LA-6440-MS

Informal Report uUcC-32
Reporting Date: July 1976
Issued: July 1976

Software for the Intel 8080 Microprocessor

Resident on Machine M (0)

by

William M. Seifert

scientific laboratory

of the University of California
LOS ALAMOS, NEW MEXICO 87545

/ \

An Affirmative Action/Equal Opportunity Employer

UNITED STATES
ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION
CONTRACT W-7405-ENG. 36

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image
products. Images are produced from the best available
original document.

Printed in the United States of America. Available from
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road
Springfield, VA 22161
Price: Printed Copy $4.00 Microfiche $2.25

This report was prepared as an account of work sponsored
by the United States Government. Neither the United States
nor the United States Energy Research and Development Ad-
ministration. nor any of their employees, nor any of their con-
tractors, subcontractors, or their employees, makes any
warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of
any information, apparatus, product, or process disclosed, or
represepts that its use would not infringe privately owned
rights.

II.

IITI.

IV.

VI.

VII.

CONTENTS

INTRODUCTION

FILE DEFINITIONS

CONTROL STATEMENTS FOR PL/M COMPILER

CONTROL STATEMENTS FORMAC80 ASSEMBLER

CONTROL STATEMENTS FOR 8080 EMULATOR

USER OPTIONS

SAMPLE PROGRAMS

NOTICE:

This report was prepared as an account of work
sponsored by the United States Government. Neither
the United States nor the United States Energy

Research and Development Administration, nor any of

their employees, nor any of their contractors,
subcontractors, or their employees, makes any
warranty, express or implied, or assumes any legal
liability or responsibility for the Y, 1

or usefulness of any information, apparatus, product or
process disclosed, or represents that its use would not
infringe privately owned rights.

D1STR1BUT

ill

IIS DOCUMENT IS UNLIMITED

SOFTWARE FOR THE INTEL 8080 MICROPROCESSOR

RESIDENT ON MACHINE M (0)

bv

William M. Seifert

ABSTRACT

Access to the Intel 8080 software which resides in
the library of Machine M (0) is described. File defi-
nitions, control statements, user options and examples
are included. All reference manuals required are cited
in the introduction.

I. INTRODUCTION

This manual is intended to give the reader a working knowledge of the
required control statements necessary for the execution of the Intel
software which resides in the library of Machine M (0). The following Intel

manuals will he of invaluable assistance:

A. "3008 and 3080 PL/M Programming Manual"

B. "3080 PL/M Compiler Operators Manual"

C. "8080 Assembly Language Programming Manual"

D. "MAC80 Reference Specification 8080 Macro-Assembler"
E. "INTERP/80 User’s Manual"

Additionally, familiarity with the NOS Time-Sharing System is assumed. If
the reader is not familiar with NOS, the C-Division Consulting Services can of-

fer numerous suggestions in learning NOS, the text editor, and in the writing of

"Procedure Files." The following Control Data publications are also extremely
valuable:

F. "KRONOS 2.1 Reference Manual, Volume 1"

0. "KRONOS Time-Sharing User's Reference Manual"

H. "Text Editor Reference Manual"

1. "KRONOS Terminal User's Instant Manual"

The LASL publication, "LASL Cuide to NOS" (LA-5525-M, Vol. A), outlines
thedifferences between KRONOS and NOS, the new operating system onMachine
M (0). It also contains a command summary, useful for guide reference, but not
for explaining the detailed operation of any control statement.

No explanations on the effects of the various control statements are pro-
vided herein. This guide's purpose is to provide the user with a "cookbook"
procedure for using the Intel 8080 software, along with several realistic exam-

ples of the following:

1. Use of the Text Editor.

2. Use of the TEXT mode for permfile creation.

3. Procedure File for using the PL/M compiler.

4. Procedure File for using the MAC80 assembler.

5. Obtaining an assembled listing at a 200 terminal (CBT).
6. Reading the object file over NOS.

All of these examples are contained in Section VII, "Sample Programs."

Any comments or suggestions concerning this document or the Intel software

packages should be directed to W. M. Seifert, E-5, MS/447.

IT. FILE DEFINITIONS
A. User permfiles for using the PL/M compiler:
SOURCE: User'’s source program with Pass 1 switches inserted
at very beginning (Ref. "U080 PL/M Compiler Operator

Manual," Section 4.1, p. 9).

LIST1: PL/M Pass 1 output listing.
LIST2: PL/M Pass 2 output listing.
SWITCH: PL/M Pass 2 switch settings (Ref. "P.OR0O PL/M Compiler

Operator's Manual," Sec. 4.2, p. 10).
OBJECT: Object file containing either BNPF or hexadecimal

object code, selectable by Pass 2 sx"itches.

B. User permfiles for using the MACRO assembler:
SOURCE : User's source program (assembly language).
LIST: MAC80 assembled source listing.

SWITCHA: MAC80 switch settings.

OBJECT: Object file (same format feature as PL/M).
C. Machine M (0) Library Files: READ ONLY!

PLM81A: PL/M compiler Pass 1.

PLMB1B: PL/M compiler Pass 2.

MACS80B: MAC80 assembler.

INTERPB: INTERP80 emulator.

D. Local input/output files - not permfiles:
TAPE20: Input file for MAC80 assembler.
TAPE21: Object file for PL/M compiler and MACRO assembler.
TAPE22 &
TAPE23: Linkage files for connecting Pass 1 to

Pass 2 of PL/M compiler.

III. CONTROL STATEMENTS FOR PL/M COMPILER

It is assumed that the user x*ill access the PL/M compiler by means
of a "Procedure File" (Sec. I., Ref. F., pp. 1-4-4 through 1-4-12). This m
be executed from a terminal with the CALL statement (p. 1-4-5) or submitted

to the batch stream with the SUBMIT statement (p. 1-6-16). Examples are to

found in Sec. VII.

The following set of control statements represents the minimum necessary

for execution of the PL/M compiler:

GET (SOURCE)

GET (LGO=PLM81A/UN=LIBRARY)

LGO (SOURCE jLIST1)

REPLACE (LISTI1)

REWIND (TAPE22, TAPE23)

GET (SWITCH)

GET (LGO=PLM81B/UN=LIBRARY)

LGO(SWITCH,LIST2)

REPLACE (TAPE21=0BJECT)

REPLACE (LIST2)

RETURN (nrocedurefilename)

NOTE: The recommended minimum memory requirement is 10/500".

IV. CONTROL STATEMENTS FOR MAC80 ASSEMBLER
Again, the recommended method of access to the MAC80 assembler is

through a Procedure File. The following set of statements renresents the
suggested minimum necessary for execution of the MAC80 assembler:

GET (TAPE20=SOURCE, SWITCHA)

GET (LGO=MAC80B/TJN=LIBRARY)

LGO (SWITCHA,LIST)

REPLACE (TAPE21=0BJECT)

REPLACE (LIST)

RETURN (nrocedurefilename)

NOTE: The recomended minimum memory requirement is lOOSOOO

V. CONTROL STATEMENTS FOR 8080 EMULATOR
Obviously, a Procedure File to execute the emulator is not really
necessary, but 1if the obiect file name is strictly arbitrary, the following
list of control statements represents a completely general method of execution
GET (TAPE21=0BJECT)
GET (LGO=INTER?B/UN=LIBRARY)

LGO.

At this point, the emulator program assumes control and indicates this
by typing:
INTERP/80 VERS x.x
? SF ~ 1 1is typed by user if object file format is hexadecimal.
(see Ref. E., Sec. 1I.)

NOTE: The recommended minimum memory reouirenent is 100500".

VI. USER OPTIONS

All user options are outlined in the appropriate Intel manuals cited
in Sec. 1I. These options are selected by the "software switches" and give
the user the ability to cause the output listings to be printed at the tele-
type terminal or any other device, change the object file format to BNPF for
PROM programming, etc. It is advisable that the user establish the file for
these switch settings before attempting to use the Intel software packages
in any way. This will insure that the proper I/0O devices are used, the file
formatting is correct, etc.

A further option the user may wish to consider is that of creating
source files on cassette tape with a Texas Instrument's 7.33 ASR terminal
set in the LOCAL mode (refer to "Model 733 ASR/KSR Operating Instructions").
This method is advantageous from several vantage points:

1. Cards are not xrasted in creating or updating a

source file, as file creation is via the TEXT mode.

2. An easily stored medium for the source program is
realized.

3. The cassettes are, of course, erasable and thus reusable.

4. The cassettes offer a viable method of copying the object

files from permfile storage wvia NOS.

5. Once the application program is debugged, a permfile is
no longer needed and both the source program and the ob-
ject program may be written to the cassettes for long-
term storage.

In creating the source file locally, valuable computer time is not
consumed and it 1is easy to edit mistakes from the source program as it is
typed by utilizing the local edit capabilities of the TI 733 ASR.

Once the source program has been compiled/assembled, it is not always

necessary for the user to generate a printed output listing. Any errors may

be detected by means of the text editor, with corrections then implemented on
the source file. The process is then iterated until an errorless compilation/
assembly results. At that point, a printed listing is then highly desirable
and may be obtained by several means:

1. Listed on the TTY terminal with the command

LIST,F=localfilename.

2. Listed on the TTY terminal through the text editor.
3. Output to a 200 terminal to the CCF by means of the
DISPOSE command (Ref. Sec. I., F., p. 1-7-14). Oall

the consulting office for the identification of the
nearest 200 terminal (CBT).
Finally, it may be that the user will not desire to sit at a terminal
until his compilation/assembly is completed. Thus, a job may be submitted to

the batch stream by means of the SUBMIT command (Ref. Sec. I., F., p. 1-6-16).

VII. SAMPLE PROGRAMS

Following are a number of examples which illustrate the creation of
source programs, the compilation or assembly of such programs, the correc-
tion of programming errors, obtaining a program listing, and the recording
of the object program on tape cassette. The following list identifies the

examples shown:

1. Creation of a PL/M source program using the TEXT mode.

2. Compilation of the example PL/M source program.

3. Correction of errors in the PL/M example source nrogram.
4. Obtaining the compilation listing of the PL/M examnle.

5. Recording the object code from the PL/M example.

6. Creation of a MAC80 source program using the TEXT mode.
7. Assembly of the example MAC80 source nrogram.

R. Correction of errors in the MACBO example source program.
9. Obtaining the assembled listing of the MAC80 examnle.
10. Recording the object code from the TtACRO examnle.

Each example has explanations of various control statements intersnersed
throughout. Various actions required of the operator are also included to
clarify any file manipulations, terminal control functions, and correct terminal

responses to computer command requests.

All examples conform to the convention:

1. Lower case ASCII characters typed by user.

2. Upper case ASCII characters typed by machine U(0).

Where no distinction between upper and lower case characters exists, the
context should indicate the character origin.
1. Creation of a PL/M source program using the TEXT mode

This example is taken from the sample PL/M program on page 15 of the
"8080 Compiler Operators Manual." The procedure named "PRINTSCHAR" has been
modified to be compatible with the E-5 microcontroller's serial I/O0 interface
for the TI 733 terminal.

Note that after "logging in" to NOS, a new file is created with the
command NEW (permfilename). This command also causes anv other files to be
dropped from the work space and the file created by the NEW command then becomes
the primary file. This means that all subsequent operations which omit refer-
ence to a specific file will cause such operations to be done to the primary
file. After entering the TEXT mode, any characters entered (except BREAK and
CNTRL-C) will be treated as text. In this particular case, the source program
was originally created locally on a TI 733 ASR, recording it on a magnetic tape
cassette. This meant that no computer time was expended in creating the original
source. After the program has been completely debugged and checkout completed,
the source program permfile may be copied back onto the same tape cassette for
archival storage, and then the source program permfile may then be eliminated.

Although not illustrated here, it is imperative that the software
switches for PASS 1 of the PL/M compiler be included in the source program before

any program statements or comments. All PASS 1 switches are explained in the

"8080 PL/M Compiler Operators Manual," Appendix B.

76''06'"11. 09. 56. 00.

LRSL 6600 - 0 KRONDS TIME SHRRIND. Ke!. 1.c¢!-411J3 . 6U5.'6
USER NUMBER:
TERMINRL: IEJTTY

RECOVER'' CHRRGE:

RERBY.
NEW (EXHMPLI1>

RERBY.

TEXT.
ENTER TEXT MODE.

At this point, the tape cassette was inserted, loaded, and the play-
back control switched to CONT START position. This action caused the contents

of the tape to be read by machine M(0).

SAMPLE PL--M PROGRAM ¢/

THIS PROGRAM PRINTS ALL

NUMBERS BETWEEN | AND 1000.

DECLARE CRLF DATA CUDH?OAHJOOH'’ OOH!’
OOHJ0 OH J0 OH?0 0H>

DECLARE HEADING DATA J

" INTEGER TABLE-'j ODH. OAH? OAH?

0OHDI 0 OHy OOHJs OOHJs 00H? O00H> j
DECLARE TTYfRDY LITERALLY 'OAH'';
DECLARE TTYSOUT LITERALLY OEH ?

DECLARE I ADDRESS?

PR INTSCHAP: PROCEDURE CCHAR>?
DECLARE CHAR BYTE?
WAIT FOR 733 TO COME READY
DO WHILEaNPUTaTYSRDY> AND O0l1H>=00H;
END;
OUTPUT aTYSOUT) =CHAR?

END PRINTSCHAR!

*X
PRINT' £fSTRING: PROCEDURE CHRME j LEHbTH::- !
DECLARE NAME ADDRESS?
DECLARE '"LENGTH)> I?CHAR EASED NAME> BYTE?
DO I = 0 TO LENGTH-1?

CALL PRI NTJCHAR<<CHAR I>>]j

END;
END PR INTI.STRING?
*y-
PRINT !NUMBER: PROCEDURE ('NUMBER' BASE]
CHARS* ZEROS$SUPPRESS>,
DECLARE NUMBER ADDRESS* CEASE' CHARS'*
ZEROISIJPPRESS*' I1*J> EYTE;
DECLARE TEMP CIO BYTE?
IF CHARS > LAST CTEMP> THEN

CHARS = LAST CTEMP>;

DO I = 1 TO CHARS;
J = NUMBER MOD BASE + "O;
IF J > 9" THEN J = J + ?;
IF ZEROISUPRESS AND I <> | AND

NUMBER = 0 THEN J = ' '5

TEMP CLENGTH CTEMFO - I> = J?
NUMBER = NUMBER / BASE?

END;

CALL PRINTISTRING C.TEMP + LENGTH CTEMP)
— CHARC'*' CHARO)

END PRINTINUMBER;

EOF

BEGIN. DISFIBLE,
Dn 1 = i in 10on;
IF I NDD 5 = | THEN
nci;
IF I NOD £50 = 1 THEN
CRLL FRINTSSTRING
<.HERDING? LENGTHCHEHDING> '
ELSE
CRLL PRINTSSTRING
C.CRLFJ LENGTHCCRLF>;
END,
CALL PRINT'fNUMBER<l: 10: 16 1>}

END;

At this point, if the 733 is equipped with either the Automatic

Device Control or Remote Device Control options and if the DC3 character is en-

abled while transmitting, the playback will he automatically turned off when the

DC3 (TAPE OFF) character is read from the tape cassette. It may be preceded bv

the ETX character which will cause the following to take place:

10

EXIT TEXT NODE
NOSORT

READY.

FMCK

READY.
REPLACE (EXMMPLI1>

2. Conpilation of the example PL/M source program

Following is an example terminal session to compile the sample PL/M
program and to find any compilation errors. ©Note that both list files, LIRTL
and LIST2, must be examined for errors, even though errors found in PARR 2 may

be due to errors in PARR 1.

ERTCH <15000 0>
SRFL <150000>
H'+'CRLL <FLM <SDURCE =EXRMFL 1 | ([BJECT=HEX1>
RETURN . .PLM>
XEDIT <LI ST 1>
BEGIN TEXT EDITING.
? F!I"F'RDGRRM ERRDRX
3 PRUGRRM ERRORS
? R
? F!X ERROR X
<00057> ERROR 4 NEAR)

00055 2 IF I NOD 250 = 1 THEN
00056 CALL PRINTS$STRING
00 05?2 C. HEADING; LENGTH '-.HEADING) }
ERROR 4 NEAR !
ELSE

s55

F:X ERROR
CO0 061) ERROR 4 NEAR j

Lj5
00059 CALL PRINT'fSTRING
00060 C.CRLF; LENGTH (CRLF)’
00061 END;

(00061) ERROR 4 NEAR j
00062 CALL PR INT*NUMBER (I» 105 167 1)°?

FeX ERROR X>S
00063) ERROR 4 NEAR |

CALL PR INT*NUNBER (I; 10. 16. 1)5

ERROR 4 NEAR)
EOF

END TEXT EDITING
TED IT.LIST 1.

11

ATErtiT <.xsT2)
BEGIN TEXT EDITING.
? FI PROGRAM ERROR-'
1 PRDGERN ERROR
? R
? FERROR /
UuuUt' 4 ERROR! 144
"7 s8§—2
? I.;5
45=0123H 46=U137H 47=0143H 43=0146H 49=015CH 50=015DH
52=015EH 53=0175H 54=01SRH 55=01SDH 56=01R2H 57=01R5H
<00064> ERROR 144
STACK SIZE = 4 BYTES

MEMORY0 it ittintnneananens 4 00 OH
? END
END TEXT EDITING.
'TED IT» LIST2.
The actual compilation is done by the CALL(PLM(...) statement. The

text editor is then used to examine both LIST1 and LIST2 for errors, which can
then be related back to the original source program for correction.
3. Correction of errors in the PL/M example source program
To correct the errors in the source program, it 1is usually necessary
to identify the error with a unique line or phrase. This is done in the follow-
ing example by means of the FIND editor command. Corrections are accomnlished

with the REPLACE STRING command, and the result is shown with the LIST command.

. EDir <ExMMFi_1)
BEGIN TEXT EDITING.
? F!X LENGTH'-HERDING} }
<.HERDINGJ; LENGTH<HERDING>)

RSue- } Jn b) b s
? U
<.HERDING? LENGTH <HERDING>> }
? F! LENGTH <CRL_F> j /
<.CRLF« LENGTH <CRLF> '
? RS M iXj .-} X
? L
<.CRLF- LENGTH<CRLF>>}
? END

END TEXT EDITING.
JED IT?EXRMF'L 1. *
XPEFLRCE<EXHMFL1>

12

4. Obtaining the compilation listing of the PL/M exanple

Correction of errors in the source program must he followed hy an-
other compilation and search of the list files for additional errors. In this
example, the compilation is accomplished again with the CALL statement, and a
subsequent search of both list files reveals no program errors have resulted
from this compilation. At this point, a compilation listing of both nasses of
the PL/M compiler is desired so that the user may execute the nrogram obiect
code either hy means of the C080 simulator, INTERP/80, or on the user's actual

8080-hased system in real time. Such a listing may he obtained in three ways:

a. For short programs, the list files can he outnut to the time-
sharing terminal in two ways:
1) Through the text editor;
2) By use of the command LIST,E=localfilename.
b. For longer programs where the ion hAud (in characters/s) rate
is too slow to he practical the list files may he output to a
200 terminal bv means of the DISPOSE command.
For this example, the last method has been selected. Note that the
permfiles LIST1 and LIST2 have been copied to the local file LISTONT before
the DISPOSE command is invoked. This is done to insure the correct file tvne

is being output to the 200 terminal.

CMLL. <>! M,' SOURCE=EXFIMPI_1 ;j OBJ'ECT=HEX1>
RETURNCPLM*
Eli IT<UIST1}
BEGIN TEXT EDITING.
2 F!/PROGRAM ERROR/
ND PRDGRRN ERRORS
? END
END TEXT EDITING.
WtEDIT;LIST1.
/EDIT (LISTS;)
BEGIN TEXT EDITING.
2 F!/PROGRAM ERROR/
NO PROGRRM ERRORS
2 END
END TEXT EDITING.
SEDITj LISTS.
/COPYEI (LIST1;LISTOUT) 1>
VERIFY GOOD.
/DISPDSE <LISTOUT=PR/EI=p4)
WMS 00il. A
/COPYEI <LISTS /LI STOUT) 1>
VERIFY GOOD.
/DISPOSE<LISTOUT=PR/EI=P4>
WHS 00il.

13

5. Recording the object code from the T'L/M examnle

Since the object code for the S080 is output to a permfile, some re-
cording medium must be found which is common to both the CCR and the user's
8080-based system. The possible alternatives are nresently limited to two
types of media: magnetic tape cassette and paper tape. Roth media have advan-
tages and disadvantages, so a discussion of the relative merits of each shall
not be undertaken here. Croup E-5 has relied on the magnetic tape cassettes
simply because of the widespread availability of TI "Silent /W' terminals with
cassette tape transports. This makes the desirable features of cassette tape
available to any user within LASL who has access to such a terminal.

Intel provides two types of object file format: BNPE for PROM pro-
gramming, and hexidecimal. Both have, of course, ASCII representations, but the
obvious advantage of the hexadecimal format over that of BNPF is its brevitv.
Only two ASCII hexadecimal numbers are required to represent an 8-bit word,
whereas ten ASCII characters in BNPF format are required. The tvne of obiect
code format is determined by the value of the software switch, Q, so that either
format may be easily specified. Either format is accepted bv the 8080 simulator
INTERP/80.

To execute the object code on the user's 8080 svstem, two approaches
are possible:

1. Program a set of PROMs which are then properlIv mapped in the

user's memory for proper program addressing and execution;

2. Write a loader program which can reside in PROM memorv, then
read the application program into read/write memorv (RAM) from
which the program may then be executed, debugged, and altered
to some limited extent.

The latter approach is commonly used to properly configure the appli-
cation program to the user's system. Of course, this requires that the applica-
tion program be written such that the program origin will correctlv map the ob-
ject code into the user's system RAM. The program origin may be easilv altered
by means of a numeric label which specifies the absolute address of the program
at that point.

In this example, no explicit starting address appears in the source
program so the starting address is implicitly assumed to be 0000H. Following

is the listing of the hexadecimal object code for example 6:

READY.
GET (HEX1I

READY.
EI'IT (HEX1)>

BEGIN TEXT EDITING.
? F.

*
7 Li¢

7

1yooUlL \31EU3FC35DULODOAOOOOOUUij0000202028
10001C3j020202020202020202020202020202020E0
100021 3j020202020202020202020202020202020D0
1 0003L jO494E5445474552205441424C45 ODOAOAO09
10004C j0ij0000000000021E33F71DBO0AE6O01D6005A
10005L JULA4AUUS1Ej8F7ED8(0BL921E40F71837UDU
1000fa.f j02C732C3fa0021Efa3F4EQ0D792C9faDA83005¢%
1 00071l JU4EUfa 0 U2AE43FU97E4FLD4faU 021E73F347B
10008CJUU8fa5U0L981EU3F 718U733EUF2D9f:aD893AF
1 0009L Jo0O38UF3'EEE3fa01lK1EL3F7ES8EEE9faDA438F
1 000AC J00121EB3F5Elfa (0 02EE84E2C4£faC3DC007AAl
1000BC JO2F577B2F5F132100003E11E519D2C10 09D
1 000CC JOE3E1F579174F7817477D17£faF7Cl7£fa7F1D4
1 000DC J03DC2BB0 OB77C1lF577D1F5FC9CDAF0 0017C
100CEL JO3000EEO9EE21EF3F733E399::D2F3007EEF
1000FL JULfa07778D4E UD3EFFLS8F!' 0 OAFS8DAfaSEESA |
10010CJ04F7E2C5fDfa005F7ADEOOB3Dfa0l O9FAL 0F3A
10011LJ0D217012EEF3£fa203E102EEE9fad4FUfa O02EFF
1001£C JOFOO9EB21EF3F4E791221EB3F5E1lfa 002EDfa
10013C JOE8B84E2C4faCDAF0021E83F71237 O2EEE34FF
10014C j0C2970001F03F111000£fa9fa019EB7B21ECED(
i 001Dl 103F9£fa5F7AEE 0 04B475ECES5A 0 0C9F 321E 03F
1001fal JW3F3fa01233:;:iJiJSEE80f20321E 03F9:.2C4F40
10017C JO789EDADDO11E 051fa0021E 03F4E2C4faCDAB
10018f JOAF O07EDfa 015F7ADEOOB3C2B8011EFAlfa5B
10019C 00021EO3F4E£C4i4CDAF 007BDfa015F7ADEDA
1001AL JOOE3C2B001010E 0O0O1E38CD5A00C3B8 0121
1001EC J01 UfaOO0Ol1lE 08CD5A0021E 03F4E2C4fa2EE8DS5
1001CL UJ71237 0£EEE36 0A0E101E 01CD84 00£EE 03fa
OF 01DC j4E2C462101000922E 03FC3fafa 01FE7fa59
00000r JOO

z
-END OF FILE-
? ENIi
END TEXT EDITING.

6 Creation of a MAC80 source program using the TEXT mode
This example is taken from the sample assembly language program on
p. 55 of the "8080 Assembly Language Programming Manual." This program is modi-
fied to await the typing of a RETURN. It then outputs two numbers being added,
then outputs the sum. The source permfile has been created in the same manner

as the PL/M example.

RERBY.
NEW <EXRMPL2)

READY.

TEXT.
ENTER TEXT MODE.

! THIS PROGRAM MILILJ UPON RECEIPT OF A "RETURN"
j FROM A TI 733 ASR. OUTPUT TMO NUMBERS» ADD THE

? TMO TOGETHERj] THEN OUTPUT THE SUM.

§ ADDRESS DEFINITION
STACK EQU 3F20H
FIRST EQU 3F40H
SECND EQU 3F60H

DEFINE PROGRAM ORIGIN

ORG 4 00 CH

JMP BEGIN

16

HATH DEFINITION

CRLF: DB ODH’ UAH >7FH; 7FH>

DE 7FH,; 7FH; 7FH sO0OH
HEADR: DB Y Yo

DE -NO.

DE NO. a]

DE 1 SUM'j 0OH
TAB: DE Y j OOH

SUBROUTINE DEFINITION

TTVSIN: IN OAH
ANI OEH
SUI 0 OH
JZ TTYIN j TTY NOT RDY!
IN OEH i TTY RDY
RET
TTOUT: IN OAH 5 TTY RDY?
ANI 01H
SUI 0 OH
JZ TTOUT 5 TTY NOT RDY!
NOV A>C
ouT OEH i YES - OUTPUT

RET) CHAR *, RETURN

18

LIME

[BYTE:

BYTLP:

BYTLO:

MOV

CALL

CPI

RZ

IMX

MVI

MOV

MOV

RRC

RRC

RRC

RRC

MOV

AMT

CPI1

Jc

ADI

MOV

CALL

MOV

SUI

MOV

TTOUT

0 OH

LIME

BJs OEH

IGM

A;D

IGA

OFH

OAH

BYTLO

07H

3 OH

CiA

TTOUT

FETCH CHRP

LAST CHRP?

IF SD-. RETURMi

MOT DOME!

ITERATE!

SET UP COUMTER

ROTATE BYTE

RIGHT 4 BITS

REPLACE IM U REG

STRIP L.S. HALF-BYTE

>= 107

COMVERT TO ASCII

MOT FIMI SHED!

MAIN PROGRAM

LXI

LXI

CALL

LXI

CALL

LXI

CALL

CALL

CALL

CPI

LXI

CALL

LXI

MVI

CRLL

IMX

MVI

CRLL

IMX

MVI

CALL

LXI

CALL

SR*STACK
HJCRLF
LIME

H? HEADR
LIME

H* CRLF
LIME
LIME
TTY IM
ODH

$-5
HJTAE

LIME

Hi FIRST+£

M; 84H

UOBYTE

H

M >OEAH

LIBYTE

MyJ 9 OH

[IBYTE

H> TAB

LIME

!

?

?

IMITIALI2E SR!

RETURM 733 CARR.

PRIMT HEADER

COMMAND TO START?

TAB FO 1ST NUMBER

SET ADDRESS PTR TO

M.S. DIGIT

STORE NEXT M.S.D.

STORE L.S.D.

TAB FOR 2ND NUMBER

19

MfiBIi:

LGDP:

DOME

LXI

MVI

CRLL

INX

MVI

CALL

INX

MVI

CRLL

LXI

CALL

MVI

'I DM

LXI

LXI

XRA

LDAX

STAX

BCR

JZ

INX

INX

MOV

H >SECNB+2

M? 3£H

UOBYTE

H

M; OAFH

UOBYTE

H

M;BAH

UOBYTE

HJTAB

LINE

B OSH

RDUTINE

B? FIRST

Hi; SECNB

A

LOOP

SET-UP ABBRESS FDR

2NB NUMBER

RESET CARRY FLAG

LCAB A INBIRECTLY

ABB MEM TD A

REPLACE AT FIRST+N

DUE PASS COMPLETE

IF BONE? EXIT

SET POINTER TO NEXT NO

FDR FIRST ANB SECNB

ITERATE

SET UP ABBRESS OF

MOV HJB] RESULTANT

CALL OBYTE § CUTPUT RESULT

DCX H j WITH M.S.D. FIRST
CALL OBYTE

DCX H j L.S.D. LAST

CALL OBYTE

LXI HiCRLF j RETURN CARR. & LF
CALL LINE

JMP ITRS ; WAIT FDR COMMAND
END ; TD REPEAT

TEDF

EXIT TEXT NODE
NDSDRT
READY.

READY.
REPUMCE <EXRMPL£>

Again, to exit the text mode, the ETX character Is sent either from

being locally recorded on the tape cassette or from the keyboard.

Note the terminating statement in the source file, 'SEOV.'

This serves as the end of file mark and it is essential that the dollar sign ($)

appear in column 1 of the source file.
1. Assembly of the example MAC80 source program
Following is an example terminal session to assemble the samnle
MAC80 program and to detect assembly errors. Only the file LIST must be exam-
ined to find any such errors. In this case, after issuing the FIND command to
the text editor, a second carriage return was issued to check whether the com-
puter was still active. The reply "JOB ACTIVE" was 1in response to this second

carriage return.

21

A"'(MLU <MRCS 0 <SaURCE =EX1=1MF I £>[IBJECT=HEX£>
RETURN CMf1CS0>
XEDIT (LIST)

BEGIN TEXT EDITING.
? F | e¢ee'FROGRRM ERROR

JOB ACTIVE.

NO PROGRAM ERRORS
? END

END TEXT EDITING.
SEDIT »LIST.

8. Correction of errors in the MAC"0 example source program
Since there were no assembly errors in the above sample program as-
sume that the simulator was then executed revealinp some logical errors. It
turns out that for the MAC80 example, the section of code which causes the two
numbers to be written into read/write memory is incorrectly written. The in-
struction "INX H" should have been written "DCX H" where the data is being wit-

ten into memory.

22

01 I' (EXHMPLE)
X'Er> i T <EXI=IHPLE£>

BEGIN TEXT EDITING.

? E.IT IRSTH. M

L*y

RS iNxxjxr>cxx>c
? L;s

FSXsECNri+£X

? RS XiNxx, xrCxx; s
? L?1f

Y END

END TEXT EDITING.
'TED IT. EXAMPLE,
XREPLACE <EXIIMPL£>

LX1I

LXI
MV I
CALL
INX
MVI
CALL
INX
MVI

LXI
MVI
CALL
DCX
MV I
CALL
DCX
MV I

LXI

LXI
MVI
CALL
INX
MVI
CALL
INX
MVI

LXI
MVI
CALL
DCX
MVI
CALL
DCX
MV I
CALL
LX1I
CALL
MV I

H.FIRST+E

H.FIRST+£
M. 84H
UOBYTE

H

M. LiBAH
UOBYTE

H

M. 9 OH

H.FIRST+£
M. 84H
UOBYTE

H

M.OBAN
UOBYTE

H

M. 90OH

H.SECND+£

H.SECND+£
M 3£H
UOBYTE

H

M.OAFH
UBYTE

H

M> 8AH

H.SECND+£
M.3£H
[IBYTE
H
M.OAFH
UBYTE
H

M. 8AH
UOBYTE
H TAB
LINE
D. O3H

SET ADDRESS PTR TO

SET ADDRESS PTR TO

M.S. DIGIT

STORE NEXT M.S.D1!

STORE L.S.D.

SET ADDRESS PTR TO
M.S. DIGIT

STORE NEXT M.S.D.

STORE L.S.D.

SET-UP ADDRESS FOR

SET-UP ADDRESS FOR
£ND NUMBER

SET-UP ADDRESS FOR
£ND NUMBER

23

9 Obtaining the assembled listing of the HACSfl example
Corraction of errors in the source program must be followed bv an-
other assembly and search of the file LIST to find subsequent errors. After all
such errors have been corrected, an assembly listing is desirable for debugging
and checkout. This can be done in the same ways as the PL/M example (item A).
Following are the control statements necessary for printing the as-

sembly listing at the P-Division 200 terminal:

'm'CQFVE I <t_ ISTSLISTOUTS S 1>

VERIFY GDDD.
y'<1 SPOSE <L I STOUT=FR-- El =p4>
mNS o &i1.

10. Recording the object code from the HACPO example
The obiect file shown below has been recorded on magnetic tape cas-

sette using the command LIST,F=localfilename. The obiect file format is the

same as that of PL/M (see example 5).

RERIiY
GET <HEXE£)

REHBY.
LISTSF=HEXf

10400000C3HU400DOR7F7F7F7F7F0020202020£ 0DE
10401 000£0£0£0£0£0£L£0£0£0£0L£0£ 04E4FL£E£031£4
1040£000£0£0£0£0£0£L0£0L£0£L0£L0£0£0£0£0£0£090
10403000£04E4FL£EL£03££0£0£0£LE0£ 0£0L£0£0£0£003
10404000£0£0£0£0£0£0£053554E00£0£0£0£0£ 0FE
104050n0£0£0£0£0£0£0£0£0£0£0£000EEOHHIE60£L£33
1040600UB6 O0CH5C4 0EE OECO9EBOREG6 01E60 OCH6891
104070004079E30EC94ECE6840FE(00C8£3C3754 0EC
104 0800006 0£567ftOFOF OF OF57E6 OFFE ORER9£4 01C
10409000C607C6304FCE684078E60147C£8340C9E5
1040H00031£03F£10340CE7540£10E40CE754 0£ 18E
1040E0000340CE754 0CB7540CB5C40FEOECL£E84 08B
1040C000£14E40CB754 0£ 14£3F3684CB8040£E3678
1040E000ERCE3 04 0£E3690CE8040£ 14E40CE754 OEE
1040E000£ 16£3F363£CE8040£E36fiFCE8040£E361E
I n4d OF0'0 0BRCE3 04 0£ 14E4 OCE754 016 03014 03F£ 1C 1
1 0410000603FfiF0fi8E O£15Cfi 0F4103£3C30341690¢%
1041 10006 0CE804 O£ECB804 OLECE8 04 0£1034 0CE11l
0541 £000754 0C3E34 0£11

0000000000

S
REfiBY

US GOVERNMENT PRINTING OFFICE: 1976-677-343/180

24

