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ABSTRACT

We have studied the glectron—phonon Interaction in alumilnum using
Fermi-surface-fitted 4-0PW electron states, a realistic phonon spectrum,
and integration mesh-density varying with lecal Fermi surface curvatuora,
The resulting electron mass enhancement * and thermal scattering rate T_l
are evaluated as functions of position on cthe Fermi surface, with che fol-
lowing results: 1. The agreement betwsen observed and calenlated cyeletron
masses is improved slightly by the use of our anisotropic A rather than the
average one, 2. The anigsotropy of A 1z detcermined predomfnantiy by mixing
coeffiedient varisations, rather than by phonem anisotropy, 3. The scatter-
ing rate 1-1 exhibits ordesr-of-magnitude variations over the Fermi surface
at low temperatures. Its values at 5K are within 50% of the experimentally
ohgerved ones everywhere, with considerably better agreement in free-elactron
Tegiong. 4. Deviaticone from the naively-expected T3 bahavior are predicted:
In free-slectron reégions, umklapp precesses cause a more rapid fneresse than
':I?3 for temperatures above 15-25K. On ridges, where the initia)l "‘Ta-cnef-
ficient™ ic very large, we find a glower increase. There results 3 washing-
out of anisotropy with increasing temperature. _The raesules on A are in good
sgreement with those of a recent similar ecaleulation; che 1 results agree

gualitatively but not guanticatively.



I. Introduction

The continuing growth in capability to measure and smalyze the
acattering rates of quasiparticle excitations in metals!*? is exciting
for a number of reasons, of which two are: 1. The scattering rate 1~!,
together with the esffective mass enhancement A, are basic to the des-

criptiﬂn3’4

of low-lying electronic excitations in the interaciing
electron-phonon system, and 2. The quasiparticle rate 1! 1s a uniquely
sensitive probe of the anisotzropy of the electron-phonon interaction --
anisotropy which manifests itself less direccly in other quancizies such
ag transport cnefficients.5 To amplify on the last statement, the elecw
trical conductivity (for example) may he written as an average of the
anisotropic transport relaxation time Ttr. Alrhough its anizofropy gives
rise to dramatic effects, it cannot be measured directly, and at best

only its gualitative features may be Inferred from experimental dat=z.

So transport coefficients ave rather ingensitive probes of anisotrepy.

In this paper we are concerned with the caleulation of the quasi-
particle propertias, % and 1, of aluminum. The reason for the choice ig
that aluminum presents the interescing combination of a multisheeted

Farmi surface with 2 very simple electronic structure. (its electromic

properties, inciuding Fermi surface shape, are-well-descrihed by Asheroft's
4=0FYW mndel.ﬁ) Becanze of this simplicicy the nature of the electron states
ie intimately related to the Fermi surface shape: single-OFW states in
spherical regions, 2-0PW in most of the high-curvature tegions (usar zone

boundaries), and 4-OPW near the zome cormers. Certalm features of the
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quasiparticle propercies might therefore be dictated by tha zurface shape.

The Ingredients in this calcvlation are discussed in detail in sec. II,
and so we state them only briefly here for comparison with previows calcul-
atious., The 4-9PW wodel is used for both the Permi surface shape and the
electron-phonen matrix elements, and a realistic phonon spectrum iz used as
well for the latter. The quasiparticle quantities are then calculated by
direct integration over the Fermi suvrface, uwsing a fixed mesh whose poict-
density is determined by local Fermi surface curvature. This calculational
program and a somewhat similar one by ‘l..lell.n'ng;}l differ from all previous
aluminum :alnulat:lanaB in their detailed trestment of the electron structure.
This program differs from Leung's in two respects: 1) Leung uses 15-0PW
electron stategs and the Helpe-Abarenkov pseudopotential for the calculation
of matrix elemeuts, and 2) Rather than doing surface integrals directly, he
introduces the frequency discribution functions uzF[ﬁ,u)T‘E ag an Intermediate
step. The peneral spreenent between our calculated walues of 4 suggests chat
the mstrix elements are not sericusly affected by the use af one method over
the other. The dizcrepancy which exists between the T wvalues probably arises
from the difference between our Integration mechods, since it 1s diffienlt in
either czse to freat low-frequercy phonons with a high degrée of accuracy.

This problem will be discussed at length later.

In the remainder of this section we review the surface=-intepral ex-
preseions for » and T, First consider the simpler quantity A; reecall that

it relates the quasiparcicle velocicy
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to the bare "band" velocicy $($}. It is given by the Fermi surface
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is the squared amplitude for the electron transition ﬁ+ﬁ', with the
smiggion or abserption of 2 phonom with wavevector E and polarization o.
{for an emittad phonon, E = k-k' reduced to the first Brillouin zonea)

In (1), ¢ is the mass density of aluminum, V is the Asheroft pseudo-
potential (for consistency with the Fermi surface fit), and of coursge
uqﬁ and ;qa are the phonon frequency and polarizartion, respactively.

A similar formula helds for the thermal quasiparticle relaxation rate at

the Fermi surface {¢ = 0)3

=1 7 - -l_ ds’ 1|2 )
Hkem0) = [ = 5 |8, (ke |28 ho /1) (4}

where

= EG) = (e - 17 (L + e B Ern(x) [l - £°(x)]

incorporataes the temperature—dependence through the equilibrium Fermi and
Bose functions £° and n; note that f{(x) f£alls off exponentially for large

X+ For quasiparticles off the Fermi surface the relaxation rate
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1:-!l {ﬁ,e) is slightly more complicated than {4). Tor the measurements done
in aluminumg the approvriate quantity 1s the average of T-I(K,E} over energies

4,10

near the Fermi level, as discussed in a number of places, and that is simply

-c-r'l(;]:: = f de (= ?—%:E-E-l} ! (E,a]

=-1~i2-1'1(§,e= 0} {5)

ralated to the value at the Fermi level. Later we compare experimental

measurements with -f-'l‘“l {"E}}, {5), rather than (4}.

One further point mu=r be dizcussed here. For very low temperatures
the sccupation factors £(x) restrict important comtributions te the in-
tegral in (4) to the immediate vicinity of k (i.e. [K' - ¥| << k).

The result is chat, for any fixed inregration mesh, the sumerical sum
intended to represent {4) approaches zero exponentially [exp(~ ¢/T)],

rather than algebraically (T?) as does the exact integral {4), iIn the

ligit T + 0. However the exact low-temperature limit may be calculated

by writing the surface integral in plane polar coordinates

*

ds§' + q dq do (T + O

and observing cthe asymptotic form

lg &.k'|2
1im g lim - @3 =649 , (6)
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(this independence of Gﬂ on q will be demonstrated explicicly later) which

perwits the integrals to factorize. It 1s then elementary to show that

lim ., 2.104 2w
[ {t; € =0} = =——— (K T)3 J dg G_(8) cTi(p ?
T+0 nﬂﬁ“|$| *p ) g ¢(® G5 (8, (7

' 14
where CU{B} 1s defined by q+E mqagﬂ) = q CU{H]. The angular integral may he

done numerically, to provide the exact T¥-coefficient for the low-
temperature limit. This procedure will be discuszsed further fn sec. 11,
along with many other details of the computations. The results of the

calculations of bath X and 171 sre given in sec, III.

11. The Caleculations.

In this gecrion we describa the merthod uszed to perform the Fermi
surface integrations tequired in (2), (4), and (7}, and we discuss the
caleulation of the nacessary ingredients in the integrands. The inte-
gration mesh is shown om Fig. 1. 1Lt consists of 1294 points: 873 on the
gecond zone hole surface, and 421 on the third zome eleccron surface.

The mesh-point-density is greatest near the zone edges, where rhe curvarure
is high; the density was chosen to satisfy a criterion based on the electron-
phonon matrix element variation {to be discussed later). It is apparent

that the density is sufficient to represent the Fermi surface shape ade-
quately. The points are lecated, and the wavefunctions are calculated by
means of Ashereft's four-OPW model. This model provides an excellent £it

t¢ the actual Fermi surface shape,ﬁ and we believe that it gives the wave-

functions to a sufficiently high lewel of accuracy that they are not a



i

e A A

limiting factor in the overall accuracy of the ealeuwlation.

For each mesh point, we calculate the a2lement of purface area and the

-+ -
velocity v = 4h lﬁks. These are then used to evaluate three surface inteprals
of interest, twe of which are related to the "speeific heat™ and "optical”

gffective mas=es, as shown in Tshle E.

The matrix elements {3) requirad for the quasiparticle properties are
caleulated using the 4-0PW wavefunctions of the Asheyoft model, and a phonoen
spectrum derived from a Born-von Karman force constant fit to neutron data.
The rationale for using the gimple 4-0PW model for the matrix elements is as
follows: TFirst, we recall that Ashcroft's model is empirical, in the sensa
that the weasured Fermi surface dimensions are used to infer the band gaps
V(G). These band gaps are the values of the electron-ion ferm factor at
the reciprocal lattice podlnts 8 = [112] and ¢ - [200]. The form facter
represents the electron—ion pseudopotential operator ¥ —— the zame ¥V which
occurs in the electron-phonon matrix elewments (3. For consistency, then,
the matrix elements should be calculated from a pseuvdopotentizal which
"reproduces" Ashcrofr's empirical band gaps, and from ihe same 4-0PW wave-

funccions vesed in their determination.

In connection with the cheoice of form factor, we should point out that
thae usual Asherofs formllis uged, but with the ionic core parameter Ec set

at 0.61 ﬂ, rather trhan the 0.59 £ quoted in ref.1l1. Thiz choice is necesgary




in order to fit the empirical band gaps; it fits ¥, essentially exactly and

]
overcstimates ?ﬁ by 13%. Tn contrast, the choice Rt = 0,60 X underescimaces
?] setiously (~35%), while Rc = 0,62 L overestimaces boch vl and vz.
We have studied extensively the variation of the guantity GU{E,E')
z mqa-1|gufﬁ,i']]2 {the intepgrand of i, see egn. 2) over the Fermi surface,
particularly in the vicinity of ridges. Through this study we developed the
crirterion for mesh density that the quantity GG[K.E'} should vary by no more
than 102 under the displacement of its arguments by a single interval in any
directicon. This criterion supplements the more subjective one that the mesh
accurately represent the Fermi svrface shape. As a result, there are relatively
emall yegione, near the centars of ridges, where the 10% criterion becomes the
determining factor for mesh dengity. The highest density f& required near
the narrow rtidge which (on the second 2one surfaca} joins the hexagomal and
square regions, We csll this the ™V, -ridge" since it is determined by the

samllex of the two band gaps, V. = V(G=[111]). The wider "‘Jz—ridge“

1
(?2 = ¥(¢=[200]) joins two hexagonal regiona of the 2nd zone, and requires
mesh-density only slightly greater than that used in free-electron (1-OPW)
reglons near L and X, The third z2one azrms of the Fermi surface consist

largely of ridges, and therefore they require dense mesh everywhere; as a

result, the third zeas accounts for roughly one-third of the total number of

mesh peints {see Fig. 2}.

Althoowgh the l0Z-criterion is important only near the ridges, it is
still responsible for the large number of wesh points, because so many of

them {about two-thirds of rhe total number} occur near ridges. The mesh



plctured in Figs, 1 and 2 is ulcimately a compromise betwagn accuracy
{(10Z~criterion}, computer run-time (to computs X at a single point vequires

about 3000 sec), and program cumbersomness (the mesh consists of seven

separate reglons — three on the second zone and four on the third zoned.

How we return to the point raised at the copclusion of sec. T - the
problem of caleulating T-l at very low temperatures. When typical thermally-
occupied phonon wavevectors are comparable with or smaller than the mesh-
point separations, the strict mesh-summation no longer represents the in-
tegral (3). However, in the low-temperature limit, 'r_1 depends only on the
gradients of the mixing coefficients {evaluatéﬂ at the initial point ﬁ},
and on the direcrional sound velocities Cu{ﬂ}. These gradients may be
evaluated with the use of the mesh points neighboring the initial state,

1

and go the caleulation is relatively siwple., The actusal expression for T

in the low-temperature limit may be derived by expandineg rhe matrix element

in (3):
Ivje ~wlb=e .t © ap'dliuovad i), ®
i | qs Qs L. %3 b { i L i M
i=1 j=1
where @, and Ej are the mixing coefficients of the 4-0FW staces, e.g.
5 - & -+ T ey r
Ik? - iEI uilﬁ—ﬁi% . and V{p) = fqlv|q+ p3 is the matrix element of the

! e
{local) pseudopotential V between single-0PH states |E4;} and g%
In the limit ¥'5¥ we are of course considering an fintraband process, so

that uj and Bj have the same functicnal form uj(ﬁ}, and



- 10 -

B, (k') = ujqih + kK va &) . (9)

j

Retaining only the lowest order terms in the phonon wavevector q = k-k'

we end up with (heglecting the 3V {p}/op tErmlzj

L TE" n 5 m . i |
2 <k 2., vk 2o [a vio} +1Ej Ay 1 v, Ejjj , {10a)
where

- P & *

ﬁij = {Gi—Gj} (ui?quj - ajvqui P {10b)

+
and ?q is the component of the gradient (in irspace] in the g-direction.

We may now ingert (10} inte (3), and use = q Cﬂ(ﬁ} to write

=0 mqa

1 -+ - 1 - -~ 2
Dot Glok) =—— e s TAvwe + & kA, vEe~epT* , an
20C, {q) i<]
{Recall Gﬁ(ﬁ.i') = mqa-l [gﬂ(ﬁ;i']|2 .3 which depends on the direction of ;

and not on its magnitude, as rclaimed in {6).

How the form {11} is walid for points %' inside the element of surface
area associated wich the initial point t, and so we may calculate their

contribucion T -I(E} to the incegral (4) for T-lfi) to very good accuracy,

inic
in a4 manner analopous to the derivation of the zero-temperature limit (7).
The difference is that the radial integral (dq) is now truncated at the

surface-elenent boundary q(8), and does not extend to infinity as in (7}.

-1 2 2W2y-l . [ U,
Tipte (Re€=0} = (mn[v]) k [ d8G, (83 C_(0) [ qdg £ the e T, (12)
a =
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The radial integral way still of course be dome analytically, and then the
angular integral done numerfcally. As a result of the truncation gq(6), the

"I(i} is accurate for all temperatures, and this guarantees

contyibution Tinit

that the total scattering rate

.
T*I{ﬁ,e-ﬂ) - tinizl (k,e=0) + (sum over all other mesh points x') flj}

is sccurate both at zero temperature (where r-l = Tinit_l are both equal to {7)}
and at higher temperatures where typical phenon wavevectors are sufficiently
large that rhe mesh provides adequate angular resolution. The exprezaion {13)
may not be accurate for some intermediate temperature interval, depending on
the mesh density near E. Evaluating t-l at 5K intervals, we find apparent
winor less of accuracy only at 5 K, occuring atc some of the Fermi surface

points.

IIT. The Results,

Efifective Masc Enhancomenrs.

Wa first present results for the affective mass enhancement 1, since it is
the simpler guantity to talk about. A is plotted in Fig, 3 as a function of
position ¥ on the Fermi surface, for orbits indicated on Figs., 1 and 2. Hote
that the values 0.37-0.42 are characteristic of free-electron-like regions,
and that localized deviatioms from this range of values oecur on the ridges.
On the pecond-zone ridges the deviatlon 1s an increase; on third-zone ridges
{near the principal section) it is a decrease, HNear the third-zone neck the
situation is more complicated and A is wmtypically large everywhere. Qur
interpretation of the behavior eaverywhere except near the neck is that the

localized deviatlons arise from changes in the electronic mixing coefficiencs.
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This is evidenced both by the localization te the ridges (the mixing co-
efficients are the only important quantities in {2} which vary on such a short
scale), and by the antisymmetry between zones. The antisymmetry may be under-
atood by first noting that near a given ridge, and s;EEiciently far away from
the third-zone neck region, twe of the four mixing coefficients are dominant
in the wavefunctions. It follows that the product of the two dominant mixing
coefficients on, say, a second zone ridge, has the opposite sipn from the
corresponding product on the third zone ridge. &s a result, typical squared
matrixz elements in {3} exhibir opposite interference effects in the two zones,

and these appear to be largely responsible for the loczlized deviations

in A.

In addition to these ridge-localized variarions, there are also longer-
range variations: A Iz somewhart larger in the vicinicy of X (the square region)
that it is near L {the hexagonal region) on the second-zone surface. On the
third=zone surface A tends to become larger as one moves toward the neck
region. These long-range variations seem to be related to the amount of
umklapp scactering which can occur, from the ragion in question. The X-ragion
of the zacond zome generally 1liesz closer to a zone boundary than does the 1-
region, and so unklapp processes are available ar smaller wavevecter from the
¥-region. The entire thirvd-zone Fexmi surface lies near zone boundaries,
but the neck region is nestled in the zone corner, and achieves near-comtact
with the gecond-zone surface. Sco it is not unaatural that the largest values... -~

of A should occur there.
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The results shown in Fig. 3 agree quite well with those of Laung
{ref. 7). As pointed ocut by him, the contrasting behavior between second
and third zones {in the short-range variationa) is not obtained in a single-
OPW calculatien, as done for example by Leavens and ﬂarhutte.a Tha long-range
variations, at least on the second zone, do seem to emerge correctly from such
a treatment. This partial agreement between single-OPW and oulti-OPW calculations
ie consistent with our intexrpretation of ghort and long-range variationsz ag

2-0PY and unklapp effects, respectively,

In Table II we compare certain calculated orbital averages of & with
those inferred from cyclotrom rescnance data. It is pleasing that the variacions
in A becween different third=-zone orbits are in agreement. In Table III, we
compare point—values of & with those calculaced by Leung, and measured by
Dpezema and Wegehaupt using the surface-Landau-level {(S5LL) method. The two
calculations agree, but the measured values are conslstenctiy larger. Hotae,
however, that the 5LL values are alsc larger than the measured orbitazl averages

(Table II). We cannot account for this discrepancy.

Eelaxation Rates.

HWe are interested in the scattering rate T-l as a fenctlon of both i
and temperacure T. Anticipating a T3-d&penden¢g in free-elactron regions, we
plot 3573 22 a function of T (Fig. 4), for several points on the second-zcme
gurface indiecated on Fig. 1. At very low temperatures the anisotropy is huge.
Inn free-slectron regfions there is an inikial T3-hghavinr which is augmented
above a certain threshhald by umklapp scatcering. TIo show this we compare

(Fig. 4¢) the total scactering racs for points E in the hexsponal repionm, with
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that contribution which ariszes from scattering only to other states % in the

same hexagonal region {to eliminate umklapp). MHote that the .mklapp cnset
temperature iz reduced ag the peint & moves cutward from the center (L} to-

wvatd the zone boundazry {K). Finally, as one approaches the ridge (Fig.4a), there is
lenger a well-defined umklapp threshhold (the distinccion between "normal" and
"unklapp" is net always possible when 2-0PW states are invelved}; the quantity

T~1 T-3 starts out large and falls monotonically with increasing temperature.

1.3

s -— -—
Viewed as a4 functiom ef k, T "T ” is sharply-peaked ar ridges for low tempe-

ratures., As the temperature lncreages, the peaks broaden and the anlsotropy
washes out, The washing-out is asccomplished by a reductlon of ‘I.'-lT'_3 near
ridges, accompanied by an increase in free-electron regions, Thisg view is

3 is plotted as a function of E, on the

demonstrated in Fig. 5, where T-IT-
principal {1106} orbit en the thirvd-2one arm. The absence of flatness in the
zero temperatfure plot reflects the abszence of completely free-electron character

in the wavefuncticons., It is not surprising that there iz no apparent umilapp

threshhold.

The magnituﬂéiuf T'lT'F3 are generally in good agreement with the measured
ones {Table I¥), particularly at tha free-electron points ¥ and L. Interestingly,
the calculated 3d-zone orbital average is nearly independent of temperature for
T<30 K, and quite close co the measured value. WNear the U-point, however, the
calculated temperature varilations are quite dramatic; the vaiue given in Table IV
repregents the.plateau which exists between 1D and 30 K at the U-point (see .also
1 -3

Fig. 4b). The experimental value may reflect the smeller values of T T

-,
predistad below 10 K, as well as at neiphboring k-points {Fig. 4b}. A further
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possibility is rhat the experimental wvalue results from the U'-point on the
3rd zone (the point indicated on the (110)- orbit of Fig. 5, at which the
surface-normal is z-~directed}. The calculated values range between 2.2 and

lx_a, vhich are closer to the messured valus of 3.1, Howsver,

2.9 x 107 sec”
the caleulatad A-value at U' is 0.35 (Fig. 3e)}, and thus in poorer agreement
with the measured one {Table III), which makes this identification appear an
unlikely possibility. '

It would be interesting to confirm the predicted deviations from T3
behavicr. The mogst clear and esgily-interpreced onea occcur on the second-
zone between L and K, as shown on Fig. 4a, The iwspace variatlons are smeother

near the ?Zuridges than near the V. -ridges because the former have less

1
curvaturs {?2 4" 3?1].

1.-3

In a2 few of the T T ° plots (Figs. 4b, ¢) there ia a noticeable dip at
5%, which results from the graininess of the mesh. Where it exists, the dip

is small and there is nevertheless possible a smeoth incerpolation between

T=0 and the T210K polnts, With a finer mesh, the dip would cccur at lower Cem—
peratures and be less pronounced. BRecanse of practical calculational conslder-
atdens, coupled with the 1limited availability of liferime data, such an efifert

seems unwarranted at the pregenr time,

I¥. Concluding Remarks.

The values of the effective masz enhancements calculated here are con-
sistent with those calculated previcusly by Leung,? even though the two

calculacions differ in their detsiled treatment of electronic structure and in
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thair methods of Fermi surface integration. The calenlated anlsotropy exhibites

the game trends found in both the surface-Landan-level data and cyclotron
resonance data, even though the actunal magnitudes of A inferred from the two

gets of dats appear to be inconsistent with one other .(as discussed in the previous
section). The calculatad vwaluez agree more closely with the cyclotron mass de-
terminations. We have not calculated the entire Fermi surfsce average of A
required for comparison with the specific heat data, but Leung claims to have

found fairly good agreement there.lg

The agfeement between measured and calculated scatterdng rates is pleasing.
Agreement is particularly good at the X and L poincs, where bacause of the free-
electron character of the wavefunctlons, the Ta—cuefficient depends on the form
facter only at zero wavevector., Because of this it is not surprising that the
coefficients are nearly the same at these two points. For the third zone (118)-
orbital averags, where T-l is nearly cubic in cemperature, the agreement is guite
good. There isg a factor of twe discrepancy, however, with the mezasured T3—
coefficient identified with the second-zone point Uy Owing to the rapid variations
of T_]'Tq3 with both T and % near this point, as well as the possible {but
unlikely) confusion with the similar point U' on the third zone, one should perhaﬁs
not expect vary clase agreement for the U-peint. Finally, the interpretation of
data at such polnts would be facilitated if the predicted deviations from T3-
behavior were abserved. Such chservations would provide a stringent test of the
theory, and, in particular, of the use of simple elactronic structure for treating

the elactron—-phonon interaction.
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i Table Capeions

1. Listed are our computed values of surface integrals representing the
"specific heat"™ and “opticel" effective masses, and the Fermi surface area.

The free electron velocity v, and surface area 5, are glven {or rveference,.

2, For extremal orbits lying in the designated planes we list the "apparenc™
mass enhancement, which is calculated by comparing the measured cyclotrom
mass with the value calculated without enhancement {i.e. "band" mass) as

indicated, and the orbital mass enhancement calculated here,

3, “Point" values of A, measured by the surface-Landan-level method, are
compared with twe sets of calgculaced values.

lT-3

4. Lizted for comparison are the calculated and measured walues of T
at three points on the second-zona surface, and averaged over the {110}
extremal orbit (Fig. 5) of the third-zone arm. Theoretical values are taken
for definiteness at zere teuperature, except for the U-point, where instead

the approximate plateau value characteristic of the temperaturs incerval

10-30 K is recorded.
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Table T,

surface integral ¢°:§:Ezﬂ
n v
- Jﬂ 0. 986
mn 5 -
o ‘vl
5! |as 0.79
o .
B = 8y J_JJ asv| 0.67
o0
apt
r

free—elecryon quantitiag:

v, = 2.02 x 10° co/sec

= -2
5, = 38.5 -




Table II.

mTfn Ap
| 1 { 1
messured band
cycloteon apparent calculated
orbit T mass
effective (AsheToft) enhancement enhancement
mass
Zone 2
{1107 1,20 0.871 0. 38 0.42
{111} 1.2%9 0.%5 0. 36 0.42
Zone 13
(110) 0.130 0.095 0. 37 0.38
(001> i 0.73 0,495 0. 47 0. 644
neck ] 0.051 0.06405 0.50 D.48
_ . meas, band band 1 dk 1 EA_T
*¢ J.I,—-m[. fmr -1 , vhere m fm-;} 5 - 9

P a3
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Table III.

Fffective mass enhancements

calculated

meagured {ref.9) | Leung (ref.7) present !

0.4% 0.41 0,42
.49 0.39 Q.37
0.65 0.44 0,47

™
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Table IV.
lp3 {10? gec” ) K_i}
calculated {eqn. 5) measured
Zone 2 a
X 0.40 0,41
L 0.38 0.39
(4 6.0 3.1
Zone 3 b
{11{) 5.0 {to 5.5) 8.0
extremal
orkit
|

a, ref. 9: surface-Landau-lavals

b. Tef. 2: Azbel'-Kaner eyelotron resonance
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Figure Capticns

la.) Second-zone Fermi surface.

1b.) Second and third-zeone Fermi surface sheets shown together, The 1748 th
minimum symmetry element iz shown for the second zone: the third zeone
consigrs of three such sets of arams, l

1le.) Second-zone nesh sheown in detail. Certain Fermi surface points are
names after correspanding points of high symmetry in the zone. The
peint U is defined 2o that its normal is %-diracted, to eﬁable later
conparizen with experiment, Unnamed points, indicated by docs, wiil
aleo be referred to later.

2a. and b.) Two views of the minimum symmet;y element of the third-zone
surface. 1 and T_l are later calculated along the indicated line
gepmenta.

3a.) Our computed values of A shown along the two line segments KL and LUX
indicated on Fig. lc, which together comprise the {110) orbit on the
second zone surface.

3b.) Plot of } along segment XWK, or (100} orbit on secoud zone surface. Hote
the discontinpity at the contact point, which arises from the discon-
tinuity in the mixing coefficients.

3c.) Plot of } along line segments indicated.(Fig. 2) on the third-zone
surface.

4a.) Plots of T-lT'a as functions of temperature for points aleong second-
zone segment KL, indicated on Fig., Lle... Plots, correspond in increasing
order to points encountered as one moves from L to K.

3

4b.) Flotz of 1-1T' for points along segment LUX (again see Fig. lc.)
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4ol Uﬁklapp effect for point [ and thé point app;nximately midway between
L and K. ¥For each poaint, the leower part of rhe plet ¢orresponds to the
regtriction of the integration (2) to the haxagonal face.

5.) -Plots of -r_lT-a versus arclength on the (110)-orbit of the third-zone .
arm (Fig. 2), for several valuas of the temperature.

533 The orbital averzge of T-IT_3 as a function of T, for the arbit of Fig. 5. -

The zero-temperasture value is recorded in Table IV,
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Figure lc.
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