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SIMILARITY SOLUTIONS FOR CONVERGING SHOCKS

by

R. B. Lazarus and R. D. Richtmyer

ABSTRACT

This report recapitulates the known results for
similarity solutions for the flow problem of a strong

converging shock in spherical or cylindrical symmetry
and extends that work in four ways: (1) parameters of

the standard solutions are given for a large number of
values of y; (2) some new, non-—-analytic solutions are

exhibited for relatively large values of y; (3) the
standard solutions are examined more thoroughly in the
limits y-*°° and y->1; and (4) solutions, existing only
in a narrow band of values of y, are given for the
problem of two converging shocks.

I. INTRODUCTION
As is well known, 1~ there 1is a similarity solution for a

shock converging on the origin in spherical or cylindrical symmetry,
when that incoming shock runs with infinite Mach number into uniform
material at rest and when that material obeys a gamma law equation
of state pe = p/(y-1l), with e the internal energy per unit mass, p
the density, and p the pressure. The solution includes reflection
of the shock at the origin, and divides space-time (r,t) into three
regions, namely Region 1 ahead of the incoming shock, Region 3 be-
hind the reflected shock, and Region 2 between the shocks (see Fig.
1-1).

Previous authors have observed that the solution is uniqgque
(given gamma and the type of symmetry) if one requires continuity
of the derivatives of the flow variables throughout the interior of
Region 2, and the present work includes calculations of those "stand-
ard" solutions for many values of gamma (and both symmetries), in-

cluding the limiting cases y->1 and y->°°. But the present work also



shows that those solutions are
not uniqgue.

Even with the requirement
of continuous derivatives, it is
VI that,

shown in Sec. for a

narrow band of wvalues for gamma

near y = 2, two new solutions

exist 1in which Region 2 is di-
vided by a second incoming shock,
which overtakes the original
shock at the origin.
Furthermore, as discussed
in a previous report in this

series,” for the case of a col-

lapsing cavity, the original
flow equations do not require
continuity of derivatives. In

particular, there is

Fig. 1-1
r-t trajectories of incoming and
reflected shocks.

in Region 2 a limiting negative characteristic

which reaches the origin concurrently with the incoming shock;

jumps

along that characteristic.

in the derivatives of the flow quantities can be propagated

Since the trajectory of that character-

istic corresponds to a single value of the similarity variable, we

may accept similarity solutions with Jjumps of derivative at that

point. It is shown in Sec. Ill that one-parameter families of such
solutions exist for gammas greater than certain critical wvalues (in
fact, the very wvalues which are the threshold for the double-shock

solution band),
esting.
Finally,

be combined.

II. THE FLOW EQUATIONS

Given an inviscid fluid without heat conduction,

its local wvelocity v(r,t),

mass ef(:r,t),

its density p(£,t),

and its pressure p(r*,t),

and that those solutions appear to be quite inter-

it appears that these two types of new solution can

described by

its energy per unit

as given by some equation of



state p = p(p,e), the equations governing regions of smooth flow

are, 1in the absence of any body forces,

Ip =0

Lpv = -Vp (2-1)

Lpe = -pV*v,
where the operator L is defined by Lf = {* + V*vf, the subscript t
denoting partial differentiation with respect to t. For a poly-
tropic fluid, the equation of state is p = (y-1l)pe, and the entropy
is a function only of the combination s = pp~". Substituting for e
in the equations above, we find that (v*V + 9/9t)s = 0, so that the

entropy 1is 1indeed constant along the trajectories of fluid elements.

Introducing the new variable c(:r,t) s +\(9p/9p)s = +Vvp/P >

the local sound speed, we can rewrite our equations as

Pt + V' (pv) = 0

(2.2]

ct + }L*Ve + (Y_1l)cV*v = 0.

For the cases of cylindrical symmetry (v=1) or spherical symmetry

(v=2), these can be written (using u for the radial fluid velocity)
Pt + (Pu)r + vpu/r = 0
1 2
Ut + uur + W(ﬁc ) = 0 (2.3)

Ct + ucr + ,(?(—l)c(ur+vu/r) = 0.



Another attractive choice of dependent variables replaces
p(r,t) by s(r,t) = c’pl'Y/y. With the substitution k = 2/(y-1),

this choice yields

(u £ ke) > + (u t ¢) (u t ke)™ = +vuc/r + czsr/Y(y—l)s,

displaying the equations in characteristic form.
Now, with a and kK free parameters, we try the similarity vari-

able

y = const. + log r - alog ¢, (2.5)

and the substitutions

u(r,t) = - art "*'V(y)
c(r,t) = - art 1C(y) (2.6)
p (r,t) = pPQrKR(y) or s(r,t) = s0 a2r2t"2r'k (y)
Using 8f(y)/3r = f'/r and 3f(y)/3t = - af'/t, we can substitute
these into Eqg. 2.3. We find that we get common factors of p», &
r, and t; dividing these out and using the more convenient X = 1/a,
we derive'
R + (kK+v+1l) RV + (RV) = 0
V(A+V) + V'Cl+V) + C[(R+2)C+2C +C,/R1/Y = 0 (2.7)
2C(A+V) + 2CI (1+V) + (¥-1)C((v+1)v+Vv') = 0.

Using the wvariables u, ¢, and s, we would get

(1+Vv)S' + S [ (2-K(¥-1))V+2A] = 0



and, after multiplication by (1+V+C),

[(14V)2. c2]CV,xtkC') = vVC [C+ (1+4V) ]
- C2[1+C/Cl1+V)] (K+k(A-1))/Y (2.8)

- (1+4V+C) (A+VZC) (VzkC) ,

where of course Eq. 2.8 denotes two equations, one with all the
upper signs and one with all the lower signs.

By a bit of algebra, we can get from the R, V, C equations two
different expressions for 1/(1+V), one involving constants R'/R
and V'/ (1+V), and the other involving constants c'/cC and V'/ (1+V).
Equating them, we can get an expression whose derivative with re-
spect to y wvanishes, leading to a constant of the motion and thus
reducing our system to a system of two equations. Explicitly, the

constant of motion is

exp(2y/a)C2 [R(1+V)]"~/R™ ~ = const., with
g = [K(y-1)+2(l-a)/al/xk+v+1). (2%9)

With more algebra, we can then put our system into the form

VvV = N1(V,C)/D(V,C)
(2.10]
C = N2(V,C)/D(V,C) ,
where
D (v, C) = (1+V)2-C2 (2.11)
and
N1 (V,C) = =V (1+V) (A+V) + C2 [(v+l)V+2A_—j,:5— ]
(2.12)
N2 (V,C) = =1/2C[V2((2+v(y-1)) + V((3-y)A+v(y-1)+

+y+l) + 2A] + C3[1 + K



Since the similarity variable y does not appear explicitly in
D, , or N2, our system of two ordinary first order non-linear
differential equations is autonomous, and we can write 1t as a

single equation

dc/dv = £ (v,C) . (2.13)

An initial condition for this equation, however, 1is a condition on

one branch of the curve r(t) = const.[tl0” corresponding to some
constant wvalue of vy.

The free parameter k allows us to handle the s = constant
boundary condition of the cavity collapse problem described in Ref.
5 by taking kK = -2 (X-1)/(y-1), and the p = constant boundary con-
dition of an infinitely strong shock, by taking x = 0.

Since Eq. 2.13 does not contain y, it will be convenient to
change similarity variable to x = —-e""%*

ITI. THE CONVERGING SHOCK; THE SINGULARITIES
To permit a similarity solution, any shock must be at a con-

stant wvalue of the similarity variable x (or vy), so that the physi-

cal boundary condition along the shock trajectory r hock r(t) can
shoc
be a boundary condition at some xQ for the similarity equations
Thus we must have r hock = constant*ta Note that, 1f two or more
shoc

shocks exist within one solution, they must all have that form with
the same value of a, differing only through different constants of
proportionality. We are interested in solutions for the range
0<a<l1

The jump conditions across a shock become, in terms of the

similarity variables V, C, and R,

2C "

1+A - + \INIFrV(-r

c,2 = Cn2 + [ (1+Vo)2 - (1+V1) 2] (3.1)
'0

VItV = VIIV-



For the initial shock converging into material at rest, let us
take t = 0 to be the time of shock collapse, set r , , = Af-t) 01,
and take x = t(A/r)A as our similarity wvariable. %Eggkthe shock
path is x = -1. The solution for x < -1, the initial and undis-
turbed region, is simply u=V=0=c=C, and R(x) = 1 (remember
that we are now taking x = 0). Then the jump conditions give us

the starting values

Vi(-1) = =2/ (y+1)

C(-1) = +V2Y(Y-1) /(Y+1) (3.2)

R(-1) = (Y+1)/(Y-1).

The solution must extend through x = -0, which corresponds to
all of r > 0 at t = -0, and continue through positive wvalues of x
(and thus t) until we get to the reflected shock. At x = 0, we
must have ¥ = C = 0, so that u and ¢ may be finite at finite r (see
Eg. 2.6). But then the denominator in Eg. 2.10, namely D =

2 2 . . .
(1+V) -C, will be +1, whereas it starts out negative (namely

- (y=1)/ (y+1)). Thus it must pass through =zero, but it may do so
only 1if the numerators and vanish simultaneously. In other
words, our solution of dC/dV = must pass through a singular-
ity of the form 0/0. It will not do so automatically but must be
made to do so by a suitable choice of the parameter a. Specifi-
cally, we will find that a unigque al(y) (for the spherical case, and

a different unique a(y) for the cylindrical case) gives the "stand-
ard" smooth solutions, but that, for y large enough, other wvalues
of a give other wvalid solutions. To understand the matter, we must
investigate the singularities in more detail.

It should first be noted that, if we substitute = (1+Vv) ",
which is to say D = 0, into either or of Eg. 2.12, then the

other N will wvanish identically.



2 2

Substituting C = (1+V) into the first Eg 2.12 and setting
I\L 0 yields the cubic

0 (1+V) [V2 + aV + Dbl, (3.3)
with

N 1 - 0-1) O—2)

vy (3.4)

b
The solution V = -1 1is irrelevant to the converging shock problem
(it is the starting point for the collapsing cavity problem). The
other two solutions are real when the discriminant

a -4b =1 2 (y+2) (3.5)

vy v
vy

is positive. The discriminant is positive for A-1 in the range

0<Aa-1 < vy — (3.6)

(Vy+tv2) »
and it is 1in that range that we will look for solutions. (The dis-
o

criminant 1is again positive for A-1 > vy/(Vy-VZ) ; this range does

not seem to provide any solutions.)

Note:

come out to be the same expressions,

For the collapsing cavity problem,

Egs. 3.4 through 3.6

but with y replaced by y-1.

Observe that the two singularities are at (V,C) = (-1,0) and
(0,1) when A = 1, and move toward each other as A increases. We
will distinguish the two singularities by calling them "left" and
"right" according as we choose the minus sign or the plus sign in
1/2(-atvaz-4b
v /2( ) (3.7)

sing



It will turn out that the "standard" solutions pass through
the left singularity for small y and through the right singularity
for large vy. By continuity, then, there must be critical wvalues
for y (one for spherical symmetry and one for cylindrical), for
which the standard solution has X at the top of the range given in
Eg. 3.6 and passes through the coalesced singularity. It appears
that "non-standard" solutions exist only for y greater than these

critical wvalues, which are

=
Il

1.9092084, for v = 1 (cylindrical),

<
Q
Il

1.8697680, for v = 2 (spherical).

For any specific v and y, now, other than one of the critical
pairs, let us consider solutions of Eg. 2.13 for some X slightly
displaced from the unique X (v,y) which gives the "standard" solu-
tion. Consider the solution as it approaches the singularity
(which will, of course, have been slightly displaced by the change

in X). If the singularity is at C”s>Cs), say, we must have

dc -v (V' Vs)3N2/8V + (C-Cs)3N2/9C

(3.9)
av (V-V )3N1l/3V + (C-C )3N1l/3c
s' 1 s' 1
where the partial derivatives are evaluated at (Vv ,C ) and are
s s
simply algebraic functions of v, vy, and X.
The general solution of this equation is
[ (C-Cs) - L2 (V-Vs)] = conste [ (C-C") L1 (v-vs)] ", (3.10)

where, with

3N2 3N1 2 3N2 3N
(3.11)



we have

2L1,29N1/8Cs 3N2/8Cs-9N1/8VstR (3.12)

and

2E1 29N1/8Cs

3N2/9Cs+3N1/9Vs+tR. (3.13)

For our case, it appears that R is always real and non-zero, and
that and L2 have opposite signs, in a neighborhood of the "stand-
ard" A(v,v). The E's and L's are of course algebraic functions of
v, vy, and A.

If ET and E. have opposite signs, the only solutions through

IL 1

the singularity ére (locally) the special solutions

C~Cs = L1,2CV'Vs)' C3-14)

For v < Y , the standard solution is of this type. For one particular
value of A, the solution passes through the left singularity with
the slope corresponding to the negative L, and, for that A, the left
singularity does indeed have E's of opposite sign. For neighboring
values of A, the solution will not pass through either the left or
the right singularity.

Nor does it seem 1likely that, for v < Yc, there are other solu-
tions for substantially different wvalues of A. For larger values,
the E's continue to have opposite signs. For substantially smaller
values of A, the E's do have the same sign, but the left singularity
moves further to the left, the positive L is less than one, and the
solution hits the forbidden line C = 14V before it can be attracted
to the singularity (see Fig. 3-1).

For y > y , where the standard solution goes through the right

singularity, we have the case where the E's have the same sign. In

such a case, all solutions which come sufficiently close to (*s,Cs)

10



c (V) c(v)

Fig. 3-1 Fig. 3-2
Attractive singularity blocked Attractive singularity open above.
above by the line D=0.

pass through the singularity, and they do so, in general, asymptot-
ically 1like

c-C (3.15)
S
where E. (i = 1 or 2) is the E of lesser magnitude. It turns out
that that L. 1is the positive L, and that the (unique) "standard"
i

solution 1is precisely the special solution which goes through with
negative slope (i.e., with the other 1L).

For the entire range y > the positive L is greater than
one. To reach the singularity without first crossing C = 1+V,
therefore, the solution must come in from above (see Fig. 3-2).
Since the main effect of changing X is to move the singularity
(i.e., the solution curve does not change much until we approach the

singularity), this means that the right singularity, with which we

are here concerned, must be moved left. Thus only wvalues of X
greater than the standard X(v,y) will work. The foregoing analysis
is only wvalid in a neighborhood of the singularity. A complete

analysis will be published elsewhere.

11



~=0.626

a=0.628 a=0.630
a=0.63641050

Fig. 3-3
Pressure profiles for y =
spherical symmetry.
Figs. 3-3 through 3-5 show

the pressure, density, and veloc-
ity profiles at a time when the
incoming shock is at r = 1, for
the case y = 3, v = 2. For the
non-standard solutions, the cor-
ners are on the limiting charac-
teristic and are such as to sat-
isfy the flow equations from the
left and from the right. Note:
In these solutions, the curves 1in

the V-C plane were allowed to
leave the singularity in the
This 1is

10 of Ref.

"standard" direction.
not necessary (see p.
5), but other solutions have not

yet been studied.

IV. THE REFLECTED SHOCK

The initial shock, which is
collapse is at x = 0;

continuation to positive x.

12

and continuation to positive times is

a » 0.626

a=0.628

a =0.630

a =0.63641060

Fig. 3-4
Compression profiles for y = 3,
spherical symmetry.
a =0.630
a=0.628
a =0.626
r
Fig. 3-5

Fluid velocity profiles for y =
3, spherical symmetry. The down-

ward sloping portions are dis-

tinct but too close to plot
separately
our starting point, 1is at x = -1;

simply

As one might expect on physical grounds.



00

it will not be possible to continue the same solution to x = +
One expects this because large positive wvalues of x correspond to

small values of r at large positive wvalues of t, and this region of

the flow should be behind a reflected shock. As mentioned above,
the trajectory of that reflected shock will have to lie on x = con-
stant = 3, say, for some 3 > 0.

If we can find the separate similarity solution for the region

/N

behind this reflected shock, say V, C, and R, then the two solutions

will have to satisfy the jump conditions at x = 3- We will need to
satisfy
(4.1)
C2(3) = C2(3) + "p-[(L+V(3))2 - (1+V(3))2]

Note that the constant of motion will be a different constant on

the two sides of the reflected shock, Jjust as it is a different con-
stant on the two sides of the initial shock.

00

This separate solution is needed for 3 © x < , and the only
thing we have to serve as a boundary condition is the following.
We want u(r=0,t>0) to be =zero, by isotropy, and we want c(r=0,t>0)

to be finite. In fact, we expect u to be proportional to r, for

small r, so we expect V to be constant and C to become infinite as

x-*00,

The standard trick is to take a new variable w = , with o0 a
positive number to be determined, and to try

V (kw) = V0 + Akw + V2 (kw)2 +

C(kw) =-(kw)"1l + C-* + C2kw +

where k 1is a free parameter (our differential equations are homo-
/N

/\ N

geneous in w, so that V(kw), C(kw) are solutions whenever V (w), C(w)

13



are) . Matching powers of kw, we find that, if we take

La 1+ fv+l) (A-1)
T "TTY" "TA-'T) -
(4.3)
V0 = -2(A-1)/y (v+1),

then we get a solution.

If we now think of the jump conditions as an operator which can
be applied to our original, incoming shock solution, for arbitrary-
positive x, then we have "target" functions V (x) and Ch (x) , to be
matched by V(kw) and C(kw). The wvalue of x at which that match
occurs 1is, of course, Jjust (3. If the wvalue of kw at which the match
occurs, 1s, say, 1z, then we can determine k by setting z = kB-cr» and

we have the complete solution.

V. THE LIMITS y+«> AND y+1,
For y-*-00, we need only switch to V = yV, and then we can go to
the 1limit explicitly. The denominator D becomes simply 1-C ; the

numerator for V Dbecomes

Nx = - AV + C2[(v+1)V + 2 (A-1)1, (5.1)

and the numerator for C becomes

N2 = Ce[C2 - A - (v+1l-A)V/2]. (5.2)

These somewhat reduced equations can be integrated numerically by

the methods described below for general vy.

For y+1, the situation is slightly more complicated, because

the singularity approaches the starting point (V,C) = (-1,0). If we
0

define e = y-1, then, to lowest order, our starting point is

(VO,C0) = (-1+e”/2, e/yi) . The starting wvalue for D is then -e2/2.

Now 1if we tentatively assume that A-1 will turn out to be of order

14



e, we find that the leading terms in are

Nl £ —-(v+1)C2 + (1+V)2 + (A-1) (1+V), (5.3)
and the leading terms in are

N2 £ C[C2-(1+V)2] (A+V)/(1+V) , (5.4)
considering that we must integrate from 1+V = C2 until 1+V = C at

the singularity.
If we integrate dC/dv = "~/N-" holding C fixed on the right hand
side, we find, consistently, that C changes only by a factor 1 -

order (eloge), and we find, again consistently, that we must have

A-1 = v V(Y-1)/2. (5.5)

This 1is confirmed numerically, as well as the additional result
that the Mach number of the reflected shock 1is AZ/Wy—l), independent

of v (see Table 5).

TABLE 5
BEHAVIOR OF THE SIMILARITY SOLUTIONS AS GAMMA APPROACHES UNITY

(y—-1)M2 (y-1) 3
y-1 v=2 v=1 v=2 v=1 v=2 s B
0.1 0.4163 0.1317 1.262 1.685 1.615 1.354
0.01 0.9630 0.2755 2.117 1.986
0.001 1.4864 0.3953 2.202 2.153 1.518 1.252
ot 1.7909 0.4587 2.102 2.073 1.215 1.109
10-5 1.9216 0.4849 2.042 2.030 1.084 1.044
10™6 1.9641 0.4933 2.022 2.014 1.033 1.017

0 2 1/2 27 27 17 17

15



VI. MULTIPLE CONVERGING SHOCKS

If there is a similarity solution corresponding to more than

one incoming shock, then the shocks must have the trajectories

r AL t)a, (6.1
1
with A. = Z—\,1 < A,2 < L. If x. be the wvalue of the similarity vari-
i 1
able on which the ith shock exists, then we must have x* = - (A/A")7Z,

Consider i=2.

With D(V,C) = (1+V)2 - C2, the jump conditions of Eg 3.1 imply
2
D 6.2
2 y+1 ( )
so that D must change sign. Furthermore, since Region 2 is behind
the shock, we have "2 > > an<® Thus the third jump condition
implies (1+V") < (lﬁFA)z. But then the second jump condition im-

. 2 2 . . .
plies C*" < C2°, giving D > DZ2. Since D-* and DZ are of opposite
sign, we have D,, < 0, > 0.

Note: A "shock" existing right at the singularity D = 0 has
Mach number unity and is not a shock at all.

Since our solution behind the initial shock starts out with D
negative, we see that x* must be greater than the value for which
the region 1 solution crosses the singularity. Thus we must have
the same value of a (=1/A) as we have for the single shock case,
since a 1s determined precisely by the necessity of passing through
the singularity.

Rewriting the Jjump condition on D in the form

(6.3)
. . . 2
and noting that > 0 dimplies (C*/ (1+V"™)) < 1, we see also that
D21 < , with the inequality stronger for smaller values of y.

16



This means that the wvector in

the V-C plane connecting (V~"C")

to (V2,C2) has negative slope D=0
between -1 and 0.
When the matter 1is investi- UPPER
SINGULARITY

gated numerically, it turns out
that the locus of points

as x2 ranges toward zero from
the wvalue of x corresponding to

the singularity, i1s an arc con-

LOWER
necting the singularity to the SINGULARITY
starting point (V*jC”) and lying
always below and to the left of Fig. 6-1

The dashed line is the locus of

points accessible from $§-, by the
Fig. 6-1). When an attempt is jump conditions. 1

the original solution curve (see

made, however, to continue the
solution from any of those points it develops that the
solution moves almost parallel to the original solution curve.
Hence, the continued solution cannot pass again through the same
singularity

This immediately suggests that when y is greater than the
critical wvalue of Eg 3.8, so that the primary solution goes through

the right hand (upper) singularity, a point (V2,C2) can be found so
that the continued solution will pass through the left hand (lower)
singularity. This turns out indeed to be the case when y 1is greater
than y Dby an amount small enough that the width of the locus

(measured parallel to the 45° line C = 1+4V) 1is not less than the
spacing between the two singularities. In fact, there will be two
double shock solutions, for a band of y values, corresponding to
relatively weak and relatively strong second shocks, with the two
solutions coalescing at the top of the band and then ceasing to
exist as y leaves the band.

For y's above this band, non-standard solutions may exist with

y's sufficiently close to the upper bound of Eg 3.6, which is to
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say with the two singularities sufficiently close, to permit fur-
ther solutions with two incoming shocks. A complete analysis will
be published elsewhere.

The entire situation can be grasped most simply as follows.
Pick wvalues for v and y, with Y > Yo This determines a starting
point in the V-C plane, and a one parameter family of (incomplete)
solutions labeled by X. Pick a value for X which lets the solution
pass through the right singularity and continue to the origin; call
the corresponding solution curve S*. Now that we have X, we can
locate the unused left singularity and construct the solution curve
(call it S”) which passes through it in the standard direction.
Lastly, we draw in the (¥2,02) locus corresponding to potential
second shocks. Then we have zero, one, or two double shock solu-
tions according as that locus cuts in zero, one, or two points,
because we have a physical method of jumping from solution curve
to solution curve SZ2. Finally, if the 1left singularity should have
eigenvalues of the same sign, then there would by a family of S"'s,
all wvalid.

Typical solutions are shown in Table 6-1.

TABLE 6-1
MACH NUMBERS FOR WEAK AND STRONG SECOND SHOCKS

For v. - 1 (y = 1.9092084)

v M1 M2
1.91 1.000566 1233.532
1.95 1.078474 22.34995
2.00 1,248826 8.846871
2.05 1.5480093 4.701998
2.10 none

For v - 2 cYc = 1.8697680)
1.87 1.000170 3508.718
1.90 1.070279 24.19837
2.00 1.848820 3.496177
2.009 2.220365 2.701936
2.01 none
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VII. CONDITIONS BEHIND THE REFLECTED SHOCK

The position of the reflected shock, as a function of time, 1is

given by

rr>s> (t) = Aoc"ata, (7.1)

where 6 is the wvalue of the similarity wvariable x corresponding to
the shock trajectory, as mentioned above, and A is the constant
appearing in the trajectory of the initial shock.

For the region behind the reflected shock (inside it, geomet-
rically speaking), it 1is of interest to consider the time depend-
ence of the volume integrals of mass, internal energy, and kinetic
energy, and of the "mean free path" integral of pdr. By appealing
to the original substitutions (Eq. 2.6) for u, ¢, and p, and by
substituting for r the appropriate expression in terms of t and the

similarity wvariable w (which runs from =zero to 0 a), we find the

following, for given v and y, taking pQ = 1.

The total mass is simply proportional to the total volume, with
no other time dependence, and the integral of pdr is simply propor-

tional to r . (The volume, of course, 1s going 1like t"V+"a.)

The total internal energy and the total kinetic energy are separate-
ly proportional to the volume times the factor t”7~" . As re-

quired for physicality, a is always less than unity, so that the
average values of internal and kinetic energies per unit volume
decrease with time. (These results also imply that the energy den-
sities behind the reflected shock are instantaneously infinite at
collapse time. This 1s in accord with the fact that C(x)/x and
V(x)/x remain finite at x = -0, so that the fluid velocity u(r,t)

and the sound speed c(r,t) behind the initial shock become infinite
like r (1"a)/a at collapse.)

The wvarious constants of proportionality are given, as func-
tions of v and y, in Tables 7-1 and 7-2. 1-* and I2 are, respec-

tively, the internal and kinetic energies per unit volume, times
A-2g2a,t2(1l a). mass per un’-( volume; 1% 1is the mass per

unit area divided by r.
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TABLE 7-1
VARIOUS PARAMETERS OF THE STANDARD SIMILARITY SOLUTION, AS
FUNCTION OF GAMMA; SPHERICAL CONVERGENCE.

*
Il

2 (spheric.all

_ = ° Mach # p2 ~ X1 z2 X3 T4

1.1 .79596980 16.1541 3.5530 333.6 1.95+6 243.33 4.8+4 3.6+4
1.2 75714179 6.43123 2.3502 49.05 1.37+4 11.0163 1710. 1253.
1.3 .73377673 3.81021 1.9384 19.03 1031.6 2.2220 320.4 231.1
1.4 71717450 2.68849 1.7356 10.72 197.5 . 8029 114.1 81.83
1.5 .70442807 2.08773 1.61553 7.226 60.76 3894 56.12 40.21
1.6 .69418951 1.72065 1.53621 5.479 24.73 .2243  33.30 23.91

5/3 .68837682 1.54790 4967 4.719 15.09 .1655 25.20 18.14

1

1

1

1
1.7 .68571652 1.47617 1.47982 4.419 12.07 .1443 22.27 16.05
1.8 .67855370 1.30320 1.43758 3.729 6.685 .1002 16.17 11.71
1.9 .67240014 1.17523 1.40470 3.251 4.058 .07355 12.45 9.061
2.0 .66704607 1.07725 1.37833 2.902 2.641 .05628 10.01 7.327
2.2 .65816533 .938224 1.33851 2.432 1.3015 .03609 7.102 5.262
2.4 .65108461 .845319 1.30973 2.134 . 7399 .02521 5.489 4.115
2.6 .64530018 .779560 1.28784 1.930 .4645 .01870 4.493 3.406
=2 8 .64048378 .731006 1.27056 1.783 .3138 .01453 3.835 2.936
3.0 .63641060 .693969 1.25649 1.672 .2232 .00159 3.360 2.600
3.2 .63292118 .664976 1.24482 1.587 .1663 .009571 3.024 2.358
3.4 .62989873 .641817 1.24487 1.518 .1279 .008029 2.762 2.171
3.6 .62725578 .622959 1.22641 1.463 .1008 .006819 2.550 2.023
3.8 .62492541 .607422 1.21895 1.417 .08034 .005740 2.354 1.896
4.0 .62285554 .594419 1.21246 1.3785 .06746 .005209 2.263 1.815
4.5 .61857036 .569946 1.19897 1.3056 .04302 .003673 1.960 1.6Z22
5.0 .61522398 .552999 1.18871 1.254 .03095 .002974 1.832 1.518
5.5 .61253956 .540843 1.18033 1.217 .02222 .002258 1.665 1.419
6.0 .61033915 .531820 1.17342 1.188 .01773 .001978 1.628 1.374
6.5 .60850311 524919 1.16776 1.165 .01348 .001544 1.503 1.308
7.0 .60694820 .519578 1.16281 1.147 .01116 .001359 1.473 1.279
8 < .60445829 511963 1.15480 1.120 .007824 .001033 1.398 1.227
10 .60104880 .503479 1.14368 1.087 .004273 .000615 1.263 1.149
50 59073010 .494072 1.10718 1.0118 .3173* .06482* 1.043 1.018
100 .58950281 494977 1.10233 1.0055 .2859* .05965* .9883 .9975

00 58828929 .496368 1.09753 1 0.2880* .6456*

= (y+1)21



TABLE 7-2
VARIOUS PARAMETERS OF THE STANDARD SIMILARITY SOLUTION,
AS FUNCTIONS OF GAMMA; CYLINDRICAL CONVERGENCE.

v = 1 (cylindrical)

Y a 6 Mach # P2 (B) 12 13 14

1.1 .88524806 13.5364 4.10488 29.55 3.28+5 15.614 5236. 4681.
1.2 .86116303 6.09996 2.78911 11.15 6889.0 1.9614 506.1 445.0
1.4 .83532320 2.81561 2.02295 4.796 203.46 .2822 65.48 57.11
5/3 .81562490 1.69479 1.69965 2.928 21.144 07873 19.31 16.88
.80859994 1.44082 1.61796 2.527 10.139 .05152 13.32 11.69
.80409908 1.30515 1.57247 2.316 6.4327 .03949 10.68 9.390
.80011235 1.19963 1.53602 2.154 4.3370 .03129 8.870 7.817
78776900 .941829 1.44206 763 1.3299 .01528 5270 4.694
.77566662 .763158 1.37121 496 4265 .007407 3.398 3.069
.77000368 .697702 1.34349 .399  .2485 .005175 2.828 2.575
. 76363465 .634863 1.31564 .306 .1329 .003377 2.341 2.150
1
1
1
1
1
1

-—

.75640105 .575038 .28751 .219 .06190 .001948 1.917 1.783

.75156168 .540788 .27050 169 .03523 .001273 1.693 1.589

10 .74182593 .483613 .23980 .0867 .008622 .0003962 1.325 1.281

50 .73002154  .431537 .20756 .0142 .6287* .04112* 1.0736 1.0554

100 .72853594 .426147 .20374 .0069 .5831* .03909* 1.0358 1.0269
00 . 727048052 .421009 .199865 .5431* .03745*

o0 0 b w W NN Ll
O O O b O » O VvV o

L N U, NS N N U .

iy

*: (y+1)21

Another integral of possible interest is the integral, from
time zero to time t, of the volume integral of a power of the tem-
perature (or pressure or internal energy; we are dealing with a
polytropic fluid) times some function of the density. One might
imagine such an integral measuring the total amount, taking place
up to time t, of some reactive process having such a dependence on
density and temperature (assuming, of course, that the energetics
of the process do not break the similarity solution). For the nth
power of the temperature, we find the following rather curious re-

sult. If 2n < (vat+a+l)/(l-a), then the integral 1is entirely regu-
lar and goes like tvata+l"Zmi"a). But for any larger value of
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n, the integral would diverge unless other effects (such as deple-

tion of the reactants) were taken into account. For v = 2, the
critical wvalues for n(y) are, for example, n(l.4) = 5.57, n(3)
= 4.00, n("°) = 3.36.

VIII. THE NUMERICAL INTEGRATION

All calculations were done on the Maniac II computer, using
the Madcap V system. All constants and variables entering into the
integration of the differential equations were carried with at
least 16 decimal digits. Explicit fifth order Runge—-Kutta was
used, with step size controls as discussed below.

For the a search, and in fact for all the region behind the
incoming shock, the independent variable used was x = t(A/r) ., and
the dependent variables were v(x) = -V (x)/x and c(x) = C(x)/x. The
minus sign is historical accident; the division by x is to give
nice behavior at the star point singularity Vv = C = 0. The initial
value for x is -1, and integration must be continued past the un-
known value x = 6. An efficient method of coping with this diffi-
culty is described below.

The equations were used in the form dv/dx = N*/D, dc/dx = ~/D,

where now

D = (l-vx)2 . (cx) 2, (8.1)
Nl = P;l[v2(1l'vx) + P2c2] " P3vc2x,
N = ¢ [Vv(p.-p?nvx) + p-,c2x (1L-——— -——— )1,

2 5 20 1 2 (1-vx)

and the constants are
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= 2/y

= (v+l)a - 1 (8.2)

= 1/2 [(y+l) (1-a) - av(y-1)]

= l-a-av(y-1)/2.

For the search for the "standard" a(v,y), we exploit the facts
that the correct solution goes gquite smoothly (in the V-Cplane)
from its starting point through the singularity, that the positions
of the singularities are qgquite sensitive to the wvalue of a, and
that the solution curve for a wrongvalue of a does not differ much
from the correct solution curve all the way up to a point where we
can determine that we do indeed have a wrong value. Accordingly,
an efficient iterative algorithm is to choose the next guess for a
so as to move the relevant singularity on to the line connecting
the 1initial (v,c) point to the last (v,c) point reached before the
aforesaid determination. In practice, this determination was made
if dv/dx changed sign or if |dv/dx| became larger than three times
its initial wvalue. (When calculating the non-standard solutions
discussed on pp. 10-12, the "determination”" is simply suppressed.)

It is important to note that all finite numerical representa-
tions of a will be determined to be wrong if we approach the
singularity with a sufficiently small step size. Conversely,
almost any value for a will get us through the singularity without

such determination if we approach with a sufficiently large step

size. Accordingly, the step size was automatically reduced to a
prescribed as we approached the singularity, and no further,
with h : chosen to give the desired afcuracy. The bulk of the a
searchm&grk was done with hmin = 2 ~ 10 E

The code was run in the a search mode for all desired wvalues

of (v,y), without continuing the solution past the singularity.
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Then it was rerun with the correct a and with larger (usually
2~24 ~ 6.4x10-8) to get the complete solution. In this mode, it
was almost always true that the solution would step smoothly
through the singularity in a single h . step, but this 1is a matter
of luck. If, as happened occasionall;?nthe code determined that a
step (or a partial step within the Runge-Kutta) might accidentally
land too close to the singularity, then it took a "jump" step of
8h . and printed a notification. (Note that, as discussed else-
whggg, we are passing through the singularity in an eigendirection
without change of slope.)

In continuing the solution through x = 0, the step size was
again reduced to hnﬁn' in order to permit printing out accurate
values of V(x)/x and C(x)/x at x = 0.

Two problems arise, now, in connection with continuing this
phase of the solution up to x = 3. We must be sure to go far
enough, but we do not want to waste time going too far, and we need
finely spaced tables of the "target" functions defined on page 14,
but only in the neighborhood of (the unknown) 3. The two problems
are solved as follows.

The code is given a lower bound for 3, call it B . : 1if no
better information 1is available, then zero is the lowggnbound used
by default, but of course we can do much better than that once we
have sketched out 3(v,y) by running a few cases. The code then
saves the solution for some value of x near B . and pushes ahead
using large steps and saving a coarse table O?H?he target functions.
It pushes ahead until it approaches the singularity C = —(1+V),
which must always lie beyond 3, and then finds the (approximate)
reflected shock solution (see below) and an approximate value for
3. Then it picks up the saved solution from near B . and moves
ahead with fine steps until x 1s safely beyond the gg;roximate 3,
and, finally, gets an accurate solution for the reflected shock.

For the region behind the reflected shock, the independent
variable used was t = kx"a, where k is a free parameter that

cancels out of the differential equations and is used as described

below, and where a is as defined by Eg. 4.3. The dependent
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variables were v(t) = -V(x) and c(t) = C(x) + 1/t. The starting
value for t was normally taken as about A~ 3.2x10"N. The differ-

ential equations were used in the form dv/dt = M-"/(atE) and dc/dt
= [-1 + (l-ct)M"~/(aE)]/t2, where

E = (l-ct)2 - (l-v)2t2, (8.3)
Ml = v(l-v) (l-av) t2 - P4 (l-ct) 2 (v-p6),
M2 = (l-ct)2 (a + ) - t2[(l-v) (1l-p22v) + p23v],

and the constants are

P4 = a(v+l)
1-a
_ 2 (8.4)
ay (v+1)
P21 =
P22 = a(l + 1/2v(y-1))

P23

1/2 (y=-1) (1-a).

The starting value for v(t) is p”, removing the 1/t singularity in
dv/dt. The starting wvalue for c(t) 1is zero; it can be determined by
substitution that the starting value for M 1is then just a, which
removes the l/tg singularity from dc/dt. g little analysis shows

that v(t) 1s even and c(t) 1s odd, so there is in fact no 1/t

singularity either.

The integration is carried out until V = -v and C = ¢ - 1/t
match the target functions. The interpolated value of x at which
the match occurs is then 3- If it 1is desired to tabulate the solu-

tion behind the reflected shock against x, which runs from 3 to
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infinity, rather than against t, then the parameter k can be identi-

fied as ~ - tmatch”™

IX. THE DENSITY, AND THE MACH NUMBER OF THE REFLECTED SHOCK
Taking the initial density as unity, we can use the con-
stant of the motion to find that, in the region between the incoming

shock and the reflected shock (call it Region 2),

" +
P2 (r,t) p2lx) = 22 (9.1)
Y-1
where = -1, say, C*» = C(XQ), and = V(XQ), and where
a 172 (9.2)
a (v+1)
2a (v+1)
b [(v+1)Y " (v-1)Ja - 2 -
For the region behind the reflected shock (call it Region 3),
we can use the jump condition to relate the densities at Q:
fy+UM2
Pj (B P2 (B) . (9.3)
1 (B) x-1)m2 4 2 2P

where the Mach number, being the magnitude of the ratio of fluid
speed ahead of the shock, relative to shock speed, to sound speed

ahead of the shock, turns out to be simply

M = [(1+V2(B))/C2(B)|. (9.4)
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Then we can use

b
A ¢ 1+Vv
P = P = P 9.5
3,0 30) 3 L c3m) | 14v3es) (9-3)
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