

176
9-14-76

DR 339

MLM-2322

MLM-2322

**The Determination of Chlorate in
Potassium Perchlorate Pyrotechnic
Material by Specific Ion Electrode**

William G. Yates

August 31, 1976

MASTER

Monsanto

MOUND LABORATORY

Miamisburg, Ohio

operated by

MONSANTO RESEARCH CORPORATION

a subsidiary of Monsanto Company

for the

**UNITED STATES ENERGY RESEARCH
AND DEVELOPMENT ADMINISTRATION**

U. S. Government Contract No. E-33-1-GEN-53

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

The Determination of Chlorate in Potassium Perchlorate Pyrotechnic Material by Specific Ion Electrode

William G. Yates

Issued: August 31, 1976

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Energy Research and Development Administration, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

PRINTED IN THE UNITED STATES OF AMERICA

Available from
National Technical Information Service
U. S. Department of Commerce
5285 Port Royal Road
Springfield, Virginia 22161
Price: Printed Copy \$4.00; Microfiche \$2.25
3.50

MONSANTO RESEARCH CORPORATION

A Subsidiary of Monsanto Company

MOUND LABORATORY

Miamisburg, Ohio 45342

operated for

**UNITED STATES ENERGY RESEARCH
AND DEVELOPMENT ADMINISTRATION**

U. S. Government Contract No. E-33-1-GEN-53

MASTER

*CONTRACT NO. E(33-1)-GEN-53
DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED*

SPECIAL EXTERNAL DISTRIBUTION

Dr. David F. Griffing
Physics Department
Miami University
Oxford, Ohio 45056

Dr. J. V. Richard Kaufman
Department of Chemistry
Columbia University
New York, New York 10025

Dr. James H. Leonard
University of Kentucky
Jefferson Community College
First and Broadway
P. O. Box 1036
Louisville, Kentucky 40201

Dr. Richard E. Miers
Indiana Univ.-Purdue Univ.
at Fort Wayne
Dept. of Physics
2101 Coliseum Boulevard East
Fort Wayne, Indiana 46805

William E. Moddeman
Research Institute
University of Dayton
Dayton, Ohio 45409

Dr. Gordon W. Powell
Department of Metallurgical Engr.
490 Watts Hall
Ohio State University
Columbus, Ohio 43210

Sciences Applications, Inc.
2680 Hanover St.
Palo Alto, Calif. 94304

Dr. Alvin Shapiro
Dept. of Chemical and Nuclear Engr.
University of Cincinnati
Cincinnati, Ohio 45221

Hallock F. Swift
Head, Applied Physics Division
University of Dayton Research Institute
Dayton, Ohio 45409

Dr. David White
Department of Chemistry
University of Pennsylvania
Philadelphia, Pennsylvania 19174

Dr. Richard N. Zare
Dept. of Chemistry
Columbia University
New York, New York 10025

Abstract

A method for the determination of chlorate ion in potassium perchlorate was developed. The analytical method utilized a reduction of the chlorate ion to the chloride ion with ferrous ammonium sulfate. The chloride ions produced by this reduction step were then determined with a specific ion electrode technique. The amount of chlorate ion was determined by calculating how much chlorate ion was represented by the analyzed chloride ion making an appropriate adjustment for the amount of free chloride ion found in the potassium perchlorate and deionized water.

Introduction

Potassium perchlorate has been used as a basic pyrotechnic material for many years by the military. Military use requires Mil Spec P217A certification before the material can be used in a pyrotechnic product. This specification requires a variety of chemical analyses to be performed on the material to determine if certain contaminants are below acceptable limits established by the specification. One such analysis is the determination of chlorate ion as potassium chlorate.

The military specification analysis for chlorate ion is time-consuming, somewhat antiquated, and limited because it has not been current with modern methods. Secondly, the procedure employed uses a gravimetric method. Gravimetric methods have a high degree of accuracy provided an adequate weight of the precipitate can be obtained. Previous experience with this procedure indicated minute amounts of chlorate to chloride precipitate. This affected the method's overall application for the determination of chlorate in terms of accuracy and precision. A need was felt to develop a new technique without sacrificing accuracy and precision and perhaps improving the lower detection limit for chlorate.

Specific ion electrodes have become acceptable in the analytical field as a powerful tool for determining a variety of trace contaminants. The solid state "Orion model 94-17A electrode" for the detection of the chloride ion is one such example. This specific ion electrode was used in the development of this analysis.

The essence of the military specification procedure is: (1) dissolution of the potassium perchlorate ($KClO_4$) with water, (2) a reduction of the potassium chlorate ($KClO_3$) to potassium chloride (KCl) with ferrous ammonium sulfate ($(NH_4)_2Fe(SO_4)_2 \cdot 6H_2O$), and (3) precipitation of the KCl with silver nitrate $AgNO_3$.

The new method incorporates step (1) and (2) of the old method but then the ionized KCl is measured for chloride ion content with the specific ion electrode. Appropriate adjustment for free Cl^- content in the $KClO_4$ is made. This value is subtracted from the measured Cl^- produced in the reduction step. The difference obtained represents the chloride ion produced by the $KClO_3$ in the reduction step. Back calculations are made to determine how much chlorate ion is represented by this chloride ion value and how much $KClO_3$ is representative of the calculated ClO_3^- value. The value is then reported as weight percent $KClO_3$ as required by the military specification.

The new method provides these more desirable aspects:

1. Analysis time is cut one-third.
2. Very small quantities of ClO_3^- via reduction with $(NH_4)_2Fe(SO_4)_2 \cdot 6H_2O$ can be made. Detection limit of the method is 1 $\mu g Cl/ml$.
3. No accuracy or precision is lost with the new method.

Experimental

The first problem was to determine the amount of ferrous ammonium sulfate that would effectively reduce the chlorate ion present in the potassium perchlorate. Experiments were designed to evaluate the amount needed. Known standards of $KClO_3$ were made up. Theoretical calculations were computed to ascertain how much Cl^- would be produced by the reduction of $ClO_3^- \rightarrow Cl^-$ in the standards used. Different concentrations of ferrous ammonium sulfate solution were used to reduce the known $KClO_3$ standards. After reduction of the $KClO_3$, the known standards were analyzed for Cl^- with the specific ion electrode for Cl^- . Experimental data

showed that a 0.4% ferrous ammonium sulfate solution did not adequately reduce the $KClO_3$. Solutions of 0.8%, 1.6%, 2.0%, and 2.5% produced sporadic and imprecise data generally on the low side of the calculated theoretical value of Cl^- (see Table 1).

At this point a different approach was taken. Observation of the different concentrations of the $(NH_4)_2Fe(SO_4)_2 \cdot 6H_2O$ solutions indicated that oxidation of the Fe^{+2} ions to Fe^{+3} ions was occurring immediately upon preparation of the aqueous solutions. The visual change in color is quite noticeable. Fe^{+2} ions in aqueous

Table 1

EXPERIMENTAL DATA FROM VARIOUS AMOUNTS OF FERROUS AMMONIUM SULFATE REDUCTIONS

Sample <u>10 µg/ml KCLO₃</u>	Theoretical Cl ⁻ when reduced µg/ml	Amount Cl ⁻ Analyzed µg/ml	<u>KCLO₃ Blank Cl⁻</u>
<u>0.4% Fe(NH₄)₂(SO₄)₂ · 6H₂O</u>			
1	2.5	1.9	0.35
2	2.5	1.6	0.35
3	2.5	1.0	0.35
4	2.5	1.3	0.35
5	2.5	1.4	0.35
<u>0.8% Fe(NH₄)₂(SO₄)₂ · 6H₂O</u>			
6	2.5	1.3	0.35
7	2.5	1.7	0.35
8	2.5	1.6	0.35
9	2.5	1.6	0.35
10	2.5	1.8	0.35
<u>1.6% Fe(NH₄)₂(SO₄)₂ · 6H₂O</u>			
11	2.5	2.0	0.35
12	2.5	1.9	0.35
13	2.5	1.9	0.35
14	2.5	1.0	0.35
15	2.5	1.4	0.35
<u>2.0% Fe(NH₄)₂(SO₄)₂ · 6H₂O</u>			
16	2.5	2.1	0.35
17	2.5	1.9	0.35
18	2.5	1.8	0.35
19	2.5	1.9	0.35
20	2.5	1.7	0.35
<u>2.5% Fe(NH₄)₂(SO₄)₂ · 6H₂O</u>			
21	2.5	2.2	0.35
22	2.5	1.8	0.35
23	2.5	1.9	0.35
24	2.5	1.9	0.35
25	2.5	2.0	0.35

media are pale green while Fe⁺³ ions are yellow-orange in color. Therefore, it was decided to add solid Fe(NH₄)₂(SO₄)₂ · 6H₂O directly to the aqueous solution containing ClO₃⁻ ions.

After much experimentation with different amounts of solid Fe(NH₄)₂(SO₄)₂ · 6H₂O (0.5, 0.7, 1.0, 1.5, 2.0, 2.5 g quantities), it was found that a 2.5 g quantity of Fe(NH₄)₂(SO₄)₂ · 6H₂O in a 100 ml standard solution of 10 µg/ml KCLO₃, effectively reduced the ClO₃⁻ to the theoretical value of Cl⁻ expected.

However, day to day reductions still indicated the presence of irregularities. Some experiments produced excellent

recoveries of the reduced Cl⁻ while others produced precision and recovery problems. Since excellent results were produced in a majority of the experiments, the irregularity was not believed to be the reducing agent Fe(NH₄)₂(SO₄)₂ · 6H₂O. Consideration was given to the range of the standard curve. Normally in a Cl⁻ determination by specific ion electrode, a calibration curve of the range of 10⁻⁵ M to 10⁻¹ M (0.35 µg/ml - 3500 µg/ml Cl⁻) is used, yet experiments thus far in the development of the analysis were utilizing approximately 10⁻⁵ M to 3 x 10⁻⁴ M (0.35 µg/ml to 10 µg/ml Cl⁻) range. This is approximately 25% of 10⁻⁵ M to 10⁻¹ M range. Secondly, observation of the portion of the curve (10⁻⁵ M to 3 x 10⁻⁴ M)

indicates that this part of the range represents the exponential part of the curve. Experiments have shown that results calculated from this portion of the curve are subject to less precision than from the linear part of the curve. Thus, it follows that Cl^- values produced by the reduction of ClO_3^- and calculated from this portion of the curve would be imprecise. This in turn would directly affect the recovery value of Cl^- when compared to the expected theoretical value of Cl^- produced by reduction of the ClO_3^- ion.

Two alternatives existed to resolve the problem. Either use a large enough sample of KClO_4 in the actual analysis to locate on the linear portion of the curve, or expand the 10^{-1} M to $3 \times 10^{-4} \text{ M}$ exponential portion to a full graph and attempt to eliminate as many factors contributing to the imprecision as possible. It appears that of the alternatives, the former would be the better approach. However, other problems are created with this choice: (1) KClO_4 has a low solubility in water 0.7 g/100 cc at room temperature, (2) previous analysis of ClO_3^- by Mil Spec P217A indicated very small amounts of ClO_3^- (0.05% to nondetectable), thus a very large sample of KClO_4 in a very large volume of water would be necessary to place the reduced Cl^- in the linear section of the calibration curve, (3) analyses of the chlorate ion are run in triplicate thus requiring more KClO_4 , and (4) taking such a large sample for analysis is not in accord with production plans since only so much of the sample is allocated for analysis and the ClO_3^- analysis is one of many such analyses needed to certify the material.

It was decided to approach the problem from the standpoint of using an expanded portion of the calibration curve and optimize its feasibility as a working curve. One cycle semilog graph paper with standards of 1, 2, 4, 6, 8, 10 $\mu\text{g}/\text{ml}$ Cl^- was chosen to draw the calibration curve. This differs from the normal curve which uses 4 cycle semilog graph paper with chloride standards of 0.35 - 3500 $\mu\text{g}/\text{ml}$. See examples of the graphs in Figures 1 and 2.

Because of the nonlinearity in this portion of the curve, potential readouts of the standards vary significantly from day to day and potential readouts take longer to stabilize. These two factors greatly influence the ability to draw a smooth curve through the standard solution potentials. It became imperative to control the operator and instrumental variables

that would influence stability and precision. Stirring rates, temperature, depth and position of the electrodes in the solution and stirring bar position in the beaker were kept as constant as possible. At this point, the procedure became more of an art, than a mechanical operation.

After these variables were optimized, experiments were designed to evaluate the method for its application. The first experiment was designed to determine the amount of free Cl^- in the KClO_4 and KClO_3 , to be used in the development of the analysis. Reagent grade KClO_3 was used. The KClO_4 was a special high purity material. Free chloride analyses of these materials were 0.35 PPM Cl^- .

The next series of experiments was designed to determine the optimum calibration curve to use in the experiment. Four curves were evaluated. They contained the following constituents:

1. known chloride standards (1 - 10 $\mu\text{g}/\text{ml}$) without ionic strength adjustment (ISA)
2. known chloride standards (1 - 10 $\mu\text{g}/\text{ml}$) with ISA
3. known chloride standards (1 - 10 $\mu\text{g}/\text{ml}$) with ferrous ammonium sulfate $[\text{Fe}(\text{NH}_4)_2(\text{SO}_4)_2 \cdot 6\text{H}_2\text{O}]$
4. known chloride standards with $\text{Fe}(\text{NH}_4)_2(\text{SO}_4)_2 \cdot 6\text{H}_2\text{O}$ and with ISA

A series of known chlorate ion standards and other standards were used as samples to be evaluated by each curve. All samples and standards were in 100 ml volumes.

The numerical value of the chloride ion in samples 1 to 6 represent the theoretical value of chloride ion produced when a ClO_3^- standard is reduced with 2.5 g of $\text{Fe}(\text{NH}_4)_2(\text{SO}_4)_2 \cdot 6\text{H}_2\text{O}$. The samples are listed below and shown with data in Table 2.

Samples 1 and 2 - 1.5 $\mu\text{g} \text{Cl}^-/\text{ml}$

Samples 3 and 4 - 2.9 $\mu\text{g} \text{Cl}^-/\text{ml}$

Samples 5 and 6 - 5.8 $\mu\text{g} \text{Cl}^-/\text{ml}$

Sample 7 - Containing 10 $\mu\text{g} \text{ClO}_3^-/\text{ml}$ but not reduced

Samples 8 and 9 - Containing 10 $\mu\text{g} \text{ClO}_3^-/\text{ml}$ + 2.5 $\mu\text{g} \text{Cl}/\text{ml}$

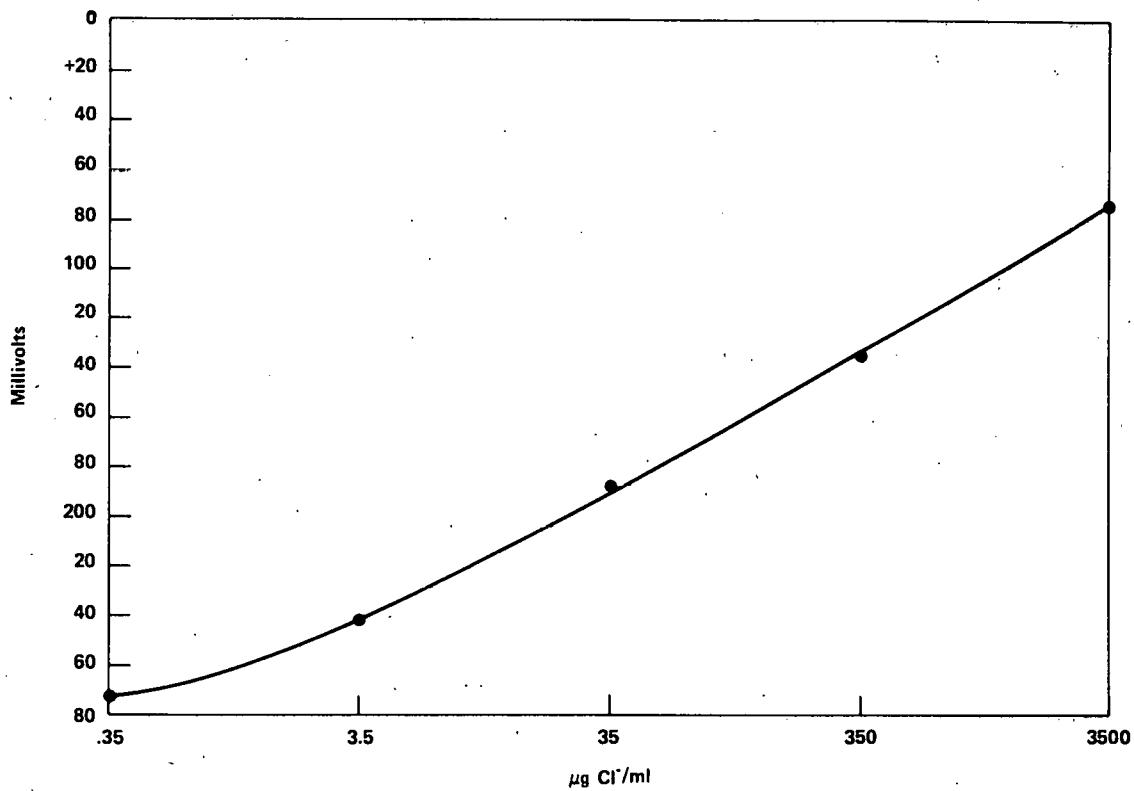


FIGURE 1 - Normal operating curve.

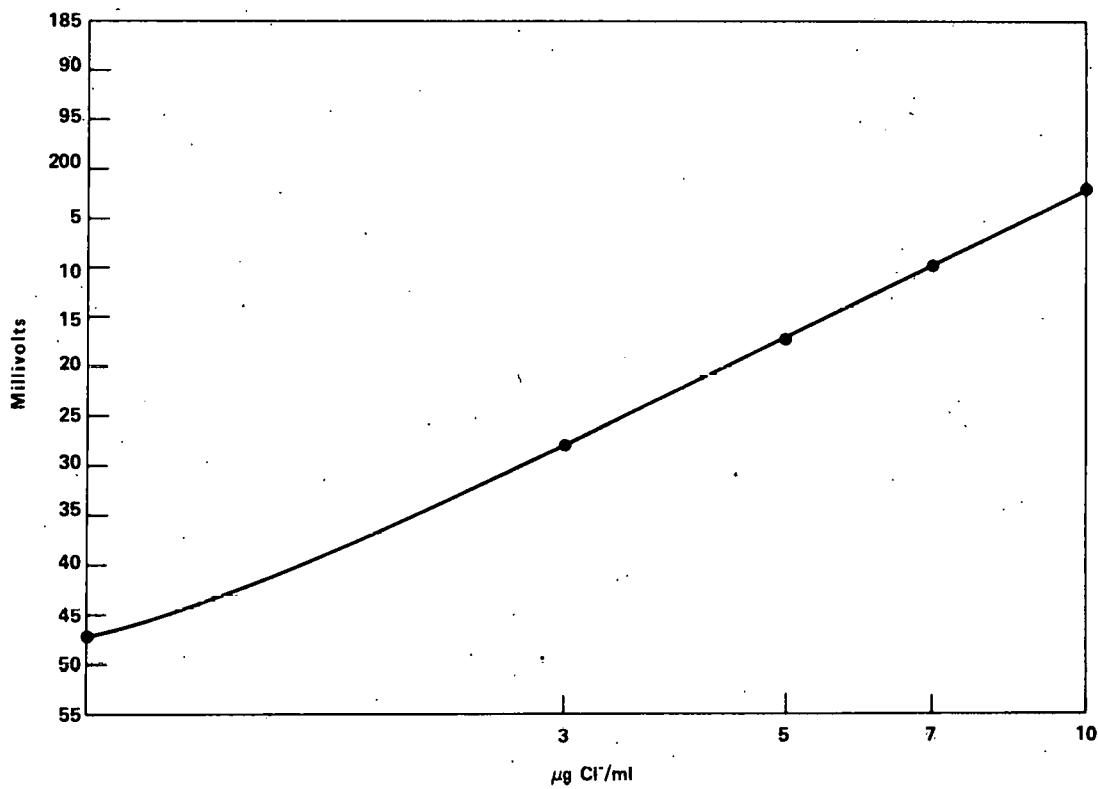


FIGURE 2 - Expanded calibration curve with $\text{Fe}(\text{NH}_4)_2(\text{SO}_4)_2 \cdot 6\text{H}_2\text{O}$ and ionic strength adjustment.

Table 2
OPTIMIZATION EXPERIMENT*

Sample Numbers	#1 Calibration Curve		#2 Calibration Curve		#3 Calibration Curve		#4 Calibration Curve	
	with no ISA Amount Added Cl ⁻	no Fe ⁺² Amount Found Cl ⁻	with ISA Amount Added Cl ⁻	no Fe ⁺² Amount Found Cl ⁻	with Fe ⁺² Amount Added Cl ⁻	No ISA Amount Found Cl ⁻	with Fe ⁺² Amount Added Cl ⁻	ISA Amount Found Cl ⁻
1	1.5	0	1.5	1.4	1.5	1.7	1.5	1.7
2	1.5	0	1.5	1.5	1.5	1.8	1.5	1.7
3	2.9	1.7	2.9	2.4	2.9	2.7	2.9	3.0
4	2.9	1.4	2.9	2.5	2.9	2.6	2.9	3.0
5	5.8	4.5	5.8	5.1	5.8	5.8	5.8	5.9
6	5.8	4.5	5.8	5.1	5.8	5.8	5.8	6.0
7	0	<1.0	0	<1.0	0	<1.0	0	<1.0
8	2.5	2.8	2.5	3.6	2.5	2.8	2.5	2.9
9	2.5	2.7	2.5	3.6	2.5	2.8	2.5	2.9
10	5.4	4.0	5.4	4.7	5.4	5.3	5.4	5.8
11	5.4	4.0	5.4	4.7	5.4	5.3	5.4	5.8

*Values shown are $\mu\text{g}/\text{ml}$

10 $\mu\text{g ClO}_3^-/\text{ml}$ standard, when reduced gives 2.9 $\mu\text{g Cl}^-/\text{ml}$

Samples 10 and 11 - Containing 10 μg ClO_3/ml + 2.5 $\mu\text{g Cl}^-/\text{ml}$ spike and reduced.

The chloride ion values for all samples were calculated from each curve and the results compared. Sample 7 was a running check for free Cl^- in KClO_3 . Samples 8 and 9 were run to check Cl^- recovery when spiked with a known chloride value and run through the procedure except for reduction. The purpose of 8 and 9 was to see if the electrode could accurately measure the chloride ion spike without the reduction step. Samples 10 and 11 were run to ascertain recovery of the Cl^- when reduced with ferrous ammonium sulfate plus with a known spike of Cl^- standard. The purpose of 10 and 11 was to determine if the electrode could sense accurately, the cumulative chloride ion values produced by the reduced KClO_3 , and the known spike of chloride ion. Secondly, samples 10 and 11 would represent every possible source of chloride ion present in the samples. Samples 1, 2, 3, 4, 5, 6, 10, and 11 were reduced with 2.5 g $\text{Fe}(\text{NH}_4)_2(\text{SO}_4)_2 \cdot 6\text{H}_2\text{O}$.

Under the amount-found column of Curve #1, the results indicated a general low on all samples analyzed. Note particularly the absence of Cl^- values in samples 1 and 2. In the amount-found column of Curve #2 with ISA present, there is somewhat of an improvement but the values in general are still low. Curve #3 is more representative of the theoretical values expected, but indicated a tendency to be low in Samples 3, 4, 10, and 11. In Curve #4, the optimum results achieved are shown. Generally all values are higher than the amount added to each sample, but this positive bias can reasonably be explained by the value of Sample 7 (ClO_3 standard of free Cl^-). This value was lower than the lowest standard of 1 $\mu\text{g Cl}^-/\text{ml}$. The value could range from 0-1 $\mu\text{g Cl}^-/\text{ml}$ being limited directly by the lowest standard used. Yet its Cl^- value, whatever its true value is, contributes positively to the overall Cl^- value in the samples. It is reasonably accurate to assume that curve #4 with the reducing agent and ISA presented the optimum curve for the analysis. This fact was further substantiated by the next series of experiments.

The next series of experiments contained the following species: (results and comparisons are listed in Table 3.)

Samples 1, 2, and 3 - 0.7 g KClO_4 + 2.5 g $\text{Fe}(\text{NH}_4)_2(\text{SO}_4)_2 \cdot 6\text{H}_2\text{O}$

Samples 4, 5, and 6 - 0.7 g KClO_4 + 2.5 g $\text{Fe}(\text{NH}_4)_2(\text{SO}_4)_2 \cdot 6\text{H}_2\text{O}$ + 10 $\mu\text{g KClO}_3/\text{ml}$ note, when 10 $\mu\text{g ClO}_3/\text{ml}$ is reduced it = 2.9 $\mu\text{g Cl}^-/\text{ml}$ theoretically

Samples 7, 8, and 9 - 0.7 g KClO_4 + 2.5 g $\text{Fe}(\text{NH}_4)_2(\text{SO}_4)_2 \cdot 6\text{H}_2\text{O}$ + 5 $\mu\text{g Cl}^-/\text{ml}$

Sample 10 - KClO_3 only

Sample 11 - 10 $\mu\text{g/ml}$ KClO_3 + 2.5 g $\text{Fe}(\text{NH}_4)_2(\text{SO}_4)_2 \cdot 6\text{H}_2\text{O}$ free chloride analysis reagent grade KClO_3 $\leq 0.35 \mu\text{g/ml Cl}^-$

Calibration curve - 2.5 g $\text{Fe}(\text{NH}_4)_2(\text{SO}_4)_2 \cdot 6\text{H}_2\text{O}$ + 2 ml of 1M KNO_3 ISA (ISA calculated on the basis 0.7 g KClO_4 sample)

Results of sample 1, 2, and 3 determinations show a Cl^- content of less than 1.0 $\mu\text{g/ml Cl}^-$. Previous free Cl^- analysis of this particular KClO_4 indicated a Cl^- content of $< 0.35 \mu\text{g/ml Cl}^-$. Since this less-than number is totally dependent on the smallest standard used in the calibration curves it cannot be assumed that the difference between the < 0.35 and < 1.0 is due to reduction of KClO_3 to KCl , present in the reagent grade KClO_4 . Rather, the better view is that if KClO_3 is present, it must be reported as a less-than value of the lowest standard used.

Samples 4, 5, and 6 indicated an average of 4 $\mu\text{g/ml Cl}^-$. Theoretical reduction of 10 $\mu\text{g KClO}_3/\text{ml}$ gives 2.9 $\mu\text{g Cl}^-$. Add to this the KClO_3 free chloride of $< 1.0 \mu\text{g Cl}^-/\text{ml}$ plus the < 1.0 figure found for KClO_4 reduction with Fe^{+2} , the 4.0 $\mu\text{g Cl}^-/\text{ml}$ is a reasonably accurate number.

Table 3
FINAL COMPOSITE EXPERIMENT FOR CHLORIDE (KClO_4 and KClO_3)

Sample Number	$\mu\text{g Cl}^-/\text{ml Added}$	$\mu\text{g Cl}^-/\text{ml Found}$
1	0	<1.0
2	0	<1.0
3	0	<1.0
4	<1.0 + 2.9	4.0
5	<1.0 + 2.9	4.0
6	<1.0 + 2.9	3.9
7	5 + 1.0	5.5
8	5 + 1.0	5.5
9	5 + 1.0	5.3
10	0	<1.0
11		3.2

Samples 7, 8, and 9 contained 5 $\mu\text{g}/\text{ml}$ Cl^- spiked plus Fe^{+2} . The resulting average of 5.4 $\mu\text{g}/\text{ml}$ Cl^- when compared with the theoretical 5.0 + <1.0 indicates a reasonably accurate recovery. Sample 11 gave

a chloride value of 3.2 μg . The theoretical chloride value of 3.3 compares favorably with the amount analyzed for chloride in sample 11.

Summary

KCLO_3 contamination in KCLO_4 can be analyzed accurately. The reduction of the KCLO_3 to KCl via ferrous ammonium sulfate and subsequent determination of the ionized chloride ion by specific ion electrode is a quick and accurate method for the determination of ClO_3^- .

The development work for determining KCLO_3 in KCLO_4 is fully developed and a viable analysis for routine ClO_3^- determination in KCLO_4 now exists. It is hoped that this procedure can be incorporated into the Mil Spec P217A for the following reasons:

1. Chloride and chlorate ion analyses can be determined consecutively, thus saving time in actual analyses.
2. The original chloride ion analysis required 5 g of KCLO_4 /sample and

the original chlorate ion sample required 5 g KCLO_4 /sample. This method requires only 0.7 g KCLO_4 .

3. The specific electrode method is more sensitive and can work with much smaller values of Cl^- than the original gravimetric method.
4. Time required for analysis is reduced from 16 hr (2 work days) to 4 hr.
5. Detection limit of this method is 1 $\mu\text{g}/\text{ml}$ Cl^- .

ACKNOWLEDGEMENT

I wish to thank C. S. Friedman and H. A. Woltermann for their assistance and counsel in developing this analysis.

Distribution

EXTERNAL

TID-4500, UC-4 (175)

J. A. Chacon, DAO
R. K. Flitcraft, MRC
T. Massis, SLA

Consultant

W. E. Moddeman
University of Dayton

D. R. Bohl
J. R. Brinkman
T. L. Buxton
W. T. Cave
D. M. Colman
C. S. Friedman
L. D. Haws
C. W. Huntington
J. R. McClain
W. D. Pardieck
W. M. Preston
R. F. Salerno
D. E. Sellers
R. E. Vallee
H. A. Woltermann
W. C. Yates

Library (15)
Publications