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ABSTRACT

Successive phase transformations in K;SeOy at T_.=130K
and T =93K have been studied by the triple-axis neutfon scat-
tering technique. Above T, a I, optic Ehonon Rranch along
(£,0,0) shows striking sof%ening and w(q) for q~(1/3,0,0)
tends to zero at T,.This softening results from a tempera-
ture dependent decfease of the interlayer forces with range
a/2 and a(a is one unit cell length along the a axis) in the
presence of strong and persisting forces with a range AR/2.
The critical scattering above T has a maximum at an incom-
mensurate position: q,=(l-5)a*/§ with 6v0.08 and peaks at E=0
near T,. At T, supgrlattice reflections appear at incommen-
surate positions, q.. The deviation § decreases with decreasing
temperature with an apparently discontinuous jump to =0 at T .
Below this temperature the crystal remains commensurate and
is ferroelectric. The incommensurate transition, the simul-
taneous lock-in of the commensurate phase and the ferroelectri-
city are discussed using a Landau type expansion of the free energy.

INTRODUCTION

Certain materials exhibit an instability against atomic displace-
ments which are characterized by incommensurate wavevectors.1 In those
materials a phase transition to an incommensurate phase occurs first
and in many cases a "lock-in' transformation to a commensurate phase
follows. The phase transitions in potassium selenate (K28e04) are in-
teresting not only because they represent another example of this kind

of lattice instability but also because the primary incommensurate atomic
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Potassium selenate TEMPERATURE (K)

undergoes two phase trans-

Fig. 1. Temperature change of the

formations at T,=128K and
i .
deviation &

Tc=93K' Above Tl(P—phase)

the crystal structure 1is

orthorhombic with a space group of Pnam.3 Between Ti and Tc (I-phase)
Xx-ray studies4 revealed superlattice reflections which are characterized
by a wavevector of 2*/3. The detailed neutren scattering studie52

"7~ disclosed,however, that

I I | |
l'(2 Se04

T el i q
q = £q,0,0)

the superlattice reflec-
~itions do not appear at
gexactly a%/3 but they
?are shifted slightly

from the commensurate

points. The wavevector

characterizing the super-
lattice structure is
"56=(1-6)a*/a with 6
changing with tempera-
ture from 0.07 just be-
low T
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REDUCED WAVE-VECTOR (§) shown in Fig. 1. Below

to zero at TC as

Fig.2. Dispersion relations of transverse modes TC(F—phase) Ehq sigRes

propagating along [100]. lattice structure
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remains commensurate and
shows weak ferroelectri--
city'.'5

In this paper results 3

of neutron scattering stu-

> -
dies on the lattice insta- ¢ 2
bility in the P-phase are c

presented and discussed.
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All the measurements were o)
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spectrometers at the Brook-
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Fig.3. Temperature dependence of the inter-
layer force constants.

SOFT MODE DISPERSION RELATION

The dispersion relations for the low-lying transverse modes propa-
gating in the [100] direction were measured. at several temperatures and
are shown in Fig. 2. The lowest I, optic branch shows a striking soft-

ening towards T The‘softening is conspicuous around £=1/3 and extends

i‘
to a wide range along [100]. Measurements of the dispersion surface in
the perpendicular [001] direction shows that the softening is confined

to the vicinlty of a* axis in the q-space.

The Z; mode is degenerate at the zone boundary with the I3 acoustic
mode. We may, therefore, regard the two branches to be a single branch
in the extended zone which is doubled along the a*-axis and in which the
instability takes place at gv2/3. In order to characterize the disper-

sion relation we Fourier analyze it using the relation

[Hw(E) ]2 = Z Fﬁ(l—cosnna) ' (L
n .
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Fig.4. E=0 scattering distribution Fig.5. Energy spectrum of the criti-
around (1 1/3,0,2) at 130CK. cal scattering at several tempera-
co ©  tures. Inset shows a result obtained
by a better energy resolutiom.

in which the coefficients Fn correspond to fictitious effective force

constants coupling planes in the crystal separated by a length equal to

‘na/Z. Sets of force constants obtained are shown in Fig. 3 as a function

of temperature.  The force constants beyond n=3 are insignificant and are
not shown in the figure. The force constant between nearest neighbor

"planes" F, decreases linearly with decreasing temperature and changes

‘'sign at about 175K. F .is larger than Fl and also decreases as the

2
temperature is lowered. In contrast, the force constant between the

third neighbor 'planes" F3 is strong and increases slightly with decreas-
ing temperature. At temperatures just above Ti F3 becomes a predominant
component which characterizes the softening of the phonon energy around

g=2/3. Notice that F, alone produces a phonon instability at £=2/3. The

3 _
presence of Fl and F2 displaces the minimum from the commensurate point.
This simple picture explains how the incommensurate instability develops
in K_SeO,. |
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CRITICAL SCATITERING

As shown in Fig. 4,'as the transformation temperature is approached
from above, the well-defined phonon sidebands disappear and very near Ti
the critical scattering is peaked at AE=0. If the incoherent scattering
is subtracted, there is no central peak at T>145K, but there is weak
evidence for a three~peak structure at 137K, and the unusual width of the

wings of the scattering closer to T, also suggest the presence of more

i
than one relaxation time. A high resolution scan of the critical scat-
tering (see inset Qﬁ Fig. 3) revealed no detectable energy width. Fig.5
shows the distribution of the E=0 critical scattering in reciprocal

space, and clearly shows the incommensurate nature of the instability.

INDUCTION OF SPONTANEOUS POLARIZATION

Below Ti the I;~type lattice distortion Q(EG) characterized by the

wavevector 9 develops. Due to an interaction term

Fie = AQG@) P (350 (2)
in the free energy expansion, the secondary lattice distortion with ampli-
tude P (q36) representing a long wavelength displacement wave with an
associated polarization and characterized by a wavevector q36— 36(a /3)

is induced. As 435 becomes zero together with § at T o’ the polarization
wave transforms to the spontaneous polarization. The interaction term

(2) also provides a driﬁing force for the incommensurate-commensurate
phase transition. A more detailed account of the phase transformations
and the excitations of the low temperature phase will be published

elsewhere.
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