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T H E  REGULATION OF. NITRATE ASSIMILATION IN LOWER PLANTS : 
A CRITIQUE 

. . .  . . . .  

P. G'. ~ a l  kowski. 
&oo hhaven NaAional Labohatohy 

N W e  a s ~ M a t i o n  hequihu .the 6unc;tion and hegLLeation 
06 M e e  p h o c a ~ a ,  namdy. ( 7 )  the uptake and Rhannloccr;tian 0 6  
nitnate 6hom .the envhonment into .the c&, ( 2  ) the hedudan  0 6  
.the anion t o  ammoniwn via ni/trraLe and n&%Lte heduc;ta6~, and 
( 3 )  Rlze incohpoWon 06 Lhe &educed nitrrogen i n f o  amino acid 
ptecwL?lou. Ace t h e e  p o c c n ~ a  m e  anabolic and endothmnic 
and, connequentey, m u t  be thmodynamic&y coupled t o  catabofic 
and exo.thehmic huotiaru. White most 06  the hecent haeanch on 
nCtrrate a ~ , i m d k X o n  has docu ed on one o h  the oihm 0 6  t h u e  
prroca~u indivaUaeey, t a n  attention h a  beuz given t o  duortib- 
ing Lhe enmgy ~ o w r c a  heqtLihed doh th& 6unctian and Rlze 
h e g W o n  06 the p m c u a a  b y  ihur.modyn&c coupting. 

I .  NITRATE UPTAKE 

In order t o  u t i l ize  ni t rate  as a substrate for cel lular  
. . anabolism, plants must transport the ion across the plasmalemma, 

against the negative chemical potential of the ion. The mecha- 

nism of passage of ni t rate  across cell membranes has been hypothe- 

sized by some investigators . A1 1 usions to "permeases" and 

faci l i ta ted diffusion have been made by Packard and Blasco and 

Plat t  and Subba Rao; ( '  '*) however, no direct evidence has been 
published to support these speculations. The phospholipid 

bilayer, t h o u g h t  to. be the major constituent of most plasma 



. . ... 

membranes, i s  n o t  ve ry  permeabl e . to  .charged molecules 1 i ke 

n i t r a t e ,  so absorp t ion  o f  the  i o n  must f o l l ow  o t h e r  rou tes  i n t o  

t h e  c e l l  . An a1 t e r n a t i v e  possi  b i  1 i ty mi gh't be a membrane-bound 

p r o t e i n ' i n  t he  phosphol ip id  b i l a y e r  t h a t  mediates t h e  t rans loca-  
. . . . . .  

t i o n  o f  n i t r a t e .  Th is  " ionophore" m igh t  s imply  a l l o w  d i f f u c i o n ,  

i n  which case i t  would be' a t r u e '  permease, f o l l ow ing  t h e  o r i g i n a l  

d e f i n i t i o n  o f  t h e  term by ~ o ~ o d ; ( ~ )  o r  i t  may '"pump" n i t r a t e  

a 'gainst  t he  nega t i ve  g rad ien t  of the  chemical p o t e n t i a l  o f  t he  
................ - - ..... .- ... ...... - -. .... . . . .  

ion .  

I f  t h e  n i . t ra te -accep t i  ng p r o t e i n  s imply  a1 1 owed d i f f u s i o n  o f  

n i t r a t e ,  the,  i n t e r n a l  concen t ra t ion  o f  t h e . i o n  should approximate 

the  ex te rna l  concent ra t ion,  p rov i d i ng  no o the r  process in tervened.  
. . . . . . .  

Th is  hypothes is  i s  d i f f i c u l t  t o  ' t e s t  d i r e c t l y  because i n  t h e  

steady-state,  i n t r a c e l l  u l  a r  n i t r a t e  i .s con t inuous ly  be ing reduced 

t o  ammonium, d im in j  sh ing the, i n t r ace1 . l u l a r  n i t r a t e  concent ra t ions.  

Th is  type o f  d i f f u s i o n  has been c a l l e d  " t rapp ing  d i f f u s i o n ,  II,(~) 

t he  d r i v i n g  f o r c e  be ing prov ided 'by t he  biochemical r educ t i on  o f  

n i t r a t e  w i t h i n  t he  c e l l .  Th is  model imp l i es  t h a t  t he  n i t r a t e  

uptake r a t e  i s  a f u n c t i o n  o f  n i t r a t e  reduct ion,  o r  s p e c i f i c a l l y  

t he  enzyme(s) n i t r a t e .  reductase (E. C. 1.6.6.1 and E. C.  1.6.6.3). 

N i  t r a t e  uptake by mar i ne un i  c e l l  u l  a r  a1 gae can be descri.bed 

adequately by Michaelis-Menten k i n e t i c s ,  o r  t he  Lamgmuir adsorp- 

t i o n  isotherm. ( 5 y 6 )  I f  t r app ing  d i f f u i i o n  were respons ib le  f o r  
. . 

n i t r a t e  uptake by t he  c e l l ,  i t  should f o l l o w  t h a t  t h e  , ha l f -  

s a t u r a t i o n  constant  f o r  n i t r a t e  uptake should be o f  a s i m i l a r  

o rde r  o f  magnitude as t he  h a l f - s a t u r a t i o n  constant  ( f o r  

n i t r a t e  reductase. Determinat ions of K,,, va l  ues f o r  n i t r a t e  

reductase i n d i c a t e  t h a t  these are. u s u a l l y  i n  excess o f  n i t r a t e  

concent ra t ions present  i n  na tu ra l  seawater by about a hundred- 

fold.( ')  Thus, i t  i s  improbable t h a t  n i t r a t e  reductase serves 

t o  p rov ide  a chemical g rad ien t  across the  c e l l  membrane; i n  f a c t ,  

t he  c e l l  must "pump" n i t r a t e  i n t o  the  cytoplasm i n  o rder  t o  reach 

e f f e c t i v e  subs t ra te  concent ra t ions f o r  a h i gh  degree o f  reduc ing 

- e f f i c i e n c y  (F ig .  1 ) .  



I NITRATE METABOLISM . 

(GENERALISED SCHEME)  

F i g .  7 .  A genmutized bchme 0 6  p h m y  vttthate metaboLhm. 
N&ate uptake .i6 6aciLLiWed by a ( N O ; ,  C l )  -activated ATPas e ,  
Located i n  the  p h m a  mmbkane. Once Ithannlocated in to  f i e  cyto- 
p h m ,  NO;  may be ba3ised i n  a vacuote, ois ncduced v i a  i a e  
n e d u a e  a 3  NO;. Sub~epuentey, NO; A iseduced t o  N N ~  v i a  nia2ri.t~ 

neducaiue. The p h a h y  bouhce 06 iseductant codaotohcl don Rhae 

p m c a b a  i n  f i e  f i g k t  A yurobabeql &om photoaghten~ 1 and 11. 

The incoispowon 06 NU; i n t o  &no acids a p p m  to be mediated 
by g l u t m i ~ t e  synfithetase and g l d a t e  ynfiase. N H ;  may inh ib i t  

- U i R  and NR Rhtroug h an unhno~un in tmed ia / ry .  - 



.. .. 
Another possible mechanism' for ni t rate  uptake i s  the 

so-cal led "primary active transport." This process requires that 

n i t ra te  uptake be directly coupled to an exergonic reaction. 

Here the internal ni t rate  concentration may. be relatively insig- 

nificant; ni t ra te  may be accumulated against i t s  concentration 

gradient, providing that a sui tab1 e energy source i s  avail able 

to drive the ion across the membrane. The obvious candidate for 

this  chemical energy i s  ATP, which ; through hydrolysis , 1 i berates 

enough energy for the translocation of ni t rate .  ' 1n"this model 
- 

the ni t rate  accepting. protein i s  an adenosine triphosphatase, 

coupling the.hydrolysis of ATP t o  the uptake of ni t rate  from the 

medium. An analagous situation i s  the ( ~ a '  + K+)-activated trans- 
. . 

port adenosine triphosphatase ( E .  C. 3.6.1.3) ,' f i r s t  described 

by Skou in 1957 ,(8) and found in many animal and plant : . 

tissues . (9-12) 

The resul t s  of laboratory studies with membranes is01 ated 

from six species of marine phytoplankton indicate the presence of 

an enzyme that hydrolyzes ATP in the presence of M ~ " ,  1 and 

NO;. The physiological function of the ATPase cannot be inferred 

from the biochemical studies alone because the protein i s  no 

longer oriented i n  v& in the plasmalemma, and none of the 

activating ions are truly substrates for the reaction ( i  .e . ,  the 

true substrate i s  ATP) . Mainly because of the difficul ty in 

understanding the mechanisms of transport ATPases (or ,  more . 
speci f i  cal ly , the di fficul ty in expl ai ni ng the coup1 ing between 

the scalar energy liberated from ATP hydrolysis and the vectoral 

flux of ions), the roles of membrane-bound ATPases in regulating 

intracellular ion concentrations has to be determined by an exami- 

nation of both physiological and biochemical properties , since 

neither i s  adequate to serve this purpose alone. 

A partial biochemical characterization of the nitrate- 

activated ATPase from ShcteAonma cohltatum, a marine diatom, indi- 

cate ( 1 )  a pH optima a t  7.8 - 8.2, ( 2 )  a break in the Arrhenius 

- plot a t  ca. ~ O C ,  (Fig. 2 )  corresponding to a change in the energy 



F i g .  2 .  Amhenid p l o h  06  enzyme aclt ivdy dotr Ahe 

(NO; ,  C l - 1  -activated ATPae 6trom Skdetonema c o s a .  In F i g .  

2A, no de.tehgevct6 wme added Ro the  enzyme p,tepaha;eion and a b&e& 

i n  f i e  plot o c c m  et ca ZOc, fiougkt t o  comapond t o  a & w e  - 
.&I .the Liquid-uiysltae ahuotwre 06 lthe phoaphofipid moiety 0 6  t he  

lipo-pkotein. In F i g .  28, datengwa2 tuue added t h a t  trduced Ahe 

l i p i d  phase Ztamia%on, ~ ~ ~ . I J X Y I ~  i n  a log-nomd enzyme ptrod.iee. 

The cha~zge i n  t he  enehgy 0 6  activation i n  F i g .  2 A  A 3.1 KcdlmoLe. 



.. ........ 
of activation of 31 ~ c a l  /mol e ,  and ( 3 )  a ha1 f-saturati-dn constant 

for n i t ra te  activation of 0.5 uM NO3 upon' addition of extra- 

cel lular  ni t rate  to intact ce.lls, in the l ight ,  a transient 
decline in intracel lular  ATP pools i s  observed. ( I 3  4, Addition 

of. CCCP decreases n i t r a t e  uptake markedly ,' and changes ' the"uptake 

profile 'from a rectangular hyperbolae to a 1 inear function. 

.Taken together, these resul t s  imply that n i t ra te  transport i s  

active, the enzyme responsible for the process i s  membrane bound, 
. . . . . . . . . . . . . . . . . . . .  . . . . . .  

the energy source i n  v i v o  i s  ATP, and the' major source-.-of .energy--: 

for the enzyme in the l ight  i s  derived from.cyclic phosphoryl- j 
ation. 

. . ... . . . . . . . . . . . . . .  .. 
I1 . :  NITRATE REDUCTION 

- 

The regulation of ni t rate  assimilation th rough  the reduction 

processes i s  well documented. In many algae and higher plants, 

.. . . nitrate  reductase (NR) i s  induced by exogenous ni t rate  ions and 
light.  The effect  of ni t rate  ions usually predominates l ight  

effects,  b u t  the relative 'importance of 'the two variables i s  

species specific,  and in the case of higher plants dependent, on 
10,cation 'of the redycing enzymes ( i  .e.,  root vs. shoot). 1n' some 

algae (e..g., Cyavtidiwn cddanium), total NR activity may be 

greatly enhanced by nitrogen starvation ,(' however, i t  i s  n o t  
clear that this  i s  a universal feature that occurs in al l  plant 

species. The regulation of N R  activity & v i v o  i s  complex; 

exogenous ammonium (above ca. 0.5 - 1.0 DM) may repress NR 

activity i n  V ~ V O ,  b u t  is01 ated, purified N R  does not appear to be 

markedly inhibited by ammonium. Sorger , e t  a1 . , ( I6 )  suggested 

that NO; ions may s tabi l ize  NR i n  v i v o ,  thus preventing the 

. . apparent rapid decay of the enzyme., This hypothesis does n o t  
imediately preclude direct genetic i nducti on-type regul ation, 

a1 though i t  would appear that these authors do not favor genetic 

regulation as the primary influence of NR activity.  

Less work has been done on the regulation of n i t r i t e  reduc- 

- tase (NiR) than ni t rate  reductase. Like N R ,  NiR may be repressed - 



i n  viva by ammonium. Both NR and NiR may undergo die1 periodicity 
in many species of algae, reaching a plateau around midday. In 
some unusual instances, n i t r i t e  may accumulate as a result  of a 

transient unbalance between NR which produces ni t rate  and NiR 
. . . .  - ...... 

which removes i t :  'This feature has been demonstrated in some 

grasses and. cereals when n i t ra te  suppl ies' are high .(17) Under 

more usual circumstances however, intracel lular  n i t r i t e  pool s are 

often so small as to be experimentally impossible to determine by 
. . . . .  - - ...... . . . . . . . . . .  

colorimetric techniques. These res"l ti, may be i nterpreted as . : .  

suggesting that NiR, in particular, i s  n o t  .the usual rate-1 imi ting 

step in the assimilation of n i t ra te  by most plant ce l l s . .  - - 
Experimental evidence based on  take studies and 

. . . . . . . . . . .  

extractabl e NR 'activity often suggests a poor correl a t i  on between 

n i t ra te  uptake and reduction. This discrepancy may be due t o  the 

poor. relationship between extractable NR activity and n i t ra te  

reduction i n  vivo, (I8) or  the fact  that N~~ uptake studies are 

really N 1 5  assimilation studies, e ,  theuptake of N15 repre- 

sents the integrated' result  of uptake pm ne, reduction and 

incorporation. 

I I I .  INCORPORATION 

Increasingly, evidence i s  accumul ating that the incorporation 

of ammonium into the amino acid pool in some species of plants, a t  

ecological ni t rate  concentrations, i s  v i a  gl utamine synthetase 
(19) (E. C. 6.3.1.2) and glutamate synthase (E. C. 2.6.1.53). 

Glutamine synthetase, isolated from Skdetonema cos;tatwn, exhibits 

3.5 times more activity than'glutamate dehydrogenase a t  saturating 

substrate concentrations. Furthermore, a t  similar pH and tempera- 

ture,  the Km values for ammonium were three orders of magnitude 

lower for  GS than GDH.  (20) However, GS requires on6 mol e of ATP 

for  each mole of ammonium incorporated into glutamate. When 
extrace1 1 ul a r  ni tr0gen 1 eve1 s are high, 'therefore, GDH activi ty 

i s  markedly increased, suggesting that the GDH pathway i s  ener- 
- getically more favorable, and perhaps more responsive to  changes - 



. . .  . . . . .  . . . . . .  - - - - 
i n  i n t r a c e l  l u l a r  ammonium concentrat ions, especial  l y  when i n i t i a l  

ammonium l e v e l s  a re  high. 

A: The E idec t  06 L i g h t  on NW~ h b i m d h t i o n  
. . . .  - ..................... 

Grant and ~ u r n e r ( * l )  and MacIssac and ~ u ~ d a l e ( ~ )  have i n d i -  

cated t h a t  n i t r a t e  uptake v e l o c i t i e s  are a  f u n c t i o n  o f  l i g h t  

i n t e n s i t i e s .  I n  p a r t i c u l a r ,  the l a t t e r  two authors have repor ted 

t h a t  n i t r a t e  uptake v e l o c i t i e s  are . r e l a ted  t o  1  i g h t  i n t e n s i t i e s  . _- . 

by rec tangu la r  hyperbol ae (speci  f i c a l  l y  .Michael is-Menten k i n e t i c s )  .. 
Consequently, two independent ha l f - sa tu ra t i on  constants have been 

descr ibed t o  a f fect  t h e  uptake ve loc i t y ,  namely, K, ( f o r  ex t ra -  

c e l l u l a r  n i t r a t e  concentrat ions)  and KL , the l i g h t  i n t e n s i t y  . .;.; 

suppor t ing ha l f  t he  maximum uptake v e l o c i t y .  It i s  poss ib le  ' t o  

incorpora te  l i g h t  i n t o  a  s imple model o f  n i t r a t e  uptake based on 

b isubst r 'a te  enzyme k i n e t i c s  , thus: 

where: L and N are l i g h t  and e x t r a c e l l u l a r  n i t r a t e  respec t i ve l y ,  

KL and KS are  the  h a l f  sa tu ra t i on  constants f o r  l i g h t  and n i t r a t e  

respec t i ve ly ,  determined when the  counter-subst ra te  i s  sa tu ra t ing ;  

"max i s  the  maximum uptake v e l o c i t y  determined when both 1  i g h t  

and n i t r a t e  a re  simultaneously sa tu ra t i ng ;  

V i s  the  v e l o c i t y  of n i t r a t e  uptake, 

and KLN rep resen t i  a  phys io log ica l  parameter i n v e r s e l y  propor- 

t i o n a l  t o  the  a f f i n i t y  o f  t he  p l a n t  f o r  n i t r a t e ,  b u t  a l so  depen- 

dent on l i g h t  i n t e n s i t y .  It i s  suggested t h a t  values o f  KLN may 

be use fu l  i n  descr ib ing  the i n teg ra ted  e f f e c t s  o f  the  two sub- 

s t r a t e s  on n i t r a t e  uptake k i n e t i c s .  

B'. Regulat ion 06 N M e  h b m 0 n  by Adenqlate ~udeotidtiden 

A pr imary f ea tu re  o f  i n t r a c e l l u l a r  r e g u l a t i o n  o f  n i t r o g e n  ' 

a s s i m i l a t i o n  appears t o  be through a l l  o s t e r i  c  i n t e r a c t i o n  w i t h  

- adenyl a t e  nuc leot ides (ATP , ADP, AND AMP). Eaglesham and 



- -. . . . - . . . . . . . 
~ e w i  t t ( " ) ,  suggested t h a t  n i t r a t e  reductase from spinach i s  non- ' 
competi ti v e l y  i n h i  b i  t ed  by ADP w i t hou t  t he  presence o f  t h i o l  s  ; 

upon a d d i t i o n  of t h i o l s ,  t h e  - i n h i b i t i o n  became mixed and non- 

l i n e a r .  These authors i n ' f e r r ed  t h a t  n i t r a t e  reductase i s  a  

h y s t e r e t i c  enzyme, obeying ping-pong k i n e t i c s ,  and t h a t  ADP may 

be a  phys io l og i ca l  r e g u l a t o r  o f  enzyme a c t i v i t y .  

I n  1976, Weissman (23) suggested t h a t  g l  utami ne . i yn the tase  

. f rom sunf lower  r o o t s  may be regu la ted  by adenylate nuc leo t ides ,  . , .  

o r  s p e c i f i c a l l y ,  t he  r e1  a t i v e  p ropo r t i on  o f  nuc1eotidei;-'.- S i m i l a r "  

data  a re  shown i n  F ig .  3. A t  energy charge. values g rea te r  than 

ca. 0.45, t h e  i nco rpo ra t i on  o f  ammonium i n t o  glutamate 'by gluts- ' 

mine synthetase i s  g r e a t l y  enhanced. L i k e  n i t r a t e  reductase, 
. . 

. '  g lu tamine synthetase i s  i n h i b i t e d  by ADP, desp i t e  t he  presence 

o f  s a t u r a t i n g  l e v e l s  o f  ATP ( a  subs t ra te  f o r  t he  enzyme). 

Whi le i t  i s  c l e a r  t h a t  the  adenylate nuc leo t ides  may r e g u l a t e  

a t  l e a s t  t'wo enzymes impor tan t  i n  t he  in termediary  metabolism o f  

n i t r a t e ,  t he  evidence requ i  r e d  f o r  model i ng t he  i n t e r a c t i  on o f  

t he  nuc leo t i de  pools  and n i t r o g e n  f l uxes  i s  scant. N i t rogen  

assimi 1  a t i o n  processes u t i  1  i ze, e i  t h e r  d i r e c t l y  o r  i n d i  r e c t l y  , 
the  energy a v a i l a b l e  i n  t h e  adenyl a t e  pool .  Ca tabo l i c  processes 

(e.g., the  o x i d a t i o n  o f  g lucose i n  h igher  ' p l a n t  r oo t s )  .and photo- 

r eac t i ons  i n  leaves and s ing1 ed c e l l e d  p l an t s ,  p rov ide  increased 

(24 )  Re1 a t i v e  adenyl a t e '  energy f l u x e s  v i a  the  adenyl a t e  pool . 
nuc l  e o t i  de concent ra t ions , represen t ing  energy charge va l  bes 

between 0.4 and 0.8 may be c r i t i c a l  i n f l e c t i o n  po in t s  f o r  the  

r e g u l a t i o n  o f  t h e  anabo l i c  enzymes o f .  n i t r ogen  ass im i l a t i on . .  

Whi le.  n o t  a l l  n i t r o g e n  a s s i m i l a t i n g  enzymes necessa r i l y  r egu la te  

n i t r o g e n  f l u x ,  i t  i s  c l e a r  t h a t ,  those which are may be regu la ted  

n o t  on l y  by c l a s s i c a l  subs t ra te  i nduc t i on  mechanisms, b u t  on a  

f i n e r  level', mu tua l l y  a f f e c t e d  by energy supply and demand. I n  

t h i s  general sense, energy supply i s  n o t  on l y  mani fested i n  t h e  

adenylate pool b u t  i s  prov ided by t he  redox p o t e n t i a l  o f  enzyme 

co fac to rs .  Such co fac to rs  as NAD(P)H and f e r redox in  a re  obv i -  

- ously  impor tant ,  e s p e c i a l l y  i n  the  reduc t ion  processes. I t  has - 





been suggested' that assessment o f t h e  mol a r  ra t ios  of NAD(P)H/NAD 

(P)' may be useful in understanding the regulation of enzymes 

requiring these substrates. 

In 1975, Fa1 kows ki and Stone 3, demonstrated that addi t i  on 

o f  exogenous ni t rate  or ammoni um to natural phytopl ankton popu- 

1 ations , growing in s.eawater containing amp1 e natural ni trogen , 
may resul t  in an in i t ia l  decline i n  net carbon fixation. .This , , 

phenomenon i s  thought t o  be caused by a competition between car- 

bon fixation processes (dark' reactions) and' ni trogen assimi 1 a t i  on 
processes for a limited supply o.f energy from the l ight  reactions. 

Over a 6-8 hr. acclimation per.iod, a steady increase in shloro- 

phyll a/cell was observed in those subsamples spiked with addi- 

tional nitrogen (ca. 10% of ambient levels).  This "nutrient- 

adaptation" i s  suggested to resul t  in greater l ight  trapping 

abi l i ty ,  and hence, ATP synthesis. These results imply that 

changes i n ,  chlorophyll a levels in response to 1 ight or external 

nutrient supply, may be an eff ic ient  means of supplying energy . 

for  inorganic nitrogen assimilation. 

IV. SUMMARY AND CONCLUSIONS 

In the past few years, numerous attempts have been made to 

relate the supply of nitrogen t o  plants t o  their  net growth rate. 

For the most .part, those models which are marginally adequate t o  
describe the interaction of these processes are bui l t  for steady- 

s ta te  conditions, such as chemostat cultures. In part ,  i t  

appears to this  author that the problem of bui'lding such models 

l i e s  in a definition of nutrient limitation (yield vs. r a t e ) ,  b u t  

more fundamentally, i ' t  appears that plants in general do not 

always regulate the assimilation of ni t rate  in relation to  ni t rate  

supply in a predictably 1 inear manner. Such common features of 

nitrogen metabol i sm as 1 uxury consumption of ni t r a t e ,  supply of 
- - 
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new.ni t rogen '  from therenvironment 'vs. u t i l i z a t i o n  o f  o l d  n i t rogen  

r e s e r v e s  i n  vacuoles ,  and pool s i z e s ,  compartments, and f l u x e s  of 

i n t r a c e l  1 ul a r  n i t r a t e  and ammoni urn, s ti 11 p resen t  s e r i o u s  r e s  tri c- 
t i o n s  f o r  our  understanding e f f e c t i v e  crop management, and p l a n t  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  - ..... - .... - . 
growth k i n e t i c s  . 
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