

CONF 900530-8

UCRL--102525

DE90 008363

**SPATIAL IMAGING USING CONFOCAL
FABRY-PEROT INTERFEROMETERS**

DAVID W. MYERS
DEREK E. DECKER
MICHAEL A. JOHNSON
STEPHEN D. MOSTEK

THIS PAPER WAS PREPARED FOR SUBMITTAL TO

CLEO '90
OPTICAL SOCIETY OF AMERICA
AHAHEIM, CALIFORNIA

MAY 21-25, 1990

Lawrence
Livermore
National
Laboratory

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be made before publication, this preprint is made available with the understanding that it will not be cited or reproduced without the permission of the author.

Received by OSTI
MASTER
MAR 1 9 1990
DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

SPATIAL IMAGING USING CONFOCAL FABRY-PEROT INTERFEROMETERS*

D.W. Myers, D. E. Decker, M.A. Johnson, S. D. Mostek

Lawrence Livermore National Laboratory

P.O. Box 5508, L-463

Livermore, California 94550

(415) 422-1639

ABSTRACT

A diagnostic imaging package containing confocal Fabry-Perot interferometers is used to provide spatial intensity information for each of several closely spaced wavelength components of a single laser beam.

*Work performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

SPATIAL IMAGING USING CONFOCAL FABRY-PEROT INTERFEROMETERS

D.W. Myers, D. E. Decker, M.A. Johnson, S. D. Mostek
Lawrence Livermore National Laboratory
P.O. Box 5508, L-463
Livermore, California 94550
(415) 422-1639

SUMMARY

In support of laser isotope separation activities at the Lawrence Livermore National Laboratory, the Beam Control and Diagnostic Group is responsible for diagnosing dye laser beams containing multiple wavelength components. We have developed a diagnostic package based upon the use of confocal Fabry-Perot interferometers in order to measure the spatial intensity profile and location of each of these components, whose frequencies may differ by less than 10 GHz.

The requirement for a very narrow bandpass precluded our use of a conventional interference filter, but we were aware that a Fabry-Perot interferometer could have more than adequate frequency resolution for our purposes. It was not so obvious until we analyzed the device that the confocal, or spherical, Fabry-Perot (SFP) configuration^{1,2} could faithfully transmit images while maintaining this frequency resolution.

We also exploited other advantages of the SFP: its relative insensitivity to alignment, both internal and with respect to other components; its electrical tunability, allowing a single device to be used for various wavelengths; and the possibility of constructing it to have zero optical power, simplifying its integration into an optical system. Characteristics of the SFP that are undesirable from our point of view include its multiple transmission peaks as well as the fixed frequency spacing between these peaks, which is set by the curvature of the mirrors.

The imaging properties of an SFP are coupled to its frequency resolution. In our design effort we considered both spatial resolution and uniformity of transmission over the field. By choosing the free spectral range of the device to be about 5 GHz, the mirror reflectivity to be 0.9, and limiting the aperture and input angle into the SFP as shown in Fig. 1, we were able to achieve our

D.W. Myers

"Spatial Imaging Using Confocal Fabry-Perot Interferometers"

goals of a 400 MHz bandpass and the ability to transmit with zero optical power an image containing 100 line pairs, while maintaining a transmission uniformity of better than $\pm 5\%$.

Figure 2 is an optical schematic of the diagnostic package, which receives a sample of the composite dye laser beam, reduces it to manageable size and relays an appropriate object plane to a reticle. This reticle is then imaged onto several video cameras through parallel optical paths. Each of these paths consists of an image quality bandpass filter for coarse wavelength separation, a SFP filter to distinguish between closely spaced wavelengths and an optical system to image the common reticle onto the video camera.

We have developed a diagnostic package that allows us to measure the individual spatial intensity profiles of closely spaced wavelengths in a common laser beam. The key to meeting the simultaneous requirements of very narrow bandpass and good image quality is the use of confocal Fabry-Perot interferometers.

1. M. Hercher, "The Spherical Mirror Fabry-Perot Interferometer," Appl. Opt. 7, 951 (1968).
2. G. Hernandez, Fabry-Perot Interferometers, (Cambridge University Press, Cambridge, 1986), pp. 122-149.

D.W. Myers

"Spatial Imaging Using Confocal Fabry-Perot Interferometers"

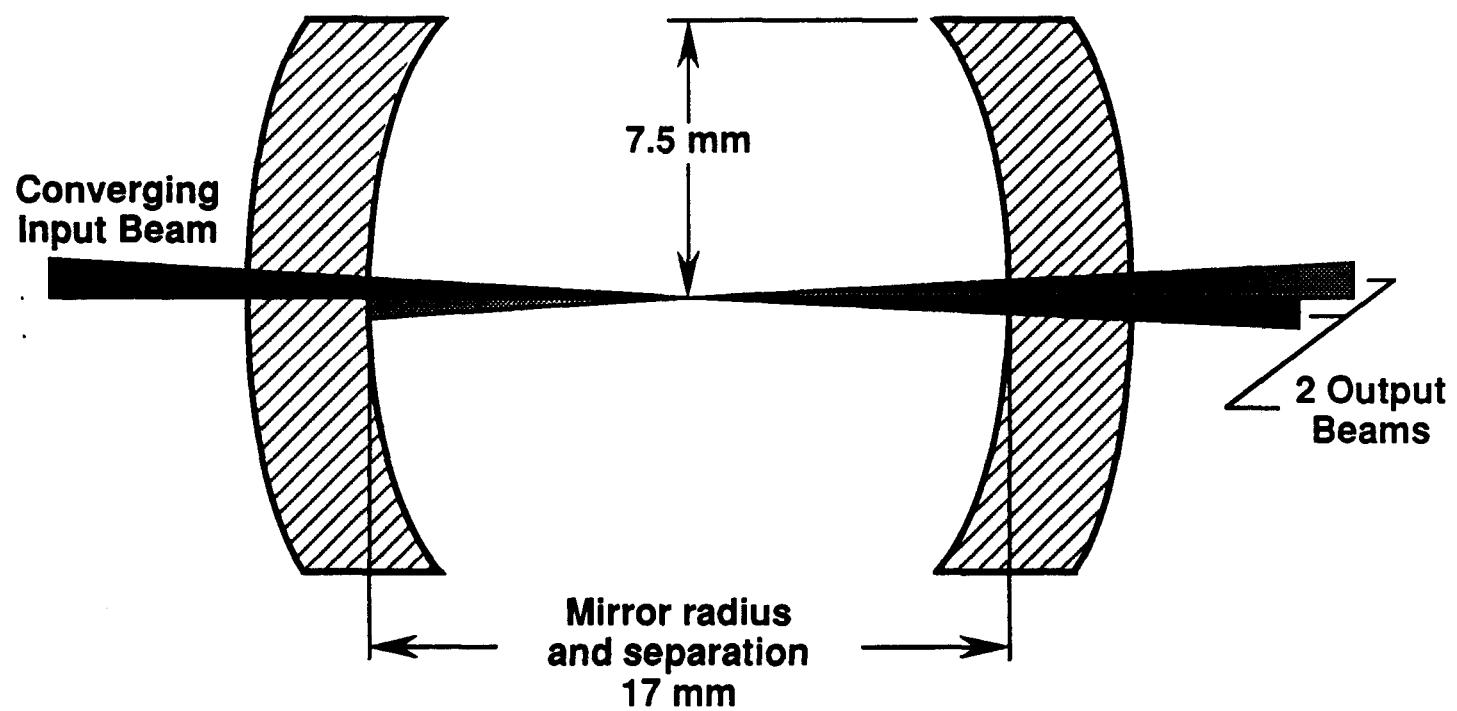

CAPTIONS

Figure 1. Confocal Fabry-Perot interferometer used to separate individual wavelength components in a laser beam. We predicted and found experimentally that the beam size on the SFP had to be surprisingly small to obtain uniform transmission over the image (Drawn to scale).

Figure 2. Optical block diagram of diagnostic package. Major optical components are shown.

D.W. Myers

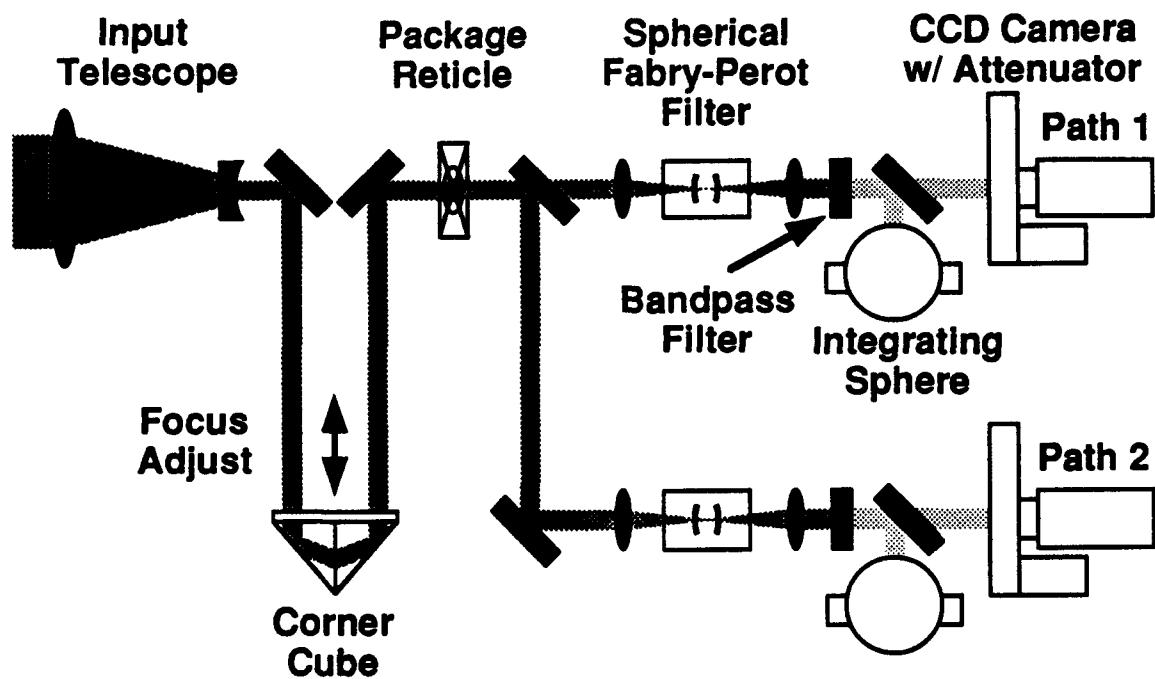

"Spatial Imaging Using Confocal Fabry-Perot Interferometers"

Figure 1.

D.W. Myers

"Spatial Imaging Using Confocal Fabry-Perot Interferometers"

Figure 2.