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Abstract

In order for computation to emerge spontaneously and become an
important factor in the dynamics of a system, the material substrate
must support the primitive functions required for computation: the
transmission, storage, and modification of information. Under what
conditions might we expect physical systems to support such com-
putational primitives?

This paper presents research on Cellular Automata which sug-
gests that the optimal conditions for the support of information
transmission, storage, and modification, are achieved in the vicinity
of a phase transition. We observe surprising similarities between
the behaviors of computations and systems near phase-transitions,
finding analogs of computational complexity classes and the Halting
problem within the phenomenology of phase-transitions.

We conclude that there is a fundamental connection between
computation and phase-transitions, and discuss some of the impli-
cations for our understanding of nature if such a connection is borne
out.

Keywords: computation, phase-transitions, cellular automata,
halting problem, critical slowing-down, complexity classes, tran-
sients.



1 Introduction

Most of the papers ia this volume assume the existence of a physical
system with the capacity to support computation, and inquire after
the manner in which processes making use of this capacity might
emerge spontaneously.

In this paper, we will focus on the crnditions under which we
might expert this capacity to compute to emerge spontaneously in
physical systems, rather than on how this capacity iight ultimately
come to be utilized.

Therefore, the fundamental question add-essed in this paper is
the following:

Under what conditions will physical systems support
the basic operations of information transmission, storage,
and modification constituting the capacity to support cu.n-
putation?

This question is difficult to address directly. Instead, we will
reformulate the question in the context of a class of formal abstrac-
tions of physical systems; Cellular Automata (CAs). Qur question,
thus, becomes:

Under what conditions will Cellular Automata support
the basic operations of information transmission, storage,
and modification?

This turns out to be a tractable problem, with a somewhat sur-
prising answer; one which leads directly to a hypothesis about the
conditions under which computations might emerge spontaneously
in nature.

1.1 Overview

First, we introduce Cellular Automata and a simple scheme for pa-
rameterizing the space of all possible CA rules. We then apply
this parameterization scheme to the space of possible 1-dimensional
CAs in a qualitative survey of the different dynamical regimes exist-
ing in CA rule space and their relationship to one another. Next,



we present a quantitative picture of these structural relationships,
using data from an extensive survey of 2-dimensional CAs. Finaily,
we review the observed relationships among dynamical regimes, and
discuss tkeir implications for the more general question raised in the
introduction.

1.2 Results

We find that by selecting an appropriate parameterization of the
space of CAs, one observes a phase-transition between highly-ordered
and highly-disordered dynamics, analogous to the phase transition
between the solid and fluid states of matter. Furthermcre, we ob-
serve that CAs exhibiting the most complex behavior - both qual-
itatively and quantitatively - are found generically in the vicinity
of this phase-transition. Most importantly, we observe that CAs in
the transition region have the greatest potential for the support of
information storage, transmission, and modification, and therefore
for the emergence of computation.

These observations suggest that there is a fundamental connec-
tion between phase-transitions and computation, leading to the fol-
lowing hypothesis concerning the emergence of computation in phys-
ical systems:

Computation may emerge spontaneously and come to
dominate the dynamics of physical systems when those
systems are at or near a transition between their solid and
fluid phases.

This hypothesis, if borne out, has many implications for under-
standing the role of information in nature.

Perhaps the most exciting implication is the possibility that life
had its origin in the vicinity of a phase transition, and that evolution
reflects the process by which life has gained local control over a
successively greater number of environmental parameters affecting
its ability to maintain itself at a critical balance point between order
and chaos.



1.3 Cellular Automata

[rs this section, we review Cellular Automata, introduce a parame-
terization of tne space of possible CA-rules, and discuss computaticn
in CAs.

Cellular Automata are discrete space/time logical universes, obey-
ing their own local physics [27,3,5.28,29).

Space in CA's is partitioned into discrete volume elements called
“cells” and time progresses in discrete steps. Each cell of space is
in one of a finite number of states at any one time. The physics of
this logical universe is a deterministic, local physics. “Local” means
that the state of a cell at time t+1 is a function only of its own state
and the states of its immediate neighbors at time t. “Deterministic”
means that once a local physics and an initial state of a CA has been
chosen, its future evolution is uniquely determined.

1.4 Formal Definition of Cellular Automata

Formally, a cellular automaton is a D-dimensional lattice with a
finite automaton residing at each lattice site. Each automaton takes
as input the states of the automata within some finite local region
of the lattice, defined by a neighborhood template A, where the
dimension of ' < D. The size of the neighborhood template, |A7,
is just the number of Jattice points covered by . By convention, an
automaton is considered to be a member of its own neighborhood.
Two typical 2-dimensional neighberhood templates are:

five cell neighborhood nine cell neighborhood



Each finite automaton consists of a finite set of cell-states &,
a finite input alphabet a, and a transition function A, which is a
mapping from the set of neighborhood-states to the set of cell-states.
Letting .V = |V]:

A:EVN L T

The state of a neighborhood is the cross product of the states
of the automata covered by the neighborhood template. Thus, the
input alphabet a for each automaton consists of the set of possible
neighborhood-states: a = EV. Letting K = |£| (the number of cell-
states) the size of a is equal to the number of possible neighborhood-
states

lal = |a] = |=¥] = KV,

To define a transition function A, one must associate a unique
next-state in & with each possible neighborhood-state. Since theie
are K = |X]| choices of state to assign as the next-state for each
of the |[ZV| possible neighborhood-states, there are K(¥") possible
transition functions A that can be defined. We use the notation Df
to refer to the set of all possible transition functions A which can
be defined using .V neighbors and K states.

1.5 Example

Consider a 2-dimensional cellular automaton using 8-states per cell,
a rectangular lattice, and the five-cell neighborhood template shown
above. Here K = 8 and V = 5,50 |A| = KV = 8 = 32,768
and there are thus 32,768 possible neighborhood-states. For each
of these, there is a choice of 8 states as the next cell-state under
A, so there are K(K") = |D}| = 8(8") & 10%90 possible transition
functions using the 5 cell neighborhood template with 8 states per
cell, an exceedingly large number.

2 Parameterizing the Space of CA Rules

DY - the set of possible transition functions A for a CA of A states
and NV neighbors - is fixed once we have chosen the number of states
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per cell and the neighborhood template. However, there is no in-
trinsic order within D¥; it is a large, undifferentiated space of CA
rules.

Imposing a structure on this undifferentiated space of CA rules
allows us to define a ratural ordering on the rules, and provides us
with an index into the rule-space. The ideal ordering scheme would
partition the space of CA rules in such a manner that rules from the
same partition would support similar dynamics. Such an ordering
on DY would allow us to observe the way in which the dynamical
behaviors of CAs vary trom partition to partition.

The location in this space of the partitions supporting the trans-
mission, modification. and storage of information, relative to the
location of partitions supporting other possible dynamical behav-
iors should provide us with insight into the conditions under which
we should expect computation to emerge in CA's.

2.1 The A Parameter

We will consider only a subspace of DY, characterized by the pa-
rameter A [19,18].

The A parameter is defined as follows. We pick an arbitrary state
s € L, and call it the quiescent state s,. Let there be n transitions
to this special quiescent state in a transition function A. Let the
remaining KV — n) transitions in A be filled by picking randomly
and uniformly over the other K — 1 states in & ~ s,. Then

A= é’:”_ z
KN

If n = KV, then all of the transitions in the rule table will be
to the quiescent state s, snd A = 0.0. If n = 0, then there will be
no transitions to s, and A = 1.0. When all states are represented
equally in the rule table, then A = 1.0 — .

The parameter values A = 0.0 and A = 1.0~ 3 represent the most
homogeneous and the most heterogeneous rule-tables, respectively.
The behavior in which we will be interested is captured hetween
these two parameter values. Therefore, we experiment primarily
with A in this range.

(1)
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2.2 Searching CA Space with the A Parameter

In the following, we use the A parameter as a means of sarnnling
DX in an ordered manner. We do this by stepping through the
range 0.0 < A < 1.0 — & in discrete steps, randomly constructing
A functions for each A point. Then we run CAs under these ran-
domly constructed A functions, collecting data on various measures
of their dynamical behavior. Finally, we examine the behavior of
these measures as a\function of A

A functions are cohstructed in two ways using A. In the “random-
table-method,” A is interpreted as a bias on the random selection
of states from ¥ as we sequentially fill in the transitions that make
up a A function. To do this, we step through the table, flipping
a A-biased coin for each neighborhood-state. If the coin comes up
tails - with probability 1.0 — A - we assign the state s, as the next
cell-state for that neighborhood-state. If the coin comes up heads
- with probability A, we pick one of the A’ — 1 states in & — s, at
uniform random as the next cell-state.

In the “table-walk-through™ method, we start with a A function
consisting entirely of transitions to s,, so that A = 0.0 (but note
restrictions below). New transition tables with higher A values are
generated by randomly replacing a few of the transitions to s, in the
current function with transitions to other states, selected randomly
from £ — s,. Tables with lower A values are generated by randomly
replacing a few transitions that are not to s, in the current table by
transitions to s,.

Thus, under the table-walk-through method, we progressively
perturb “the same table,” whereas under the random-table method,
each new table is generated from scratch.

2.3 Further Restrictions on CA's

In order to make our studies more tractable, we impose two fur-
ther conditions on the rule spaces. First, a strong quiescence con-
dition: all neighborhood-states uniform in cell-state s, will map to
state s;, and second, an isotropy condition: all planar rotations of a
neighborhood-state will map to the same cell-state. These restric-
tions mean that arrays uniform in any single state will remain so,



and that the physics cannot tell which way is up, so to speak.

2.4 Discussion

A is not necessarily the best parameter. One can improve on A
in a number of ways. For instance, Gutowitz [13,12] has defined
a hierarchy of parameterization schemes, in which A is the simplest
scheme, mean field theory constitutes the next simplest scheme, and
so on.

However, A suffices to reveal a great deal about the overall struc-
tural relationships between the various dynamical regimes in CA
rule-space, and it is very useful to get a feel for the “lay of the
CA-landscape” at this low-resolution level before increasing the res-
olution and surveying finer details. For one thing, A helps restrict
the area of search to a particularly promising “spot,” which is use-
ful because higher order parameterizations map CA rule-space onto
many dimensions, whereas ) is a one-dimensional parameter.

A discriminates well between dynamical regimes for “large” values
of K and N, whereas A discriminates poorly for small values of &\
and V. For example, for a 1D CA with K =2and N =3, Ais only
roughly correlated with dynamical behavior. This may explain why
the relationships reported here were not observed in earlier work on
classifying CA dynamics [30,29], as these investigations were carried
out using CAs with minimal values of A and V.

For these reasons, we employ CAs for which A’ > 4 and .V > 5,
which results in transition tables of size 4° = 1024 or larger.

2.5 Computation in CAs

Cellular automata can be viewed either as computers themselves or
as logical universes within which computers may he embedded.

On the first view, an initial configuration constitutes the data
that the physical computer is working on, and the transition func-
tion implements the algorithm that is to be applied to the data.
This is the approach taken in most current applications of cellular
automata, such as image processing.

On the second view, the initial configuration itself constitutes
a computer, and the transition function is seen as the “physics”



obeyed by the parts of this embedded computer. The algorithm be-
ing run and the data being manipulated are functions of the precise
state of the initial configuration of the embedded computer. In the
most general case, the initial configuration will constitute a universal
computer.

We can alwavs take the first point of view, but what we are
interested in here is the question: when is it possible - even necessary
- to adopt the second point of view to understand the dynamics of
a CA?

That CAs are capable of supporting universal computation has
been known since their invention by Ulam and von Neumann iu
the late 40’s. Von Neumann's proof of the possibility of machine
self-reproduction involves the demonstration of the existence of a
universal computer/constructor in a 29-state CA [27]. Since then,
Codd [5], Smith [25], Conway [2], Toffoli and Fredkin [8] - to name
but a few - have found much simpler CA rules supporting universal
computation.

All of these proofs involve the embedding of a computer within
the CA, or at least they show that all of the important parts of
such a computer could be implemented and that those parts are
sufficient to construct a computer. Some of these proofs invoive the
construction of Turing machines, others involve the construction of
stored-program computers.

All of these constructs rely on three fundamental features of the
dynamics supported by the underlying transition function physics.
First, the physics must support the storage of information, which
means that the dynamics must preserve local state information for
arbitrarily long times. Second, the physics must support the trans-
mission of information, which means that the dynamics must pro-
vide for the propagation of information in the form of signals over
arbitrarily long distances. Third, stored and transmitted informa-
tion must be able to interact with one another, resulling in a possible
modification of one or the other.

These fundamental properties must be provided by any dynam-
ical system if it is to support computation. Taken together. they
require that any dynamical system supporting computation must
ezhibit arbitrarily large correlation lengths in space and time. These



correlation lengths must be potentially infinite, but not necessarily
50. Codd [5] refers to this situation as one in which the propaga-
tion of information must be unbounded in principle but boundable in
practice.

2.6 Wolfram’s Qualitative CA Classes

Stephen Wolfram [30] has proposed the following four qualitative
classes of CA behavior:

e Class [ evolves to homogeneous state.

o Class I evolves tn simple separated periodic structures.
o Class [II yields chaotic aperiodic patterns.

o Class IV yields complex patterns of localized structures.

Wolfram finds the following analogs for his classes of cellular au-
tomaton behaviors in the field of dynamical systems.

o Class I cellular automata evolve to limit points.
o Class [I cellular automata evolve to limit cycles.

e Class III celiular automata evolve to chaotic behavior of the
kind associated with strange attractors.

o Class IV cellular automata ‘effectively have very long tran-
sients’.

This association of class [V CAs with ‘very long transients’ will
figure ‘critically’ in what follows.

2.7 Class IV CA’s and Computation

Wolfram suggests that. Class [V CAs are capable of supporting com-
putation, even universal computation, and that it is this capacity
that makes their hehavior so complex. This paper supports Wol-
fram’s hypothesis, and offers an explanation for both the existence
of these classes and their relationship to one another.

In their surveys of 1 and 2D CAs, Packard and Wolfram [24]
hypothesized that Class [V CAs coustitute a set of Measure 0. This
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means that class [\ behaviors should be infinitely hard to find in the
‘thermodynamic limit’ of an infinitely large: CA rule space. However,
it turns out that they are not hard to find in rule-spaces that are
far from the thermodynaraic limit. By locating class IV behaviors
in these non-limiting rule-spaces and tracking the manner in which
they become vanishingly rare as one goes to larger rule-spaces, we
can derive a general theory about where to locate rules likely to
support computation in any CA rule-space.



3 Qualitative Overview of CA Dynamics

In this section, we present a series of examples illustrating the typical
change in the dynamical behavior of I-dimensional CAs as we alter
the A parameter throughot its range using the table-walk-through
method. For these CAs, A" =4, .V = 3 (i.e., two cells on the left and
two cells on the left are included int the neighborhood template.} The
arrays consist of 128 sites connected in a circle, resulting in periodic
boundary conditions. Each array is started from a random initial
configuration on the top line, and successive lines show successive
time steps in the evolution.

For each value of A, we show two evolutions. The arrays in Figure
1 are started from a uniform random initial configuration over all
128 sites, while those in Figure 2 are started from configurations
whose sites are 2" 0, with the exception of a patch of 20 randomized
sites in the middle.

Figure 1 illustrates the kinds of structures that develop, as well
as the typical transient times before these structures are achieved.
Figure 2 illustrates the relativ : spread or collapse of the area of
dynamical activity with time. For those values of A exhibiting long
transients, we have reduced the scale of the arrays in order to display
longer evolutions.

We start with. A = 0.0. Note that under the strong quiescence
condition mentioned above we cannot have A = 0.0 exactly. The
primary features observed as we vary A throughout its range are
itemized below.

A = 0.00 All dynan.ical activity dies out after a single time step, leaving
the arrays uniform in state s,. The area of dynamical activity
has collapsed.

A = 0.05 The dynamics reaches the uniform s, fixed point after approx-
imately 2 time steps.

A = 0.10 The homogeneous fixed point is reached after 3 or 4 time steps.
A = 0.15 The homogeneous fixed point is reached after 4 or 5 time steps.

A = 0.20 The dynamics reaches a periodic structure which will persist
forever (figure 1.20). Transients have increased to 7 to 10 tine
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steps as well. Note that the evolution does not necessarily lead
to periodic dynamics (Figure 2.20).

A = 0.25 Structures of period 1 appear. Thus, there are now three differ-
ent possible outcomes for the ultimate dynamics of the system,
depending on the initial state. The dynamics may reach a ho-
moyeneous fixed point consisting entirely of state s,, or it may
reach a heterogeneous fixed point, consisting mostly of cells in
state s, with a sprinkling of cells stuck in one of the other
states, or it may settle down to periodic behavior. Notice that
the transients have lengthened even more.

A 2 0.30 Transients have lengthened again.

A = 0.35 Transient length has grown significantly, and a new kind of
periodic structure with a longer period has appeared (Figure
1.35). Most of the previous structures are still possible, hence
the spectrum of dynamical possibilities is broadening.

A = 0.40 Transient length has increased to about 60 time steps, and a
structure has appeared with a period of about 40 time steps.
The area of dynamical activity is still collapsing down onto
isolated periodic configurations.

A = 0.45 Transient length has increased to almost 1,000 time steps. (Fig-
ure 1.45). Here, the structure on the right appears to be pe-
riodic, with a period of about 100 time steps. However, after
viewing several cycles of its period, it is apparent that the whcle
structure is moving to the ieft, and so this pattern will not recur
precisely in its same position until it has cycled at least once
around the array. Furthermore, as it propagates to the left,
this structure eventually annihilates a period 1 structure after
about 800 time steps. Thus, the transient length before a pe-
riodic structure is reached has grown enormously. It turns out
that even after one orbit around the array, the periodic struc-
ture does not return exactly to its previous position. It must
orbit the array 3 times before it repeats itsell exactly. As it has
shifted over only 3 sites alter its ¢ .1asi-period of 116 time steps,
the true period of this structure is 11,348 time steps. lere,



A = 0.50

A= 0.55

A= 0.60

A2 0.65

A= 0.70

the area of dynamical activity is at a balance point between
collapse and expansion.

Typical transient length is on the order of 12,000 time steps.
After the transient, the dynamical activity settles down to pe-
riodic behavior, possibly of period one as shown in the figure.
Although, the dynamics eventually becomes simple, the tran-
sient time has increased dramatically. Note in Figure 2 that the
general tendency now is that the area of dynamical activity er-
pands rather than contracts with time. There are. however,
large fluctuations in the area covered by dynamical activity,
and it is these fluctuations which lead to the eventual collapse
of the dynamics.

We have entered a new dynamical regime in which the tran-
sients have become so long that - for all practical purposes -
they are the steady state hehavior of the system over any period
of time for which we can obhserve them. Whereas before, the
dynamics eventually settled down to periodic behavior, we are
now in a regime in which the dynamics typically settles down to
effectively chaotic behavior. Furthermore, the previous trend
of transient length increasing with increasing A is reversed. The
arrow to the right of the evolutions of Figures 1.53-1.75 indi-
cates the approximate time by which the site-occupaticn den-
sity has settled down to within e of its long-time average. Note
that the area of dynamical activity expands more rapidly with
time.

The dynamics are quite chaotic, and the transient length to
“typical” chaotic behavior has decreased significantly. The area
of dynamical activity expands more rapidly with time.

Typical chaotic behavior is achieved in only 10 time-steps or
so. The area of dynamical activity is expanding at about one
cell per time-step in each direction, approximately half of the
maximum possible rate for this neighborhood template.

Fully developed chaotic behavior is reached in onlv 2 time-
steps. The area of dynamical activity is expanding ..ven more
rapidly.



Figure 1: goes here somewhere.

Figure 2. goes here somewhere.

A 2 0.75 After only a single time-step, the array is essentially random
and remains so thereafter. The area of dynamical activity
spreads at the maximum possible rate.

Therefore, by varying the A parameter throughout 0.0 < A £ 0.75
over the space of possible A" = 4, .V = 5, LD cellular automata, we
progress from CAs exhibiting the maximal possible order to CAs
exhibiting the maximal possible disorder. At intermediate values
of A, we encounter a phase-transition between periodic and chaotic
dynamics, and while the behavior at either end of the A spectrum
scems “simple” and easily predictable, the behavior in the vicinity
of this phase-transition seems “complex” and unpredictable,



Figure 3: goes here somewhere.

4 Comments on Qualitative Dynamics

There are several observations to be riade about the 1D examples
of the last section.

First, transients grow rapidly in the vicinity of the transition be-
tween ordered and disordered dynamics, a phenomenon known in
the study of phase-transitions as critical slowing down. The rela-
tionship between transient length and A is plotted in Figure 3.

Second, the size of the array has an effect on the dynamics only
for intermediate values of A. For low values of A, array size has no
discernible effect on transient length. Not until, A = 0.45, do we
begin to see a small difference in the transient length as the size of
the array is increased. For A = 0.50, however, array size has = signif-
icant effect on the transient length. The growth of transient length
as a function of array size for A\ = 0.50 is plotted in Figure 4. The
essentially linear relationship on this log-normal plot suggests that
transient length depends erponentially on array size at A = 0.30. As
we continue to raise A beyond 0.50, although the dynamics is now
settling down to effectively chaotic behavior instead of periodic be-
havior, the transient lengths are getting shorter with increasing A,
rather than longer. A number of statistical measures (see [18]) re-
veal that the time it takes to reach “typical” behavior decrcases as A
increases past the transition point. Furthermore, transient times ex-
hibit decreasing dependence on array size as A is increased past the
transition point. By the time all states are represented aniformly in
the transition table - at A = ().73 in this case - the transient lengths
exhibit no dependence on array size - just as was the case for low
values of A,

Third, the overall evolutionary pattern in tiae appears more ran-
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Figure 4: goes here somewhere.

dom as A — 0.75. This observation is borne out by various entropy
and correlation measures (see next section). A = 0.753, represents
the state of maximal dynamical disorder.

Fourth, the transition region supports both static and propa-
gating structures (Figure 1.45.) These propagating structures are
essentially solitary waves, quasi-periodic patterns of state change,
which - like the “gliders” in Conway's game of LIFE ! [9] - propa-
gate through the array, constantly moving with respect to the fixed
background of the lattice. Figure 5 traces the time evolution of an
array of 512 sites, and shows that the rule governing the hehavior
of Figuce 1.45 supports several different kinds of particles. which
interact with each other and with static periodic structures in com-
plicated ways. Note that the collision of a particle with a static
periodic structure produces a particle traveling in the opposite di-
rection. These propagating and static structures can {orm the basis
for signals and storage, and interactions between them can modify
either stored or transmitteu information in the support of an overall
computation. The proof that the game of LIFE is computation-
universal employs propagating “gliders” as signals and the period-2
"blinkers” as storage elements in the construction of a general pur-
pcse computer (2].

4.1 Complications

Finally, it must be pointed out that although the examples presented
illustrate the general behavior of the dynamics as a function of A, the
story is not quite as simple as we nave presented it here. The story is
complicated by two factors. Different traversals of A space using the

"The \ value for LIFE lies in the tranmition region for A = 2, ¥V =9 2D CAs.



Figure 5: goes here somewhere.

table-walk-through method make the transition to chaotic behavior
at different A values. although there is a well defined distribution
around a mean value.

Second, one does not always capture the phase-transition itself
as neatly as in this example. Often, the dynamics jumps ditectly
from fairly ordered to fairly disordered behavior, skipping over the
region containing the transition itself. We will illustrate both of
these phenomena in the next section.

Despite these coraplications, the overall picture is clear: as we
survey CA rule-spaces using the A parameter, we encounter a phase-
transition between periodic and chaotic behavior, and the nost com-
plex behavior is found in the vicinity of this transition, both quali-
tatively and quantitatively.



5 Quantitative Overview of CA Dynamics

In this section, we present a brief quantitative overview of the struc-
tural relations among the dynamical regimes in CA rule spaces as
revealed by the A parameter.?

The results of this section are based on experiments using 2-D
CAs with K =8 and V = 5. Arrays are typically of size 64 x 64,
and again, periodic boundary conditions are emp.oyed.

5.1 Measures of Complexity

The measures employed were chosen for their collective ability to
reveal the presence of information in its various forms within CA
dynamics.

5.1.1 Shannon Entropy

We use Shannon's Entropy A to measure basic information capacity.
For a discrete process A of A states:®

.
H(A) = = pilogpi. (2)

Figure 6 shows the average eniropy per cell, A, as a function
of \ for approximaiely 10.000 CA runs. The randoin-table method
was employed, s0 each point represents a distinct random transition
table.

First, note the overall envelope of the d.ta and the large variance
at most A points. Second, note the sparsely-populated gap over
0.0 € A <~ 0.6 and between 0.0 < 7T <~ 0.82. This distribution
appears to be himodal, suggesting the presence of a phase transition.
Third, note the rapid decrease in variability as A is raised from ~ 0.6
to its maximum value of 0.875.

Two other features of this plot deserve speciz! mention. First, the
abrupt cutoff of low H values at A = 0.6 corresponds to the site —
percolation threshold P. =~ 0.39 for this neighborhood template.

IThe results presented here summarize my thesis research [18). The reader is referred to
that work fur a niore detailed presentation of the results in this section,
IThroughout, log is Laken to the base 2, thus the units are hits.
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Figure 6: goes here somewhere.

Thus, we may suppose that, since A is a dynamical analog of the
site occupation probability P, the dynamical percolation threshold
for a particular neighborhood teinplate is bounded above by the
static percolation threshold P.. This is borne cut by experiments
with other neighborhood templates. For instance, the 9-neighbor
template exhibits a sharp cutoff at A = 0.4, which corresponds well
with the site percolation threshold P, - 0.402 for this lattice.

The second feature is the “ceiling” of the gap at H = 0.82. This
turns out to be the average entropy value for one of the most com-
monly occuring chaotic rules. In such rules the dynamics has col-
lapsed onto only 2 states - 3, and one other - and the rule is such that
a mostly quiescent neighborhood containing 1 non-quiescent state
maps to that non-quiescent state. In 1-D CAs, such rules gives rise
to the familiar triangular fractal patern known as the Serpinski
Gasket. There are many ways to achieve such rules, and they can
be achieved at very low A values. Most of the low-A chaotic rules
are of this type.

The entropy data of Figure 6 suggest an anomoly at intermediate
parameter values, possibly a phase-transition between two kinds of
dynamics. Since there seems to be a discrete jump between low and
high entropy values, the evidence points to a first-order transition,
similar to that observed between the solid and fluid phases of matter.

The table-walk-through niethod of varying A reveals more details
of the structure of the entropy data. Figure 7 shows four superim-
posed examples of the change in the average cell entropy as we vary
the A value of a table. Notice that ia each of the four cases the
entropy remains iairly close to zero until - at some critical A value -
the entropy jumps to a higher value, and proceeds fairly smoothly
towards its maximum possible value as \ is increased further. Such
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Figuie 7: goes here somewhere.

Figure 8: goes here somewhere.

a discontinuity is a classic signature of a phase-transition. Most of
our complexity measures exhibit similar discontinuities at the same
“critical” A value within a particular table.

Notice also that the “critical” A value at which the transition
occurs is different for 2ach of the 4 examples. Obviously, the same
thing - a jump - is happening as we vary A in each of these examples,
but it happens at different values of A\. When we superimpose 50
runs, as in Figure 8, we see Lhe internal structure of the entropy
data envelope p’ tted in Figure 6.

Since we have located the transition events, we may line up these
plots by the events themselves, rather than by A, in order to get a
clearer picture of what is going on before, during, and after the tran-
sition. This is iliustrated in Figure 9. The abcissa is now measured
in terms of AA: the distance from the transition event. Figure 10
shows the same data as Figure 8 but lined up by AA.

5.1.2 Mutual Information

In order for two distinct cells to cooperate in the support of a com-
putation, they must be able to affect one another’s behavior. There-
fore, we should be able to find correlations between events taking
place at the two cells.
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Figure 9: goes here somewhere.

Figure 10: goes here somewhere.

The mutual information [(A; B) between two ceils A and B can
be used to study correlations in systems when the values at the sites
to be measured cannot be ordered, as is the case for the states of
the cells in cellular automata [20].

The mutual iiiformation is a simple function of the individual
cell entropies, H(A) and H(B). and the entropy of the two cells
considered as a joint process. H(A, B):

I(A;B)= H(A)+ H(B) - H(A.B) (3)

This i a measure of the degree to which the state of cell A is
correlated with the state of cell B, and vice versa.

Figure 1] shows the average mutual information between a cell
and itself at the next time step. Note the tight convergence to low
values of the mutual information for high A and the location of the
highest values.

The increase of the mutual information in a particular region is
evidence that the correlation length is growing in that region, further
evidence for a phase-transtion.

Figure 12 shows the behavior of the average mutual information
as A is varied, both against A\ and AA. The average mutual infor-
mation is essentially zero below the transition point, it jumgs to a
moderate value at the transition. and then decays slowly with in-
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Figure 11: goes here somewhere.

Figure 12: gocs here somewhere.

creasing A. The jump in the mutual information clearly indicates
the onset of the chaotic regime, and the decaying tail indicates the
approach to effectively random dynamics. The lack of correlation
between even adjacent cells at high A values means that cells are
acting as if they were independent of each other, even though they
are causally connected. The resulting global dynamics is the same
as if each cell picked its next state at uniform random from among
the K states, with no consideration of the states of its neighbors.
This kind of global dynamics is predictable in the same statistical
sense that an idea: gas is globally predictable. In fact it is appropri-
ate to view this dynamical regime as a hot gas of randomly flipping
cells.

Figure 13 shows the average MI curves for several different tein-
poral and spatial separations. Note that the decay in both time and
space i3 slowest in the middle region.

At intermediate A values, the dynamics support the preservation
of information locally, as indicated in the peak in correlations be-
tween distinct cells. If cells are cooperatively engaged in the support
of a computation, they must exhibit some - but not £oe much - cor-
relation in their behaviors. If the correlations are too strong, then
the cells are overly dependent, with one mimicing the other - not a
cooperative computational enterprise.
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Figure 13: goes here somewhere.

On the other hand, if the correlations are too small, then the
cells are overly independent. and again, they cannot cooperate in a
computational enterprise, as each cell does something totally unpre-
dictable in response to the state of the other. Correlations in be-
havior imply a kind of . .1mon code, or protocol. by which changes
of state in one cell can be recognized and understood by the other
as a meaningful signal. \Vith no correlations in behavior, there can
be no common code with which to communicate information.

6 DMutual Information & Entropy

It is often useful to examine the way in which observed measures
behave when plotted against one another, effectively removing the
(possibly unnatural) ordering imposed by the control parameter.

Of the measures we have looked at, the most informative pair
when plotted against each other are the mutual information and
the average single cell entropy. The relationship between these two
measures is plotted in Figure 14. Again, we see clear evidence of a
phase-transition.

The envelope of the relationship is bounded below the transition
by the linear bound that H places on the mutual information. All
of the poiats on this line are for periodic CAs. This line intersects
the curve bounding the envelope above the transition at an entropy
value H. = 0.32 on the normalized entropy scale.

TkLis is a very informative plot. There is a clear, sharpiy defined
maximum value of mutual information at a specific value of the
entropy, and the mutual information falls off rapidly on either side.
This seems to imply that there is an optimal working entropy at
which CAs exhibit large spatial and temporal correlations. Why
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Figure 14: goes here somewhere, preferably on left page.

Figure 15: goes here somewhere - preferably on right page opposite figure 14
for comparison.

should this be the case?

Briefly, information storage involves lowering entropy while in-
formation transmission involves raising entropy [11]. In order to
compute a system must dao hoth, and therefore must effect a trade-
off between high and low operating entropy. It would seem from the
work reported here that this tradeoff is optimized in the vicinity of
a phase-transition.

A similar relationship has been observed by Jim Crutchfield at
Berkeley in his work on the transition to chaos in continuous dy-
namical systems [6]. This relationship is illustrated in Figure 15.
Briefly. the ordinate of this plot - C - is a measure of the size of the
minimal finite state machine required to recognize strings of 1's and
0’s generated by a dynamical system /the logistic map. in this case)
when these strings are characterized by the normalized per-symbol
entropy listed on the abcissa. ‘The observance of this same funda-
mental entropy/complexity relationship in these different cl.-ses of
dynamical systems is verv exciting.

These relationships support the view that, rather than increas-
ing monotonically with randomness - as is the case for the usual
measures of complexity, such as that of Chaitin and Kolmogorov
[4.17] - complexity increases with randomness only up to a point -



a phase-transition - after which complexity decreases with further
increases in randomness, so that total disorder is just as “simple,”
in a sense, as total order. Complex behavior involves a mix of order
and disorder
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7 Phase-Transitions and Computation

What does all of this tell us about emergent computation? The an-
swer is that information becomes an important factor in the dynam-
ics of CAs in the vicinity of the phase transition between periodic
and chaotic hehavior. Only in the vicinity of this phase-transition
can information propagate over long distances without decaying ap-
preciably. This allows the for the long-range correlations in behav-
ior, sensitivity to “size,” extended transients, etc., which are nec-
essary for the support of computation. By contrast, the ordered
regime does not allow information to propagate at all, whereas the
disordered regime propagates etfects too well, causing information
to decay rapidly into random noise.

If it is true that these phase-transition dynamics support the
possibility of emergent coniputation, then we should be able to find
analogs for various well-known features of computation in the phe-
nomenology of phase-transitions, and vice versa. In the following
sections, we point out several possible analogs, and offer an inter-
pretation which suggests that computation as we know it is really
just a special case of a more universal physical phenomenon.

7.1 Locating the Wolfram Classes

First, there is an obvious mapping of the Wolfram classes onto the
spectrum of dynamical possibilitics over the A space: Classes [ and
[ constitute the solid phase, while Class Il constitutes the fluid
phase. Because of their long-transients. propagating structures,
large-correlation lengths, and other statistical properties, the only
logical choice for the location of Class [V CAs is at the transition
between these two phases of dynamical behavior. Figure 16 shows
how the Wolfram classes fit into the A spectrum.

This also explaing why one expects ("lass [V (!As to constitute a
set of Measure 0. In the thermodvnamic limit, the phase transition is
located along a K =2 dimensional |.vperplane in the rule-space for i
state CAs (see [18]). Hyperplanes embedded in higher dimensional
spaces constitute sets of Measure (). However, if we know where to
look for a sel of Measure 0, we can find many instances. As we go to
the thermodynamic linit, we can locate the phase-transition more
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Figure 16: goes here somewhere.

and more precisely, and hence we should be able to locate Class [V
CAs in arbitrarily large rule-spaces even though they constitute a
set of Measure 0.

If Wolfram is correct in attributing the capacity for universal
computation to Class [V CAs, then when we locate Class [V CAs
at a phase-transition, we are also locating universal computation at
a phase-transition.

7.2 Complexity Classes

One obvious property of computations for which we would like to
find an analog in phase-transition phenomena is the exi-tence of
the various complexity classes. Some computations may be per-
formed using an amount of time or space which is only a linear -
or even a constant - function of the “size” of the input, while other
computations exhibit polynomial, or even exponential dependence
(10). Where can we find a natural analog of these complexity classes
within the phenomenology of phase-transitions?

The obvious answer is in the divergence of transient times as one
approaches the phase-transition. As illustrated in the qualitative
dynamics of 1D CAs, for \ values far from the transition point,
transients die out in time which is independent of the size of the
array. As A approaches the transition point, transients begin to show
more and more dependence on array size. For values of \ very near
the transition point, this size dependence appears to be exponential
or worse. This is true whether we approach the transition point
from the nrdered regime or the disordered regime, which suggests
that in addition to the familiar complexity-class hierarchy for halting
computations, there should he a similar complexity-class hierarchy
for non-halting computations.



7.3 The Freezing Problem

This last point brings up another property of computation which
should be reflected in phase-transition dynamics.

Some computations halt, and some do not. For some computa-
tions, we can decide whether or not they will halt. However, Tur-
ing demonstrated that [or certain classes of machines this “Halting
problem” is undecidable: there exist computations for which it is
not possible to decide whether or not they will halt.

Thus, with respect to our ability to decide the ultiriate outcome
of computations, there are essentially three possibilities: we can
determine that they will halt, we can determine that they will not
halt, or we cannot determine whether or not they will halt.

As we have seen, there are three similar possibilities for the ul-
timate outcome of the evolutions of CAs. CAs below the transi-
tion point rapidly “freeze-up” into short-period behavior from any
possible initial configuration. On the other hand, CAs above the
transition point will never freeze into periodic behavior, settling
down rapidly instead to chaotic behavior. Thus, we can predict
the ultimate dynamics of CAs away from the transition point with
a high-degree of certainty.

For CAs in the vicinity of the transition, however, both of these
ultimate dynamical outcomes are possible, and because of the ex-
tended transients, it will be “effectively” undecidable whether a
particular rule operating on a particular initial configuration will
ultimately lead to a {rozen state or not for this range of A

Thus, we can identify a natural analog of Turing's Halting prob-
lem in what we call the Freezing problem: for an arbitrary (A in
the vicinity of the transition point, will the dynamics ultimately
“freeze-up” into short-period behavior or not? It is quite likely that
the Freezing problem is undecidable.
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8 The Natural Domain of Information

Let us now lay out in general outline an interpretation that will tie
together all of these disparate phenomena into a coherent picture
of the nature of computation. The reader should bear in mind that
this interpretation, although strongly supported by evidence. is only
a conjecture at this point; many details remain to he worked out.

8.1 Solids, Fluids, and Dynamics

We propose that the solid and fluid phases of matter, with which we
are so [amiliar from everyday experience, are much more fundamen-
tal aspects of nature than we have supposed them to be. Rather
than merely being possible states of matter, they constitute two
fundamental universality classes of dynamical behavior.

We know solids and fluids primarily as states of matter because
up until quite recently, everything that exhibited dynamical behav-
ior was made of some kind of material. Now, however, with the
availability of computers, we are able to experiment with dynamics
abstracted from any particular material substrate. The findings re-
ported in this paper suggest that for dynamical systems in general
- whether purely formal or manifestly material - there are primarily
only two ultimate dynamical possibilities.

However, these two universality classes are separated by a phase-
transition. The dynamics of systems within this transition region
suppert the basic mechanisms necessary for information transmis-
sion, storage. and modification, and therefore provide the capacity
for emergent computation. Thus, a third possibility is that systems
can be constructed in such a way that they manage to avoid cither
of the two primary dynamical outcomes by maintaining themselves
on indefinitely extended transients.

It is a system’s capacity for supporting a dynamics of information
that allows complex behavior in the vicinity of a phase-transition.
This in turn allows for the possibility of the Freezing problem. Since
computers and computations are specific instances of material and
formal systems respectively, they are also ultimately bound by these
universality classes. Therefore, if this interpretation is correct, the
Halting problem can be seen as a specific instance of the more gen-
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eral Freezing problem for dynamical systems. We can therefore view
computations as special instances of the more general physical pro-
cess of {;eezing.

8.2 Related Work

Others have been working on the problem of finding structure in
the rule-spaces of Cellular Automata and other, similar spatially
distributed dynamical systems.

In my initial investigations with the A parameter [19], [ suggested
that Wolfram’s Class [V CA's constituted a transition between Class
IT and Class III, that is. between periodic and chaotic dynamics.

Stuart Kauffman investigated a class of similar dynamical sys-
tems known as boolean nets [15,14], in which he finds a similar
phase-transition between ordered and disordered dynamics.

Vichniac, Tamayo. and Hartman [26] discovered that the Wol.
fram classes could be recovered by varying the frequency of two
simple rules in an inhomogeneous cellular automaton. They also
suggested a relation between critical slowing down and the halting
problem.

Norman Packard and Wentian Li have mapped out the space of
“elementary” A" = 2, .V = 3, 1-D CAs fairly completely, using a
parameterization scheme similar to A [21].

Packard has also performed an interesting series of experiments in
which he “adapts™ CA rules hy selecting for certain behaviors [23].
He finds an initially random population of rules will drift towards
the phase-transition region. His interpretation of this phenomenon is
that it is easier to find rules which will compute the desired behavior
- by making use of a general computational capacity - than it is
to to find rules that are “hard-wired” to produce only the desired
behavior.

Harold Mclntosh [22] has applied the mean-field approach of
Gutowitz (13,12 and suggests that the Wolfram classes can be dis-
tinguished on the basis of simple [catures of the mean field theory
curves.

Culik and Yu [7] have shown that membership in the Wolfram
classes is undecideable.



Bill Wootters has applied mean-field theory to explain the resuits
from the A parameter, and has been able to reproduce many of the
features of Figure 6 [31].

Most of this work, and Crutchfield’s work mentioned earlier.
point to the existence of a phase-transition in the spectrum of dy-
namical systems, and also point out that the complex dynamics of
systems in the vicinity of the phase-transition rest on a fundamental
capacity for processing information.

8.3 Questions

There are many questions that need to be addressed. For instance,
can the “fluid” dynamical systems be further divided up into “gases”
and “liquids?” There is some evidence for a liquid/gas transition in
the space of CAs [18). If so. is there a critical point or line in the
phase-space?

How might these issues he addressed by statistical mecharics,
which has been very effective in treating phase-transitions in gen-
eral? Can analogs for temperature, pressure, volume, and energy
he found? There is some evidence that equivalent measures can
be defined [6,18]. On the other hand, it is possible that statisti-
cal mechanics alone will not be able to fully treat phase-transition
phenomena without being augmented by ideas from the theory of
computation.

What are the implications for optimization techniques such as
simulated annealing [16], which call for extended stays in the vicin-
ity of the freezing point? [t is interesting that this is the very point
at which we would expect information processing to emerge sponta-
neously within the system being annealed - suggesting that the real
reason for hovering in the vicinity of the [reezing point is to allow the
system to compute its own solution via an emergent computation.

How are the notions reported here related to Bak's Self-Organized
Criticality [1]? In many ways. it seems that Bak has discovered
that dynamical systems can be made to boil when driven in the
right way, which is a phenomenon we would expect at a phase-
transition. In fact, Bak has suggested that Conway's game of LIFE
is a self-organized critical system. although he does not bring LIFE's
computational capacity into the discussion.

32



Finally. what are the implications for understanding the origin
and evolution of life? One of the most exciting implications of this
point of view is that life had its origin in just these kinds of ex-
tended transient dynamics. Looking at a living cell, one finds phase-
transition phenomena everywhere. The point of view advocated here
would suggest that we ourselves are examples of the kind of “com-
putation” that can emerge in the vicinity of a phase-transition given
enough time.

Now nature is not so beneficient as to maintain conditions at
or near a phase transition forever. Therefore, in order to survive,
the early extended transient systems that were the precursors of life
as we now know it had to gain control over their own dynamical
state. They had to learn to maintain themselves on these extended
transients in the face of Auctuating environmental parameters, and
to steer a delicate course between too much order and too much
chaos, the em Scylla and Charybdis of dynamical systems. Such
transients must have “discoverec” how to make use of their intrinsic
information processing capability in order to sense and respond to
their local environment. Evolution has been the process by which
such systems have managed to gain local control over more and more
of the environmental variables affecting their ability to maintain
themselves on extended transients with essentially open futures.
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9 Conclusion

Von Neumann observed that:

There is thus this completely decisive property of complezity, that
there ezists a critical size below which the process of synthesis s de-
generalive, but above which the phenomenon of synthess, 1f properly
arranged, can become ezplosive, in other words, where syntheses of
automata can proceed in such a manner that each automaton will
produce other astomata which are more compler and of hgher po-
tentialitses than jtself*

Although we are using a slightly different sense of “complexity™
than von Neumann, the resu'ts of this paper support his observation.
More importantly, however, we suggest that a similar observation
can be made in the case of too much “complexity:” above a certain
level of “complexity,” the process of synthesis is also degenerative.

In other words, we find that there exist an upper limit as well
as a lower limit on the “complexity” of a system if the process of
synthesis is to be non-degenerative, constructive, or open ended. We
also find that these upper and lower bounds seem to be fairly close
together and are located in the vicinity of a phase-transition.

As the systemns near the phase-transition exhibit a range of be-
haviors which reflects the phenomenology of computations surpris-
ingly well, we suggest that we can locate computation within the
spectrum of dynamical behaviors at a phase-transition here at the
“edge of chaos.”
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Figure 1:

Evolutions of 1-dimensional. A = 4. .V = 5 CAs from fully ran-
dom initial configurations over 0.0 < A < 0.73. As X is increased,
the structures become more complicated, and the transients grow
in length until they become arbitrarily long at A = 0.30. For
0.50 < A <€ 0.73, the transient lengths decrease with increasing
A, as indicated by the arrows to the right of the evolutions.
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Figure 2:

Evolutions of l-dimensional, A = 4, .V = 5 CAs from partially
random initial configurations over 0.0 < A < 0.75. This series illus-
trates the change in the rate of spread of the dynamics from negative
for A < 0.45, to positive for A > 0.43. For A = 0.45. the dynamics is
balanced between collapse and expansion, giving rise to particle-like
solitary waves.
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Figure 3:

Average transient length as a function of A in an array of 128 cells.
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Figure 4:

Growth of average transients as a function of array size for A = 0.50.
The point for size 512 is an extrapolation, as no transients were
observed to die out after 10,000,000 time steps.
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Figure 5:

Propagating structures and their interactions in an array of 312 cells
with A = 0.43.






Figure 6:

Average single cell entropy H over \ space for approximately 10.000
CA runs. Each point represents a different transition function.



3.5

N
O W

4V

—

Average H
9] 3]
_ll1l1Illjl’lIllil_rl1llIlllllﬂ]_llrlrlTll

o

| Illﬂlﬂl IITII_II llllllrl—llllTrlﬁITTI

T T T TR T T e N I I T T

L_L_L.L_Lll_ll'llll_ll_l._llll—l_llllllllllll_jllll

-1

O 1 2 3 4 5 6 .7 .8
A

9

-



Figure 7:

Superposition of 4 transition events. Note the different A values at
which the transitions take place.
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Figure 8:

Superposition of 50 transition events, showing the internal structure
of Figure 6.
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Figure 9:

Plots lined up by the transition event. rather than by A. A\ is the
distance from the transition event.
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Figure 10:

Superposition of 50 transition events lined up by AA. Compare with
Figure 8.
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Figure 11:

Average mutual information between a cell and itself at the next
time step.
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Figure 12:

Average mutual information versus A and AA. The Ml in this case
is for a single time-step at a single ceil.
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Figure 13:

Decay of average mutual information in space and time.
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Figure 14:
Average mutual information versus ave.age single cell entropy H.

The MI in this case is computed between a cell and itself at the
next time step. The entropy is normalized to 1.0.
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Figure 15:

Crutchfield's plot of machine complexity versus normalized per-
symbol entropy for the logistic map. Compare with Figure 14.
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Figure 16:

Location of the Wolfram classes in A space,
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