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Alfvén-Ion-Cyclotron Instability in Mirror Machines*

D. C. Watson, L. D. Pearlstein, L. L. Lodestro

Abstract

Electrostatic instabilities occurring in mirror-confined ion velocity-

distributions havé been thoroughly investigated.

The electromagnetic

instability of greatest concern is the Alfvén-ion-cyclotron (AIC) mode. In
this work we investigate both convective and absolute growth, both in
homogeneous plasma and in finite machines, for a variety of ion velocity-
distributions. Good agreement is found with the results from the particle
simulation code "Superlayer". Quasilinear effects are outlined and a rough
criterion found for the importance of Dupree-type broadening.
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I. Influence of Mode on Mirror Machine Design

Electrostatic instabi]ftieé occurring in mirror-confined ion velocity-
d1'st|r1'but1'ons];2 have been thoroughly investigated. The high-freqqency convec-
tive mode places an upper limit on machine 1ength.3 The drift-cyc1otron-1o§s-
cone mode places a large lower limit on machine radius, so that in 2X this
mode requires a plasma stream for additional stabih’zation.4 Both of these
modes are drivén by popu]ation.inversion in perpendicular velocity.

Tﬁe study ofAe1ectromagqetic instabilities occurring in mirror-confined
ion distrfbutionsvis still in progress. Of greatest concern is the Alfvén-ion-

5,6

cyclotron (AIC) mode. This instability, unlike the HF convective instability,

can become absolute; further, the shift from convective to abso]ute7 occurs
at modest B-values and anisotropy-values (e.g. B8 ~ 0.5 for T,:T, ~ 2:1).8
Stabilization via finite machine-length thus is achieved not by Timiting the
‘convective'amp]ificafion but rather by spatially confining the mode suffic-
ient]y9 to depress its absolute growth rate. This is a more severe restriction,
in general. The AIC %nstabi]ity, unlike the drift-cyclotron-loss-cone insta-
bility, does nof require a hole in thé perpendicular velocity distribution.

Thus addition of a cool-plasma stream is not effective in stabilizing it.

Finite machine-hidth 1ntfbduoes ah effective(perpendicujar wavevector and a
radial gradient in field and density. We can explain fhe absénce of violent

AIC instabi]ii;“in'the 2X machine by invoking the short scale-length of the
plasma in terms of ion Larmor radii, which leads t6 a discrete set of allow-
able modes with reduced growth rafe, together with the short scale-radius

which introduces a non-zero k, into the AIC dispersion relation. The effect

of radia1.grad1ents has not yet been examined.



1. Approximations Used in Study of Mode

The approximations that are made in the study of AIC instability fall into
three main groUpéE' approximations to the macroscopic form of the plasma,
approximations to the microscopic form of the ion velocity distribution, and
approximations to the kinematics 6? the mode itself. The first and second
groups are of coﬁrSe related via the equilibrium ion dynamics; the first and
third groups are of course related via restrictions on the possible wavevectors
and polarizations.

The actual plasma has variation along and across the maghetic field lines.
The ]ongitudiné] variation is treated in the WKB approximation. We ignore |
the detailed perpéhdicu]ar variation from one field 1ine'to the next; instead
we study.AIC propagation on a single "representative" field line. The perp-
endicular variation in plasma properties we plan to inc]ude-in future fo
. lowest order by locating the single "representative" field line in a linear
transverse gkadient. The finite perpendicular extent we approximate by re-
quiring a non-zero k,. '

Recent work on the perpendicular differential equation satisfied by the

field amp1itude]0 suggests that the value of k, -in question is around
2 -
kLaiRp = 1.

We adopt the more conservative assumptidn that a transverse mode pattern
exists which roughly accommodates a halt-wavelength within the diameter of

the plasma, so that

k%az.l 2 a2. 4
X = L = I 1t , (1)
: 2 . 8 g2 . : _
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There remains the choice of a characteristic Larmor radius and characteristic
pl&sma radius. = The MX p]asmé is exbected to have a relatively uniform cehtfa1'
region surrounded by a relatively narrow sheath or edge region which is 1
or 2 Larmor radii wide. For MX, therefore, it makes sense to take Rp to be
the distance from‘the axis out to this sheath and to take for s, its central
axis value. The 2X plasma, on the other hand, is all sheath; the falloff in
density from the axis can be modeled as a Gaussian and the.characteristic
length taken to be the scale length of this Gaussian; the Larmor radius should
be taken intermediate between axis and edge values and‘for lTack of any stricter
guide we take tﬁe géometric mean for convenience. The axis and edge values
of the ion Larmof radius are taken from the long thin apbroximation.
Before describing the ‘longitudinal variation problem 1n‘de£a11, we recall
that the AIC mode in homogeneous plasma can be either convective or absolute.
As an ekamp]e, for a bimaxwellian ion distribution with a temperature aniso-
tropy of 2:1 the transition from convective to absolute behavior occurs at a
B-value of 0.6. At a B-value infinitesimally less than this, the convective
growth length for 7 exponentiations is about 30 ion Larmok radii. For less
severe anisotropy fhe transition occurs at higher B and vice versa, but the
length of homogeneous plasma required for substantial convective growth is
always a few tens of Larmor radii and thisvremains'trué for other types of ion
distribution. Thus 2X and the end plugs of TMX are too short for convective
AIC instability to be a separate issue. Only absolute AIC instability need be
considered. In MX and the centra]ltank of TMX, on the other hand, the convec-
tive AIC growth may constitute a prob]em at B8 values too low for absolute
instability.

What corresponds to absolute instability when the plasma has longitudinal

variation? The answer is a discrete series of spatially-confined temporally-
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growing mode-patterns. Each is characterized by a, frequency w and by spatiaT

turning points s = * St measured from the symmetry plane of the machine such

that9 ' | |

and such that the rbbts kt(s); k"(s) of the ATC dispersion relation coincide at

S = % Sts which requires

dw

dw = 0 (3)
dk, -
S_i-ST
The WKB épproximation is based on %%- << k2, which imp]ies that the value

of‘the:integer’n‘in (2)'shoﬁld be 1argé. However the growth rates furnished by
(2) increase with decreasing n, so that thé most impoftant mode from the view-
point of sfab]e machine operation is also the one for which the growth rate
estimate is the least reliable, namely n = 0.

The dependence of the wave numbers kf on position is further approximated

by

W e ()t 2 (8s) - 8(0) (5)

~ where (wo,ko) satisfy the criteria for absolute instability in a homogeneous
plasma with the properties of the plasma at s = 0. Finally we make the approx-

imation

(s) = k_t 6k , ‘ (4)'



Q

B(s) = B(0) (1 + -5—2—) - - H(e)

The 'validity of the approximations (5) and (6) can only be checked a posteriori,

since‘they’must hold all the way to the turning points * ST whose positions are

not known at first. Indeed, the value of L in (6) may be:chosen to vary with

St in a (not strictly correct) attempt to deal with the following forms of B(s)

dependence:]]

(A) Ion'ihjection localized near midplane, moderate to high B8:

L< L,

Fig. (1)

1
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(B) 1Ion injection uniform over broader region, moderate to high B:

A E(s)

e L, >,

Fig. (2)
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The long thin approximatioh is.used to re]até internal and external mirror-

ratios. The ambipolar potential is approximated by a linear B-dependence:

Bthroat - B

ABthroat - Bcenter

o(8) CI)<Bcente\r‘> - (@)
We plan to estimate convective growth in a plasma with spatial variat{on

along a field line by ca]cu]atihg the quantity

'_A(wre> = exp{fds Kusm (“pes s)} . (8)

where the integfa] js carried out along that field line. The real frequencies
Weg will be scanned to find fhe worst-case spatial amplification. This calcu-
lation is important for the Centra] tank of TMX and may be'important for MX.
Now Tlet Qs consider the approximations made in tHe ion velocity distribu-
tion. The dependence on B is that required by the adiabatic constant of motion
vg/B. Non-adiagbatici‘cy]2 is ignored. In cases where the ambipolar potential

is negative, such as the central cell of a trip]e-mirror,]3 the ambipolar hole

joining the loss cones is replaced by an ambipolar plug separating the loss-
cones. This makes the dispersion function harder to evaluate, and ‘so we neg-

lect the potential for a quick conservative estimate of the B-1imit in the
central tank. Ih general, wherever possible, we work with analytically tract-

able distributions_having at worst the fo}m

2 2 2
1 Tos J On _ % %0.V+ 7 %oVt % Yoh

f (vy, vy) = — — e
g\ Vs> Vo ] -
n i m " ROC ])
2 n
n 2 Vi 2 B :
‘OLO}' Vy - R - - V()h = F(Vj,’ Vs OLO.L’ aO!!’ th’ ROC) (9)



at the center plane and the form

_ - : ' 1
) | ao;nﬂ B Rc']nfﬁ
f(v.L’ Vi = F Vis Vs Oyus Qny Vi R — J:
( he Re) W) By \Roo- 1 |
. ) B _q\,2 ] B\
exp ) <2 (@0 <I>> - <Bo ]>Voh> <0c0* + Roc 1>ao">/<ROC - Bo)t
at other points along the "representative" field-Tine. In (10)
o = (o (B 1)e ). 0 R < R_B/B
n Os BO on B C oc
2
o = o 2= <Roc ) ]>Voh i} 2<¢0 ) ?) (1)
" on’ h ' R.o- 1~

The distribution in (9) is normalized to unity. The equation (9) is the simplest
way to combine a 1bs$4c0ne, an ambipolar hole, and a marked bressuré-anisotropy
over and above that introduced by the previous two features. We neglect the

detailed behavior of the electrons and take the ambipolar potential as given by

(7). To prevent the loss-hyperboloid of 6ﬁe sheet in (9) from becoming a loss-
hyperboloid of two sheets in (10), which would greatly complicate the AIC dis-

persion function, we require

2 2<®0 ] chroat) | : (12)

> o
v
<
<

‘Then the coefficient of F in (10) is just the density normalized to the
density at the midplane.

The "tractable distributions" of type (9) are capable of reproducing
élosé]y the nﬁmeriééT output of Fokker-Planck codes, witH and without DCLC

turbu]ence._4 Without 'curbu]ence]4 the appearance of the Fokker-Planck output
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is that of a,bim&xwe]}ian, cut by a ramp which slopes down to zero at the loss-

hyperboloid:

/
PO— [gs§~ LyFQz‘()O/oi!‘

< | ') -
conlours 04\ k :E\\\\\\N__ ped
Lh“axwthn . = | o ‘
— CC/TELU’S 0# mm[) Fig. (3)
' ~,
- \41
This is modelled by inserting in (8) the values
Gou = ¢ Voh 7 0 n = Roc - Bthroat/Bo (13)

- 0L Oon

With turbu]eﬁce'and narrow-angle injection]5 the appearance of the Fokker-
Planck outpht is ‘that of a high aspect-ratio bimaxwellian, somewhat distorted

and attenuated within the loss-hyperboloid:

\
\
\ . p :
\ - : ,
\ e Joss --Ly/ﬂréo/okj
L VT
Coq_’c-sq/: ,)
- o i an
{maxuiellran iﬁgnadZ%m _ Fig. (4)
, — > Y,



With turbulence and wide-ang]e'injeﬁtion, the appearance of the Fokker-
Planck output is approximated by a linear combination of the distributions
appearing in Figs. (3) and (4). The effect of the turbu]énce is merely to
fill in the émbipo]ar hole, not to broaden the ion distrfbution in v,. This

is because the Fokker-Planck code models turbulence due to DCLC. Since the DCLC

mode is perpendicularly polarized and is electrostatic, it has a diffusion tensor

~ <E E> (15a)

which is incapable of diffusing partic]é; in v".. The effect of turbulence due
to the AIC mode itself is discussed in Section VIII. The AIC mode is perpen-
dicularly polarized and electromagnetic. ~ Thus its diffusion tensor has a com-

ponent
Duw =~ vi x By *» vy x B, | . , (15b)

which can diffuse ions in the v,-direction.

-“mThese tractable distributions are the natd}éihcandidates for work on

exact phase-integrals and work on gradient effects. The bimaxwellian has already
been used to estimate the effect of finite transverse extent on the AIC mode.
Considerable time has been spent on other, more complicated distribution
functions. For these, the AIC dispersion function requires numerical integration,
and correspondingly its repeated evaluation requires large amounts of computer
time. These distributions fall into three main classes: the Holdren-type
distributions,]6 dominated by ion-ion collisions; distributions whose angular
extent is a function of ve]ocity,8 chosen to model the combined effect of electron

drag and ion-ion collisions on an injected beam; and numerically specified dist-

14,15

ributions furnished directly by Fokker-Planck codes. These distributions

will be described in more detail in those sections devoted to them.



Finally Tet uéwcbnsidér”fhe'abproxiﬁéfionsuagde in the kinematics of the

mode itself. The mode in its simplest descriptions’6 propagates in the direction
of the magnetic field in a homogeneous plasma, and is a purely left-hand

circularly-polarized wave. It has the dispersion<re1ati0n

W

2 2 | , v aTa
0 = n_C + w + % Id v __C1 -
2 W, w - W . w - kyvy - w_ .
W . : ci ci ci
p1 .
free-space electron ion cold- . ion isotropfc non-fluid
contribu- contribu- fluid cont- contribution
tion tion ~ ribution
approxi-
mated by
EXB drift .
: afo
2 ——
3 f0 V. avg
= ‘J‘d v k.,V,. w - k(|V|| - wci
ion anisotropy contribution - (16)

The w2 term in the free-space contributioh is due to disp1acement cﬂrrent
and has been neglected. The form of the electron contribution is justified
because the frengncy is much lower than the electron cyclotron frequency and
the wave length is much longer than the electron Larmo; radius.

| Introduciﬁg é non-zero k, means that one has to equate tHe determinant
of the dispersion tensor to zero. With .cool electrons and low frequencies the
parallel e]ectfic field is a1mosf shorted out, which motivates the following

treatment of the dispersion tcnsor. Starting from

D Br Dy EL 0
Dot Prr DRz . ER . 0 (17)
Dy Pzp Dy E; 0

substitute for EZ dand obtain
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DLL - D

[l

D

1z %2./%7  Dr Lz Pzr/077 L

O = PRz %2z Pre 7 PRz Pzr/Pz R

Neglecting the second term in each element of the matrix (17) is equiv-
alent to neglecting the parallel electric field EZ’ On computing those terms
one finds that they may be neglected provided that

T T

_&. ' _€
Ti << B and Ti

<< 1 : (19)

Here B is the Tocal B which is of order unity or greater for most cases of interest.

The ratio Te/Ti is around 10'2

for 2X, MX and the end-plugs of TMX, thus for these
machines one may approximate the oblique disperéion relation for the AIC mode

by coupling to the right-hand (whistler) mode only:

Dy Dpr = DpBp = O (20)
For the centra]»fank of TMX, on the other hand, parallel-propagating ion-sound
waves can also couple to the AIC mode, so that one must use for the oblique

AIC dispersion relation the full determinantal equation‘

(oL - Pz 0217%22) (Oge - Oz P2r%2z) - (e - 01z 28/%2) Cre - Orz P2./0zz) = ©
| | . (21)

~One more cdmp1ication occurs in the kinematics. When modeling.the per-
pendicular structure of an AIC disturbance by a non-zero k,, one must examine
how the Besse1-funct50n argumenf (1) varies along a field-line. If one neglects
fénning due tolquadrupole fie]ds, and assumes thatlthe transverse mode struc-

ture remains tied to fie]d-]ines, one can see that to lowest order the argument
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(1) is independent.of B for a delta-function velocity-distribution and varies
like B for an isotropic Maxwellian (unconfined) distribution. For continuous
distributions which are partly or wholly confined, the variation of (1) with

B is slower than linear and has been neglected.
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ITI. AIC Stability Boundaries for Tractable Ion Distributions

In equation (9) we set out a class of center-plane jon distributions
which allowed for a loss-cone, an ambipolar hole and a pressure anisotropy over
- and above that intrqduced by the previous two features. These features are

~quantitatively related for this class of distributions as follows

oL B 1 3 2
L <2 ntag v h> %."oh
o oc
—— N —— S ——"
total pressure loss-cone-angle contribution - ambipolar hole
-anisotropy ‘ contribution

| .aoll 2 . .
4+ &;: -1 Q +n o+ a0xV0h> + n (22)

'two-temperature contribution contribution of slope
' down to loss-hyperboloid

This class of distributions is convenient for analytic work.
It is useful to first review some infinite plasma results. On substi-
tuting (9) in (16), the AIC parallel-propagation dispersion-ré]ation assumes

the form, convenient for computation,

= N
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The quantities appearing in this dispersion function are normalized to
the magnetic f1e1d, plasma density, and total plasma pressure at the center-

plane of the machine, as follows

| | : Z.e B
= EVLE phys 2 _ 3 _ _ Cio
K = ka/ogio Yo I R “cio T Tm, -
_ ' ' 2 2
W= w/wcio : Ho = %.Yon
2n.m.u <v2> B
B o= 110 1 g = W1 470
o 382 0 K V8.,
0
én m.u <v2-> B
é _ 1‘ .i o Il1 - IIO
Q BZ ) 1 - B.LO
0
The condition for absolute instability 157 that there exist (K"o’ wo) such that
Im(Wp) > 0
N(Kugs W) = 0 ‘ (25)
30 (Kug» Wg) :
oK =0

and such that thé coincident rodts in K migrate to infinity on opposite sidgs
'of the real K-axis as_w goes to infinity in the positive imaqiﬁary direction.
The derivative of D in (25), as well as additional derivatives required by the
Newton-Raphson routine which finds the solution of (25), are taken numerically
so that the analytic. expression (23) suffices.

Given as input B.,, B.y»> and n, one may use (22) to find any one of Roc’

-2 ] ) ) o
Ggu/dgy, and ag,v ,  in terms of the other two. This allows one to explore

(24)
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the two-dimensional space of macroscopic plasma parameters B, and B8, (or alter-
natively average B and anisotropy-ratio) while holding to some hypothesis

regarding the microscopic structure of the ion velocity distribution. For

instance, one may set ROC = o, n =0, Vgh = 0, and explore the stability of

the AIC mode as'a function of B and pressure anisotropy for the case of.a
bimaxwellian ion distribution. One may set Vgh =0, ao;/ao“ =1, n=20, and
explore the stability of the AIC mode, again in the 2—dimen$iona1 B-anisotropy
aomain, for the case of a sharp-cutoff loss-cone ion distribution. In fact
these two types of distribution repfesent some kind of extrema for the AIC
mode. Barring quite pathological types of velocity dfstr1bUt1on e.g. with
particles piled dp against the loss boundary, it is found that for most
reasonable distributions the AIC mode is less stable than in the bimaxwellian
case and more stable than in the sharp loss-cone distribution. It is unfortunate
that the behavior of the mirrormode is just the opposfte, at least for center-
plane onset.

When exploring the B, - B, plane in the manner described above, one must
bear in mind that for n > 0 the relation (22) restricts the areas of the plane
that can be reached.

To make the above clearer, we show graphs of the 8, - 8. plane on which
are marked the AIC convective-absolute transition and the onset of the mirrormode.
Figure (5) is drawn for a bimaxwellian distribution, Fig.- (6) for a sharp loss-
cone.

The computer code that traces out the boundary incorporates two important
running checks: a check that the topological criterion following (25) is satisfied

and a check on the importance of convective growth.
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Two analytic results which are not only physically interesting but also
useful for checking codes are the iimits of the AIC dispersion relation for
high and zero anisotropy. The high-anisotropy Timit is the fluid Timit, as
can be seen by referring to the definition of £, 1n (24). Using the asymptotic
expansion of the ZZfunction in (23) -and the relation between parameters expressed

in (22), one obtains the fluid AIC dispersion relation “in normalized form

2 | .(26)

This dispersion relation applies to any highly anisotfopic ion distribution.

The zero-anisotropy form of (23) is even more easily obtained-

This dispersion relation does not apply to arbitrary isotropic distributions.

Wé now move on to the effects of finite plasma radius. We use Equation
(20) to study ZX and MX, and invoke a non-zero perpendicular wavevecfor (see (1)
and the accompanying discussion).

We regard the value of k, as a given real parameter}Aas if charécterizing
the perpendiéu]ar mode pattern in a wave guide. We proceed to look for convective
or absolute growth in the parallel spatial direction. AFrém this point on, the
problem is one-dimenéiona]. The rfght—hand side of (23) is replaced by a some-
what more complicated expression, namely, the result of substituting a bimaxwellian
ion distribution in the left-hand side of (20) and normalizing according to (24).

Thig expression is treated as a dispersion function relating W and K,, with

K, entering as a parameter. Explicitly (23) is replaced by
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2
28 9=-1
0 .
) 1
oy s 3 zok'szR} (28)
28o =-1 '
2
LR{<
* 2: Zoz XQ }
2=-1_ )
W on - 2
<W-'z" '“a—> " (&)
(o)}
(29)
2-1 + (X - ,Q.) F,Q, - E PQ,'*']
+ (x+8) T - 1+z) T
% 2 2+]
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GRLOLx X
S N O A
2 2 vacuum, 2
: I (x) -X Ky 4. n2 (ai; )

r, = x) e X = —5—— T g —H5
p - .
' (29)

2 _ , P _ 1

Ki = 2x — where we take a = 5 for 2X

Bio

and o = 1 for MX as discussed
in Section II,

and‘whefe the definifions-(24) are again employed.

The‘resu]fs of exploring AIC stability in the 8, - B. plane theh appear
as in Figure (7). :The convecfive-abso]ute bbundary is shifted to allow higher
anisotropy at a given 8. The boundary curves over at hﬁgh B because the ratio
of machiné width toALarmor radius decreases swiftly there.

‘We now move‘dn to the effects of finite plasma length. We use (i) through

(6) to obtain the following estimate for the growth rate depression due to finite

length
- *Nvac . ' 4
e 2 dle ] Bf Pk (30)
Dw /]-B.'. ]—BL BO' /\2
" well

Subscripts on D indicate derivatives which are all taken at the center plane.
The derivative with respect to B includes the self-consistent density variation.

This estimate is in. terms of the normalized quantitjes (24) with the addition of

1}

B B/B_ , o '
. vac )
well = Rwel1/35.

>
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Again the long thin approximation has been used. (6) has been fitted
to the requirement that
) = B

Bllen

B(o) = B /1-8

The derivative with respect to B is taken numerfca]]y. This requires
finding the AIC dispersion function for parallel propagation, away from the
midplane, which is obtained by substituting (10) in (16). Denote the coefficient

of F in (10), which is the‘density relative to the midplane density, by N. Then -

- 2 : ' -
D(Kis W) = &+N3;“ e e GRAGINY

rn|—

[—E—-+ G (1 +n+ H2) - (n + HZ)] Z’(E)l (33)
W- . . N

oo
Q

The quant1t1es appear1ng here are defined by (11) and (24) with the addition of

["a ol |

W-B 2 2

® ‘/ H™ = a, Vi ‘ . (34)
no v .

Graphs similar to F1g. (5) and Fig. (6) may now be obtained with (30) taken into

account, The results are shown in Figures (8) and (9)-
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Finally, we compute the coqvective-abso]ute boundary in BL ~ Bu space
bringing in both finite-width and finite-length stabilization. The expressioé
(30) for the fjnfte—]ength grbwth—rate depression is employed. The function
D is that dispiayed in (28), except that for calculating the numerical derivative
with réspect to § one requires the off-center-plane form_

W E LL]
+ N —+ Z X
[B g=1 * 0t {

e K

as

o

——

=

.

=

o

1] .
e,
UNI

+
N

2

0 0

The rationale for using the same values of X and x as at the mid-plane
was discussed at the end of Section II. The convective-absolute boundaries

obtained are displayed in Figure (10).
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IV. Relation to the Superlayer Code

In Section III the staeility of the AIC mode was examined in finite plasmas
similar to those occuring in real and projected experimental devices. In this
section the stability of the AIC mode will be examined in "plasmas" of the type
'occurring in particle simulations, in particular simulations of the "Superlayer"
series.]7 We show a good agreement between the dispersion-relation-based pre-
dictfone of the B, - B. graphs and the acfua] stable or unstable behavior of
the "Superlayer" eomputer runs. This agreement strengthens our confidence in
the predictions of the B, - B, graphs for stable or unstéb1e operations in the
MX device. .

The main differences between the experimental p]asmés and the Superlayer
"plasmas" studied are four in number. Firstly, the Superlayer runs studied
are 1-dimensional in the direction of the magnetic field so effectively the
“plasma" has 1nfinite width. Secondly, the "plasma" is set up to be very
short - usually between 1 and 5 Larmor radii in 1ength.' Thirdly, there is ‘
no se]f—consistent magnetic field depression - the equilibrium magnetic field
is constant and the ions are contained by an effective "potenfia]". Fourthly,
Lhe e]ectric field po]arization is constrained to he linear. Let us see how
these djfferences are reflected in the computation of stability boundaries
in the B, - B. plane. |

Firstly, the finite-width dispersion-function (35) is ruled out, and all
computations ere restricted to the parallel-propagation dispersion-function (33).
| Secondly, the finite-length stabilization is strong so that the stability

boundaries lie in regions of high anisotropy (e.g. one may attain g, : 8, = 10 : 1

at g, = 0.5 if giVen a plasma 1 Larmor orbit long).
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Thirdly, the WKB estimate of growthrate depression (30) must be revised to

]
]

AW (36)

Here D indicates‘a derivative with respect to density alone. The form

N
of the bimaxwellian velocity distribution is not affected by the effective
"potential"; only the density“varies along the field line és exp (-ZZ/LE) say.
The magnitude of‘the B-field as mentioned earlier js artifically held constant.
Thus the definition EN';_LN/aiL needs no reference to a vacuum field, and the
stability boundary for fixed EN does not curve over at high 8,.

| Fourthly, one must find the form of D'in an artificial universe where

current in only one perpendicular direction acts as a source of the vector

potential. This form is

Dartificia] (Ki, W) = %' DKy, W) + D('K"f -W)J ' (37)
“Here the D on the right-hand-side is that of (33) with B =1 but with N allowed
to vary for purposés of taking the numerical derivative in (36).

The appearance of the resulting graphs in the g, - B, plane is shown in
Fig. (11). Points in B, - B. space corresponding to specific Superlayer runs
are marked together with the values of [N employed and the obiervation or non-
observation of AIC 1n$tab111ty. The agreement fs:remafkaﬁly good and strengthens
our belief that &faqrams 1ike Fig. (10) are an appropriate guide to the choice
of device paramefers for stable operation.

Ideally one‘would Qish to recqmpute the boundaries appearing in Fig. (10)

using more suitable ion velocity distributions, exact parallel phase integrals,
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. and forms 6f D(Kus W) incorporating not only non-zero k% but also explicit
radial gradient terms.- In §ectiohs V through VII Various physica]]y-motivatéd
ipn-ve]ocity distribution-functions are described, together with the conditions
for their ﬁse, the forms of D to which they give rise and the stability
bodndaries thaﬁ result from their use. In section VIII the effect of AiC tur-
“bulence on the‘joh'distribution function is degcribed. The consideration of

exact phase integrals and explicit gradient terms is Teft to a later paper.
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V. Distributions of the Holdren Type

16

The collisional or Holdren'~ distribution is an analytic approximation. to

the steady-staté behavior of ions dominated by ion-ion collisions and unaffected

18

'by ambipolar potential. Baldwin'~ has shown that ion-ion collisions can outpace

electron drag only if

T

e . | 38
Ti > 0.1 . (38)

On the other hand, ambipolar potential can be neglected only if

T

e
T; << 1.0 (39)

Thus there is hardly a temperature-ratio for which the Holdren distribution
is apéropriate.ifFurther,Athe Holdren derivation assumes a majnetic square
well, whereas reé] mirror plasmas steepen their own wells near the machine
midplane. Thus the Holdren distribution has mainly histofica] interest,

as being an early attempt fo take account of diffusion by constructing a
function s1oping‘smooth1y down to a loss-boundary. The ﬁdn velocity dis-

tribution is explicitly

| 2
: 3/2 2 m R vy R i
_ 1 o -av 2 0cC _ _ ocC
folvisva) = §— (—) e av ) 2 1+ (2ROc 3) 2n K

| f(V“;},,)_; | _L ;‘(Q)B/z éT“Y2<av2)m Revs -1 (2R(;C' - 3) Qn C2 (41)
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at other points along the "representative" field line. In (41)
R = R_B/B o (42)

C oc O

The distribution_(40) is normalized to unity by choosing

. 3 -1 o
Ny = (ZROC - 3)[2n Roe + 22n<1 +41 - RQC) -2 ‘h - ROC]

.. tom terms] : (44)

=
o
3

1
o
o

L]

 —

o wo
rojon

Note that the ion. distribution described by (40), (41) is delimited by a
loss-cone,. is the product of a function of velocity only times a function of
ang]e only, and reduces to a distribution of type (9) for the special case

m=1, Roc = 3/2. For this class of distributions the relation corresponding

to (22) is, for any m,

p ' 3/27]
o - 1) fp . : _rt)o _roC 2y - R
5 ; ) (2Ro, 3>[O.n ROC+25Ln<1 4l R0C> 241 - RO -3<1 R0C> ]
2 -1
¥ §Roc(] ) Roc) i (45)
On. substituting (40) in (16), the AIC para]]e]-propagation dispersion-relation

assumes the forms, valid at the midpiane,

(g%
(3]

~
=
-—

Phs W)= 2t g TN (Roc ) 1) on'(go>

w0
o
o

o




7=

2 2
_ K W, 1 31 W]
D(Ku, W) = e W "R ) Roc Xo[z tRocm 1) 1] Z' (&)
0
. X
o , 0
: 2R - 3. X
[} 4 1
+(Roc'])xo [<]+E(2>>Z(£o>-1] +[dxx = 2)2 1l:1wz<€0x_o>
) (-9
(m=1)
(47)
In (46) and (47) the definitions (24) are used except that now
W= 3 + 2m . 1
LN X Ku Y3 Xo B 'J] - Roc (48)

The expressions (46), (47) can be used to plot convective-absolute stability
boundaries in the B, - B. plane for infinite homogenedus plasma. The resulting
curves iie between the corresponding curves for the bimaxwellian and:cut-
maxwellian displayed in section III.

The ﬁnc]usiOn of a non-zero K, in (46), (47) has not furnished any expres-
§ion suitable for repeated computation in a reasonable time. The stabilization

of the AIC mode due to finite device width has therefare not been investigated

for ion distributions of the Holdren type.
The self-consistent longitudinal variation (41) of .the Holdren distribu-

tion leads to thé off-mid-plane AIC dispersion functions
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o

o 2 Ny 2
Ok, W) = Kooy L0 Ml g [%- + (Roe - 1) —=| 2'(®)
BO. 0] B(W - B) 0] ‘ W-8B .
; ‘ X
: A 2R -3
' 2 4 0C W X
+ (R -1x[1+£ Z'(&)-1]+fdxx = Z'(E_>
(Roc - )% [0 +€) 622 5w ;
' (m=1)
(50)
The normalized quantities used here are those defined in (24), (31) and
(42) - (44) withtthe addition of
_W-B [3+om N e
N ' ' ' R | -1
No—<2Roc—3>[Qn RC+A25Ln<1+J1-RC> -2 1—RC]
L2 “1\3/2 o
+ & RC<1 - R ) | . (52)
' - 3.5 ,
Nm = N0 [2 5 ... tom term%] | (53)

The expressionsr(49), (50) can be uscd to investigate finjte-length stabilization
of the AIC modeAih 2X and MX.' One makes the WKB approximation and the parabolic
z-dependence approximatﬁon, so that the equation (30) is again used. The
predictions for anisotropies and total betas attainasle in stable operation are

displayed in Figs. (12) and (13).
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_ VI. Distributions Whose Angular Spread is a Function of Velocity

The class of distributions described in this section is a generalization
of the "tractable" distributions discussed in section III. The underlying
two-temperature maxwellian factor in the expression (9) is retained; the loss-

hyperboloid factor is replaced by a factor which goes to zero on a boundary

which approaches v, = 0 as v agets Tarce: _ o : - - T
i /N
- rnwymu.( s
| ’l (.i(,"} :’(O / ) ‘ '
‘directions : R I‘-yf‘?"é(zlmcf
of 1ion . - |
velocity : ‘ B A 7
transport ) B ~ f}{//
_ ; ' o oo
S . N i
—— e, e
— -~ \/“
Vd
Fig. (14)

~ This shape of {bn distribution is_intended]9 to describe the p1asma in a
reactor, where the electrons héve time to warm up to 0.1 Ti or greater. Then,

'as discussed by Ba]dwin,18 jon-ion collisiuvns become dominant in the main
(thermal) body of the distributioh, whereas e]ectrbn drag remains dominant in
the hot (injectgd) tail. Exp]icitiy the mathematical form chosen to represent

the distribution at the midplane is



o 1 % [Pow o %o » “\n + 3/2
f (v, V) = + 1+(2n+1)c>
ot nl w T n(ROC-1> ( , |
2 2 2 2 2 2
e-aoxv*_ao"v"faoLvh Ao vVEra V2 oa VP e-ZQGR“yL " Goutr - ao*v0h)
‘ \ToL * on " oL oh
N n
v . aOL 2 .
- la. + == ] v, when square bracket is
On R -] : )
oc X
positive, zero otherwise. _ . : . (58)

Note the close resemblance befween (54) and (9). Indeed (54) reduces to
(9) on setting ¢ = 0. The equation relating the parameters appearing in (54)

to the overall pressure anisotropy is now

p o o e
o . 1 Zowoyoflov 1 [n s34 2 (1+@n+1)c ]
‘POH 2 ay, | (O‘oé ROCY -1 2 o:..t.)'h ( )
R 5 |
1+ (2n+3)c\""2 (55)
T+ ({(@2n+1)c -

As expected this reduces to (22) for ¢ = 0. On substituting (54) in (16), the

AIC pafaT]é]—propagation dispersion-function assumes the formé, valid at the

midp]ane,'
R oo g dt te't2 :( f 2) 1 %
D(l(n’ w) - - + ~ + e 1 - 2¢ct (, _ " )
° e te T -ty
2. a 5 o /a . 2
é‘ZCt ool (t2 + h2> 1 + ROL 0'1- _ t2e-2ct '
. ' 0{'O.L 0 ' oc -
(n = 0)

(56)



_ L .
2 2 n -t 2
Ko - W 0] dt t e : 2 2ct
D(Ky, W) = —* + + (1 - 2ct ) e
By o < te_Ct2 - &
o ‘ =00 ol
[ 1 %) 1, tf 2| et
|l1-w N AT RY: T+ 2¢
‘ a_ /o 2 (n=1)
o <] + 2 4 h2> 1+ Ro; _o; _ 42 g2ct
O oc (57)

Here the definitions (24) are used except that now

2n + 3

T ,(‘ (oo 200 (s apdnt I
on |_< ( )n/2 ¥5/4 . Mon n!
- (s8)

The contour of integration need be deformed (a]ternétiVe]y the pole contri-
butions need be explicitly added) only if the real phase velocity lies within
the ion distribution and the imaginary-part of the phase velocity is less than

zero. More explicitly, the combination of the conditions

Re)l < 7 M) < 0

requirés that the integration contour in the t-plane be deformed as follows;

A Gl .
W t—--J/‘” B SRV J@ t

remember that Re(go) is negative;

SR ——
(‘I)/"‘m ' (:<> L omow |
, » - T=T1, Fig. (15)
. 42
In the above diagram ty and t, are the roots of te Ct" - £

o
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The éxpréssions (56), (57) caﬁ be used to plot convective-absolute stabil-

ity boundaries in the B, - B. plane for infinite homogeneous plasma.

Fix all but one 6f the free parameters appearing on the right-hand side
of (55). The most straightforward choice is the choice which fso]ates the
effect of the boundary-narrowing illustrated in Fig. (14). This choice is

n = 0;‘vOh 5.0; ROc = o, (%L/(%” =1 (59)
Thé remaining pérameterA c then describes the rapidity of onset of that
boundary-narrowing. Spot checks on.these boundaries yield points lying be-

tween the corresponding curves for the bimaxwellian and cut-maxwellian dis-

played in'section III.

The inclusion of a non-zero K, in (56), (57) has not furnished any expres-
sion suitable for repéated computation in a reasonable time. The stabilization
of the AIC mode dge to finite device width has therefore not been investigated.

_The se]f—qonsistent Tongitudinal variation of the distribution (54) with
increasing magnetic field leads to a.finite cutoff in v,. Thus thére is a
qualitative difference between the form of the jon velocity distribution at
the midplane and the form of the distribution away from the midplane. This is
a physically unsatisfying feature of the form (54). '

Explicitly the distribution function off the midpTane is

1 G,n' A’ 0'()u_ OLOL ’ | . \n + 3/2 -g
F(VL’ Vu) = n_'_ '_.n,—L :_'IT_ + - R*‘_‘.‘ -l) (] + (2n + ] )C) e
oC
' n
o B -8B .
ge 29 . (%0“ + R——Qf—T (v% t —3 0 2. 2(¢0 - dﬁ) (60)
0ocC

when square bracket: is positive, zero otherwise. Here one uses {11) with the
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addition of

«
1

2 2 2 |
AuLVL touva - ag Vo - 2a"<¢o - ﬁ) (61)

The functional form of the distribution is qualitatively different away from

the midplane. One cannot express (60) as a multiple of the function (54) with

approprfate}y adjusted parameters, as (10) was expressed in terms of (9). How-
ever some §1mp1ification occurs on taking a linear dependence of potential on
B as in (12), chosen to yield berfect confinement for the tractable distribution

(10). In other words, assume

| B -B_ B - B
2(¢0_¢> = .(__B_p_)_ V(z)h = _(-—B——Q V|’21 (62)
0
‘then (60) becomes"
f(ves Vi) = F%' 2%i; ‘Ja2" + H(Rao*_ ]) (1 +(2n + 1) c)n t3/2
' . ocC .
2 .2 2 2. 2 2
'e-OLLVi T Tt (utvg + a“vg - alVﬁ) e-ZCGvaL ooV - u‘Vh>

. a B-B -
oL : 2 0 2 2
- (%o" + ﬁ;:—:—i> <;" + 5 <v1 - vh>> (63)

This form of variation along field lines will be used to estimate the
finite-length stabilization of the AT( mnde.
On substituting (63) into (16), the AIC parallel-propagation dispersion

function assumes.the forms, valid away from the midplane,



2
C o2 feFt -6 |

T-G (n = 0)
(64)

- :

| 20 20 .2
&, "N . [ attet (e2t°( - 2ct?) - o)
/n

B a e (e (1 20)tB)/(1 + 20)% - 127t . G]
B-w ™ r-6

% (1 + 1+ h2)<1 + —*—gc/?..]> X t2(e;2<_:tG - G) (n

1)
(65)

i

'S

Here the definitions (1), (24), (31), (58) are used exéept that now

)C)n/Z + 3/4 ROC -1

Ww-8 [fo (1 + (2n +1

E. = =

n ' K Bo" (] +' (?n + 3)C_)n/2 +5/4 VROC - B
. on+ 1 : n+1/2

- (I + (2n + 1)(;)" v 3/2 <“0£> E]A/Z Rr. } ],_

M 7 B n! ~ oy . Roc} -




.
T2 9 <e_2Ct (1 - 2ct2) - G).
N = o f dtlet 1 -G (67)
0 A 2ct? -
0 e :
N %
| ,
‘2 (e-2¢t”( _ pet?) - 6)

T )
) n J. dt? et 1 -G

! d 0 ' e—2Ct2 - G

N

2 2
[ e 2V (1 4 (14 20)t8)s(0 + 20)% - %%t - @ ]
'I - A

G (68)

- The factors of (1 - G) in the denominators of'(64), (65) are placed so as

~ to facilitate comparison with the dispersion functions (23), (33), to which (64),
(65) reduce fof ¢ = 0. The factors of (1 - G)_inv(67), (68) facilitate compari-
son with the‘cﬁefficient.of F in (10), which constitutes the density relative
" to the midplane density.

The expressions (64), (65)}can be used to investigate finite-length
stabilization of the AIC mode in 2X and MX. Make the WKB aDDroximafion and
the parabolic z-dependence approximation so that equation (30) is again used.

.This work has not been done by us yet..
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VIT. Numerically Specified Distributions

There exist computer codes]4 which follow the evo1etion of ion velocity
_distributions. under the combined influence of electron drag, ion-ion collisions
and drift-cyclotfon—]oss-cone turbulence. These codes reach a steady state.
The ion ve]ocity distribution in this steady state is the numerically specified
distribution referred to above This distribution will vary from run fo run,
affording a way to cover the 8; - B, plane. However this covering is not
unique, since (as with the distributions described in sections IV, V, VI) a
given point in the B, - B, plane can be reached in more than one way -- in
this case, by more- than one set of starting conditions for the computer code.
Nevertheless, a scatter1ng of discrete points in the B, - B, plane, each
with AIC stability information attached, is expected to be a useful adjunct to
the continuous stability boundaries drawn earlier for analytic distributions.

The discussion of this section does not include the effect of the AIC
activity on the distribution function. The self-consistent treatment of AIC
turbulence, ion- velocity-space diffusion, AIC stabi]ization, and final AIC-
compatible distributions is outlined in Section VIII.

14 furnishes an ion velocity distribution, speci-

The Fokker-Pfanck code
fied up to the parallel distribution of the first few perpendicular moments.
Let o,, o, be any conveniently chosen inverse scale temperatures., then the
code furnishes a midpiane distribution

(oo}

f duf Tl Fo(uus uy) P=0,1,2 A (69)
A |

u

Gp (uy)

with
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= o i KRR A A il
= 3 v = —]— 2 = ]__.
1 = f dvfo V= f du, J' duy F0 /E'f du,, G0 (70)
- =00 o] -0 :

This is an adequate description of the ion velocity distribution as far as the
parallel-propagating AIC mode is concerned. Substituting (69) in (16) one

obtains the form, valid at the midplane,

e}

2 2 dG
» a W 1 du, u, 1 Ol 1
O(kis W = -+ s J et [1‘-w Gy + __duz] (71)

=~

w1

o . -

Here the normalized quantities are those of (24) and (70) except that now

a
t
=
f
1"

WA [ 3 _ 2. . 3 2.
5 <°"physvv> _f dvvf0

o1 “phys - “phys 2
= ‘/T; f dU|| [a‘- G1 + u" u" GO (72)
When evaluating D it is necessary to deform the contour of integration (alter-
natively, to include the pole contribution explicitly) if the real part of the
phase velocity lies within the fon distribution and the imaginary part is

negative. This occurs in all physically meaningful cases.
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b g | S (1

Fig. (16)

This requires extending the function enclosed in square-brackets in (71)
into the complex plane. To do so requires that G0 and G] be expressed in
terms of some basis of analytic functions.' We choose the basis to be a series
of parallel-velocity Maxwellians of decreasing temperature. Then the disper-'
. Qion function (71) becomes the sum of a series of Z'-functions of increasing
argument, with coefficients that do not depend on K,, W.

Represent the function Gb as a sum of odd Legendre polynomials in the

parallel energy:

2

' - (p) -Cu,
: m=0 :

Some ekperience:and judgement goes into choosing the scale factor c; as yet.

we have no.rigofous way of -doing it. Use the fact that the odd Legendre poly-

nomials fqrm an orthogonal basis on the interval (0, 1) to determine the

coefficients

2 %
bgr)n)+ 1 T 2(em ; Ty + 7 f d<e_cu") Pom + 1 ~<e_-cu"> Gy () (74)

N /’. ,
m{iL, : : o
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For purpbses of carrying out this integral, take the data points specifying Gp

and interpo]ateA]inear1y in the space of the variable of integration

2 :
e CUn -y say (75)

Now transform linearly to a basis of Maxwellians. For known amp’

2 2 . 2
-CUy ) - _-cuy Z -2jcuy .
Pom + ](e ) = e L 3 © K (75)
J=20
-cu2 Z (p) .~2jcu
Gp(u") " AT e " (77)
p =
where A(.p) = 2 b(p) a . .
J : m mj
’ . om=j
2 2 ® 4
_ K W 1 . .
D.(Kn’ w) = .é + N _ 'I - 2 Z Z (50(2\] + ])C>
0 J =1
alod M
J : Oy
[ e T-w - Ay EEe o (78)

The expressioﬁ (78) will be used to obtain numerous discrete points ‘in the
B, - B, plane, each with AIC stabi]ity information attached, as previously
discussed. Of course the sum over j will be truncated using the resultant
error in D as a guide. A |

The specification of the midplane velocity distribution by the moments (69)
doe§ not provide enougH information to construct the AIC parallel-propagation

~dispersion function at a finite distance away from the midplane. Thus the

quantity Dy in equation (30) cannot be computed as a numerical derivative. How-

B
ever the moments (69) contain enough information to calculate the derivative
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D@ directly:

4 1 -d'U"U.. ] d20c,.@ dGO + On _di. .
| Vir Un r-,q_ 1T -W dB il SR |

2 2
o |d2oe T8 L ow 4%
a, dB du4 a, du4

+

(9

The ambipolar potential is provided along with the ion distribution as

output of the Fokker-Planck code. In terms of the many-temperature Maxwellian

decomposition (77), one has

2

SV 2 2 | i |
am _ 3D 2K W . d2a,¢ a(0) , ou
B - wm M- g f oy ) YE e |t e
. i=1 =

0]

N —

j=1

N CRRIC RGN " RN

This will allow the WKB frequency shift to be estimated for the same

3 v+ o) {1y AT [t Al w

(80)

points

in the B, - B. b]ane a§ were taken in (78). Those points will thus have

attached to them AIC stabilify information pertinent to 2X and MX.



-47-

VIII. Diffusion and Stabilization

fhe preceding seven sections have dealt with the linear stability
of the A]fvén-ion-cyc]otrdn mode. It is seen that simple models of
mirror plasmas predict absolute instability at discoﬁraging]y small
anisotropies iike 5:1 whereas real mirror machineé like 2X function
happily at aniéotrqpies estimated to run as high as 50:1. It is
tempting tbjfry and explain this by saying that ﬁon]inear effects
flatten out the distribution in the resonant region in such a way as
to reconcile a zero wave growth rate with a low par;ic]e loss rate.
Such a self-consistent steady-state occurs-in the case of drift-
cyc]otron—1os§—c6ne turbulence. In the case of AIC turbulence the
3-dimensional nature of the mode makes such a steady-state harder to
attain. -

Consider a model of AIC turbu]ence in which the power spectrum
in k-space consists of a line-density distribution along the k_-axis.
Each component mode of this distribution causeé diffusion in velocity
"space, located on the plane of ions resonant with that mode and
directed a]ong arcs of circles centered on the phase velocity of that

20

mode“”. The following diagram illustrates this for positive w and

positive k.
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; s - Fig. (17)
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The parallel-propagation dispersion-diagram for AIC waves yields
phase-velocities and resonant ion velocities that both decrease in

magnitude as k, increases.



-43-

Fig. (18)

The appearance of Fig. (18) after ﬁutting in a distribution of

AIC turbulence in k, is somewhat as follows:
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for negative k, velocities for velocities for for positive k,
positive k, negative k, '
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We adopt the convention that w has a positive, real part. Then
 the equation describing the process illustrated in-Figf (19) iszo,

accokding to quasilinear theory,

ar kl|vl -
xL.y SL/ dk..[ e s a%:l

0 < Re(w

say

1
a o
=

%)

< ||
O}

=

Q2

<}|o)
A
—+
v
[oe]
N

Here the spatial spectral energy density ¢ (k") is defined to be

the mean square electric fje]d in a unit wavevector ‘interval.
E:(kll) E A<E©'2>/Akll ' (83)

Carrying out the integral over k,

. kyv
a<f> _mq2 (1 8 3\ (Yi Vs \ |
at 2%7' ( v, av, i av'.,> (T’ w J|© wci) v
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~ Here k, = ko(v) and w = w(v) are fixed by the requirements D(k,, w) = 0,

KaVg = w + Wey = 0.

Here the temporal spectral energy density [%(w)] is defined to
. ‘ . 0
be the mean square electric field lying in a unit frequency interval,

as measured in the laboratory frame

[e(w')] = A<EZ> / bw ' w=w _ (87)
0 . . '

The temporal spectral energy density e(w) s the same quantity

measured fn'a frame moving with parallel velocity v".' It is the mean

square electric field lying in a unit interval of Doppler-shifted

frequency
Ef("")] = A<E2>:/’ A(w = k,,V,.) W - k,.V.. = w'
A<E®2> [ 0k. e{ka)
= .= (88)
I A(w"knvu) / kn I | Vu |

" The spectral density appearing.in (83) is thus just the éhergy
density of the temporal process experienced by a particle moving with
parallel velocity V", evaluated at the resonant frequency “éi‘ This
is what one.would expect physically.

If the AIC turbulence is strong enough (just how strong will

21

emerge from the calculation) resonance broadening”’ will take place

and the §-function of (81) must be replaced by
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5|~

N -
S§(k,v, + T w) =

0
. 3.3 .
ci Re/ dt e ilkyv, + wci - w)t + w't (89)

where the broadening is given by

and D is given by integra;ing (81) over k, with the broadened
8-function. Of course, this procedure is circular. We break the circle
by starting with §-function ﬁn (81), integrating over k, to obtain

(84), and putting the resulting diffusion tensok as defined by (85)

into (90). ‘We do not need to evaluate (89) further than to note that

it has unit area and width of the order of w. This width is explicitly

k 'l+v 2 1/ .
o = E.S;_ o w7 ' ‘
v 6 m? T w? eV I, 4 e (91)
and is a function of v, as well as of v,. To estimate when the broadening

becomes impoftant; replace v,? by <v,?> and consider the spectral energy

to be restricted to some frequency interval Sw about w_. as seen by

ci

resonant partic1es with some parallel velocity v,. Also, define the

mean square oscillation velocity due to this energy band.

wg?> = (qEm/w)®> f (92)
Then

kot<vi?> <VE2>
o = -

o E]
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where Eu] is the range of frequencies as measured in the frame of
' Vi . . ’ . \
a resonant particle. Any description of the process in Figure (19)
which neglects Dupree broadening therefore breaks down when
Ty

%—ku“ <v,?> <vE2} >'[§Q] | o (94)
‘ . ) Vau

T v, 2> <v 253 [(W ]'+ T (95)
6 1 E n . ‘
where §&v, 1is the range of resonant velocities covered by the AIC
spectral width.’

- The resonance broadening also has the effect of damping the

wave growth. Replace the propagator appearing in the linear dispersion

relation

] ~ P .
kywvy tw.. - w ko, Y wo. - w

C1 C c1

by a more exact propagator including both a linear growth rate and a

diffusion term, say the propagator

0
. . 153
‘].'/ dt e1(k”v"+wc1' wr)teytefw t?

- 0

R(k,v, + wei - w)

. A 3 0 . _ ’
= 1 + 'I'Ya—(i + 1w36_83_§ / dt .e-l(knvn+wc1- (,Ur)t
' : “ci

- 00
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3

>~ : ) : ™3 9 1
= 3 {1+iy EG'F iw 56;;1' KV TS (97)
Now the AIC dispersion relation from (16) is of the form
ke, w4 gk ) = Do (ks w)
0= "(:)—2"' (:)'— + IiKys W, (Uc.i = lin' " W say ‘ (98)

pi ci
N et — —— —————

free- elec- ion contribution
space tron

con-  con- _

tri- tri-

bution bution

Also w.; appears in the ion contribﬁtion only in the resonant
denominator (unfortunately, w appears also in the relation between
BO and EOY. Thus, the AIC dispersion relation can be made to include

both the finite growth rate and the effect of ion diffusion by writing

0 =0D,, (kl.l, wr)‘*'TY_a_D (kna w)

lin 3% 1in r
. 33 o W ki 2c?
+ iw® 3 Dy, (ky, w ) - — - o (99)
w5 an r Wey  Wpg

The derivative with respect to Wy includes no self-consistent change
. N33 ,
in f. In addition to the factor e+w t describing orbit diffusion

induced by turbulence, the propagator (97) should also include in the
_R242 : '
integrand a factor e 07t say which describes average orbit shifts

induced by turbulence. These average shifts in particle orbits

however, lead only to real shiftsZZ in mode frequencies and so are

not important for the purposes considered here.
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For future work with ob]iquely bropagating waves, we quote here
the fdfm of the quasilinear diffusion operator with non;zero k123.‘
The real quantities a, b, ¢ are the peak magnitﬁdes of the x-, y-,
and z-directed electric fields for the mode indéxed by k when that

mode is normalized to unit average field and k, is rotéted to lie

along the x-axis.

‘ . Q,”IPSQ
AN
,y [ Folaraza_ron
1 3
- /
-7 /
{ > z K
0<a - | ' | © Fig. (20)
a’+b2+c? = 2 (100)
’E2> = ]

Wave is circularly polarized in ion sense when a = b =1, ¢ = 0.

If E-vector travels in opposite sense around ellipse, use negative b.
If E-vector is Tocated in (+-) x-z quadrant, use negative c. .The form
of the diffusion equation corresponding to (81) is, including all re-
sonén;es, and assuming the turbulent spectrum to be symmetric about

the kz-axis;



a<f> -
ot
- kov
Tq . w-k,v, 1 39 e 90
mede{[ w vlavlvl+ w av..]
o<w | XET

1¢ S W '
+ |cd WM civ, 9 |
L %] [ w < AV, A V_-avl] } <f> L (101)

The-argument of the Bessel function is k,v, / Weie The spatial
spectral energy density is defined to be the mean square electric field

lying in a;unit 3-unit dimensional Wavevector interval.
e(K) = A<EZ>/A%K ' (102)

Integrating over k, we obtain the equation corresponding to (84);

o0

avf>r _ m g? 1.9 _0 (& By KV,
St " 207 (_VT'a_vT"L’ a) j dk E :( ct & “)
. - - wl wl .

o< 9;:-00
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Wei km¥\ (s s
A\—- . v’ By <f>
le wQ' 1 11

) and k knl(v", k,) are fixed by

Here w, = wz(v“, k ng =

D(kn, k_l_, b)) =0 k..Vu - w + ILwci =0

(103)

(101)

The polarizations of these modes are then described by ags bz, Co» aS

in (99). Of course, these po]arizations have to be found in the course

of solving (104).
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