
LA-6440-MS
Informal Report

0

UC-32
Reporting Date: July 1976
Issued: July 1976

Software for the Intel 8080 Microprocessor

Resident on Machine M (0)

by

William M. Seifert

scientific laboratory
of the University of California

LOS ALAMOS, NEW MEXICO 87545

/ \
An Affirmative Action/Equal Opportunity Employer

UNITED STATES
ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION

CONTRACT W-7405-ENG. 36

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

DISCLAIM ER

Portions of this document may be illegible in electronic image

products. Images are produced from the best available

original document.

Printed in the United States of America. Available from
National Technical Information Service

U.S. Department of Commerce
5285 Port Royal Road
Springfield, VA 22161

Price: Printed Copy $4.00 Microfiche $2.25
This report was prepared as an account of work sponsored

by the United States Government. Neither the United States
nor the United States Energy Research and Development Ad­
ministration. nor any of their employees, nor any of their con­
tractors, subcontractors, or their employees, makes any
warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of
any information, apparatus, product, or process disclosed, or
represepts that its use would not infringe privately owned
rights.

CONTENTS

I. INTRODUCTION

II. FILE DEFINITIONS

III. CONTROL STATEMENTS FOR PL/M COMPILER

IV. CONTROL STATEMENTS FOR MAC80 ASSEMBLER

V. CONTROL STATEMENTS FOR 8080 EMULATOR

VI. USER OPTIONS

VII. SAMPLE PROGRAMS

---- -------------------------- NOTICE--------------------------------
This report was prepared as an account of work
sponsored by the United States Government. Neither
the United States nor the United States Energy
Research and Development Administration, nor any of
their employees, nor any of their contractors,
subcontractors, or their employees, makes any
warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness
or usefulness of any information, apparatus, product or
process disclosed, or represents that its use would not
infringe privately owned rights.

■ i ..

ill

D1STR1BUT IIS DOCUMENT IS UNLIMITED

SOFTWARE FOR THE INTEL 8080 MICROPROCESSOR

RESIDENT ON MACHINE M (0)

bv

William M. Seifert

ABSTRACT

Access to the Intel 8080 software which resides in
the library of Machine M (0) is described. File defi­
nitions, control statements, user options and examples
are included. All reference manuals required are cited
in the introduction.

I. INTRODUCTION
This manual is intended to give the reader a working knowledge of the

required control statements necessary for the execution of the Intel
software which resides in the library of Machine M (0). The following Intel
manuals will he of invaluable assistance:

A. "3008 and 3080 PL/M Programming Manual"
B. "3080 PL/M Compiler Operators Manual"
C. "8080 Assembly Language Programming Manual"
D. "MAC80 Reference Specification 8080 Macro-Assembler"
E. "INTERP/80 User’s Manual"
Additionally, familiarity with the NOS Time-Sharing System is assumed. If

the reader is not familiar with NOS, the C-Division Consulting Services can of­
fer numerous suggestions in learning NOS, the text editor, and in the writing of
"Procedure Files." The following Control Data publications are also extremely
valuable:

F. "KRONOS 2.1 Reference Manual, Volume 1"
0. "KRONOS Time-Sharing User's Reference Manual"
H. "Text Editor Reference Manual"
1. "KRONOS Terminal User's Instant Manual"
The LASL publication, "LASL Cuide to NOS" (LA-5525-M, Vol. A), outlines

the differences between KRONOS and NOS, the new operating system on Machine
M (0). It also contains a command summary, useful for guide reference, but not
for explaining the detailed operation of any control statement.

No explanations on the effects of the various control statements are pro­
vided herein. This guide's purpose is to provide the user with a "cookbook"
procedure for using the Intel 8080 software, along with several realistic exam­
ples of the following:

1. Use of the Text Editor.
2. Use of the TEXT mode for permfile creation.
3. Procedure File for using the PL/M compiler.
4. Procedure File for using the MAC80 assembler.
5. Obtaining an assembled listing at a 200 terminal (CBT).
6. Reading the object file over NOS.

All of these examples are contained in Section VII, "Sample Programs."
Any comments or suggestions concerning this document or the Intel software

packages should be directed to W. M. Seifert, E-5, MS/447.

o

II. FILE DEFINITIONS
A. User permfiles for using the PL/M compiler:

SOURCE: User’s source program with Pass 1 switches inserted
at very beginning (Ref. "U080 PL/M Compiler Operator
Manual," Section 4.1, p. 9).

LIST1: PL/M Pass 1 output listing.
LIST2: PL/M Pass 2 output listing.
SWITCH: PL/M Pass 2 switch settings (Ref. "P.0R0 PL/M Compiler

Operator's Manual," Sec. 4.2, p. 10).
OBJECT: Object file containing either BNPF or hexadecimal

object code, selectable by Pass 2 sx^itches.
B. User permfiles for using the MACR0 assembler:

SOURCE: User's source program (assembly language).
LIST: MAC80 assembled source listing.
SWITCHA: MAC80 switch settings.
OBJECT: Object file (same format feature as PL/M).

C. Machine M (0) Library Files: READ ONLY!
PLM81A: PL/M compiler Pass 1.
PLMB1B: PL/M compiler Pass 2.
MAC80B: MAC80 assembler.
INTERPB: INTERP80 emulator.

D. Local input/output files - not permfiles:
TAPE20: Input file for MAC80 assembler.

Object file for PL/M compiler and MACR0 assembler.TAPE21:
TAPE22 &
TAPE23: Linkage files for connecting Pass 1 to

Pass 2 of PL/M compiler.

III. CONTROL STATEMENTS FOR PL/M COMPILER
It is assumed that the user x*ill access the PL/M compiler by means

of a "Procedure File" (Sec. I., Ref. F., pp. 1-4-4 through 1-4-12). This m
be executed from a terminal with the CALL statement (p. 1-4-5) or submitted
to the batch stream with the SUBMIT statement (p. 1-6-16). Examples are to
found in Sec. VII.

The following set of control statements represents the minimum necessary
for execution of the PL/M compiler:

GET(SOURCE)
GET(LG0=PLM81A/UN=LIBRARY)
LGO(SOURCE jLISTl)
REPLACE(LIST1)
REWIND(TAPE22,TAPE23)
GET(SWITCH)
GET(LG0=PLM81B/UN=LIBRARY)
LGO(SWITCH,LIST2)
REPLACE(TAPE21=OBJECT)
REPLACE(LIST2)
RETURN(nrocedurefilename)
NOTE: The recommended minimum memory requirement is 10/500^.

IV. CONTROL STATEMENTS FOR MAC80 ASSEMBLER
Again, the recommended method of access to the MAC80 assembler is

through a Procedure File. The following set of statements renresents the
suggested minimum necessary for execution of the MAC80 assembler:

GET(TAPE20=SOURCE,SWITCHA)
GET (LGO=MAC 8 0 B /T JN=L IBRARY)
LGO(SWITCHA,LIST)
REPLACE(TAPE21=0BJECT)
REPLACE(LIST)
RETURN(nrocedurefilename)
NOTE: The recomended minimum memory requirement is 100500 .O

V. CONTROL STATEMENTS FOR 8080 EMULATOR
Obviously, a Procedure File to execute the emulator is not really

necessary, but if the obiect file name is strictly arbitrary, the following
list of control statements represents a completely general method of execution

GET(TAPE21=0BJECT)
GET(LGO=INTER?B/UN=LIBRARY)
LGO.

4

At this point, the emulator program assumes control and indicates this
by typing:

INTERP/80 VERS x.x
? $F ~ 1 is typed by user if object file format is hexadecimal.
(see Ref. E., Sec. I.)
NOTE: The recommended minimum memory reouirenent is 100500^.

VI. USER OPTIONS
All user options are outlined in the appropriate Intel manuals cited

in Sec. I. These options are selected by the "software switches" and give
the user the ability to cause the output listings to be printed at the tele­
type terminal or any other device, change the object file format to BNPF for
PROM programming, etc. It is advisable that the user establish the file for
these switch settings before attempting to use the Intel software packages
in any way. This will insure that the proper I/O devices are used, the file
formatting is correct, etc.

A further option the user may wish to consider is that of creating
source files on cassette tape with a Texas Instrument's 7.33 ASR terminal
set in the LOCAL mode (refer to "Model 733 ASR/KSR Operating Instructions").
This method is advantageous from several vantage points:

1. Cards are not xrasted in creating or updating a
source file, as file creation is via the TEXT mode.

2. An easily stored medium for the source program is
realized.

3. The cassettes are, of course, erasable and thus reusable.
4. The cassettes offer a viable method of copying the object

files from permfile storage via NOS.
5. Once the application program is debugged, a permfile is

no longer needed and both the source program and the ob­
ject program may be written to the cassettes for long­
term storage.

In creating the source file locally, valuable computer time is not
consumed and it is easy to edit mistakes from the source program as it is
typed by utilizing the local edit capabilities of the TI 733 ASR.

Once the source program has been compiled/assembled, it is not always
necessary for the user to generate a printed output listing. Any errors may

be detected by means of the text editor, with corrections then implemented on
the source file. The process is then iterated until an errorless compilation/
assembly results. At that point, a printed listing is then highly desirable
and may be obtained by several means:

1. Listed on the TTY terminal with the command
LIST,F=localfilename.

2. Listed on the TTY terminal through the text editor.
3. Output to a 200 terminal to the CCF by means of the

DISPOSE command (Ref. Sec. I., F., p. 1-7-14). Oall
the consulting office for the identification of the
nearest 200 terminal (CBT).

Finally, it may be that the user will not desire to sit at a terminal
until his compilation/assembly is completed. Thus, a job may be submitted to
the batch stream by means of the SUBMIT command (Ref. Sec. I., F., p. 1-6-16).

VII. SAMPLE PROGRAMS
Following are a number of examples which illustrate the creation of

source programs, the compilation or assembly of such programs, the correc­
tion of programming errors, obtaining a program listing, and the recording
of the object program on tape cassette. The following list identifies the
examples shown:

1. Creation of a PL/M source program using the TEXT mode.
2. Compilation of the example PL/M source program.
3. Correction of errors in the PL/M example source nrogram.
4. Obtaining the compilation listing of the PL/M examnle.
5. Recording the object code from the PL/M example.
6. Creation of a MAC80 source program using the TEXT mode.
7. Assembly of the example MAC80 source nrogram.
R. Correction of errors in the MACB0 example source program.
9. Obtaining the assembled listing of the MAC80 examnle.

10. Recording the object code from the TtACR0 examnle.
Each example has explanations of various control statements intersnersed

throughout. Various actions required of the operator are also included to
clarify any file manipulations, terminal control functions, and correct terminal
responses to computer command requests.

6

All examples conform to the convention:
1. Lower case ASCII characters typed by user.
2. Upper case ASCII characters typed by machine U(0).

Where no distinction between upper and lower case characters exists, the
context should indicate the character origin.

1. Creation of a PL/M source program using the TEXT mode
This example is taken from the sample PL/M program on page 15 of the

"8080 Compiler Operators Manual." The procedure named "PRINT$CHAR" has been
modified to be compatible with the E-5 microcontroller's serial I/O interface
for the TI 733 terminal.

Note that after "logging in" to NOS, a new file is created with the
command NEW(permfilename). This command also causes anv other files to be
dropped from the work space and the file created by the NEW command then becomes
the primary file. This means that all subsequent operations which omit refer­
ence to a specific file will cause such operations to be done to the primary
file. After entering the TEXT mode, any characters entered (except BREAK and
CNTRL-C) will be treated as text. In this particular case, the source program
was originally created locally on a TI 733 ASR, recording it on a magnetic tape
cassette. This meant that no computer time was expended in creating the original
source. After the program has been completely debugged and checkout completed,
the source program permfile may be copied back onto the same tape cassette for
archival storage, and then the source program permfile may then be eliminated.

Although not illustrated here, it is imperative that the software
switches for PASS 1 of the PL/M compiler be included in the source program before
any program statements or comments. All PASS 1 switches are explained in the
"8080 PL/M Compiler Operators Manual," Appendix B.

76''06'' 11. 09. 56. 0 0. _ _LRSL 66 00 - 0 KRONDS TIME SHRRINb. Kc!. 1. c!-4 1 1 J . 6U5c.’6
USER NUMBER:TERMINRL: IEjTTY
RECOVER'' CHRRGE:
RERBY.
NEW(EXhMPL1>

RERBY.
TEXT.ENTER TEXT MODE.

7

At this point, the tape cassette was inserted, loaded, and the play­
back control switched to CONT START position. This action caused the contents
of the tape to be read by machine M(0).

SAMPLE PL--M PROGRAM ♦/

THIS PROGRAM PRINTS ALL
NUMBERS BETWEEN 1 AND 1000.

DECLARE CRLF DATA CUDH?OAHj0OH ? 0OH?
OOHj0 OH j0 0H?0 0H>

DECLARE HEADING DATA j

' INTEGER TABLE-' j ODHi. OAH? OAH?

0 OH ■> 0 OH j OOHj OOHj 00H? 00H> j

DECLARE TTYfRDY LITERALLY 'OAH'';

DECLARE TTYS OUT LITERALLY OEH ?

DECLARE I ADDRESS?

PR INTSCHAP: PROCEDURE CCHAR>?

DECLARE CHAR BYTE?

WAIT FOR 733 TO COME READY

DO WHILEaNPUTaTYSRDY> AND 01H>=00H;

end;

OUTPUT aTYSOUT)=CHAR?

END PRINTSCHAR!

PRINT'fSTRING: PROCEDURE CHRME j LEHbTH::- ?
DECLARE NAME ADDRESS?
DECLARE '"LENGTH > I ? CHAR EASED NAME> BYTE?
DO I = 0 TO LENGTH-1?

CALL PRI NT JCHAR <CHAR I > > j

end;
END PR INTI.STRING?

♦y-

PR I NT!NUMBER: PROCEDURE ('NUMBER ? BASE j
CHARS* ZERO$SUPPRESS>;

DECLARE NUMBER ADDRESS* CEASE * CHARS *
ZEROISIJ PPRE S S * I * J> EYTE;

DECLARE TEMP CIO BYTE?
IF CHARS > LAST CTEMP> THEN

CHARS = LAST CTEMP>;
DO I = 1 TO chars;

J = NUMBER MOD BASE + •" 0;
IF J > 9" THEN J = J + ?;
IF ZEROISUPRESS AND I <> 1 AND

NUMBER = 0 THEN J = •" '5
TEMP CLENGTH CTEMFO - I> = J?
NUMBER = NUMBER / BASE?

end;

CALL PRINTISTRING C.TEMP + LENGTH CTEMP)
— CHARC * CHARO5

♦X

q

END PRINTINUMBER;

♦ y'

begin: disfible;
Dn i = i in 10on;

IF I NDD 5 = 1 THEN
nci;

IF I NOD £50 = 1 THEN
CRLL frintsstring
<.HERDING? LENGTHCHEHDING> ?

ELSE
CRLL PRINTSSTRING
c.crlfj lengthccrlf>;

end;
CALL PR I NT'f NUMBER <1 j 1 0 j 16 > 1 > 5

end;
EOF

At this point, if the 733 is equipped with either the Automatic
Device Control or Remote Device Control options and if the DC3 character is en­
abled while transmitting, the playback will he automatically turned off when the
DC3 (TAPE OFF) character is read from the tape cassette. It may be preceded bv
the ETX character which will cause the following to take place:

EXIT TEXT NODE
NOSORT
READY.
FmCK

READY.
REPLACE (EXmMPL1>

10

2. Conpilation of the example PL/M source program
Following is an example terminal session to compile the sample PL/M

program and to find any compilation errors. Note that both list files, LIRT1
and LIST2, must be examined for errors, even though errors found in PARR 2 may
be due to errors in PARR 1.

ertch < 15 0 0 0 0>
$RFL < 15 0 0 0 0>
■'•'CRLL <FLM <SDURCE = EXRMFL 1 J □BJECT = HEXl>
RETURN •::PLM>
XEDIT <LI ST 1>
BEGIN TEXT EDITING.

? F! ■•'' F'RDGRRM ERRDRX
3 PRUGRRM ERRORS

? R
? F!X ERROR X

< 0 O 057> ERROR 4 NEAR 5

00055 2
0 0 056
00 05?

IF I NOD 250 = 1 THEN
CALL PRINT$STRING

C. HEADING5 LENGTH '-.HEADING) 5
ERROR 4 NEAR ?

ELSE
s 5 5
F:X ERROR
CO0 061) ERROR 4 NEAR j
L j 5

0 O 059
0 0 06 0
0 0 06 1

CALL PRINT'fSTRING
C.CRLFj LENGTH(CRLF)?

end;
(00O61) ERROR 4 NEAR j
0 0 062 CALL PR INT*NUMBER (I» 105 16 j 1)?
F•X ERROR X >S
00063) ERROR 4 NEAR i

ERROR 4 NEAR 5
EOF

CALL PR INT*NUNBER (Ij 10. 16. 1)5

END TEXT EDITING
TED IT.LIST 1.

11

^'ErtiT <list2)
BEGIN TEXT EDITING.

? F I PROGRAM ERROR -'
1 PRDGERN ERROR

? R
? ferror /

U U U t' 4 ERROR! 144
'? s S —2
? l;5

45= 0123H 46=Ul37H 47=0143H 43=0146H
52=015EH 53=0175H 54=01SRH 55=01SDH

<00064> ERROR 144
STACK SIZE = 4 BYTES
MEMORY.............................4 00 OH

? END
END TEXT EDITING.

'TED IT :• LIST2.

49= 015CH 5 0= 015DH
56= 01R2H 57=01R5H

The actual compilation is done by the CALL(PLM(...) statement. The
text editor is then used to examine both LIST1 and LIST2 for errors, which can
then be related back to the original source program for correction.

3. Correction of errors in the PL/M example source program
To correct the errors in the source program, it is usually necessary

to identify the error with a unique line or phrase. This is done in the follow­
ing example by means of the FIND editor command. Corrections are accomnlished
with the REPLACE STRING command, and the result is shown with the LIST command.

. e d i r < E x M m f i_ 1!)
BEGIN TEXT EDITING.

? F ! X LENGTH'-HERDING} 5

• R S ■ •- } J ■- !> .)) } S

? U

? F ! LENGTH <CRL_F> j /
? r s: ..■•■} j X j .-'} } j X
? L

? END
END TEXT EDITING.
JED IT ? EXRMF'L 1. *
xpeflrce<EXhMFL1>

<.HERDING j LENGTH<HERDING>5

<.HERDING? LENGTH <HERDING>> 5
<.CRLF« LENGTH <CRLF> ?

<.CRLF- LENGTH<CRLF>> 5

12

4. Obtaining the compilation listing of the PL/M exanple
Correction of errors in the source program must he followed hy an­

other compilation and search of the list files for additional errors. In this
example, the compilation is accomplished again with the CALL statement, and a
subsequent search of both list files reveals no program errors have resulted
from this compilation. At this point, a compilation listing of both nasses of
the PL/M compiler is desired so that the user may execute the nrogram obiect
code either hy means of the C080 simulator, INTERP/80, or on the user's actual
8080-hased system in real time. Such a listing may he obtained in three ways:

a. For short programs, the list files can he outnut to the time­
sharing terminal in two ways:
1) Through the text editor;
2) By use of the command LIST,E=localfilename.

b. For longer programs where the ion hAud (in characters/s) rate
is too slow to he practical the list files may he output to a
200 terminal bv means of the DISPOSE command.

For this example, the last method has been selected. Note that the
permfiles LIST1 and LIST2 have been copied to the local file LISTONT before
the DISPOSE command is invoked. This is done to insure the correct file tvne
is being output to the 200 terminal.

CmLL. <>!_M ,'SOURCE=EXFiMPI_1 j OBJ'ECT = HEX 1 >
RETURNCPLM^
Eli I T <U I ST 1 }
BEGIN TEXT EDITING.

? F!/PROGRAM ERROR/
ND PRDGRRN ERRORS

? END
END TEXT EDITING.

■tED IT 5 L I ST 1.
/edit (listS;)
BEGIN TEXT EDITING.

? F!/PROGRAM ERROR/
NO PROGRRM ERRORS

? END
END TEXT EDITING.
SEDIT j LISTS.
/COPYE I (L I ST 1 j L I STOUT !> 1 >
VERIFY GOOD.
/DISPDSE <LISTOUT = PR/EI=p4)
WMS 0Oil.

4/COPYEI <LISTS J LI STOUT > 1>
VERIFY GOOD.
/DISPOSE<LISTOUT=PR/EI=P4>
WHS 0Oil.

13

5. Recording the object code from the T’L/M examnle
Since the object code for the S080 is output to a permfile, some re­

cording medium must be found which is common to both the CCR and the user's
8080-based system. The possible alternatives are nresently limited to two
types of media: magnetic tape cassette and paper tape. Roth media have advan­
tages and disadvantages, so a discussion of the relative merits of each shall
not be undertaken here. Croup E-5 has relied on the magnetic tape cassettes
simply because of the widespread availability of TI "Silent 1W" terminals with
cassette tape transports. This makes the desirable features of cassette tape
available to any user within LASL who has access to such a terminal.

Intel provides two types of object file format: BNPE for PROM pro­
gramming, and hexidecimal. Both have, of course, ASCII representations, but the
obvious advantage of the hexadecimal format over that of BNPF is its brevitv.
Only two ASCII hexadecimal numbers are required to represent an 8-bit word,
whereas ten ASCII characters in BNPF format are required. The tvne of obiect
code format is determined by the value of the software switch, Q, so that either
format may be easily specified. Either format is accepted bv the 8080 simulator
INTERP/80.

To execute the object code on the user's 8080 svstem, two approaches
are possible:

1. Program a set of PROMs which are then properIv mapped in the
user's memory for proper program addressing and execution;

2. Write a loader program which can reside in PROM memorv, then
read the application program into read/write memorv (RAM) from
which the program may then be executed, debugged, and altered
to some limited extent.

The latter approach is commonly used to properly configure the appli­
cation program to the user's system. Of course, this requires that the applica­
tion program be written such that the program origin will correctlv map the ob­
ject code into the user's system RAM. The program origin may be easilv altered
by means of a numeric label which specifies the absolute address of the program
at that point.

In this example, no explicit starting address appears in the source
program so the starting address is implicitly assumed to be 0000H. Following
is the listing of the hexadecimal object code for example 6:

READY.
GET (HEX 1 ■'

READY.
EI' I T (HEX 1 >

BEGIN TEXT EDITING.
? f :

*
7 L j ♦

J:
\31E U3FC35D U 1 OD 0 A 0 0 0 0 0 U U ij 0 0 0 02 02 028

j 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 OE 0
j 02 02 0 2 02 02 02 02 0 2 02 02 0 2 0 2 0 2 0 2 02 02 0D 0
j 0494E5445474552205441424C45 ODOAOA09
j 0 ij 0 0 0 0 0 0 0 0 0 0 0 21 E 3 3 F 71D B 0 A E 6 01D 6 0 0 5 A
J U L A 4 A U U 81E ■ j 8 F 7 E D 8 0 B L 9 21E 4 o F 71 8 3 7 U D U
j 0 2 C 7 32 C 3 fa 0 0 21E fa 3 F 4 E 0 D 792 C 9 fa D A83 0 0 5 fa
J U4EUfa 0 U2AE43FU97E4FLD4faU 021E73F347 B
J U U 8 fa 5 U 0 L 9 81E U 3 F 718 U7 3 3 E U F 2 D 9 fa D893A F
J 0 0 038 UF3'EEE3fa 0181E L3 F 7 E 8 E E E 9 fa D A 4 3 8 F
J 0 0121EB3F5E1 fa 0 02EE84E2C4faC3DC007AA1
J 02F577B2F5F13210 0 0 03E11E519D2C10 09D
J0E3E1F579174F7817477D17faF7C17fa7F1D4
J 03DC2BB0 0B77C1F577D1F5FC9CDAF0 0017C
J 0 3 0 0 0 E E 0 9 E E 21E F 3 F733E399 fa D 2 F3 0 07E E F
J UL fa 07778D4E U D3EFFL8F L' 0 OAF8DAfa8EE8A 1
J 0 4 F 7 E 2 C 5 fa D fa 0 0 5 F 7 A D E 0 0 B 3 D fa 01 9 F A1 0 F 3 A
J 0D217012EEF3fa203E102EEE9fa4FUfa 002EFF
J OF009EB21EF3F4E791221EB3F5E1fa 002EDfa
J 0 E 8 4 E 2 C 4 fa C D A F 0 0 21E 8 3 F712 37 02E E E 3 4 F F
J 0 C 297 0 0 01F 0 3 F1 1 1 0 0 0 fa 9 fa 019 E B 7 B 21E C E 0
J 03F9fa5F7AEE 0 04B475ECE5A 0 0C9F 321E 03F
J i J 3 F 3fa 012 33fa i J i J SEE8 0 fa 0 321E 03F 9 fa. 2 C 4 F 4 0
J 0789EDADD011E 051fa 0021E 03F4E2C4faCDAB
J OAF 007EDfa 015F7ADE00B3C2B8011EFA1fa5B
0 0021E 03F4E£C4 fa. C DAF 007BDfa015F7ADEDA
J 00E3C2 B 0 01010E 001E 38 C D5 A 0 0 C 3 B8 0121
J 01 Ufa 001E 08CD5A0 021E 03F4E2C4fa2EE8D5
J71237 0£EEE36 0A0E101E 01CD84 00£EE 03fa
j4E2C462101000922E 03FC3fafa 01FE7fa59
J 0 0

i
-END OF FILE-

? ENIi
END TEXT EDITING.

1 U O O U I.
1 0 0 01 C
1 00 02 L
1 0003L
1 0004 C
1 0 005 L
1 0 0 Ofa. f
1 0007L
1 0008 C
1 0009L
1 00 OAC
1 0 0 OBC
1 0 0OCC
1 00 ODC
1 0 0 OE L
1 00 OF L
1 0 01 0 C
1 0 01 1 L
1 0 01 £ C
1 0 013 C
1 0 014 C
i ooi5i:
1 0 0 1 fa L
1 0 017 C
1 0 018 f
1 0 019 C
1 0 01A L
1 0 01E C
1 0 01 C L
OF 01D C
0 0 0 0 0 r

6 Creation of a MAC80 source program using the TEXT mode
This example is taken from the sample assembly language program on

p. 55 of the "8080 Assembly Language Programming Manual." This program is modi­
fied to await the typing of a RETURN. It then outputs two numbers being added,
then outputs the sum. The source permfile has been created in the same manner
as the PL/M example.

RERBY.
NEW <EXRMPL2)

READY.
TEXT.
ENTER TEXT MODE.

? THIS PROGRAM MILLj UPON RECEIPT OF A "RETURN"
j FROM A TI 733 ASR. OUTPUT TMO NUMBERS» ADD THE
? TMO TOGETHER j THEN OUTPUT THE SUM.
■

j

5 ADDRESS DEFINITION

STACK EQU 3F20H
FIRST EQU 3F40H
SECND EQU 3F60H

DEFINE PROGRAM ORIGIN

ORG 4 00 OH
JMP BEGIN

16

HATH DEFINITION

CRLF: DB ODHj UAH >7FHj 7FH>

DE 7FH j 7FH j 7FH jOOH
HEADR: DB y y n

DE -NO. 1 y

DE no. a j

DE '■ SUM'j 0 OH
TAB: DE y j OOH

SUBROUTINE DEFINITION

TTVSIN: IN OAH
AN I OEH
SUI 0 OH
JZ TTYIN j TTY NOT RDY!
IN OEH ; TTY RDY
RET

TTOUT: IN OAH 5 TTY RDY?
AN I 01H
SUI 0 OH
JZ TTOUT 5 TTY NOT RDY!
NOV A > C
OUT OEH ; YES - OUTPUT
RET j CHAR *, RETURN

LIME FETCH CHRP

□BYTE:

BYTLP:

BYTLO:

MOV C 9 M
CALL TTOUT
CPI 0 OH
RZ
I MX H
JMP LIME

MV I B j OEH
MOV IGM
MOV Aj D
RRC
RRC
RRC
RRC
MOV IGA
AMI OFH
CPI OAH
JC BYTLO
ADI 07H
ADI 3 OH
MOV Cj A
CALL TTOUT
MOV A 9 B
SUI 01H
MOV B 9 A
JMZ BYTLP
RET

j LAST CHRP?
j IF SD-. RETURMi
j MOT DOME!
; ITERATE!

j SET UP COUMTER

j ROTATE BYTE
5 RIGHT 4 BITS

5 REPLACE IM U REG
j STRIP L.S. HALF-BYTE
5 >= 10?

; COMVERT TO ASCII

; MOT FIMI SHED!

18

MAIN PROGRAM

LX I SR*STACK ; IMITIALI2E SR!
LX I HjCRLF
CALL LIME ? RETURM 733 CARR.
LX I H? HEADR
CALL LIME ? PRIMT HEADER
LX I H* CRLF
CALL LIME
CALL LIME
CALL TTY IM
CPI ODH ; COMMAND TO START?
JMZ $-5
LX I HjTAE 5 TAB FO 1ST NUMBER
CALL LIME
LX I H j FIRST+£ 5 SET ADDRESS PTR TO
MV I Mj 84H j M.S. DIGIT
CRLL □ BYTE
I MX H
MV I M >OEAH 5 STORE NEXT M.S.D.
CRLL □BYTE
I MX H
MV I M j 9 OH 5 STORE L.S.D.
CALL □BYTE
LX I H> TAB ; TAB FOR 2ND NUMBER
CALL LIME

19

MfiBIi:

LGDP:

LX I H >SECNB+2 ; SET-UP ABBRESS FDR
MV I M ? 3£H j 2NB NUMBER
CRLL □ BYTE
I NX H
MV I M j OAFH
CALL □ BYTE
I NX H
MV I M j BAH
CRLL □ BYTE
LX I HjTAB
CALL LINE
MV I B 9 OSH

'I DM 1RDUTINE

LX I B? FIRST
LX I H j SECNB
XRA A j RESET CARRY FLAG
LDAX B 5 LCAB A INBIRECTLY
ABC M ? ABB MEM TD A
STAX B ? REPLACE AT FIRST+N
BCR B j DUE PASS COMPLETE
JZ BONE j IF BONE? EXIT
I NX B j SET POINTER TO NEXT NO
I NX H ? FDR FIRST ANB SECNB
JMR LOOP .? ITERATE
MOV L t C ? SET UP ABBRESS OFDOME

RESULTANTMOV HjB j RESULTANT
CALL □ BYTE 5 □UTPUT RESULT
DCX H j WITH M.S.D. FIRST
CALL □ BYTE
DCX H j L.S.D. LAST
CALL □ BYTE
LX I H j CRLF j RETURN CARR. & LF

CALL LINE
JMP ITRS ; WAIT FDR COMMAND

END ; TD REPEAT

TEDF

EXIT TEXT NODE
NDSDRT
READY.

READY.
REPUmCE <exrmpl£>

Again, to exit the text mode, the ETX character Is sent either from
being locally recorded on the tape cassette or from the keyboard.

Note the terminating statement in the source file, 'SEOV.'
This serves as the end of file mark and it is essential that the dollar sign ($)
appear in column 1 of the source file.

7. Assembly of the example MAC80 source program
Following is an example terminal session to assemble the samnle

MAC80 program and to detect assembly errors. Only the file LIST must be exam­
ined to find any such errors. In this case, after issuing the FIND command to
the text editor, a second carriage return was issued to check whether the com­
puter was still active. The reply "JOB ACTIVE" was in response to this second
carriage return.

21

.•"'CmLU <MRCS 0 <SaURCE = EXl=lMF I_£> □BJECT=HEX£>
RETURN CMflCS0>
XeDIT(list)
BEGIN TEXT EDITING.

? F ! ••••'FROGRRM ERROR

JOB ACTIVE.
NO PROGRAM ERRORS

? END
END TEXT EDITING.
$EDIT »LIST.

8. Correction of errors in the MAC^0 example source program
Since there were no assembly errors in the above sample program as­

sume that the simulator was then executed revealinp some logical errors. It
turns out that for the MAC80 example, the section of code which causes the two
numbers to be written into read/write memory is incorrectly written. The in­
struction "INX H" should have been written "DCX H" where the data is being wit-
ten into memory.

22

□1_I' (E X 1=1 M P L £)
x'Er> i t <exi=ihpl£>
BEGIN TEXT EDITING.

? f: ••■'F irsr+£.•■'•

L*y

r s: i n x x j x r> c x x > c
? l ; s

: FSXsECNri + £X

? t_;3

? r s: x i n x x, x r c x x; S
? l ? 1£

Y e n r>
END TEXT EDITING.

'TED IT. EXAMPLE,
xREPLACE <EX 1=1 MPL£>

LX I H.FIRST+E SET ADDRESS PTR TO
LX I H.FIRST+£ 5 SET ADDRESS PTR TO
MV I M. 84H M.S. DIGIT
CALL □ BYTE
INX H
MV I M. LiBAH 5 STORE NEXT M.S.D m
CALL □ BYTE
INX H
MV I M. 9 OH n STORE L.S.D.

LX I H.FIRST+£ 5 SET ADDRESS PTR TO
MV I M.84H j M.S. DIGIT
CALL □ BYTE
DCX H
MV I M.OBAN J STORE NEXT M.S.D.
CALL □ BYTE
DCX H
MV I M. 9 OH 5 STORE L.S.D.
LX I H.SECND+£ 5 SET-UP ADDRESS FOR
LX I H.SECND+£ n SET-UP ADDRESS FOR
MV I M. 3£H 5 £ND NUMBER
CALL □ BYTE
INX H
MV I M.OAFH
CALL □ BYTE
INX H
MV I M > 8 AH

LX I H.SECND+£ ; SET-UP ADDRESS FOR
MV I M.3£H ? £ND NUMBER
CALL □BYTE
DCX H
MV I M.OAFH
CALL □ BYTE
DCX H
MV I M. 8AH
CALL □ BYTE
LX I H. TAB
CALL LINE
MV I D. 03H

23

9 Obtaining the assembled listing of the HACSfl example
Corraction of errors in the source program must be followed bv an­

other assembly and search of the file LIST to find subsequent errors. After all
such errors have been corrected, an assembly listing is desirable for debugging
and checkout. This can be done in the same ways as the PL/M example (item A).

Following are the control statements necessary for printing the as­
sembly listing at the P-Division 200 terminal:

.'■'CQFVE I <t_ I ST 5 L I STOUT 5 1 >

VERIFY GDDD.
y'T< I SPOSE <L I STOUT = FR-- E I =p4>
III NS 0 Oil.

10. Recording the object code from the HACP0 example
The obiect file shown below has been recorded on magnetic tape cas­

sette using the command LIST,F=localfilename. The obiect file format is the
same as that of PL/M (see example 5).

RERIiY.
GET <HEX£)

REHBY.
LIST5F=HEX£

1 0 4 0 0 0 0 0C 3 H U 4 0 0 D 0 R 7 F 7 F 7 F 7 F 7 F 0 02 02 0 2 0 2 0£ 0 D E
1 0 4 01 0 0 0 £ 0 £ 0 £ 0 £ 0 £ 0 £ 0 £ 0 £ 0 £ 0 £ 0 £ 0 4 E 4 F £ E £ 0 31 £ 4
1 04 0£ 0 0 0 £ 0 £ 0 £ 0 £ 0 £ 0 £ 0 £ 0 £ 0 £ 0 £ 0 £ 0 £ 0 £ 0 £ 0 £ 0 £ 0 9 0
1 0 4 0 3 0 0 0£ 0 4 E 4 F £ E £ 0 3 £ £ 0 £ 0 £ 0 £ 0 £ 0 £ 0 £ 0 £ 0 £ 0 £ 0 0 3
1 04 0 4 0 0 0£ 0 £ 0 £ 0 £ 0 £ 0 £ 0 £ 0 5 35 5 4 E 0 0 £ 0 £ 0 £ 0 £ 0 £ 0 F E
1 04 0 5 0 n 0 £ 0 £ 0 £ 0 £ 0 £ 0 £ 0 £ 0 £ 0 £ 0 £ 0 £ 0 0 0 E E 0 fi E 6 0 £ 3 3
1 04 0600UB6 00C H5C 4 0E E 0EC9E BORE6 01E60 0CH6891
1 04 07 00 04 0 79 E3 0 EC94 E CE684 OF E0 0C8£ 3 C3 754 0 EC
1 04 0800 006 0£567ftOFOF OF 0F57E6 0FFE 0RER9£4 01C
1 04 09 0 0 0 C607C6304FCE6 8 4 07 8E60147C£ 83 4 0C9E5
1 04 0H 0 0 031 £ 0 3 F £ 1 0 34 0 C E754 0£ 1 0 E 4 0 C E754 0£ 18 E
1 04 0E 0 0 0 034 0C E754 0C B75 4 0C B 5 C 4 0 F E 0 E C £ E8 4 08 B
1 04 0C 0 0 0£ 14 E 4 0 C B754 0£ 14 £ 3 F3684C B8 0 4 0 £ E3678
1 04 0 E 0 0 0 E R C E3 04 0£ E 369 0C E8 04 0£ 14 E 4 0 C E 754 0E E
1 0 4 0 E 0 0 0£ 16 £ 3 F363£ C E8 04 0£ E 3 6 fi F C E8 0 4 0£ E 3 61E
l n4 0F O'0 08RCE3 04 0£ 14E4 0CE754 016 03 014 03F£ 1C 1
1 0410000603FfiF0fi8E 0£15Cfi 0F410 3£ 3C3 034169 0 £
1041 10006 0C E80 4 0£EC B8 0 4 0£EC E 8 04 0£1034 0C Ell
0 541 £0 0 0754 0C 3E 34 0£ fi
0 0 0 0 0 0 0 0 0 0

S
REfiBY.

☆ US GOVERNMENT PRINTING OFFICE: 1976-677-343/180

24

