973, 1976) by assuming tbat
J is essentially path independent outside their elements immediately adjacent
to the tip (an assumption shown to be correct by PARKS (1975)). The plots
in figure 8 clearly show that a linear relationship arises between notch
width and Japp quite early in the loading history. This linearity presumably
associates with the occurence of the steady state solution,and may be used to
relate crack tip opening displacement to applied load for an initially sharp
crack. This follows from noting that the width of the blunted notch can be
interpreted as the width of a blunted crack plus the original notch width.
In particular the increment of notch width for an increment of load can be
used as the increment of crack width during the same increment of load. Thus
the terminal slopes in figure 8 can be used for the slopes of the crack tip

opening displacement,Gt,versus Japp/o straight lines,which pass through the

o
origin. These slopes are the values n in column I of the table, which contains
in the additional columns values for n obtained from plots of notch width
Japp/co when other positions are chosen for defining notch width. Note that
the crack tip opening displacement,measured at the elastic-plastic boundary

for both non-hardening materials,is about the same for given Japp despite

the differences nearer the tip. Indeed it is arguable that all four cases

have basically the same crack tip opening at the elastic-plastic boundary

under the same load Japp’ in striking similarity to the findings of RICE
(1967b) in the anti-plane shear case. The values for n in column I of the

table for the material with 0o/E = 1/300 fit quite closely to the relationship,

suggested by RICE (13973),
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§ =0.550  _/ (8)

t app f1ow °

where aflow is the flow stress in tension at an equivalent shear strain of

N/(1 + N), or

_ 2 N
at = O.SSJapp[7§(l + v)(1 + N)UO/NE] /oo | (9)

In addition,the values n for the same material in column II fit (8) and (9)
with 0.55 replaced by 0.58. This agrees with calculations by TRACEY (1973),
who found that the relationship &, = O'SMJapp/Bflow arose for small scale
yielding in his finite element solutions for hardening and non-hardening
materials using crack tip singularity elements and a definition of crack

tip opening displacement like that used for column II of the table. PARKS

(1975) has recently suggested that the number in TRACEY'S relationship should

be 0.65 in view of the undesirable path dependence of J within TRACEY'S non-
hardening singularity element,which reduces the value of J at the crack
tip to 0.8 of the remote value of J. More recently TRACEY (1976) has suggested
Gt = 0.54(1 + N)Japp/aflow based on results using the non-hardening singula-
rity element,which has path dependent J within it,and a hardening singularify
element with path independence of J.

Other determinations of n have been made for non-hardening materials based
on estimates for velocities on slip lines near the crack tip. RICE (13968)
suggested Gt = 0.67Japp/0° .and RJ used the non-hardening limit of the HRR
singularity to obtain Gt =z O.79Japp/o°.

An experimental attempt to measure n has been carried out by ROBINSON

and TETELMAN (1974) using standard ASTM K_ . specimens of AISI 4340 steel.

IC
Cracks in loaded specimens were infiltrated by a fast setting plastic and the
measurements of crack tip opening displacement were made on the carefully
withdrawn casts. Their results gave Gt = Japp/oo, a somewhat larger Gt than
would be predicted from all the analyses discussed previously. Indirect

- T
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measurements of 6t may be made if one assumes that the stretched zone bhetween
the pre-fatigued crack surface and the fast fracture area on the fracture
surface of broken specimens is the perfect remnant of the severely strained
blunted tip surface,and that as a consequence the stretched zone size would
be controlled by the value of K at fracture. BROTHERS et al. (1971) measured
stretched zone widths in broken specimens meeting ASTM specifications for KIC
testing in steel, aluminum and a titanium alloy, and,based on a shape for the
blunted tip as in figure 2,their measurements suggest a value for n in the
region of 0.7. for all these materials. GREEN, SMITH and KNOTT (1973) noted
that the measurements by BATES and CLARK (1969) of stretched zone width on
fracture surfaces on broken fracture toughness specimens,made from various
structural steels,could be correlated with Gt = 0.63 Japploo' BROEK (1974)
however has found that stretched zone width in some aluminum fracture tough-

ness specimens does not correlate with K but that twice the difference in

Ic’
height across the stretched zone is 0.4 Kic/ooE, suggesting the value 0.ub
for n.

3.5 Path dependence of the J-integral in the finite element results

Path integral calculations of J,as defined in (6),were made on various con-
tours around the notch tip. The contours were straight lines within an element
passing through the centroid of the element,and centroidal values of the inte-
grand were used as the integrand over all of the path within the element. The
distance from the centre of the notch tip to the centroids of all the elements
on a given path was about the same,and this distance is represented by the
distance R in fig. 9. The contours on which the calculations were made are:
(i) through the inner layer of elements of section B of fig. 1 excluding all
but one element on the straight flank; (ii) through the outer layer of elements

of section B; (iii) through the second outermost ring of elements of section A;
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(iv) and through the outer ring of elements of section A. The displacement
gradients,auilaxj,necessary to compute the term ?.33/8Xl{were obtained by
numerically integrating the expression avi/axj = (avi/axk)(axk/axj) using the
quantities (3vi/3xj)At calculated at each step of the finite element calcula-
tions. Here At is the time step size of the finite element increment,in which
time is to be understood as a parameter of the applied load and is zero in the
undeformed configuration. Similarly the term W was calculated from the rela-
tionship W = I frijDijdt, where tf parameterizes the load causing thg defor-

o
mation state for which W is to be calculated, and the reference state for r is

always the undeformed state.

The values for J,so computed,are plotted in fig.9 normalized by the value
Japp calculated on a remote contour. The values of’J/Japp for values of R/b
greater than twelve are 2ll close to unity, indicating that path independence
of J prevails over all but a small area of the mesh. The area where J is path-
dependent, i.e. R/b less than about 6, is also the area significantly affected
by the blunting of the notch. The results shown in fig. 9 were calculated on
three contours,but seem to fall on one curve indicating that J+0 as R+b°. The
points showing J/Japé = 1 for R/b less than 12 aétually arise in the élastic
solution to the problem and in the first few plastic increments, during which
J has to be path independent for contours separated by elastically deforming
material. The reason for the extreme path dependence of J as computed for
R/b<l is not clear. The calculations were checked to ensure that no intense
deformation contributing to the notch opening was occurring outside of the
contour, and thus failing to contribute .to the computed values of J. No

significant improvement of the results towards path independence of J was ob-

tained in this way. It is instructive,however,to consider the contour T, on
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the undeformed notch tip surface,in which case
J, = I wdax, .
t Pt 2

If it is assumed that a good approximation is W = OOEP on Rt for large amounts
of opening, an assumption which seems to be borne out by the actual calcula-
tions of W in the near tip region, and that the near tip plastic strains after
large amounts of opening are proportional to ln(b/bo), which is also confirmed
by the finite element results, then Jt/Japp will diminish as b/bo increases,
since Japp is basically proportional to (b/bo-l) after large opening as can be
seen in fig. 8. The question here is whether the plastic strains on Pt as
inferred from the finite element results at discrete points off Pt are accurate,
but confirmation that they are reasonably accurate is available from the RJ

slip line results.

All this argues that fig. 9 is an accurate representation of the path
dependence of J, but the possibility ;till exists that numerical inaccuracy in
either the computation of J or the finite element results is the real cause cof
the path dependence. However, to have achieved such inaccuracy as to have cal-
culated J/Japp wrong by an order of magnitude does not seem ppssible while
achieving such good agreement with the results of RJ slip line solution,
especially since all the quantities involved in calculating J as a path integral
are quite smoothly varying and seem to present no difficulty in the numerical
integration. In addition, the calculation of W for material in the near tip
region is not sensitive to a choice of loading path slightly different from the
actual loading path,so that it does not seem possible that inaccurate finite
element calculations of the loading history could have seriously affected the
calculation of J in this respect. This also suggests that a deformation piastic

material with similar loading characteristics to the Prandtl-Reuss incremental
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plasticity material would exhibit a quite different near tip behavior. This
may be of some importance in view of the fact that models for polycrystalline
slip suggest that vertices may arise on yield surfaces. It has been sﬁggested
that constitutive modeling for such a plasticity mechanism is best done using
deformation plasticity laws when the loading path is only slightly non-radial
(e.g., HUTCHINéON, 1970).

The path independence of J,outside of the region affected by the blunting,
agrees with the finite element solutions of several investigators for cracked
elastic-plastic bodies obtained using the conventional small strain assumptions,
ignoring the effects of blunting. Path dependence of J quite close to the
crack tip under contained yielding conditions has been noted by KOBAYASHI, CHIU
and BEEUWKE (1973) and HAYES and TURNER (1974) and by PARKS <1975) in the work
of TRACEY (1973) and RICE and TRACEY (1973). In the last case a path dependence
of J was found in the crack tip éingular~elements,which persisted when a defor-
mation plasticity constitutive law was used, leading to the conclusion that the
path dependence in the singular element may be erroneous. These investigaticns
suggest that if J is really as path dependent as indicated by fig. 9, then the
path dependence can be observed only when a geometrically non-linear approach
to the contained yielding crack tip plasticity problem is utilized. In the
non-linear solution,(ie; notch blunting by finite elements),J is found to be
path independent in the part of the problem where geometrically non-linear
effects are small,and to be path dependent where non-linearity dominates, ie;
close to the blunted tip.

A method of solving crack tip plasticity problems for the near tip fields
involves an assumption that J is path independent right into the crack tip,as
in the work of RICE (1968) and HRR. Since it has been shown that the inclusion

of the geometrically non-linear terms in the problem seems to lead to a path
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dependence -of J near the crack tip,the question arises of whether the results
based on path dependence of J are correct. It appears that the answer to this
is based on the different role the crack tip plays in the linearized and non-
linear formulations. In the geometrically linearized case,(RICE, 1968 and
HRR), the crack tip is modeled as a singular point for strain, with the strength
of the singularity determined by the hardening characteristics and the ampli-
tude controiled by J. The resulting field of singular strains around the crack
tip involves mostly shearing adjacent to the tip,and it is these shear étrains
that give rise to the opening displacesment at the crack tip. The non-linear
formulation of RJ illustrates most simply the difference from the singularity
approach. In this the velocities around the crack, developed from the path
independent J singularity analysis of RICE (1968), are used to set boundéry
conditions on a zone of spiral slip lines in which intense stretching occurs
(see fnset fig. 7). These velocities would cause a shear strain singularity

if they were applied to one point, as they are in RICE (1968), but now they

are applied along the boundary line of the spiral zone, and the shearing is
intense but non-singular. This shearing is still accomodated by the crack
opening,but account is now taken of the necessary stretching ahead of the

crack tip. Thus, it may be seen that the spiral zone and blunted tip has re-
placed the crack tip point and singular behavior of the RICE (1968) and HRR
work,with the outer field of that work substantially unaltered by the geometric
effects of blunting. Since the notch blunting finite element calculations
produce results almost identical to the RJ work, the explanation of the
apparent limited path dependence of J in the finite element results for blunt-
ing seems to be associated with this idea of a dominant outer field, in.which

J is path dependent, surrounding the perturbed blunted area. - The conclusion is
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then that the small strain singularity work,based on path independence of J,

correctly predicts the outer field and that the outer field is only perturbed

locally by the blunting.
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4 NON-SMOOTH BLUNTING OF CRACK TIPS

The results of section 3 apply to crack tips which have experienced only
smooth blunting as opposed to blunting to shapes with sharp corners. If sharp
corners do occur in the steady state crack tip blunted shape, the crack tip
opening has been accomodated at least partly by singular shear strain rates
(but bounded strains, of order unity) at the vertices on the crack tip. This
has the effect of transporting material from the interior onto the crack tip
surface. In the slip line fields around blunted crack tips with vertices,
shown in fig. 10, it can be seen that a fan of slip lines associated with the
singular shearing emanates from each corner on the crack tips. There are
similarities to the RJ slip line field in that the zones,bounded by the crack
tip and the slip lines AB and AC,are partly filled up by spiral slip lines in
which large amounts of stretching take place. Intense stretching may take
place within the other areas of slip lines in the zone bounded by AB, AC and
the crack tip, but some,if not most,of the crack opening is accomodated by the
localized shearing in the fans,so the stretching of material will not reach
the levels attained in the smoothly blunted case. The overall similarity of
the slip line configurations in fig. 10 to the slip line field for the smoothly
blunted crack is striking and the possibility of either smooth or vertex
blunting occurring with similar velocity fields remote from the crack tip is
apparent. The limited levels of plastic strains,when sharp crack tips are
blunted into tips with sharp corners,seems to suggest that these shapes are
more stable than smoothly blunted tips when hardening constitutive laws are
used. However, the tendency for deformation to localize at, say, asperities
on the tip surface (McCLINTOCK, 1971, pp 158-160) may be important in this

respect,
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The slip line fields in fig. 10 are those presented by McCLINTOCK (1971,
pp. 158-159) for steady state blunted crack tip shapes, and the included angle
of the tip in the case where there are three corners on the tip is 120°, The
stress state in both cases is such that further from the tip tham A,
oyy = 2.960° ony = 0{ In the flat nosed case, the stress dyy = l.lsoovbetweep
E and D,and rises monotonically from this value at D to 2.96c at A. In the
sharp nosed case ayy = 1.790o between G and F, and rises monotonically from this
value at F to 2¢9600 at A. Thus the flat nosed case is similar to the non-
hardening smooth blunting case,in that oyy on'y = 0 at the smooth tip ;urface.
is 1.1600 and rises to 2.960; some distance from the tip surface. When non-

" hardening materials are compared,the sharp nosed case provides a severe state
of high stress and large plastic strain at the crack tip surface,not present
in either the flat nosed or smoothly blunted case. This severe state,however,
prevails only over a small area adjacent to the crack tip.

Of course,the cases shown in fig. 10 are only two members of an infinite
family of vertex shapes int6 which blunting can occur. An example of a’
blunted notch with at least five vertices on the tip is presented by CLAYTON
and KNOTT (1976),in which the vertices seem to be forming by tﬁe asperity

localization mechanism suggested by McCLINTOCK (1971, pp 158-160).
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S5 VOID GROWTH NEAR THE CRACK TIP AND FRACTURE INITIATION

Determination of the shapes and sizes of voids growing near the crack tip
is a step in constructing a ductile fracture model based on the coalescence of
these voids with the crack tip. One aspect of the problem pertains to void
nucleation, typically from the cracking of second phase inclusions or preci-
pitates, and appropriate calculations of void growth must be based on initial
conditions prevailing at void nucleation. Although void nucleation is the
subject of a great deal of research (e.g. GURLAND and PLATEAU (1963), ASHBY
(1966), TANAKA, MORI and NAKAMURA (1971) and ARGON and IM (1975)), the results
are not yet so conclusive that conditions of nucleation can be used in the
void growth calculations. However,by using an initial condition that the void
nucleates from the particle with a spherical shape when the particle first
enters the plastic zone,the result will be an underestimation of toughness
given that all other aspects of the model are accurate. The formulation of
RICE and TRACEY (1963) for the rate of growth of a spherical cavity in a
remote uniform stress and plastic strain field may be used to compute the size
of the voids growing in the near tip field as computed by finite elements.
This approach has already been taken by RJ, but for voids in the near tip
field as computed by the slip line method in their blunting analysis. The
results of RICE and TRACEY, which are similar to those of McCLINTOCK (1968a)
for a long cylindrical cavity, show a strong dependence of the growth on mean
normal stress. The velocities on the surface of the spherical void are approx-
imately compatible with the homogeneous deformation rate DV of the void

interior given by

D =2 07 + 0.279 eP 1 exp(so'”/zoo) R (10)
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where D is the remote uniform deformation rate (deviatoric) in the

rigid plastic material, eP is the equivalent plastic strain rate

(&P = (2Dsz;j/3)l/2), 0“/00 is the ratio of mean normal stress to yield stress
in tension in the remote field, and I is the identity tensor. To modify

(10) so that void growth rates in the non-homogeneous stress and strain fields
around the crack tip may be approximated, the stresses and strain rates at the
current void site, computed as if the void was not present, may be substituted
fof all quantities in (10) identified with the remote field. This ignores
perturbation of the local stress and strain fields at the void site by the
presence of the void. As the void grows it becomes non-spherical,so an approx-
imation is introduced based on a substitute spherical void with diameter a
chosen so that the substitute void has the same volume as the actual void.
Since this sphere would be subject to the deformation rate Dv as given by (10),

the velocity at point S on the surface of this void in the absence of spin is

WP = ap'.ns , (11)

where n- is the unit vector from the centre of the sphere towards the point S.

-~

The spherical void may be deformed into the actual void by the deformation
Vvaolé, where a, is the diameter of the original undeformed spherical void

and the deformation gradient Fv (Fij = axi/axj) within the homogeneously

deformed ellipsoidal void can be decomposed as in FV= VV.RV, where RV is the

-~ -~

rotation experienced by the actual ellipsoid. In particular the vector an®

is deformed into aOVV.nS, and this last vector may be used to define

-~

V s . . ' . cus
npaact = aOV .n_, where n® is a unit vector and npaact is the position vector

of point S on the ellipsoidal void surface. The approximate deformation rate
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in the ellipsoidal void is chosen so that vP is the velocity of the point at

nPa on the ellipsoidal void surface, and so

~ act

P _ ,- v V-1 p
v o= (a/ao)P .(Y ) LI . (12)

The spin tensor Q(?Qij

velocity of -q+nPa

~

ij/axi - avi/axéxat the void site causes an additional
act 3t that point,and from this it is simple to show that

ooV (v")'la/ao-n) F ) (13)

This equation was numerically integrated using the steady state results
from the finite element analysis of blunting, with the computstion started
when the void site enters the plastic zone. The plastic part of the local
deformation rate was used as D in (10). The results for the non-hardcning
material with oo/E = 1/300 are shown in fig. 11 and show that the void at
45¢ experiences faster earlier growth due to the larger amounts of plastic
strain occurring there. The void at 0° catches up and grows faster when it
is close to the crack tip due to larger mean normal stresses. The results
for the void at 0° confirm the similar calculations of RJ based on their slip
line results for blunting. The growth rates in the hardening material with
N = O.l,oo/E = 1/300,as in figure 12,are not much different from those in
the non-hardening material when phrased in terms of crack tip opening
displacement,as in fig. 11 & 12, However,when measured against Japp,the
growth rates in the hardening material are lower than the rates in the non-

hardening material,

5.1 Fracture models based on the void growth model

In spite of the approximations involved in obtaining the results in
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t 1

figs. 11 & 12, the calculations of void size and shape may be valuable in
studying the near tip growth in materials with loosely bonded equiaxed

second phase particles, which come loose from the matrix as coon as the matrix
experiénces plastic strain. The particles should be spaced widely enocugh
~apart so that void growth is not heavily influenced by neighboring voids.

When the void is large enough,it will coalesce with the crack tip,and, if the
manner of coalescence is known,the craék tip opening displacement just after
the coalescence event may be calculated. Using the arbitrary criterion that
coalescence will occur when twice the ligament between the void and the rcrack
is the same size as the maximum dimension of the coalescing void, RJ computed
the crack tip opening displacement for fracture in terms of the ratio of

void nucleating particle spacing to void nucleating particle size,by assuming
that voids. on the crack line would coalesce with the crack earlier than other
voids. They compared their results (see fig. 13) with data collected by
PELLISSIER (1968) and BIRKLE et al (1966) for a high strength steel contain-
ing MnS particles and known to fracture in a ductile manner as evidenced by
dimpled fracture surfaces. The !nS particles are known to come loose quite
readily, although COX and LOW (1974) have recently shown that macroscopic
stréins larger than 0.1 are necessary to cause 75% or more of the MnS particles -
to nucleate voids in AISI 4340 commercial purity steel. It might then be
expected that the RJ model should agree quite well with the data,but should
underestimate the toughness. ‘Although the trend of the data, including those
for GREEN and KNOTT'S (1976) C/Mn steel, is captured by the RJ model, an over-
estimation of the toughness is involved. It is not clear whether this is a
result of inaccurate statistical estimation of the model parameters from

metallographic studies, since much better agreement may be obtained by using
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the three-dimensional nearest neighbor spacing as D, rather than the two-
dimensional nearest neighbor spacing which is used as D for all data points
except possibly those of GREEN and kNOTT. On the other hand, the overestimation
may be aséociated with inaccurate modeling of the crack-void coalescence event.
In the steels with MnS inclusions, the coalescence seems to be controlled by the
smaller carbide inclusions in view of a second family of small dimples on the
fracture surface shown to be associated with the carbides by COX and LOW (1974)
in AISI 4340 steel. As evidenced by the larger fraction of the fracture surface
covered by small dimples in the AISI 4340 steel compared with the fracture sur-
face of the steel studied by PELLISSIER, this coalescence seems to occur earlier
in the AISI 4340 steel, and may be proposed as the reason for the poorer
fracture toughness in terms of critical Gt/D of the AISI 4340 steel, as shown
in fig. 13.

Judging by the micrographs obtained by COX and LOW, the coalescence in
4340 steel occurs by localization of plastic flow in bands containing small
voids. These small voids seem to be responsible for the family of small dimples
on the fracture surface. The tendency of flow to localize seems to be present
to a greater or lesser extent in most of the materials involved in fig. 13.
It would seem to be of significance that the 4340 steels perform most poorly as
judged by the relative position of the data in fig. 13, since these steels are
observed to flow-localize quite readily compared to the other materials. 1In
comparison, COX and LOW observe that the 18-Ni maraging steel both has a higher
toughness than 4340 steel and shows little tendency to localization of flow.
The localization effect may not be absent entirely from the maraging steels,
since PSIODA and LOW (1974) have observed that, when an 18-Ni maraging steel

is heat treated to different strength levels, a correlation of the fraction of
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the fracture surface covered by smaller dimples may be made with yield strength
and fracture toughness. As the yield strength increases, the fracture toughness
drops and an increasing fraction of the fracture surface is covered by the
family of smaller dimples. Concurrently, an increasing tendency for voids

in sectioned specimens of zll these steels to bé linked by sheets of smaller
voids has been observed, and it is believed that this is evidence of localiza-
tion of plastic flow either caused by or causing the nucleation of voids from
smaller particles. A similar explanation seems to be suitable regarding the
difference between the data for 2000 series and 7000 series aluminum alloys
deduced by RICE from the work of VAN STONE et al (1974) and shown in fig. 13.
Both types of alloy have inclusions which nucleate voids after a few percent
strain, and it appears that not all inclusions actually prsvide voids even at
high strains. Thus the RJ model would seem to be an underestimation of the
toughness for both alloys. This is not so and once more an extensive family

of small dimples is apparent on the fracture surface, suggesting coalescence
of crack and void much earlier than supposed by RJ. The 7000 series alloys
show larger fractions of fracture surface covered by small dimples, and, if the
explanation of localization of flow is accepted, this seems to suggest that
localization occurs more readily in the 7000 series than in the 2000 series.

VAN STONE and PSIODA (1975) have observed the formation of a void sheet in

2124-T851 alloy, and the family of small dimples probably arises from such

localized deformation. In seeming confirmation of this, HAHN and ROSENFIELD

(1975) have noted that as the yield strengtn of 7178 aluminum is increased by

. aging, the fracture toughness falls and then, during overaging, the fracture

toughness rise$ while the yield strength falls, and they observe that in peak

aged condition another 7000 series alloy shows a tendency for plane strain
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flow to localize into bands containing small ruptured particles.

The similarity of GREEN and KNOTT'S (1976) data shown in fig. 13 for
the initiation of crack growth in fully plastic three point bend specimens
and the data for steel under small scale yielding conditions suggests that
the crack tip processes are similar in both cases. GREEN and KNOTT noted
thatAin a free cutting mild steel which strain hardened appreciably, (open
circles, fig. 13), the crack growth initiation occurred by the growth and
coalescence of voids, and the model of RJ predicted the critical point for
crack growth initiation quite well. However, in a prestrained specimen which
basically was non-hardening, the crack growth initiation occurred by localized
shearing, and, as can be seen in fig. 13, the initiation of crack growth
occurs much earlier in this specimen than in the non-prestrained specimen.
CLAYTON and KNOTT (1976) have also observed that increasing prestrain in HY80
steel leads to smaller crack tip opening displacement at crack growth initiation
and also increasing localized flow at the crack tip.

All the data discussed so far are for materials with inclusion not well
bonded to the matrix. By changing the orientation of the specimens of ENIA
so that the inclusions were elongated in the direction normal to the crack
line (longitudinal specimen, fig. 13), GREEN and KNOTT found that crack growth
initiation required much larger crack tip opening displacements. They argued
that this orientation is much less favourable for the nucleation of voids at
the particles and so that much less void growth occurs in the near tip field.
Similarly, the data for the ductile fracture of mild steel with relatively
tenacious spheroidized carbide particles taken from the work of RAWAL and
GURLAND (1976) does not follow the RJ model very well. However, it should

be noted that for these materials the trend of increasing Gt/D correlates
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with diminishing size of the carbide particles. Since GURLAND and PLATEAU
(1963) and other have noted that larger particles crack earlier than smaller
particles, the increasing toughness relative to the prediction of RJ seems to
be readily explainable.

In conclusion, it seems to be the case that the fracture toughness of
materials with inclusions not well bonded to the matrix can be predicted quite
well by the model of RJ. The differences between the model and the data,and
between materials seems to be the most easily explained in terms of the
relative tendency for deformation to localize in bands associated with the
nucleation of voids from smaller particles, which-ultimately form the family
of small dimples on the fracture surface. If the larger inclusions do not
readily nucleate voids, the RJ model is not appropriate but it may be modified
to account for void nucleation.

The same criterion as used by RJ may be combined with the results plotted
in fig. 11 for & = /4 and all results in fig. 12 to produce a criterion for
the initiation of crack growth. While the predicted toughness from these in
terms of crack tip opening displacement will be different from those predicted
by RJ, the difference from the results of RJ will be slight compared to the
difference between the data and the predicted toughness in fig. 13. Of course
when the predicted toughnesses are phrased in terms of K or Japp' hardening
materials will have a predicted toughness greater than the toughness of the
non-hardening materials when all other properties are the same. This is in
agreement with the known trend of greater plane strain fracture toughness with

lower yield strength and greater hardening as noted by KRAFFT (1964).

5.2 Crack-void coalescence and void nucleation

Although many aspects of the fracture model just described are highly
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approximate, the two aspects which seem most in need of improved modeling are
the coalescence event and the nucleation of the void. Improved understanding
of the coalescence event might allow calculations of toughness somewhat lower
than predicted from the model by RJ, while void nucleation'requiring other than
negligible stressés or plastic strains will lead to higher predicted toughness
as aiready discussed. Some possible models for the coalescence event include
localization of flow in the ligament, nucleation of voids from families of
smaller particles in the ligament and the thinning down of the ligament completely.
In non-homogeneous deformation it is known that rigid-plastic materials can be
subject to localized shearing along the slip-lines (HILL, 1950, pp. 149-150).
Thus it may be that localization may occur in non-homogeneously deformed
elastic-plastic materials along contours which are everywhere tangential

to the principal shear directions after the hardening rate everywhere on the
contour falls to a sufficiently low level. The dominant role of hardening and
strength level in localization of flow, as noted in section-5.1, suggests that
a proper study of stresses and strains in the ligament between the void and the
crack should be based on more redlistic hardening laws than a pure power law.
Possibly it should include the effects of porosity, from widely nucleated voids,
in reducing the hardening rate of a macroscopic element of a material as noted
in the localization study of BERG (1970). The coalescence of void and crack
after localization of flow has occurred is proposed to arige from heavy nuclea-
tion of voids from small particles in the band of localization. The presence
of voids nucleated from particles in bands of localized deformation has been
reported by ROGERS (1960) in copper and by BLUHM and MORRISEY (1968) in copper
and steel in addition to the observations of LOW and co-workers discussed in

section 5.1. However, this evidence is equally suggestive of a coalescence
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event caused by nucleation of a few voids from smaller particles in the
ligament starting a spreading band of nucleating voids, continuing until the
ligament is broken. The other possibility for coalescence, the thinning down
of the ligament to zero thickness, may only be possible in the absence of
smaller particles which can nucleate voids, and in addition the material might
have to have sufficient hardening capacity to avoid a possible localization of
flow,

The improvement of the modeling cf void nucleation may be of importance
for understanding both the coalescence event and the formation of the voids
from the larger particles. ARGON and IM (1975) have studied a moderately
hardening sphefoidized 1045 steel and they concluded that the closely spaced
Fesc particles separate from the matrix when a tensile stress, which happens to
be equal to 3,5 times the. tensile yield stress of the material, acts in the
neighborhood around the particle. Assuming that this critical stress has an
absolute meaning, its high level indicates that, for example, the void could not
nucleate in a non-hardening material in the crack tip region, and that it coﬁld
nucleate on ® = 0 in the oo/E = 1/300, N = 0.1 material used in the finite
element calculatioﬁs but not on the line © = w/4 in the same material. This
diserimination would indicate that, although all the growing voids will be
smaller than indicated by figs. 11 & 12, the voids off the crack line will be
reduced in size more than those on the crack line.

GURLAND (1963) has suggested that a critical pléstic strain (equivalent
to a critical shear stresé), is necessary to nucleate voids from particles, and
a consequence of this would be the nucleation of voids off the crack line,
further from the crack tip, than on the crack line, except from the most

tenacious of particles. Again all the growing voids will be reduced in size
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compared to figs. 11 & 12 but now the voids on the crack line will be reduced
more than the voids off the crack line. McCLINTOCK (1968b) has suggested
a combined critical stress and strain criterion in which a high strain and a
low stress or a low strain and a high stress could both nucleate voids.
Confirmation of this seems to be evident from the wqu of MACKENZIE, HANCOCK
and BROWN (1973) on several steels, in that the formation of a large.vbid
from smaller voids nucleated from particles consistently followed this sort
qf criterion, in terms of mean normal stress and plastic strain. Their data
indicates, for example, the nucleation of these voids more favourably off the

~

crack line in HY130 steel,

5.3 Other fracture models and criteria

KRAFFT (1964) has proposed a model for ductile fracture by coalescence
of a crack and void in which, basically, the coalescence will occur when the
tensile instability strain is achieved at the crack tip over a size scale equal
to the spacing of void nucleating particles. As suggested by CLAUSING (1970),
the plane strain ductility may be more useful for quantifying this neckiné
model, and some successful correlation (e.g. OSBORNE and EMBURY, 1973) has
been carried out using this and the tensile instability strain,‘despite the
indirect link between macroscopic ductility and microscopic processes. Arother
model for fracture,which might be useful for materials where the spacing of
the particles first nucleating voids is about the same as the sizes of the
particles themselves,is that, as soon as the voids are nucleated; initiation
of crack growth occurs. The criterion for fracture arising from this wﬁuld
involve the conditions for void nucleation extending over one or two particle
spacings. As has been discussed in section 5.2, it is nbt certain whether

stress, plastic strain, or a combination of stress and strain would comprise
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the void nucleation criterion. In the case of slip nucleated cleavage in

mild steel, RITCHIE et al (1973) have successfully applied a stress criterion
based on a critical cleavage stress and they found that fracture occurred when
the critical stress was achieved near the crack tip'over a size which happened
to be equal to two grain sizes. RAWAL and GURLAND (1976) have also noted that
a critical stress was achieved over a distance of about 1.3 grain sizes in
their specimens of spheroidized mild steel, which failed by cleavage. In

each of these models the fracture criterion involved critical conditions

achieved over some distance. Indeed McCLINTOCK (1958), RJ and RITCHIE et al

(1973) have all pointed out that such criteria require the inclusion of a
critical distance, to avoid the prediction of fracture for Qanishingly small
loads. Some brief comments may be made on each type of fracture criterion

in the light of the finite element results as illustrated in figs. 3-6.

(a) Stress criteria: Since the tensile stress and the hydrostatic stress
are greater on the crack line tﬁan off the line, this type of criterion will
always be based on models involving crack growth straight ahead on the crack
line. In addition, the stress levels (except for the flow stress very near
the tip) are limited and are proportional to the tensile yield strength. This
can be used to predict a transition, associated with decreasing strength level,
from the fracture mode controlled by stress to some other fracture mode as
noted by RJ and partly confirmed in the case of the cleavage-ductile transi-
tion in steel by RITCHIE et al (1973) and PARKS (1976). A difficulty arises
from this, as far as fracture models based on a stress criterion for void
nucleation are concerned. If the critical stress to nucleate voids is
constant, then the strength level may be reduced until no voids can be
nucleated in the near tip field. Since the crack growth can no longer involve

this family of voids, a transition to another fracture mechanism must occur.
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Such transitions in the ductile fracture range of toughnesses do not seem

to occur. However, the objection to stress criteria for void nucleation would
not be valid if the elevated flow stresses on the crack surfaces really exist

in hardening materials, These elevated stresses could cause the void nucleation
at very low strength levels and would involve a prediction of relatively high
toughness.

(b) Strain criteria: If the critical strain in the criterion is low,

so that the curves for plastic strain in fig. 3-6 may be used, then the

critical condition will first be reached over a line at some angle to the

crack line and crack growth will occur along this line. In contrast, if the
fracture strain is so high that figs. 3-6 cannot be used, the critical conditions
Qill first arise on the crack line and straight ahead crack growth may be
predicted, Since the strain levels are not limited except by the crack tip
opening displacement, no transition from this fracture mode will occur with
decreasing strength ;evel.

(c) Mixed stress and strain criteria: If the fracture model involves

an event in which the plastic strain sets the level of critical stress, then
a mixed criterion arisgs. Both (a) and (b) are limiting examples .of mixed
criteria, and so mixed criteria may involve predictions of transition of
fracture mode, flat crack growth, or angled crack growth.

The localization of flow of the kind discussed in section 5.2 may be an
important element in some fracture models, over and above its possible role
in breaking ligaments between cracks and voids. After some amount of deforma-
tion has occurred near the crack, conditions might be such that a localization
of flow into a narrow band is favoured over a continuing deformation in the

regular near tip mode. The theoretical framework for this has been studied by
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HILL (1962), and RICE (1976) has discussedAthe manner in which localization
can occur under very constrained boundary conditions. The localization can
set in when the hardening rate has fallen to a low, but possibly non-zero
rate. In addition, a lack of normality in the flow rule or the presence of
a vertex on the yield surface is favourable to the early inception of localiza-
tion, as compared to cases with "normality'" flow rules or smooth yield
surfaces respectively. As before, the fracture would occur by massive
nucleation of voids in the band of localization, or by fast growth and
coalescence of voids already lying within the band. This model for localiza-
tion has been discuésed by BERG (1970) for porous materials, and as he notes
it may be used to predict extensive zig-zag growth of the crack. In the
absence of general porosity, VAN DEN AVYLE (1975) has observed such zig-zag
growth in fracture toughness specimens of 4340 steel and maraging 300 steel,
in which the wavelength of the zig-zag growth could be correlated with KIC'
There are no large dimples on the fracture surface and no voids in material
near the .fracture surface. It may be that the explanation for such crack
growth behavior lies in a localization model. The role of hardening in the
localization model is illustrated by work of HUFF, JOYCE and McCLINTOCK (1969),
who observed fracture along a curved slip line in a fully plastic specimen of
hardened 1020 steel, while an annealed specimen fractured along the crack line.
In all the fracture models discussed, a clear indication of the direction
of initial crack growth can be made once the details of the model have been
worked out. Reversing this point of view, observation of the direction of
initial crack growth in small scale yielding might allow one to draw conclu-
sions about the nature of the fracture processes and, along with observation

of the void growth around blunted crack tips, this would allow one to assess
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the value of particular fracture models. It seems that few investigators
have recorded the details of initial crack growth in small scale yielding.
However, RAWAL and GURLAND (1976) show a micrograph of a pre-fatigued crack
in spheroidized carbon steel which has experienced crack growth by ductile
rupture along the crack line, while BEACHEM and YODER (1973) observed angled

ductile crack growth from a pre-fatigued crack in 200-grade maraging steel.
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6 CONCLUSIONS

It is concluded from the constant crack tip shape and the constancy of
thé stress and plastic strain distributions,when length measurements are
normalized by current notch width,that a steady state solution independent
of the original notch shape was achieved in the later increments of the
finite element calculations. Thus the solutions obtained can be applied to
the problem of the smooth blunting of a sharp crack in an elastic-plastic
material under small scale yielding, plane strain,opening loading conditions.

While the results show that tensile stresses are elevated by triaxial
strains near the tip of the blunted crack, it is seen that the stress levels
arising from this effect are limited and a maximum for stress liés a distance
of about 2 crack tip openings from the notch tip,measured in the undeformed
configuration. The distance between the stress maximum and the crack tip
depends on the amount of hardening; it decreases in terms of crack tip opening
as the power law hardening exponent increases. At distances closer to
the tip than that of the stress maximum, the tensile stress
falls off due to diminishing constraint. It is only in this area that equiva-
lent tensile plastic strains are largé and,in fact,they are larger than about
0.1 only within a distance of one crack tip opening from the crack tip, as
measured in the undeformed configuration.' Plastic strains at the smoothly
blunted surface of an originally sharp crack are infinite and this leads to
infinite flow stresses there in power law hardening materials. However the
large stresses are confined to a small volume of material typically well
within 0,1 crack tip openings from the blunted surface in the deformed
configuration,for hardening levels typical of structural metals. In addition

to the distribution of stress and deformation near the tip, a relationship
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between the applied load and crack tip opening displacement for small scale
yielding was established. It was shown that the J-integral is path dependent
except in an area very close to the crack tip,where the calculations indicate
that a path dependence arises.

The results of the finite element solutions confirm that the slip line
approach of RICE and JOHNSON (1970) models the essential crack blunting
behavior for elastic-non-hardening plastic materials,and that the extension
of the results for stress to hardening materials in their work is a fairly
accurate approximation,

The stress and strain fields calculated by finite elements have been
applied to criteria and models for initiation of crack growth. In the absence
of fully worked out models for this event,few definitive comments can be made,
But the implications of some partially formulated models are clear. In
particular, calculations using models for void growth near the crack tip can
lead to useful results, but more general application of these awaits the
development of criteria for void nucleation and the improvement of models for
void-crack and void-void coalescence. The topogravhy of observed crack growth
initiation in small scale yielding can be used along with the results for
near tip stress and plastic strain to deduce the importance of stress or
strain in the fracture model. For example.straight ahead growth might suggest
a stress controlled process while angled crack growth seems to suggest a
plastic strain dominated process. In consequence, extensive work in sectioning
propped open blunted cracks in small scale yielding érior to and immediately
following ductile crack extension would seem to be in order,to assess the

value of the various fracture criteria and void growth models discussed.
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TABLE CAPTION

Relation between crack tip opening displacement at and applied load
as parameterized by Japp/o° for four materials inferred from finite element
results using various definitions of notch width as follows: I - as in fig.
8, based on point A'; II - notch width defined at point of intersection of
the notch surface and a line drawn at 45° to the =® axis, from the inter-
section of the notch tip and the x-axis; III - notch width defined at the

elastic-plastic boundary.
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o N n as in ét = nJapp/oo
1 1T ITI
1/300 0 0.55 0.58 0.61
1/300 0.1 0.4 0.u44 0.60
1/300 0.2 0.27 0.30 0.54
1/100 0 0.67 0.65 0.63
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LIST OF FIGURE CAPTIONS
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Figure

Undeformed configuration of finite element mesh I for the notch

blunting solution.

(a) Shapes of the blunted notches calculatedAby finite elements
and by the slip line method.

(b) Estimates of blunted crack tip shape inferred from finite
element calculations and the shape for a sharp crack deduced
by slip line method. |

Plot of stress oee/o° and plastic strain around the blunted notch

for oo/E = 1/300 and N = 0. Nofe °, is the yield stress in

tension and R and 6 are defined for the position of the material
in the undeformed configuration.

Plot of stress oee/o° and plastic strain arournd the

blunted notch for.qo/E = 1/300 and ¥ = 0.1.

Plot of stress cee/o° and plastic strain around the blunted notch

for uo/E = 1/300 and N = 0.2,

Plot of stress oee/oo and plastic strain around the blunted notch

for oo/E = 1/100 and N = 0.

Plot of stress oyy/oo on crack line (6 = 0) versus distance from

crack tip in undeformed configuration from slip line solution and

approximation of RJ.

Plot of notch width b versus the value of the J-integral, Ja

pp’
computed on a remote contour around the notch tip.
Plot of J-integral,computed as a contour integral ,versus distance

of contour from the notch tip.

Slip line fields around crack tips blunted to shapes with corners.




Figure 11.

Figure 12.

Figure 13.
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Plot of dimensions of a void growing in the near tip field in
the material UO/E = 1/300, N = 0 versus the notch width. The
void starts growing as soon as it enters the plastic zone.

Plot of dimensions of void growing in near tip field in material
GO/E = 1/300, N = 0.1, versus notch width.

Data for crack tip opening displacement at initiation of crack

growth or fracture,related to particle spacing D and particle

size a,- Also criterion for fracture as formulated by RJ.
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DATA FROM FRACTURE TOUGHNESS TESTS

+ HIGH STRENGTH STEEL (MnS INCLUSIONS),
RICE & JOHNSON (1970),PELLISSIER (1S68)

x ALUMINUM 2000 SERIES| VAN STONE
® ALUMINUM 7000 SERIESf/ET AL (1974),RICE

o AIS| 4340 STEEL (MnS INCLUSIONS)) cox &
@ 18- Ni. 200 MARAGING STEEL }
(T;(C,N) INCLUSIONS) LOW(1974)
, MILD STEEL (SPHEROIDIZED Fa5C INCLUSIONS),
RAWAL 8 GURLAND (1976)

DATA FROM CRACK GROWTH INITIATION TESTS

O ENIA MILD STEEL

® PRESTRAINED ENIA GREEN &

0 ENIA (LONGITUDINAL SPECIMEN) kNOTT(1976)
e C/Mn STEEL

FRACTURE MODEL
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— SMALL SCALE YIELDING , RICE & JOHNSON

(1970)




