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FOREWORD

This report summarizes early progress in the Argonne National Laboratory
program in modeling erosion in fluidized beds. Unfortunately, during subsequent progress
in the program, the report's preparation and production was delayed. Since the initial
drafts were written, both the hydrodynamie model and the monolayer energy dissipation
(MED) model developed herein have been significantly improved. Although many of the
conclusions presented here remain valid, the authors advise that readers note the above
caveat when examining the results of the hydrodynamic computations and the MED and
Finnie erosion models contained herein.
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COMPUTER MODELING OF EROSION IN FLUIDIZED BEDS

by
R.W. Lycezkowski, J.X. Bouillard, D. Gidaspow, and G.F. Berry

ABSTRACT

Erosion in fluidized-bed combustors, which comprises a near-
commercial method of burning coal cleanly, has surfaced as a serious
issue that may have adverse economic effects. The evidence suggests
that the key to understanding this erosion is detailed knowledge of the
coupled and complex phenomena of solids circulation and bubble
motion. The FLUFIX computer code has been developed for this
purpose. Computed hydrodynamic results compare well with limited
experimental data (including the bubble frequency and size and the
time-averaged porosity distribution) taken in a thin two-dimensional
rectangular fluidized bed containing a rectangular obstacle. Six
erosion models, which form a preliminary consolidation, are critiqued;
a methodology is deseribed whereby the computed hydrodynamie
results can be used with these erosion models. All previous attempts
(none involving fluidized beds) to couple fluid mechanies and erosion
models are reviewed. Both transient and time-averaged energy dissi-
pation models are developed, and shown to generalize the so-called
power dissipation model used successfully to analyze slurry jet pump
erosion. It is demonstrated, by explicitly introducing the force of the
particle on the eroding material surface, that impaction and abrasive
erosion mechanisms are basically the same. Linkage is made to the
single-particle erosion models. The implementation and finite-dif-
ference equations are summarized. Finally, transient, time-averaged,
and time-averaged transient energy dissipations for the energy
dissipation and Finnie erosion models are compared. The computed
erosion rates are compared with each other and with available erosion
data literature to validate the calculations. The results are
reasonable, but a single-obstacle erosion experiment is necessary, to
validate the computations.

1 INTRODUCTION

1.1 FLUIDIZED-BED COMBUSTORS

Fluidized-bed combustors (FBCs) are being developed as a means of burning high-
sulfur coal in an environmentally acceptable manner. Atmospheric fluidized-bed
combustors (AFBCs) are already enjoying some success in the industrial marketplace as a



highly competitive technology for producing heat and process steam while meeting
stringent pollutant emission regulations. Pressurized fluidized-bed combustors (PFBCs)
at 10-16 atm (1.01-1.62 MPa) for use in combined-cycle electricity generation have
progressed to pilot-plant scale. Because PFBCs are more compact, provide better
environmental performance, and have higher thermal efficiency than AFBCs, the former
may be used more successfully for power generation.

Erlic:h1 has reviewed the substantial progress made in FBC technology since
1970, when the Clean Air Act was passed by the U.S. Congress. Fluidized-bed
combustion had been the sul%ject of research on a small seale from the early 1970s in the
U.S., as well as in England. -4 (The concept and usage of fluidized beds, however, goes
back to the 1920s-t0-1930s.°**) The environmental benefits that attracted interest in
the 1970s were (1) the reduced nitrogen oxides (NOX) emissions made possible by lower
(800-900°C) coal combustion temperatures and (2) up to 90% S0, capture using limestone
directly in the fluidized bed.” Because of the lower combustion temperatures, the ash is
below its sintering or melting point and little or no alkali metal vaporization occurs.
Thus, buildup of clinkers and undesirable deposits on the tubes immersed within the
fluidized bed, on the waterwalls containing the bed, and downstream in the convection
pass tube banks is minimized.

The U.S. oil embargo in 1973 further stimulated interest in FBC technology
development.‘l’6 With the effects of acid rain apparently accelerating -- including the
death of large portions of forests and of all animal life in many lakes and ponds in Europe
and now in the U.S. -~ FBC technology seems certain to attract increased interest.

In 1969, the U.S. Environmental Protection Agency (EPA) began exchanging
information with the National Coal Board (NCB) in England.”’ Close cooperation
continues to this day at the Grimethorpe Experimental PFBC Facility in England. This
project, which started in 1975, was funded equally by England, the Federal Republic of
Germany, and the United States under the auspices of the International Energy Agency
(IEA). An overall project review has been issued recently.

The Tennessee Valley Authority (TVA) and the Electric Power Research Institute
(EPRI) have operated a 20-MW(ei AFBC since 1982 and are proceeding with plans for a
160-MW(e) demonstration plant. Krishnan et al.” have recently reviewed U.S. FBC
technology. Erlich® points out that some 50 companies in 25 countries offer fluidized-
bed boilers for sale. These boilers range in size from 1 MW(t) to more than 100 MW(t),
and units up to 490 MW(t) in size are being designed. Fluidized-bed combustion appears
to be destined for commercial success in the 1980s.™

1.2 THE EROSION ISSUE

Fluidized-bed combustors apperently work better than could have been
anticipated, a rather unusual situation for a new technology. However, the issue of
erosion has surfaced as a serious problem. Some thought was given to the erosion of
tubes in FBCs in 197 01; however, the general attitude held then was that erosion was not
a problem.8 In the few instances where erosion was noticed, it was localized and
appeared to be the result of unusual conditions that could be resolved by changes in



operating conditions and design modifications. The units were small and operated for
short periods of time, typically no more than 1000 h.

Most materials work on fluidized-bed combustion systems has been concerned
with corrosion of in-bed components or with combined erosion-corrosion of gas turbine
blading materials, because the latter groblems were thought to be more severe than
erosion of in-bed components. Stringer® argued that, given the existing erosion criteria,
one would conclude that erosion should not be a problem in fluidized beds under "normal"
conditions.

As more FBC units of large scale have accumulated substantial numbers of
operating hours, more instances of general, rather than localized erosion have been
encountered. For instance, severe wear on in-bed tubes was reported by the
International Energy Agency/Grimethorpe (IEA/G) PFBC facility in 1982, The
maximum tube wall metal wastage after 468-h operation was 1.2 mm, which is more than
50% of the 2-mm minimum thickness considered acceptable for safe operation. This
translates into an erosion rate of 2.5 mm/1000 h. Because the tube walls are only 4.5 %
0.5 mm thick, failures would begin to ocecur in less than 2000 h (about two months) of
continuous operation. Intensive, short-term investigations at a number of institutions
under contract to IEA/G resulted in the recommendation of design changes (lower
fluidizing velocity, fins on tubes, etc.) that achieved partial mitigation of the wear and
allowed the test program to be continued.

Several tube failures actually occurred in a 16-MW(t) AFBC after approximately
4000 h of service.10 The initial tube wall thickness was 4.2 mm; hence, the average
erosion rate was 1 mm/1000 h. In China, where more than 2000 FBC boilers are in
operation, FBC boiler developers report excessive erosion rates, 1.3 mm/1000 h, of in-bed
tube surfaces, probably resulting from the use of low grade Chinese coals of high ash
content. In-bed tubes in China are partially protected from excessive erosion through
the use of fins and studs, which break up solids flow patterns around the tubes. These
measures have not been completely successful in eliminating tube wear, but they may
extend tube life by a factor of almost 20. Tube bank lifetimes of 100,000-160,000 h (10~
15 y) are not yet possible.

Other FBCs, such as the 1.81 m x 1.81 m, approximately 2-MW(e) Babcock &
Wilcox (B&W)-EPRI research AFBC at Alliance, Ohio, and the overbed feed 3.6 m x
5.5 m, 20-MW(e) TVA-EPRI pilot plant AFBC at Paducah, Kentucky, apparently have
operated for thousands of hours without showing any appreciable evidence of erosion.””’
The B&W facility did experience severe bundle damage when a deflector plate was lost,
and the TVA/EPRI facility experienced erosion in the underbed feed system.

Circulating fluidized-bed combustors (CFBCs) eliminate in-bed tubes and rely on
vertical water walls to remove heat. Refractory lining is required on the walls of the hot
cyclones to prevent erosion. Bubbling FBCs (BFBCs), rather than CFBCs, are of primary
interest in this report. However, the methodologies and models developed are general
and would be applicable to CFBCs, as well as to both AFBCs and PFBCs and other in-bed
and out-of-bed components (such as fuel feed-nozzles, waterwalls, and the gas-pass
boiling bank, where erosion has also been found to occur).”’** The Georgetown AFBC
had 452 of its 980 gas pass boiling bank tubes replaced affer 13,636 h of operation, as a



result of severe erosion. Hereafter, where reference is made to FBCs, it is to be
understood that they are BFBCs.

Erosive wear of materials is known to be controlled by several complex
phenomena that influence the erosion behavior of heat-exchanger tubes and support
hangers in FBCs. Among these phenomena are (1) the feedstock characteristics, such as
chemical composition, particle size and size distribution, and hardness; (2) the operating
conditions, such as fluidizing veloeity, temperature, and pressure; and (3) the mechanical
design of the combustor, including the diameter and piteh of tubes within tube bundles,
distance from the air distributor and coal and limestone introduetion points, and
materials of construction for tubes and support hangers. The complex interaction of
these variables determines the nature and quality of fluidization (slugging vs. smooth),
the combustion gas composition, the possible formation of protective deposits or
excessive corrosion, and, finally, the rate of erosion.

Stringer and Wrigh‘cg’l2 have indicated that a number of additional erosion
mechanisms may operate in FBCs, although not at all times or in all units. These
mechanisms include:

e Particles "loaded" onto the surface by a block of other particles.

Fast-moving particles in the wake of rising bubbles.
e Large, but slow-moving, particles with high kinetic energy.
e Particles thrown onto metal surfaces by the collapsing of bubbles.

e Particles accelerated onto in-bed components under the influence of
in-bed jets associated with coal and limestone feedports, limestone
recirculation ports, and air streams used to keep bed drains clear of
obstructions.

e Particles trapped within and moving with large-scale flow patterns
(gulf streams) in the fluidized bed.

In summary, it is not possible at present to explain why some fluidized beds or
bed regions experience rapid erosion and others do not. Consequently, it is not possible
to suggest completely satisfactory remedies or design a fluidized bed for which it is
known that erosion would not be a problem. The ad hoe approaches mentioned above are
unlikely to succeed in the long term without a better understanding of the underlying
processes.8 One of the major objectives of this study is to improve that understanding.



2 MODELING OF FLUIDIZED-BED SOLIDS MOTION

The key to understanding erosion in fluidized beds is a detailed knowledge of the
coupled and complex solids circulation and bubble motion. Much experimental work in
gas—solid13 and gas~1iquid—solid14 fluidized beds has been carried out during the last 30
years. The aim of that work has been to understand bubble formation, frequency, size,
and veloeity and the manner in which the bubbles affect the mechanisms of mixing, heat
transfer, gasification, and combustion. Not until quite recently, with the emergence of
the erosion issue, has equivalent experimental work been done to investigate the effects
of these phenomena on erosion. 1 Therefore, much less is known about how solid
particles actually move and interact with system components, in FBC bubbling beds!6
than in beds that do not contain such components.

Because of experimental difficulties, solids motion studies are not common.
Motion-picture and photographic techniques have been used in conjunction with thin
"two-dimensional” fluidized beds, beds that are much less thick than wide. This
approach is both tedious and time-consuming. The uncertainties in determining the
particle veloeity have been reduced by the "quasistereoscopic" technique, which has a
claimed accuracy within +2.4 mm/s.18 Miniature, transistorized "radio pills" with in-bed
pickups have been used,”” but the size and density of the pill are not the same as those
of the bed material, and the pickups may alter the flow field. Fiber-optic probes have
been used, but they too are intrusive and may significantly alter the flow field. A
novel nonintrusive, radioactively-tagging facility, the Computer Aided Particle Tracking
Facility (CAPTF), has been used to obtain time-averaged solids circulation data in
fluidized beds, both with and without immersed tubes.21’

Understanding of how bubbles interact with solid surfaces within fluidized beds is
almost nonexistent. These surfaces may take the form of instrument probes used to
detect the bubbles themselves and, in the case of fluidized-bed combustors, heat-
exchanger tubes and baffles placed in the bed, in the free-board, or both.24’

State-of-the-art computational techniques and improved computing capability
have made it possible to model the movement of solids and bubbles in FBCs. Significant
progress has been demonstrated in the ability of the hydrodynamic model of fluidization
to prediet bubble formation (ineluding frequency of formation, growth rate, size,
trajectory, rise velocity, and conditions giving rise to bubble splitting). Just as
importantly, solids volume fraction and gas velocity computations also have been
performed.

The hydrodynamic approach to fluidization, which started with Davidson in
1961,26 serves as the basis of the three extant two-dimensional fluidized-bed codes:
CHEMFLUB, FLAG, and IIT (also called FLUFIX). The capabilities of these codes were
reviewed by Smoot®’ and Gidaspow.28 The progress made in the last ten years of
modeling a small-scale, highly instrumented, "two-dimensional" fluidized bed at the
Illinois Institute of Technology (IIT), using the FLUFIX computer code, has served in
great part to validate the hydrodynamic model.“Y" This progress has been reviewed
recently by Gidaspow.



The FLUFIX computations and validations cited above were performed for
fluidized beds containing no obstacles, but the capability exists for including obstacles.
Therefore, a model of fluidization in a two-dimensional rectangular bed with a central
jet and a rectangular obstacle was formulated, and computations were performed.35
This section presents a summary of the hydrodynamie model, the computations, and a
comparison with the experimental results. The validated hydrodynamic computations are
needed as inputs to the various erosion models deseribed in this report.

2.1 HYDRODYNAMIC MODEL

The hydrodynamic model of fluidization uses the principles of conservation of
mass, momentum, and energy. The continuity equations and the separate phase
momentum equations for two-dimensional, transient, isothermal two-phase flow in
Cartesian coordinates, which form the basis of the FLUFIX code, are given below (terms
are defined in the Nomenclature at the end of this report):

Gas Phase Continuity

3 3 3 =
Ty (Oge) * 5 (e pgug) + 3y (e pgvg) 0 (2.1)

Solid Phase Continuity

(1= )] + o U (=) + & [0 (1 - e] =0 (2.2)

Gas Phase Momentum in x-Direction

9 3 3
e 4] + — Uu + — VU
5T (pg € g) = (pg e U g) 7y (pg e Vg g)
(2.3)
- _. 8P -
= -e 33 + SX(Us Ug)
Solid Phase Momentum in x-Direction
2 (e (L-e) U]+ [o(l-e)UU]+2[o(l-e)VU]-=
3t s s 3x “"s s s 3y s ) (2.4)

3P de
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Gas Phase Momentum in y-Direction

2 3 3
a_ vy + Uv )+ VV) =
e (Og € g) Y (pge gg) 3y (pge gg) @2.5)
3P
-g — + B (V -V) -
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Solid Phase Momentum in y-Direction

9 3 3 _
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3P de
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The solids elastic modulus, G(e), is used to calculate the normal component of
the solids stress through the following relationships:
At = % 3e = G(e)ae (2.7)
which is similar to what is done in solid mechanics. Equations 2.1-2.6 are used in See. 5.2
to derive the energy dissipation model.

There are six nonlinear, coupled, partial differential equations for the six
dependent variables to be computed: the void fraction, ¢; the pressure, P; and the gas
velocity components U, and V_ and the solids velocity components US and Vg in the x-
and y-directions, respectively. The equations are written in a form similar to that used
in the K-FIX computer code, from which FLUFIX has been developed.36 Stresses
associated with gas and solids viscosities have been deleted; Rivard and Torrey”’ found
that, for many applications, these terms are unimportant and significantly increase the
computational effort. The conservation equations in the FLUFIX code are solved in
conservation-law form in two-dimensional Cartesian and axisymmetric cylindrical
coordinates using the Implicit Multifield (IMF) numerical technique. Cartesian
coordinates were used in the present computations.

The treatment of the pressure gradient term in the gas and solid phase
momentum equations above results in an initial value problem that is ill-posed, as is
discussed in detail by Lyczkowski et a1.39 This situation leads to a conditionally stable
numerical solution. One way to overcome the problem is to retain a normal component
of solid phase stress, 1, sometimes associated with solid phase pressure or particle-to-
particle interactions, in the solid phase momentum (Egs. 2.4 and 2.6).

In addition to increasing stability, the primary computational function of the
solids stress term is to keep the bed from compacting below the defluidized or packed-
bed state of approximately 0.38-0.4 porosity. Any solids stress model that acecomplishes
this is adequate. The Rietma and Mutsers data?? used previouslyzgﬂg4 was found to be
inadequate for cases involving obstacles, because it resulted in overcompaction, and was



modified to overcome this shortcoming. A more subtle function of the solids stress term
(gained from computational experience) is that it affects the instantaneous bed interface
and bubble shapes and timing.

To place this term in perspective, we must consider the mechanisms of the
compaction of powders.” ™’ The motivation for the most generally satisfactory
expression is the experimental observation that plotting the logarithm of consolidating
pressure versus volume yields a substantially straight line for both metallic and
nonmetallic powders undergoing compaction. We used this simple theory to derive a
generalized solids elastic modulus coefficient, G(e), of the form

G(e) = G, exp [=c(e = e¥*)] (2.8)

where ¢ (the compaction modulus) is the slope of In G versus ¢, and ¢* is the compaction

gas volume fraction. The normalized units factor, Go’ has been taken to be 1.0 for

convenience. Considerable disagreement exists over the exact form of this
. . . . . . 4

relationship. Shimora has summarized 15 different expressions.

Equation 2.8 is a convenient and consistent expression with which to interpret
the physical significance of solids pressure data. We have converted the Rietma and
Mutsers data,4 as curve fit by Gidaspow and Ettehadieh;”“ the expression used by
Gidaspow and Syamlal for solids-gas eritical flow;43 and the expression we have been
using for hydrodynamics and erosion calculations for a fluidized bed containing an
obstacle”" into the form of Eq. 2.8, as shown in Table 1.

In the above analysis, G(¢) = 1.0 Pa when ¢ = ¢*., The Rietma and Mutsers model
is inappropriate to keep the bed from compacting, because the model was developed for
data taken at a much higher compaction porosity (0.62), and the compaction modulus is
very low. Porosities below 0.2 have resulted with this model. The Gidaspow and Syamlal
model, developed from solids-gas flow data through aerated hoppers, is appropriate at a
compaction porosity near minimum fluidization (0.422). The compaction modulus is
high because the particles are being compacted as they flow down through the hopper.
Our model has a somewhat higher compaction modulus and a lower compaction porosity,

TABLE 1 Solids Elastic Modulus Parameters

Reference c e¥ Model
Lyczkowski, Bouillard, and Gidaspow35 600 0.376 1
Gidaspow and Syam1a143 S00 0.422 2

Rietma and Mutsers32’40 20 0.62 3




more appropriate for a packed bed (0.376); this is necessary because of the greater
compaction resulting from solids striking the obstacle.

The other major empirical input in this cold bed model is the fluid—garticle drag
coefficient, 8. This coefficient, obtained from standard correlations,32’ 3 was used
unchanged for calculations involving an obstacle. Below a porosity of 0.8, g is given by
the Ergun equation; 5 above 0.8, it is given by Wen and Yu's expression.

2.2 REPRESENTATIVE COMPUTA-

TIONAL RESULTS AND COMPAR- (1,14) (33,14)
ISONS WITH DATA “DUMMY" Cells
(2,13) (32,13)

The Dbasiec configuration being
modeled is the same as that in a publication
by Gidaspow and Ettehadieh®2 (see Fig. 1).
The computational region is 19.685 cm wide
(x direction) by 58.44 em high (y direction).
The cell dimensions are Ax = 0.635 ¢m and 6 Cells
Ay = 4.87 cm, so that the number of compu-
tational cells is 31 in the x-direction and 12
in the y-direction, for a total of 372. In the

figure, the numbers in parentheses refer to Line of
Symmet
key cell ‘num.bers (I,d). Symmetry about the Y ry Initial Bed Height
central jet is assumed; hence, the actual /
bed width is 39.37 em. In %xéevious modeling 2,7) (32,7)

work without an obstacle,“® symmetry was

assumed, and agreement with data was 31 Cells

good. The jet half-width is 0.635 cm (one Ax = 0.635 cm

cell width). The jet velocity is 578 cm/s, 4y = 4.87 cm ""

and the secondary air velocity of 23.36 Obstacle T

em/s maintains the bed without a jet at 97d4cm o bis
minimum fluidization. The particle (2 Cells)

diameter is 503 um, and the density is 1.27 cm ‘i

2.61 g/cma. The obstacle is placed two (2 Cells) e

nodes above the jet and is two nodes wide

by two nodes high (1.27 em wide by 9.74 em

high). Because the initial bed height is Jot 172 Width = (2,2 (32,2)
29.22 cem (six cells high), the obstacle lies 0.635 cm J. “DUMMY” Cells
completely within the bed. Although this (1,1) (33,1)

configuration is not typical of FBC
geometries, it was selected because (1) it is FIGURE 1 FLUFIX Computational Mesh
similar to the model without the obstacle, for Coarse Mesh, Showing Obstacle

so that prior experience is relevant; and Location

(2) it serves to further validate the hydro-

dynamic model.
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The boundary conditions are described here. At the inlet (J =2), the axial gas
velocity is set equal to the experimentally determined minimum-fluidization superficial
veloeity, 26.0 cm/s. There are no solids entering, hence, the inlet porosity is set to 1.0.
The pressures in the dummy cells at the top (J = 14) are set equal to atmospheric
pressure (101.3 kPa), and Vg = 0 at the exit (J = 13); that is, wire mesh is simulated to
prevent solids carry-over. The pressures in the bottom row of dummy cells (J = 1) are set
equal to atmospheric pressure plus 1.2 times the total bed weight (105.5 kPa), to simulate
the distributor plate pressure drop measured in the experiment. On all solid surfaces
except the inlet, outlet, and line of symmetry, no-slip boundary conditions are used (i.e.,
normal and tangential velicities for each phase are set equal to zero).

Initially, the lateral gas velocity is zero, the axial gas velocity is equal to the
interstitial gas velocity at minimum fluidication, and the solids lateral and axial
velocities are zero. The bed porosity is uniform at 0.42. The initial pressure distribution
corresponds to the hydrostatic bed height. At time t greater than zero (0%), the gas flow
through the jet into cell (2,2) is increased to 578 cm/s. A fixed time step of 0.1 ms was
used. Typical running time on an IBM 3033 computer was about one hour for each second
of transient time in the simulation.

The computations were performed before high-speed (800 frames/second) motion
pictures were taken of a flow visualization experiment modified to include an obstacle.
This experiment is described in Ref. 31. A detailed schematic diagram of the plastic
two-dimensional fluidized bed is shown in Fig. 2. Figure 3 shows a still frame from this
motion picture at about 0.25 s into the transient (there is an uncertainty of about 0.02 s
in the time the jet was turned on), illustrating the formation of the first bubble. The
numbers above the white horizontal lines are the bed height in inches. The bed height
has increased from its initial value of 29.22 em (11.5 in.) to 35.6 em (14 in.) near the bed
center and to 33 em (13 in.) near the bed edge. The bubble height is between 25.4 and
30.5 em (10-12 in.), and the bubble width is between 5.08 and 10.16 ¢m (2-4 in.). Figure 4
shows a dot plot representation of the computed porosity distribution at 0.255 s. The
dots are distributed randomly throughout each computational cell. The densest shading
represents a packed-bed state (¢ ~ 0.4), and white represents all gas (¢ = 1.0). The right
side of Fig. 4 is a contour plot representation of the computed porosity distribution at
the same time. Comparing the dot and contour plot representations shows that the
perceived edge of the bubble is a contour of porosity, ¢, of about 0.7-0.8.

Comparison of Figs. 3 and 4 reveals generally good agreement. The predicted
size and location of this first bubble agree well with the experimental results, and the
expanded bed height and shape are approximately correct. The slight asymmetries
present in the experiment were not accounted for in the model. Hence, the formation of
a vortex street above the obstacle (which appears to sweep particles back and forth,
keeping them from piling up) is absent, and the computations show a solids buildup.

A computation utilizing a finer mesh was performed to obtain better resolution.
The number of computational cells in the x-direction was the same, but the number in
the y-direction was increased to 48 (Ay = 1.217 em). This change makes the cell aspect
ratio mueh closer to unity (Ay/Ax = 1.92) than is the case for the 31 x 12 node
computational mesh (Ay/Ax = 7.67). The agreement between the 31 x 12 node mesh and
the 31 x 48 node mesh computations is good, as can be seen by comparing Figs. 4 and 5.
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FIGURE 2 Detailed Schematic of the Two—Ditfxensional Cold Fluidized Bed with a
Rectangular Central Jet and Rectangular Obstacle

The expanded bed shape is in better agreement with the experiment and is also sharper,
indicating that the bed interface is resolved better with the finer mesh. Fine details,
such as the splash of solids against the bottom of the obstacle, are also resolved. The
price paid for the finer resolution is considerably longer computing time (approximately
10 times as much as required for the coarser mesh).

The solids velocity and porosity patterns at 0.255 s, plotted in Fig. 7, indicated
the existence of a vortex pattern in the wake of the rising bubble near the lower sides of
the obstacle. Also revealed is a larger general solids concentration pattern, induced by
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the rising bubble. Such solids motions give rise to the erosion of immersed heat
exchanger tubes in fluidized-bed combustors.

With the 31 x 48 node mesh, it is possible to resolve the angularity of the bubble
bottom. Figure 6 shows a still frame from the high-speed motion picture at about 0.11 s.
At this time the bed has barely expanded, and the size of the bubble is significantly less
than at 0.25 s, as shown in Fig. 3. The bed height is just over 30.5 ecm (12 in.). Figure 7
shows dot and contour plot representations of the computed porosity distributions at
0.13 s. Comparison of Fig. 7 with Fig. 6 reveals good agreement in terms of the bubble
size and the angle at the bottom of the bubble. The experimental angle is 42°; the
computed angle (solid line in Fig. 7), 36°, does not vary significantly over a +0.02-s time
span. The computed bed expansion is also in good agreement with experiment.

Comparative analysis of a computer-generated motion picture of the contour
plot representation of the computed porosity distribution and the high-speed motion
picture study reveals good agreement for the frequency of the bubble around the obstacle
(~4 Hz) and the higher-frequency, small bubble that forms under the obstacle (~10 Hz).
This smaller bubble can be seen under the obstacle in Figs. 3-5.

Figure 8 illustrates the computed
porosity fluctuations around the obstacle.
Locations 1 and 2 are below the obstacle,
locations 3 and 4 are on the side, and
locations 5 and 6 are on top of the obstacle.
The porosity amplitudes were not measured
and, hence, are not validated. We suspect
that the computed porosity amplitudes may
be somewaht low, because the porosities to
not approach 1.0 on the bottom and side of
the obstacle after the passage of the first
bubble. As can be seen in Fig. 8, the
porosity only approaches 0.7-0.85 after the
first bubble has passed (after 0.3 s).

Additional studies that modified the
form of the hydrodynamiec  model
momentum equations and the solids
stress. The conclusion reached is that
the computed bubbles do vary, but all are in
generally good agreement with the high-
speed motion picture study. This FIGURE 3 High-Speed Motion
agreement implies that the solids flow Pieture Still from a Two-
patterns are also reasonably correct, Dimensional Flow Visualization
although they were not measured at this  Experiment of a Fluidized Bed
time. Multiple experimental runs should be  with an Obstacle, Central Jet,
performed, so that the slightly different and Secondary Air Flow at
bubble patterns that result from random Minimum Fluidization
variations in initial conditions from run to  (time = 0.25 s)
run can be averaged out.
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FIGURE 4 Computer-Generated Porosity Distributions for
a Two-Dimensional Fluidized Bed with an Obstacle, Central
Jet, and Secondary Air at Minimum Fluidization at 0.255 s,

31 x 12 nodes

FIGURE 5 Computer-Generated
Porosity Distribution for a
Two-Dimensional Fluidized Bed
with an Obstacle, Central Jet,
and Secondary Air Flow at
Minimum Fluidization at §.255 s,
31 x 48 nodes

FIGURE 6 High-Speed Motion
Picture Still from a Two-
Dimensional Flow Visualization
Experiment of a Fluidized Bed
with an Obstacle, Central Jet,
and Secondary Air at Minimum
Fluidization (time = 0.105 s)
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FIGURE 7 Computer-Generated Porosity Distributions for a
Two-Dimensional Fluidized Bed with an Obstacle, Central Jet,
and Secondary Air at Minimum Fluidization at 0.13 s, 31 x 48
nodes
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FIGURE 8 Computed Porosity Fluctuations around a
Rectangular Obstacle Immersed in a Two-Dimensional
Fluidized Bed with a Central Jet and Secondary Air at
Minimum Fluidization
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As mentioned earlier, it was assumed for the computer simulation that the initial
solids veloeity is zero, that the bed porosity is uniform at 0.44, and that the gas mass
flux corresponds to minimum fluidization conditions. The high-speed motion picture
study revealed that very small bubbles were observed to originate from the side of the
obstacle before the jet was turned on. This same phenomenon was observed by Loew
et al.18 and Buyevich et al. Buyevich et al., who studied a rectangular obstacle in
two-dimensional fixed and fluidized beds, explained the phenomenon of bubble formation
as arising from the low gas flow resistance next to the obstacle (due to high local
porosity). The resultant excess gas flow, which was measured in a fixed bed to be 5-10
times that in the bulk of the bed, produces the bubbles.

Computations were performed with the central jet off and the secondary air at
minimum fluidization. For these computations, symmetry was not assumed. The number
of nodes in the transverse direction was increased to 64 (from 33 for the coarse mesh
nodalization). The inlet velocity was maintained at 23.36 ecm/s. As can be seen in Fig. 9,
the results are not quite symmetrical. This asymmetry is probably triggered by
perturbations introduced into the uniform flow as a result of asymmetric sweeping
through the computational cell during the iteration process. A bubble forms under the
obstacle and moves upward, splitting in the process; split bubbles then move up the sides
of the obstacle and eventually out of the bed. Examination of the computer-generated
motion picture showed that bubbles formed below the obstacle and moved upward at a
frequency of approximately 3 Hz. It is clear from Fig. 9 that the fluidized bed was not in
a completely uniform initial condition when the jet was turned on. This could explain
some differences between the experiment and the calculated results.

The time-averaged porosity distributions were also measured in the two-
dimensional fluidized bed that included an obstacle. These distributions are shown in

@ (b) ©
........... G:O.4
........... = 0,4
€=0 - €=0.4 1 e €=0.6
““““ €=0.6 e e=0.6 _ _e=o0.8
€=0.8

FIGURE 9 Computed Porosity Distribution in a Two-Dimensional Fluidized
Bed at Minimum Fluidization with an Immersed Rectangular Obstacle at
(a) 6.1 s, (b) 0.2 5, and {¢) 0.3 s
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Fig. 10, where they are compared with the time-averaged FLUFIX computations using
approximately the same scale. The agreement is generally very §ood; in faet, it is better
than that previously reported for the case without an obstacle. 1 The angle and extent
of the slumped zone, ¢ = 0.4, are in reasonable agreement with the experimental results,
as are the bed height and shape. The presence of a layer of gas on the side of the
obstacle is also predicted; the shape and extent of this layer is in good agreement with
the data. The vertical bars on the time-averaged computations are estimated error
ranges obtained by time-averaging over different time intervals between 1.5 and 2.5 s.
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3 OVERVIEW OF EROSION MODELING AND MECHANISMS

This section presents an overview of the erosion models that we consider
reasonable candidates for ineclusion in a preliminary consolidation, i.e., a collection of
various types of erosion models that would be driven -- for the first time to our
knowledge -~ by the types of hydrodynamic fluidized-bed calculations presented in Seec. 2.

The marriage of hydrodynamic and erosion models has been fairly recent. This
may account for the general attitude that present-day erosion models do not yet
satisfactorily explain erosion patterns in FBCs. To be successful, the fluid mechanics
and erosion models must be used together.

The erosion models that form the preliminary consolidation may be organized as
follows:

1. Single-particle (dilute phase) models. The consideration for the
development of this type of model is the interaction of a single
particle with a planar wall. Depending on the model, the wall
material is assumed to be removed in (a) a purely ductile mode,
(b) a purely brittle mode, or (¢) a combination of ductile and brittle
modes.

2. Dense phase fluidized-bed models. The consideration for the
development of this type of model is the repeated interaction of
many particles with the wall. Depending on the model, the wall
material is assumed to be removed in (a) a purely ductile mode,
(b) a purely brittle mode, or {c) a low-cycle fatigue-failure mode.

3. Power and energy dissipation models. These models are based on
the very general consideration of erosion resulting from energy
transfer from the solids in a two-phase mixture to the eroding
surfaces.

All but the power and energy dissipation models are algebraic in nature.

A detailed literature review of erosion models is not attempted here. Engel has
provided a good literature review_ up to 1976,49 and Sarkar has provided one up to
1980. Three recent reviewssl'sa deal specifically with erosion in FBCs; two were
done at the Morgantown Energy Technology Center (METC), and the third was prepared
for METC.

In this report, we summarize the models we have selected from the literature,
explain why we selected them, and point out their shortcomings. We also explain why we
were led to the more fundamental energy dissipation approach to modeling erosion.
Because we cannot claim that this approach will ultimately be more successful than the
others, the other models selected for the consolidation are also considered. At this time,
most of the calculations have been done with the energy dissipation model, and limited
comparisons have been made with the others. Although the results look promising, no
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directly appropriate erosion experiments’in fluidized beds are as yet available to validate
the models. The order-of-magnitude agreement with published erosion rate data, taken
at comparable jet and/or superficial fluidizing velocities, provides some basis for guarded
optimism. The linking of the models and criteria for their selection are suggested.

3.1 SINGLE-PARTICLE EROSION MODELS

Single-particle erosion models treat the erosion process in terms of the
interaction of a single particle with the eroding surface. Such models may be more
appropriate for the case of erosion due to dilute solid suspensions, as in pneumatic
conveying pipelines and elbows or in turbine blade cascades. In these cases, the particle-
particle interactions are negligible, and the erosion process may be thought of as removal
of surface material by the cumulative action of the individual particles. In this sense,
these models are noncontinuum models.

3.1.1 Finnie's Ductile Erosion Model

According to Engel,"‘9 Finnie was the first (in 1958) to derive a single-particle
erosive cutting model. In 1960, Finnie discussed the assumptions of the model, quoted
the results, and compared the results with experimental data. 5 This model set the basic
pattern and tone for all single-particle models, so it is discussed here in some detail. The
major assumption is that a particle, approaching the eroding surface (or target) at angle
o measured from the surface (the impingement angle), will remove material in much the
same way as a machine tool would. The particle is assumed to be much harder than the
surface and does not break up. The surface material is assumed to deform plastically
during the cutting process; hence, the material is ductile. Ductile materials, such as
aluminum or structural steel, can develop a relatively large tensile strength before they
rupture.

The final exspression for the volume of target material, W, removed obtained by
Finnie is as follows:°°

2
M [si -8 gin? K (3.1a)
¢ Jok [sin(2a) z sin"(a) tan a < 6]
W =
22 2
MV~ (K cos (a) K
el ] tan o > 2 (3.1b)

Finnie took K = 2, where K is the ratio of vertical to horizontal {frictional)
’force,55 and ¢ = 1, where y is the ratio of the depth of contact to the depth of the cut.
The constant ¢ allows for the fact that many particles will not be as effective as the
idealized model particle; Finnie arbitrarily took ¢ = 1/2. With M the total mass of
abrasive particles, V the abrasive-particle velocity, and p the eroding surface "flow
stress,”" W is the total volume of target material removed. To obtain the mass of eroded
material removed, W is multiplied by Ot the target density.
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The erosion rate (or erosion veloeity), E, is usually given as
E = WA, (3.2a)

where W is the volumetric rate of target material removal, and A, is the average area of
the target. The erosion rate (or erosion velocity) of the target itself, E e is given by

Et = =F = -W/At (3.2b)

because the volumetric rate of change of the target itself is negative.

In order to apply the Finnie model to compute erosion rates in fluidized beds
using FLUFIX-computed hydrodynamic results, Eq. 3.1 must be modified. First, the total
particle mass, M, is replaced by the mass flux of solids, m = (1 - ¢)o |$ |y where
(1-¢) = €g is the solids volume fraction, Pg is the par%ic}e density, and ]3 f is the
magnitude of the velocity of the solid phase. The mass flux, m , is assumed to be positive
toward the eroding surface. The particle velocity, v, is replaced by 38 to obtain

(1= edo |V (%) .
c fla) m >0
P s

i = (3.3)

where E is the erosion rate (in m/s) and C = ¢/yK. The erosion rate is positive if the
solids velocity vector points toward the eroding surface; otherwise, it is zero.

With K = 2, the angular dependency function f(a) is given by

sin (2a) - 3 SinZ(a) o < 18.43° (3.32)

f(a) = 9
cos (a)/3 a > 18.43° (3.3b)

Below 18.43°, the surface is cut until the particle leaves the surface; above 18.43°,
cutting ceases before the particle leaves the surface. The transition angle given in
Eq. 3.3 is close to the angle of maximum erosion, ap, .., given by Ref. 49 as

o =
max

tan—l(K/3) (3.3¢)

N =

WithK =2, ap .0 = 16.85°. Equation 3.3 is in thesssame form as that used by Pourahmadi
and Humphrey in their erosion modeling studies. They defined C as the fraction of
particles cutting in an idealized manner, consistent with Finnie's 1972 modification of his
model. (If one uses Finnie's values of ¢, ¢, and K, then C = 1/8.)
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Pourahmadi and Humphrey56 used the following expression for f(o):

. . 2

sin(2a) = 4 sin"(a) o < 14,040 (3.4a)
fla) =

cosz(a)/4 a > 14,040 (3.4b)

It may be that they used the original Finnie model with K = 1.5, in which case a value of
C = 1/6 is obtained. Alternatively, they may have used Finnie's modified model,57 which
accounted for particle inertia, with K = 2; in this case, C = 1/8. The value of C used by
Pourahmadi and Humphrey is never mentioned, so either case is possible.

At 18.43°, Finnie's model (K = 2, C = 1/8) yields an erosion rate for ductile target
materials given by

: - sS* 8
Ery = 0.075 T (3.5)

which is, in effeet, the maximum value. Equation 3.5 predicts that only 7.5% of the
particle's kinetic energy goes into erosion for a given hardness, p. The corresponding
percentage for Pourahmadi and Humphrey's expression (C = 1/6) is 7.8%. Using Eq. 3.5,
Finnie”" analyzed some data taken for silicon carbide eroding SAE 1020 low carbon steel
and found that the value of p exceeded the "true stress at fracture in a tension test" by a
factor of almost three. However, if Finnie's 1972 modification of his model (which
accounts for particle inertia) is used together with his recommended values of ¢, ¥, and
K, then 5.9% of the particle's kinetic energy would go into erosion, instead of 7.5%.

Erosion models in general, and Finnie's erosion model in particular, cannot be
used to calculate absolute erosion rates a priori. Finnie's erosion model can be used,
together with estimates of target material flow stress (or hardness), to back out a value
for parameter C to match the data. On the other hand, if a value for C is assumed, then
the value of the flow stress or hardness appropriate for erosion is backed out of the data.

The angular dependence of the erosion rate predicted by using the original Finnie
model and its first modifications is quite good up to 45°. Above 45°, the Finnie model
underpredicts the erosion rate; at 90°, it predicts no erosion at all, whereas the analyzed
data clearly indicate that this prediction is not correct. Further reworking of Finnie's
theory did not resolve this problem.58 The Finnie model also prediets no erosion at 0°
(scouring erosion), Shewmon and Sundararajan,59 who reviewed the literature on erosion
in 1983, concluded from scanning electron microscope (SEM) examinations of erosion
surfaces that the cutting tool analogy is not valid. They regarded the Finnie model as
being of historical interest only and suggested other mechanisms, such as shear
localization leading to lip formation and fracture.
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3.1.2 Bitter's Combined Ductile and Brittle Erosion Model

The basic assumptions in Bitter's analysis are that deformation and cutting
erosion occur simultaneously and that the two effects can be linearly
superimposed.sa’61 Thus, Bitter's work extends Finnie's model and corrects it by
bringing in the concepts of a threshold erosion rate and energy dissipation. Physically,
the impinging particle cannot erode the target material if its impacting velocity is
smaller than a threshold velocity, V.

Brittle Erosion Model

In Bitter's model, the brittle erosion rate is postulated to be equal to the energy
dissipation of an elastic sphere deforming the planar target material surface elastically
and plastically, divided by an energy (itself dependent on material properties) needed to
remove material. This brittle erosion model is given by

> R 2 & 3
M [V sin(a) - Vel] V sin(a) > Vel (3.6a)
_ 2
W= b R
0 V sin(a) < Va1 (3.6b)

where ¢ is the material-dependent deformation wear factor. The threshold velocity,
Vgp Is the veloeity of collision at which the elastic limit of the eroding surface is just
reached, given theoretically from the Hertz contact 'cheory4 by

- 5/2 -1/2 -2

where o is the plastic load limit, o, is the particle density, and E, is the reduced
Young's modulus of elasticity. The value of E is given by

1 _ 1
(kp + kt)

E_= (3.7b)

R ROV CCR NN (SR AV )

where vy, and vy, are the Poisson’s ratios, and E_. and Et are the Young's moduli of
elasticity, of the particle and target, respectively. The threshold velocity, V, which
can be computed from Eq. 3.7a, can be determined from particle rebound data using the
following relation:
- o 241/2

v, = (2V1Ve1 Vo) (3.8)
where V; and V, are the velocities at the beginning (approach) and end (rebound} of
collision, respectively.
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Ductile Erosion Model

The portion of Bitter's model devoted to ductile erosion consists of the following:

(2 uc' (¥ sinta) - v,
v sin(a)]l/2
'y ) (3.9a)
. C [V sin(a) = V_, ]
W, = < x V cos(a) - ~ 1/ze ¢ a<a
[V sin(a)] °
M {62 cos?(a) - K, [V sin(a) - v 1]3/2}

= o> a (3.9b)

\ 24

where ¢ is the material-dependent cutting wear factor. The constants C' and K, are
given by44

' 1/4
C = 0.288 / 3.10a
(op cy) / oy ( )
and
= 2 -2 1/4

K, = 8.036 I, E_ (cy/pp) (3.10b)
The angle o, may be estimated from Ductile “ Brittle f
Finnie's model (Eq. 3.1), or by equating /( !
Egs. 3.2b and 3.2¢ and solving for a. The W C‘Z @
total erosion rate, W, is then given by the ) L V4

sum of Wy, and W4. +

The effect of K, is negligible in Eq.
3.9b (where o > ao) and can safely be
clropped.61 if ¢ is associated with 3¢, then
(except for the factor e¢) Eq. 3.1b (fan « >
K/6) of Finnie's erosion model and Eq. 3.9b
(a > ao) of Bitter's erosion model are the
same.

Aw

Ductile

The interesting features of Bitter's 20° 90°
model are that (1) for soft ductile a

materials, it produces wear curves similar . .
to Finnie's, but with nonzero wear at 90°  FIGURE 11 Erosion Mechanisms Show

and (2) for hard brittle materials, it Wear Trends as a Function of Impact
Angle (a = impingement angle)
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produces wear curves that reach a maximum at 90°. The shapes of these curves are
shown schematically in Fig. 11.

Bitter's model involves more material properties than Finnie's and includes those
of the particle. However, Bitter's model still predicts_zero wear at a zero impingement
angle. In fact, the erosion rate is zero when a < sin ~(V_,/ l‘7| ), which is greater than
zero. Bitter's model, like Finnie's, also assumes that the particles do not erode. The
application of Bitter's model to calculation of wear in fluidized beds, using
hydrodynamic results computed by FLUFIX, is essentially the same as that of Finnie's
model (see Sec. 3.1.1).

3.1.3 Neilson and Gilehrist’'s Combined Ductile and Brittle Erosion Model

Neilson and Gilehrist52 simplified Bitter's combined model by postulating a
simplified ductile erosion model while retaining Bitter's brittle erosion model (Egs. 3.6
and 3.7). The result is given by

{22 2 2 > 2
MIV® cos“(a) = ¥ M [V sin(a) = V
[ - p] + [ - e1] d<a (3.11a)
W= W, o+ =ﬁ’ b
> . 2
M§2 cosz(a) . M[V sin{a) = Vel] g
\. 2¢ 2e, @ >a  (3.11b)

with the proviso that Wy, = 0 when ¥V sin(a) < Vel .

In addition to a threshold velocity normal to the eroding surface, Vi = Vep there
is a threshold velocity parallel to the eroding surface, Vp, given by
sz = Vz cosz(a)[sin(na) - 1] (3.12)

where n is an empirical constant and ag = n/2n. Substitution of Eq. 3.12 into Eq. 3.11a
results in

>, 2
22 2 . M[V sin(a) - V _.]
_ _ MV” cos (a)sin(na) el
W= wd + wb = 7% + 2€b a < @ {3.13)

Comparison of the first terms of Egs. 3.13 and 3.11b with Bitter's ductile erosion model,
Eq. 3.9, reveals the extent of the simplification. The first term of Eq. 3.11b is the same
as Bitter's ductile erosion model (Eq. 3.9b) with K, = 0. The second terms of Egs. 3.13
and 3.11b are the same as Bitter's brittle erosion model, Eq. 3.6.
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3.1.4 Sheldon and Finnie's 90° Brittle Erosion Model

Brittle materials, such as ceramics or glass, cannot deform plastically; instead,
they crack and fracture when subjected to tensile stress. The angle of maximum erosion
for brittle materials is near 90°,

Sheldon and Finnie®® analyzed brittle erosion occurring at 90°. Their final result
for spherical particles is given by

W=c Ry (3.14)
e p
where:
g = 3f/(f - 2), (3.15a)
n = 2.4f/(f - 2), and (3.15b)
_ 0.8 2
Ce = Bt % (3.15¢)

In the above relations, R is the particle radius, f is the coefficient of friction, and % is
the flexural strength. Tgis model gives veloeity exponents of 3.2, 2.72, and 2.66 for f =
8, 16.9, and 20 (glass, graphite, and hardened steel), respectively.

3.2 FLUIDIZED-BED EROSION MODELS

Single-particle erosion models have been the subject of much more research than
fluidized-bed erosion models. Only two fluidized-bed erosion models have been found in
the literature; they are summarized in this section.

3.2.1 Soo's Duetile and Brittle Erosion Models

S00%4 extended his treatment of heat transfer and charge transfer by impact to a
treatment of material removal in the case of small deviations from elastic impact.
Conceptually, Soo's models resemble Bitter's models in that the energy expended to
remove material must exceed the yield stress in order for ductile or brittle failure to
produce wear. Soo's erosion models treat ductile wear and brittle wear separately.

Ductile Wear

Soo's ductile wear model is expressed in terms of

E.= cos(a)[l - Kwsin(a)_l/5 3

. i ]ppv Cdf(l + r"\‘)(2.94)(5/16)nd/€d (3.16)
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where Cd is a correction factor for nonsphericity (~1); r* is the ratio of rebound to
approach velocity, V9/Vy; €4 is the energy required to remove a unit volume of ductile
material; and nd is the mechanical efficiency of impact (~10_4). (Soo's ed plays the same
role as thatJ{ of ¢ in Bitter's ductile erosion model.) The dimensionless resistance

parameter, K;l’ is given by

2 1/2,.,.2/5 ey 1/5, 1/5
Ky = 6m cd(kpkt) /12 £C,(1 + r¥) "IN, 7] (3.17a)
where Ny is the impact numbers
_ 2 >2 1/2 1/2 1/2.4
Noy = (57 /z)ppv (kpkt) [(kpkt) + (kt/kp) ] (3.17b)

On the assumption that motion in a fluidized bed is random, Soo averages
Eqg. 3.16 over all directions and magnitudes to obtain

-

EdFB = (1 - 0.9586 K

¥ c243/2, = -
d)op(v )TCE(L + ) (3.18)

(2.94)(5/16)[2/(37/7)] nd/ed

where the overscore, ", denotes averaging. This erosion ratf is no longer a function of
angle, and V- (the intensity of random motion) replaces V°in the impaction number,
Eq. 3.17b. Because a fluidized bed is not truly random, Eq. 3.16 may be preferred over
Eq. 3.18.

Brittle Wear

Soo's brittle wear model is expressed in terms of

E. = sin(a)[1l - K:(sin(a)—l/5

. ]ppV3Cb(l + r*)(2.94)(5/16)nb/sb (3.19)

where Cb’ eb,*and ny, are the analogous terms for Cd’ £qr and ny in the ductile erosion

model and Kb is given by

‘,'r- 2
Kb = 67 cb(kpkt)

1/2,..2/5 1/5 N 1/5

/12 M

Cb(l + r¥) ] (3.20)

By averaging over all directions and magnitudes, as in the ductile erosion model,
Soo obtains the following fluidized-bed brittle erosion model:
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. _ _ 3/2 -
E pp = (1 - 0.8981 K )p A C (1 +r) (3.21)

(2.94)(5/16)[2/(3/?)]n8/eB

Clearly, Soo's erosion models resemble those that have been discussed previously.
However, there are differences in the details of the exact angular dependence and the
way in which the material properties enter.

Results from Soo's erosion models have not been compared with experimental
data. Soo estimates that, in the case of 700-um dolomite particles wearing 316 stainless

steel, 1 - K, = 10—2, f ~ 0.1, and n4Cq = 1074, Assuming that 1 + r* ~ 1, the

ductile erosion estimated using Soo's model (Eq. 3.18) is as follows:

0.69 x 10 (v2)3/2

dFB Te

(3.22)

d

This result is five orders of magnitude lower than E__, the maximum erosion rate given
by Finnie's model (Eq. 3.5). Models of ductile erosion of tubes in FBCs are probably more
appropriate than brittle erosion models.

Soo's model can be Lgsed with FLUS‘IX-computed hydrodynamic results by
replacing o, with (1 - e)og and V° with ]v (v ke

3.2.2 Wood and Woodford's Fatigue Erosion Model

From their studies of tube erosion in fluidized beds, Wood and Woodford65
concluded that damage is not a cutting phenomenon but is more like a local fatigue
phenomenon. In basic studies of abrasion, - a similar mechanism has been identified.

The starting point of Wood and Woodford's model is Hutching's mode187 involving
constant indentation pressure acting on a rigid particle, impacting a plastically
deforming material that has no elastic recovery. The Wood and Woodford model is given

by

P (3.23)

!
g Rl

where 8 is a fraction of the indented volume, V; M and U_ are the mass and veloclty of
the particle, respectively; Ng is the number of cycles to Fatlgue failure; and N/A is the
impact rate per unit area. This impact rate is given by
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_1_6(1—8)U

2 “ffd3 P

P

N
3 (3.24)

where d_ is the particle diameter. According to Wood and Woodford, the factor of 1/2 in
Eq. 3. ZIP accounts approximately for the fact that the expected impact velocity is a
fraction of the mean velocity of all particles. As in Hutchings' model, the pressure, p,
could be given by p = Co v where o, is the uniaxial yield stress. Because particle
velocities were not measured in the Wgod and Woodford study, they used a simple (and
possibly incorrect) model for the solids velocity and generated curves of normalized
erosion rates, E/[B/pr} .

In order to justify their model, Wood and Woodford assumed the Coffin-Manson
equation:

£f 2
Nf = (-Z—L{E;) (3.25)

where eg is the tensile stress at failure and Ae . is the plastie strain range. They set
sf/Aep =1 and 8 = 1. They then substituted for p from

21 2
P=73 MpUp/Vc (3.26)

where V is the crater volume used to obtain the specific erosion rate, S, equal to the
ratio of mass loss per unit area, m/ A, to mass flux of incident particles, MPN/ A

a/a_ Bee 4oV (3.27)

. . M
M N/A M N/A
p P P

S =

Then they calculated V, from an independent experiment,68 in whieh they observed a
crater diameter, d, of 6.4 um for 1.9-mm silica sand eroding A286 steel as:

v (—-)d ()
c dp (3.28)

or 6 x 10720 m3 for 15 x 1079 kg of particles. Using o, = 8.2 x 109 kg/m3 Eq. 3.27 yields
1.3 x 10”10. This value is on the same order of magmtude as thle measured specific
erosion rate (deduced from independent measurement of N =2500s )¢

-12
s, =22 A0y 07 (3.29)
€XP 500 x 15 x 10
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4 PREVIOUS EFFORTS TO COUPLE FLUID MECHANICS AND EROSION MODELS

The three major categories of single-particle erosion models discussed in Sec. 3
-- duetile (cutting), brittle (deformation), and fatigue (repeated low-frequency particle~
surface interaction) -- all establish a relationship between the erosion rate and the
particle kinetic energy. Beyond this similarity the models in different categories differ
in terms of the detailed relationships (involving material properties) that enter into the
erosion models' use of all or a portion of the kinetic energy of the particles.

Portions of other models may be useful in modifying or extending the single-
particle models, as well as the power and energy dissipation models discussed in See. 5.
This is particularly true in regard to material properties and relationships between them
and the particle energy. For example, under certain circumstances particle impact and
rebound velocity data may be used to estimate the portion of the particle's kinetie
energy transferred to the surface; whieh, in turn, determines the material
removal.””?"" Such information is needed directly in several of the models.

The major shortcoming of all the models discussed thus far is that they
incorporate the macroscopic or nominal fluid mechanical properties of particle velocity
and impact angle, rather than local (or differential) properties. They also fail to account
directly for particle fragmentation sor attrition) and concentration of particles in the
fluid stream. Finnie stated in 19727 that no satisfactory explanation of concentration
dependence existed, and that very little had been published concerning the effect of the
carrier fluid itself.

Knowing that the local erosion depends mostly on the local veloeity, Wolak et
al.7 measured the velocities of 60-mesh (250-um) SiC particles exiting nozzles located
at various distnaces from a planar target for different loading ratios. They found that (1)
the particles accelerated as they left the nozzle, (2) the particles reached a maximum
velocity some distance from the nozzle, and (3) the particle velocity also varied in the
radial direction. The implication is that the macroscopic erosion models may predict
erosion patterns incorrectly because of local variations in the particle energy.

Using dimensional analysis, Tsai et al.’2 identified seven dimensionless groups,
listed in Table 2, considered to be important in excessive wear. Several of the groups
include information about fluid mechanical variables, such as the boundary layer
thickness, &; carrier fluid viscosity, up; concentration of particles, ¢.; and relative
velocity between particles and carrier fluid, v,. None of these variables is included in
the erosion models discussed in Sec. 3.

The last group in Table 2 accounts explieitly for the hardness of the particles.
Tsai et al. found that, over a fairly wide range of variables, the overall dependence of
1
the erosive wear on the particle and erodent material hardness is approximately S';/ Ss

for slurries. The dependence on particle hardness appears to disappear
when Sp > SS (Ref. 49, p. 105).
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TABLE 2 Fluid-Mechanical Parameters Important in Erosion

Term Name Definition
d prr/uf Particle Reynoclds number Relative measure of inertial-to-
P vigcous effects for the particles in
suspension
6/dp "Impact-cushioning' number Argued to be a measure of the extent

to which viscous effects cushion
particle impact on the eroded surface

o /pf "Particle inertia" number Relative measure of particle phase to

P fluid phase density (characterizes
relative inertial effects of the two
phases)

v_ /v "Slip" number Ratio of relative particle velocities
(characterizes slip velocity effects)

c /o "Energy dilution" number Argued to be a measure of the extent

L to which the fluid phase dilutes the
kinetic energy content of the particle
phase in suspension

"Barrier" number Relative measure of the energy barrier
that suspended particles must overcome
on impact to create conditions that
are propitious for erosion

o /o "Disorder' number Postulated as an indication of the

P tendency for erosion to occur on the
impact of a particle with sufficient
energy to cause erosion

Source: Ref. 72.

The use of purely empirical erosion correlations (such as those in Ref. 72) is not
recommended, because they may be highly system-dependent. We believe that a more
fruitful avenue is to couple the fluid mechanics with erosion models used locally.

4,1 EROSION IN TURBOMACHINERY

The coupling between fluid mechanies (also termed hydrodynamic modeling) and
erosion modeling is fairly recent and coincides closely with the increasing interest in
burning coal to reduce the U.S. dependence on imported oil. Long before the FBC
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erosion issue developed (see Sec. 1.2), erosion problems were encountered in turbo-
machinery components. The success achieved in coupling fluid mechanics and erosion
models to predict erosion in this and other aresas is deseribed in this section.

Tabakoff and coworkers at the University of Cincinnati have been engaged in
turbine blade erosion and particulate flow research since 197 1.70,73-75 It is their hope
that the incorporation of erosion into the engine design as a parameter could lead to the
production of an erosion-tolerant engine. They have developed a steady-state computer
program capable of describing three-dimensional particle trajectories through turbo-axial
or ra%ally rotating turbomachinery. Tabakoff has reviewed this group's work up to
1982.

In his review of the erosion literature, Tabakoff concluded

..that in the investigation of erosion there have been three
predominant approaches taken. The first method involves making
assumptions about the erosive process and the introduction of
parameters which make the proposed theory conform to experimental
results. The second method is one in which the dynamic forces acting
between the particle and the material surface are considered, along
with well-known material properties. In this scheme assumptions are
made as to the condition of the material during the impaects. The third
method is to assume that there is no common material property that
can be used to describe erosion. In this method a hypothetical erosion
resistance property is invented and different materials are related by
this property.

The group's own experimental data on the coefficient of restitution (the ratio of
rebound to approach velocities) and the ratio of rebound to impingement angle are
obtained experimentally by use of high-speed photography or laser doppler anemometry
and are expressed in terms of impingement angle. In the computer model first developed
in 1973-1974, these ratios are used to account for momentum loss of the particles caused
by collision with the turbine blades or channel walls in the Lagrangian trajectory
caleulations. 974

The major force on the particles is given by & drag expression similar to the one
used in the FLUFIX code. The added mass, Basset, and Bagnold forces on the particles
are neglected. The compressible, nonviscous, steady-state gas phase momentum
equations are assumed to be unaffected by the particles. This implies low particle
loadings, an assumption that allows the use of existing single~-phase computer codes for
turbomachinery. The three-dimensional Eulerian gas flow and Lagrangian particle
trajectory equations are solved on a square grid with the coordinates fixed on the
rotating blade, (one row of blades is solved at a time).

This same group has also simulated erosion with a Monte Carlo technique.75 The
erosion model used to compute the erosion rates also incorporates the particle rebound
data; it is given by a semi-empirical equation that relates the mass of material removed
(in mg) to the mass of particles (in g), as follows:
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§ = Klf(a)vzcosza(l - RTZ) + K3(\7 sin oz)4 (4.1)
where:
R, = 1 - 0.0016 V sin a (4.22)
and
1+ K., sin [(30/a )a] 0 <a<2a (4.2b)
12 o o
f(a) =
1 a > 2a (4.2¢)

where a, is the angle corresponding to maximum erosion. The parameters g Kl’ K9
and K are material-dependent empirical constants. Comparison of Eq. 4.1 with Eq. 3.11
shows that this model is a variant of Neilson and Gilehrist's combined ductile and brittle
erosion model. The approach veloeity, V, and impact angle, o, are computed from the
particle trajectory computer program.

Private discussions with J. Stringer of the Electric Power Research Institute
(EPRI) indicate that Tabakoff's methodology for predicting erosion was considered for
FBC applications. Because the particle loading is so much higher in an FBC than in
turbomachinery, the particle trajectory calculations would have to include particle-
particle interactions and erosion simulation using the Monte Carlo technique; these
calculations would be very time-consuming, even if they were valid. In addition, the gas
phase fluid mechanics code would not be appropriate, because the effect of the particles
on the gas would be significant.

4.2 EROSION IN HORIZONTAL TUBES

Sheldon, Maji, and Crowe ! developed a numerical method to prediet erosion on
a horizontal, round tube wall. Is is known as particle-source-in-cell (PSI—CeIl),78 in
which the particles are treated as sources of mass, momentum, and energy in the gas
phase. The momentum equations for the incompressible, two-dimensional viscous
Eulerian gas phase include a momentum sink term due to particle drag and, thus would
appear to be an improvement over Tabakoff's equation; however, the former do not
contain the void fraction as a variable. Hence, the assumption of low particle loadings is
again implieit, and the approach is similar to the "dusty gas" model of Rudinger and
Chang.7 The Eulerian gas flow equations and Lagrangian particle trajectory equations
are solved iteratively, using an extension of the TEACH program developed at Imperial
College, London. Included in the PSI-Cell technique is a two-parameter turbulence
model and heat transfer; but it appears that they were not used in this erosion prediction.

The particle trajectory calculations use empirical rebound angle and coefficient
of restitution data in a manner similar to that of Tabakof’f.7 The erosion model is very
simple and is given by
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mass removed 2.35
(mass abrasive) = £(a)V (4.3)

where f(c) is given by an experimental curve. The exponent of the particle velocity is
taken from Sheldon and Finnie's 90° brittle erosion mode1.63 The erosion curve for f(a)
was determined for impingement angles as low as 4° by using hardened steel shot (Ro45)
of 270-um average diameter striking 6061-T6 aluminum alloy, a ductile material. The
rebound data were obtained from multiple flash exposures of 3.175-mm ball bearings
striking the same aluminum alloy. Erosion data taken by blasting the steel shot through a
horizontal tube 4.95 mm in diameter and 30.5 em long, made of the same aluminum alloy,
were in reasonable agreement, considering that the majority of particles were incident at
less than 5° (probably deduced from the trajectory computations), which corresponds to
almost pure abrasion (scouring). Whether a coefficient of proportionality was introduced
into Eq. 4.3 is uncertain.

4.3 EROSION IN CURVED ELBOWS

In 1983, Pourahmadi and Humphrey"56 published a more sophisticated steady-
state, two-dimensional hydrodynamic model to predict erosive wear in straight channels
and curved ducts. In that article, the dilute particle loading assumption is again made
but, this time, the particle momentum equation is formulated following the Eulerian
approach (treating the particles as a continuum). Thus, the void fraction becomes an
explicit variable in this model. The standard two-parameter turbulence model is used for
the turbulent viscosity of the gas phase. A turbulent-particle diffusion correlation is
used, as well as a single-parameter turbulent-particle viscosity model. Stokes's drag law
is employed in both the gas and particle momentum equations. Both phases are assumed
to be two-dimensional, steady-state, incompressible, and isothermal. The solution
procedure is also given by an extension of the TEACH code.

The erosion model used is given by the single-particle Finnie model, expressed by
Eq. 3.2a, with f(a) given by Eg. 3.4. The flow pressure, p, is replaced by the Vickers
hardness. The square-cross-section, curved perspex-plastic-duct erosion experiments of
Mason and SmithS! were analyzed for two cases: radius of curvature to channel widths
of 5 (strong curvature) and 12 (mild curvature). The particles used were 55-um alumina.
Although the relative erosion pattern predictions of E/E___, where émax is the maximum
erosion rate, were in generally good agreement, the absolute magnitudes of E were
described as inaccurate by Pourahmadi and Humphrey.56 They admitted that the very
low values of erosion that were measured experimentally had been predicted as higher by
their model. However, they believed that the relative comparisons did have value for
design purposes and that the model is useful for understanding the controlling
parameters. The factor ¢ in the erosion model, described as the "fraction of particles
cutting in an idealized manner," is never quantified, nor is the Vickers hardness of
perspex plastic.
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5 POWER AND ENERGY DISSIPATION EROSION MODELS

The origins, derivation, and numerical implementation of the power dissipation
and energy dissipation erosion models are described in this section. We show that the
conceptual bases for this approach can be traced back to empirical laws of size
reduction, grinding and comminution. We attempt to unify the concepts of duectile,
brittle, abrasive, and impaction erosion. The power dissipation model is shown to be a
special case of what we call the energy dissipation model.

5.1 POWER DISSIPATION EROSION MODEL

The concept that energy dissipation of the particles impinging on a surface gives

rise to deformation wear was postulated as long ago as 1963 by Bitter. it was,
however, the slurry erosion literature that provided us with the beginning point of the
energy dissipation model. Because the angle of approach of the particles eroding a

slurry pipeline is essentially zero, none of the models described thus far appeared to be
useful. Therefore, a new model -- termed the power dissipation model -~ was developed.

5.1.1 Motivation and Origins

The particle grinding (comminution) and abrasive erosion models provide the
genesis of the so-called power energy dissipation erosion model. As long ago as 1885,
Kick®" postulated that the energy, U, required to fracture particles in ball mills is
directly proportional to the particle volume and independent of the number and size of
the particles. This postulate, known as Kick's law, can be expressed as

U= Klvp (5.1)

where V_ is the volume of particles bein% ground in the ball mill and K, is a constant of
proportionality having units of pressure.8

Rabinowiez's much later expressionsﬁ’s5 for two-body abrasive (sandpaper or
scouring) erosion of a surface by particles is given as

<

.L-E = kF/(3 H) (5.2)
where V. is the volume of target removed, L is the distance traveled by the particle, F is
the applied load (force), H is the hardness of the surface, and k is a dimensionless
adjustable constant (sometimes called the abrasive wear coefficient%) related to the
average angularity of the abrasive particles. The equivalence of Egs. 5.1 and 5.2 is easily
seen by rewriting them in terms of Vp and Vs
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and

V, = kFL/(3 H) (5.3b)

t

The factor of 3 in Eq. 5.3b relates the yield strength, oy to hardness, H, by o, =3 H. FL
is an energy (force times distance). Comparison of Egs. 5.3a and 5.3b reveals that FL is
equivalent to U, K4 is equivalent to (3/k)H, and Vt is equivalent to V.. Thus, the two
seemingly dissimilar processes of grinding of particles in ball mills and apbrasive wear of a
surface by particles are describable by the same relationship.

In their high-speed-photography slurry studies, Shook et al.86 observed that the
particle motion was parallel to the pipe wall in the region of high concentration where
the erosion rates were high. Hence, the simple Rabinowicz abrasion relationship holds.
A heuristic generalization of this relationship is made in order to compute the volumetric
loss-per-unit-time per unit area, E, caused by the flow of a slurry. Using Eq. 5.3b, E is
given by the following for a constant applied force, F:

E = Vt/At = kFL/(3A H) (5.4a)
where V_ plays the same role as W in Sec. 3.1.1. The time rate of change of length, L, is
replaced; by the veloeity of the solids, 33 s and the applied load, F, is replaced by the
force of the solids on the material surface, FS, to obtain

E=V./A = ci‘s. v, /(A H) (5.4b)

t
where C is a factor that includes k/3 (to aceount for the fact that not all the volume \
is removed).66 The force of the particles on the surface can be computed from

" deS 338 R R
S = -(l—e)ps ;;—s- Vf = "(l‘s)ps Y + VS o« V Vs Vf (5.5)

where Vg is the volume of the fluid and d/dtS is the total derivative following the solids.
Combining Egs. 5.4b and 5.5, one obtains

. v,
E = -C (l-e)ps — VS(’A"")/H
dt t

(5.6)

Equation 5.6 is the basic form of the "power dissipation” erosion model proposed in 1984

by Ushimaru et a1.82 The factor C was not explicitly noted but was used, as will be

discussed at a further print. Ushimaru et al. used a "layer thickness" A, which can be

associated with Vg/A;. Defining the particle flux to be q = (1 - e)p v A, the power
s s . . S s S

dissipation, P, can be defined as follows:

v
P = E—" » qS (5.7)
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Replacing the hardness, H, by a "specific energy,” Esp’ the erosion rate for the power

dissipation model, EPD’ becomes
) dzs .
EPD = "'CP/ESp = = ;:S_ . qS/Esp (5.8)

E._ . is positive, because the particles must decelerate in order for the force of
the solids on the surface, F , to be positive (Eq. 5.5). The sign differs from that of
Ushimaru et al.,82 because they obviously considered their symbol, e, for the erosion rate
to stand for E e = -E, the erosion rate of the target itself.

Equation 5.6 states that the erosion rate is given by the total differential of the
particle kinetic energy, multiplied by the mass flow of particles and divided by some
material property resembling or related to hardness. Hence, we will write Eq. 5.6
symbolically as follows:

\')
Eop = = () () (5.9)
t

dKE av

sPD _ - > s .
TS = (1 e)psvs T + vy Vvs) (5.10a)

An alternative derivation, based on thermodynamic considerations, relates the
kinetic energy dissipation to the eroding target material pressure, Py, through

dKEsPD Ly = st
dt f t dt

= PtAtEt (5.10b)

where dVS/dt is the volumetric time rate of change of the eroding solid material.
Equation 5.10a states that the total solids kinetic energy gissipated equals a solid
pressure times a displacement. The erosion rate of the target, E . ,is then obtained from

dKE_,
: at Ve :
E, = ———52——— (K;) = - Epp (5.11)

where dKE pp/dt, the solids kinetic energy, plays the role of U in Kiek's law (Eq. 5.1).
The power dissipation erosion model has been derived heuristically in this section by
generalizing the empirical abrasive erosion relationships. The more general energy
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dissipation model will be derived by more fundamental means in Sec. 5.2. The power
dissipation model will be shown to be a special case of the energy dissipation model.

Ushimaru et al.82 implemented this apparently fundamental power dissipation
erosion model to analyze steady-state scouring erosion in a slurry jet pump and obtained
reasonable comparisons with data. They used a hydrodynamic code similar to that used
by Sheldon, Maji, and Crowe77 (a variant of the TEACH codeso). '

The fluid flow equations used earlier! 'were extended to handle dense solid-liquid
slurries. The Eulerian particle momentum equation treats the particles as a continuum,
The standard two-parameter turbulence model was used for the liquid phase. A
boundary-fitted coordinate transformation technique was used to generate the
computational mesh. The other features of the model closely resemble those of
Pourahmadi and Humphrey's.5

The computed results of the two-dimensional, incompressible, steady-state code
were used as inputs to the power dissipation erosion model. This erosion model was
implemented in one dimension, to compute the erosion rate of the slurry jet pump walls.

The steady-state one-dimensional form of the power dissipation model is given by

au

: - - .5
E‘.PD = -C (1 e)pSUSUs 5 A/Esp (5.12a)

With reference to Fig. 12, the finite-difference approximation to Eq. 5.12a for erosion of
a horizontal surface is given by

0 _ _ s2 sl
Epp = ~C (1 - ¢ o U, U, (5 ) Ay/ESp (5.12b)

where Ay has been used for A, the layer thickness, and the donor cell formulation has
been used for Ug,.

:11.82

Ushimaru et applied an

empiricism that indicates that, when metal Vs —— AX —

is removed with sandpaper, less than 10% of I

the grains in contact with the surface 1 ‘
actually remove me‘tal.g.7 The remaining U

particles cause only elastic deformation, Ug, —f= o b, Ay
which does not result in material wear. €o

Hence, the factor C was taken to be 0.1.

As discussed above and in See. 3, such

factors are influenced by the hardness of S Wall /

the erodent relative to the eroding surface
and the erosion mechanism, cutting tool =~ FIGURE 12 Finite-Difference Region
(impaction) or sandpaper (abrasion). for Power Dissipation Erosion Model
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5.1.2 Linkage to Algebraic Erosion Models

It is possible to develop a link to the algebraic single-particle and fluidized-bed
impaction erosion models discussed in Sec. 3. These models rely on particle energy
dissipation and energy transfer to the eroding surface. On the other hand, the abrasion
erosion models utilize the force of the particles on the eroding material surface. By
explicitly computing this force via Eq. 5.5, we can show the basic equivalence of these
two types of erosion models. This equivalence, which arises because both erosion models
rely on the concept of cutting of the eroding surface, has not been discussed in the
erosion literature. The only difference is in the view of how the cutting takes place -- by
the action of the energy of the particle or by the action of the force of the particle. We
will use the Finnie erosion model as an example of the linkage.

The steady-state form of the power dissipation erosion model can be written as:

Bo=~=C (1 - ¥ - W )(Xf) (5.13)
PD Esp EIRgYy Vs At *

Finnie's erosion model can be written as

. C + 2
Ep = —Z: (1 - e)pslvslvs Acf(a)/p (5.14)

where A, is the depth of the cut. Now the linkage can be made explicit:

Finnie Model Power Dissipation Model
(1- e)SS|$s|$§ £(a) 2 R dKE_,
Ac e > - (1 - e)osvs . V(vs) Bl {(5.15a)
A, = > V. /A (5.15b)
and
p L > Esp (5.15(2)

The differential form of the solids kinetic energy replaces the magnitude of the
algebraic solids kinetic energy times an angular dependence, divided by a depth of cut.
The ratio of fluid volume to target area replaces the depth of cut, and the specific
energy replaces the flow pressure. There is an implicit fluid-mechanical angular effect
in the differential form of the kinetic energy. Funetion f(a) may be viewed as a part of
the material-property relationships (as well as 4,), because it results from integrating
the equations of motion for the particle gouging the eroding wall.
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5.1.3 Extension to Account for Particle Size and Threshold Energy Dependence

As was shown in Secs. 5.1.1 and 5.1.2, the power dissipation model evolves from
the empiriecal laws of comminution and abrasion, and can be linked to algebraic single-
particle and fluidized-bed impaction erosion models. However, the former laws hold only
for very small particles, typically less than 1 um. Another relationship, Rittinger's law,
also goes back more than 100 years.”™ 8 It states that the energy required to crush a
substance is proportional to the production of new area according to the following
relationship:

U= Kz(A - Al) (5.16&)

where Kg has the units of N/m. Walker and Shaw84 showed that Eq. 5.16a is equivalent
to the much more meaningful form,

U-1u
o
v
P

= K2/6 (5.16b)

where § = A/V_ is the thickness of the layer removed, assumed to be the same as the
particle size. Equation 5.16b states that the energy needed to crush a volume of
particles actually decreases for larger particles. Rewriting Eq. 5.16b in terms of the
volume of particles, Vp, results in

Ug-1u
0

Vo T K, /8

(5.17a)

Using the analogy between Kick's law and Rabinowicz's abrasion expression (Egs. 5.3a and
5.3b in See. 5.1.1), we replace U - Uo by FL - (FL)0 to obtain

FL - (FL)
Vp = %75 (5.17b)
2

In this form, Rittinger's law looks like Rabinowiez's abrasion model with a hardness that
depends on particle size, (3/k) H = KZ/S, where Kq is a material property resembling
surface tension and (FL), is a sort of threshold energy, which may itself depend on
particle size. Expressing Eq. 5.17b in terms of the volumetric loss per unit time per unit
area, we obtain

,oVoclF -V - (F -V 14
E = XP‘ = % P (5.18)
t £ 2
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where d_ has replaced 8. Thus, the erosion rate depends directly on the particle size.
Substitution of Eq. 5.5 into Eq. 5.18 produces

d?zs v,
' c(1l - 6)05[;:; CVg T (;:s— . Vs)o] dp
E =~ 7 (5.19)
sp

where E; = Kq (At/vp) is a material property resembling hardness and possibly dependent
on particle size.

Thus, in this extension of the power dissipation model, the erosion rate depends
on a threshold energy and the particle diameter. This threshold energy is similar to the
threshold energies used by Bit'cerso’61 and by Neilson and Gilchrist 2 in their single-
particle-impaction erosion models.

We have demonstrated that there is a strong connection between cutting or
impaction erosion and abrasion erosion. This association was made possible by
introducing the force of the particles on the eroding surface and by associating this force
times a displacement with the particles' kinetic energy.

Shook et a1.86 found slurry erosion rates to increase with particle diameter. The
dependence could be linearized for particle diameters over a range of 100-400 um.
Above this size, the erosion rate increased hardly at all. Below 100 um, the erosion rate
fell to zero, which, we infer, supports the existence of a threshold energy.

Walker and Shaw84 argue that the important aspect of particle size dependence
for the grinding energy requirements has to do with the probability of finding flaws in the
particles. Very small particles, because they have correspondingly fewer flaws, are much
more difficult to break up, and follow Kick's law. Larger particles have a larger number
of flaws, and break up below their theoretical strength; so they follow Rittinger's law.
The fact that normally brittle and ductile materials also follow Kiek's and Rittinger's
laws is also explained by the size effect. Very high-pressure, small particles cause
plastic flow to occur before a flaw is encountered. Thus, materials like marble, which
are brittle in the bulk, are ductile in the size range of ball mill grinding (1-1000 um), and
follow the same laws that apply to the grinding of steel by belts and wheels.

Such behavior has also been observed in later, independent erosion tests by
Sheldon and Finnie, 3 They found that, at the same nominal velocity of 152 m/s, 9-um
SiC particles eroded glass in a ductile manner, whereas 21-um and 127-um SiC particles
exhibited brittle wear. Hence, the concept of the explicit angular dependence describing
single-particle ductile and brittle erosion may not be applicable to multiple-particle
erosion. What may actually be occurring is a continuous energy transfer to the surface
by the particles, producing pressures that may be in excess of the plastic flow limits.
This pressure distribution is determined by the fluid mechanies of the continuum of
particles, and could be computed from the force of the particles on the surface.
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It is possible that particle surface roughness acts very much like very small
particles; in this case, the erosion behavior would follow a ductile model. Most of the
surface damage to the eroding surface is caused by the roughness, much as in a ball
mill. This may explain why Wood and Woodford found that dolomite and alundum,
which differ greatly in hardness, erode tubes at very much the same rate. The erosion
experiments with dolomite had to be terminated after only 20 h, because the filtering
system could not handle the fine dust created by the comminution of the particles.

5.1.4 Extension to Two Dimensions

As discussed in Sec. 5.1.1, the power dissipation model used by Ushimaru et a1.82
was used in one dimension (finite-differenced next to the eroding wall), even though the
solid phase flow is two-dimensional. Hence, the velocity in the y direction, Vs’ shown in
Fig. 12 was not used. This is justifiable if the solids flow next to the wall in the axial
direction is much greater than in the transverse direction (i.e., Ug >> VS). Examination
of their computed velocity fields showed
this to be a good assumption.

The solids (and gas) velocity fields
corresponding to the two-dimensional
fluidized-bed computations reported in
Sec. 2.2 were time-averaged over 2.5s.
This has been determined to be a long
enough for good time-averaging, because
the gas mass flux exiting the top of the bed
differs by less than 1% from that entering
the bottom of the bed. The solids velocity
vector plot in Fig, 13 shows three regions of
recirculation: two on either side of the
obstacle, indicating a vortex, and one above
the obstacle. The gas flows upward
everywhere. The time-averaged porosity
distribution was shown in Fig. 10, where it ERRINEY l LN UPRRTE ‘
compared well with the data. Examination
of the computed time-averaged solid phase TR Mt va <y 7y
velocity field next to the obstacle leads to
the conclusion that it 1is highly two-
dimensional. Hence, the one-dimensional
power dissipation model given by Eq. 5.5 is :
inadequate. -19.685 0.000 19.685
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Epp = 7€ (g)eg (1 - @MU 57 + ¥, 557
(5.20)
BVS avs
* Vs(Us Ix * Vs .B—Y__)]/Esp

For erosion on a horizontal surface (shown in Figs. 12 and 14), V¢/A, = Ax - Ay/Ax = Ay,
For erosion on a vertical surface, Vf/At = AX - Ay/Ay = AX.

It may be interesting to interpret a somewhat simplified two-dimensional power
dissipation model in terms of the concepts of impaction and scouring or abrasive wear. If
the eross-product terms Us(avs/ax) and Vs(aUs/ 3y) are neglected, Eq. 5.20 becomes

. Vf 2 BUS
Epp = € (g )eg (1 - U 500/E,
(5.21a)
Vf 2 BVS
- o (g, (1= O e,

The first term of Eq. 5.21a is the model Ushimaru et al. 82 ysed for scouring
erosion. We will refer to it as the scouring erosion model, E . The second term of
Eq. 5.21a can be interpreted as an impaction erosion model, E . Thus, Eq. 5.21a can be

. IPD
written as

EPD = ESPD + EIPD (5.21b)

where:

: = -¢ (L - gl (—=
Egpp = = € (At)ps (1 e)us(ax )/Esp (5.21¢)
: Ve 2%
EIPD = - C [‘A—t*)ps (1 - E)VS[E}—)/ESP (5.21d)

The finite-difference approximation to Eq. 5.21c is given by Eq. 5.12b for a horizontal
wall, and the finite-difference approximation to Eq. 5.21d for a horizontal wall can be
given by reference to Fig. 14 as

v,-V

. _ _ 2 s2 sl

Efpp = = € (1 eo)pSVssz(———-——Ay )/Esp (5.22a)
but, because Vsl =0, ‘Eq. 5.22a becomes simply

. L o 3

EIPD == ¢ (1 s:O)pSVSz/Esp (5.22b)

which bears a strong resemblence to Finnie's erosion model, Eq. 3.2a.
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The full two-dimensional power
dissipation model given by Eq. 5.20 was
differenced, and the erosion rates around
the rectangular obstacle were calculated,
using the time-averaged porosity and solids
phase veloecities. Details of the finite-
differencing are given in See. 5.2.3.
Because both positive and negative values
of the power dissipation resulted for
locations around the obstacle, it was
concluded that the two-dimensional power
dissipation model was incomplete.

5.2 ENERGY DISSIPATION EROSION
MODEL

The power dissipation model was
discussed in See. 5.1.1. It is necessary to
extend that model to a two-phase continu-
um, consisting of solids and fluid phases.
The power dissipation model will be shown
to be a special case of the more general
energy dissipation model developed in this
section. Details of the model implementa-

e Ax —=

7 7/ /7 7 7
Wall

7

Vsz
|
i | ]
€51 Vso Ay
V=0 | |
/

FIGURE 14 Finite-Difference Region
for Two-Dimensional Power Dissipation

Model

tion using outputs from the hydrodynamic model, and its finite-difference representation

are also presented in this sections.

5.2.1 Derivation of the General Transient Energy Dissipation Model

_The solids phase momentum equation given by Egs. 2.4 and 2.6 with the viscous
shear, ?sv, retained may be written in vector form as

o =) V14V (o (- )Y T ]

t

=~ (1 ~¢) VP + §($g - V) +ele) e+ o (1- e)s

+ V- [(1-¢) ?SV]

(5.23a)
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Equation 5.23a may be written in nonconservation form as
-+
av
> +

s <> - - =+_
ps(l - g) T + ps(l e)vs . ¥ vy = (1 e)VP + B(vg Vs)

+ G(e) Ve + ps(l -¢) g (5.23b)

+ V- [1 - ¢) ?SV]

Following Bird, Stewart, and Lightfoot,89 the equation of mechanical energy is obtained
by taking the scalar product of the solids velocity, 38, with Eq. 5.23b to obtain:

>
av
+ s > + +>
ps(l z—:)vs s + ps(l s)vs . (vS . Vvs)
= - (1 - e)vs - UP + vyt g - (vg - Vs) + vy G(e)ve
> -+ -+ =
* ey (1 - S)Vs c gtV [v - (l*e)rsv)]

This derivation follows that of Bird, Stewart, and Lightfoot extended to multiphase
flow.89 Note that the sign convention of the viseous terms used is opposite to that of
Bird et al., and agrees with that used in the K-FIX computer code.

The very last term in Eq. (5.23b) may be split into two terms as:

vy {v - (ss TSV)] =V - [(ss Tsv) . vs] - (ss TSV) v v (5.24)
The first term in Eq. (5.24) represents the rate of reversible work done by the solids
viscous forces, while the second term represents the rate of irreversible convertion to
internal energy and can be shown to be always by positive.89 Substitution of Eq. (5.24)
into Eq. 5.23b) and solving for the rate of irreversible conversion to internal
energy, B = —dKES/dt,

dKE
e =w_5S
vs dt
_ R a"\?s R
= (es Tsv) ¢V Vs = :€§P§ s _ 3t * isisZs‘ _(Zs_ _v_v_s) (5.25)
1 2
+(e. v) v+ ¥ B-v - (v.-v)=-% -V -06(e) Ve
5.8 . L . - S - SRS S SN - S
3 4 5
ES -+ = -+
T et BT[] 0 ]
6 7
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Where eg isl-e.

Equation 5.25 is simply that portion of the solid phase mechanical energy
equation resulting in the rate of irreversible conversion to internal energy, a portion of
which is available for energy transfer to the solid surface to produce erosion (i.e., the
rate of kinetic energy dissipation 8%er unit volume). It is a direct extension of the well-
accepted single-phase expression. The seven terms on the righthand side of Eq. 5.25
represent to following:

Term 1 = rate of increase in kinetic energy

Term 2 = net rate of input of kinetic energy by bulk flow

Term 3 = rate of reversible conversion to internal energy plus rate of
work done by pressure of surroundings on volume element

Term 4 = rate of work done by drag between the gas and solids on
volume element

Term 5 = rate of work done by solids stress on volume element

Term 6 = rate of work done by gravitational force on volume element

Term 7 = rate of work done by viscous forees on volume element

Clearly, each term must be present, because each has a physical interpretation
contributing to the energy dissipation. Equation 5.25 is the rational extension of the
kinetic energy dissipation given by Eq. 5.10a in the power dissipation erosion model.
Hence, the energy dissipation with T set to equal zero can be expressed as:

dKEs dKESPD N R .
dt | dt * €sVs ° P+ Ve ° B(VS - Vg) (5.26)

-+ + >
- vs - Gle)ve - espsvsg

For nonviscous flow (zero shear), the energy dissipation would be zero, and all
the energy forms in Eq. 5.25 would be freely interconvertible. However, the introduction
of stationary surfaces, such as obstacles, introduces gradients because of the preseription
of zero normal and tangential velocities on the surfaces. Therefore, nonzero energy
dissipation is produced, which can only be ecomputed from the numerical solution of a
problem where the flow has evolved from the imposition of the obstacle.
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In Cartesian coordinates, Eq. 5.25 becomes

dKE
s _ 3 1.2 a 1.2
dt esps[at(ZUs) * at(ZVs)]
aUS aUs aVs aVs
* ssps[Us(Us ax * Vs ay) * Vs(Us Ix * Vs ay)]
(5.27)
P 3P
e U+ eV 3y u_8 (U Ug) + \zfssy(vs vg)
e e
USG(e)Eg VSG(E)S; + eSpSng
where § = -g (gravity negative downward).

5.2.2 Derivation of the Time-Averaged Energy Dissipation Model

When the time-dependent terms are dropped, the steady-state energy dissipation
model results.

Define the time average of some function f as

t°+At
<f> = ft £ dt/at (5.28)
0

The time average of the solids continuity equation (Eq. 2.2) is given (after interchanging
the order of averaging and differential operations) by:
I <g p > + 2 <¢ p U >+ a_ <e p V>=20 (5.29)
at s s Ix S s 8 ay $ 8 8§
With reference to Fig. 15, if we assume that At is large compared with the period of the
oscillations and that a limit-cycle steady state is achieved as indicated, then

. . . .. 3
limit <e > = <g > # £(t) => limit — <g >+ 0
sps sps ss (t) at sps

(5.30)

£ »x t »x>

Ideally, the time to begin the time-averaging is after the first bubble has passed,
typically 0.5 s (as shown in Fig. 8 and schematically in Fig. 15); then At can be made
smaller. If At is finite (large compared with the small-scale oscillations, but small
compared with the large-scale time variation), the nonosecillatory curve <f> would result,
as shown in Fig. 15. However, if a limit-cycle steady state exists, the time-averaged
funetion would go to the steady-state value, <f>_, as indicated.
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<f>gg=Limit <f> e
{=Poo
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FIGURE 15 Time-Averaging of an Oscillatory Funetion

With the foregoing arguments, the time-averaged solid-phase continuity equation
becomes

3_ <e p U >+ a_ <e p V>=20 (5.31)

IxX 58 8 3y 88 s
Time-averaging Egs. 2.4 and 2.6 and using the same argument used for the continuity
equation gives

3 d aP

— < > 4 — < > = - Lg  —>
3x psesUsUs 3y pSSSVSUS s ax (5.32a)

3e
+ <£sx(ug Us)> + <G(e) Fys
and

3 < > + 3 < > = - < o>
x PefUgVe” Y Ay PsesVs's s 3y (5.32b)

de
< -V )> - < > 4 < AN
+ Sy(Vg VS) o e 8>+ G(e) 3y

In the FLUFIX code we now compute the time average of each variable (e, Uy,
Vg U,., V., and P) individually. The density, Pgr is constant. Therefore, we must relate
the time average of products to the product of time averages. Let each variable be
expressed as the sum of the time average plus a fluctuating component:

e =<g >+ ¢’
S ] 8
U =<U>+U'
] ] S
V:

<V > + Y
] ]
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Uy =<y >+ y'
g g g
V =<V >+ V!
g g g
and
P = <p> + p'

For constant solid phase density, oy, the time-averaged continuity equation (Eq. 5.31)
then becomes

3 3
Fy (ps<es> <Us>) e (ps<es><Vs>) ~-DIFFSC (5.33)
wheres
= 9.__ fypt - _8___ typt
DIFFSC ax(ps<esus>) ay(ps<esvs>) (5.34)
The symbol DIFFSC (Diffusion of Solids via Convection) has been used because the extra

terms are suggestive of turbulent diffusion. These terms are zero for a true steady
state, but not for a limit-cycle steady state.

The time-averaged solid phase momentum equations become

3 ) I<p>
—(p <g ><U ><U >} + —(p <eg ><V ><Y >) = ~ <¢g >
ax(ps €s Us Us ) By(ps s Vs Us ) ‘s 9x
(5.35a)
<g>
+ <8 >(<y > - <y >) + <G(e)> 9<e> DIFFSMX
p:4 g L} 2x
and
) 3 I<p>
—{p <g ><U ><V >) + —(p < >V ><V >) = = <¢ >
ax(ps s Us Vs ) By(ps ‘s Vs Vs ) ‘s 3y
(5.35b)
8%¢2 + DIFFSMY

<8 >(<V > = <V >) = g <g >g + <G{e)>
+ By ( Vg vy ) p e >g + c(e)

DIFFSMX and DIFFSMY contain terms analagous to DIFFSC, arising from a limit-cycle
steady state. Terms contained in DIFFSMX and DIFFSMY are suggestive of turbulent
viscosity.
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Now, it is possible to combine the solid-phase time-averaged continuity equation
with the solid-phase time-averaged momentum equations to obtain the solid-phase
momentum equations in nonconservative form as

a<y > aky >

] I<Pp>
p <g ><y > + p <g ><V > = - <g >
s s [ s s ] s ax
3<e> (5.36a)
+ <8 >(<U > ~ <U >) + <G(e)> —— + DIFFSMX - <U >DIFFSC
b4 g ] Ix S
and
< <y >
3 VS> 3 Vs 3<P>
p <g ><J >wm—— + g <g ><V > = =<g >
5 s s 9% s s S 3y ] ey
(5.36b)

a<e>
+ <8 >(KV > - <Y >) -~ Ce g + < Smressmeseosn
B >( s ) ps Es g G(e) 3

+ DIFFSMY - <VS>DIFFSC

The time-averaged energy dissipation can be computed by multiplying Eq. 5.36a by <Ug>
and Eq. 5.36b by <V,> and adding to obtain

dKE <y > <y >
5> = p <e >[<U >(<U + <y >—2)
s 8 s s 9x 8

<
dt Ay

3<v > <y >
+ <V > (<[ >——Sr + <V > )]
s 5 ax ] ay

+ <g ><[J SISB> <g ><V >3<B> <Y ><g >(<y >-<y >)
s s 9% ] s 3y s X s g

3<e>
+ <V ><8 >(<V > = <Y >} = <Y >< S e <V ><¢g >
Vs By ¢ Vs Vg ) Us G(e) ax s Vs s &

a<g> 2

- <vs><c(€)> + (<Us> + <VS>2)DIFFSC

- <US>DIFFSMX - <VS>DIFFSMY . (5.37)

Comparison of Eq. 5.37 with Eq. 5.27 (with the time-dependent terms dropped)
shows that extra terms enter into the time-averaged energy dissipation. These extra
terms are dropped when the energy dissipation is evaluated using time-averaged FLUFIX
hydrodynamic results, and this is considered to be the reason that inaccuracies can
arise. Similar inaccuracies arise with the power dissipation model. It is possible to
evaluate the extra terms in Eq. 5.37, but it is more straightforward to evaluate the time-
dependent energy dissipation, using Eq. 5.27, and then do time-averaging.
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From an engineering standpoint, time-averaged equations are more desirable
than time-dependent equations for calculating erosion rates. The trade-off is decreased
computer storage cost with the acceptance of inaccuracies in the evaluation of the time-
averaged energy dissipation with the extra terms dropped, versus improved accuracy in
the time-averaged evaluation of the time-dependent energy dissipation, with
substantially increased computer storage costs. In many circumstances, the results
should be close, and they generally are, as shown in Sec. 6.

5.2.3 Implementation and Finite-Difference Equations

The application of algebraic and differential erosion models to fluidized beds is
described in this section, as well as the finite difference equations for the power and
energy dissipation models.

5.2.3.1 Coupling of Hydrodynamie and Erosion Models

A typical FLUFIX computational cell next to a tube surface is shown in Fig. 16.
If the tube is round, it must be approximated (with a "staircase" approximation) as
indicated, because Cartesian coordinates are used. The normal and tangential velocities
of the gas and solid phases are set equal to zero on all the approximate tube surfaces. If
the obstacle is rectangular and aligned along the coordinate direction, no approximation
is necessary.

If the algebraic models deseribed in Sec. 3 are used, the solid phase velocities in
each direction are resolved at the cell center and the magnitude of the velocity is
obtained. The angle of the resolved velocity vector at the cell center with respect to
each horizontal and vertical approximate tube surface is then obtained. The porosity is
known at the cell center; so the mass flux of the solid is computed from the magnitude of
the velocity resolved at the cell center and the porosity times the density (which is

Vg = VS :.o ESP
Actual
| \ Tube Surface
! P
Ug I & <
AY —i——- e

s | dKEg >\ Ug=Ug,= 0
| ar 9t
I __%_ ;‘\ Approximate

Tube Surface

FIGURE 16 Coupling of Hydrodynamic and
Erosion Models
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constant). Given the tube material hardness, Es , or flow pressure, p, and some estimate
for the fraction of the particles causing material removal, the erosion rate is obtained.
This is done at present in a postprocessor code called ENERGY, which uses as inputs
either the time-averaged or fluctuating FLUFIX outputs (saved from the solution of the
hydrodynamic equations).

If the power dissipation model is used, derivatives of the solid phase kinetic
energy must be evaluated to compute the power dissipation at the cell centers around the
obstacle. This may be either a transient or a time-averaged calculation.

If the energy dissipation model is used, the gas phase velocities are needed to
compute the rate of work done by drag between the gas and solid, and gradients of
pressure are needed to evaluate the pressure work terms. A detailed description of the
finite-differencing is given in the next section.

5.2.3.2 Energy Dissipation Finite Difference Equations

The energy dissipation expression given by Eq. 5.27 is evaluated in finite-
difference form at the middle of each control volume of interest. Because the velocities
are known only at the cell edges, they are averaged in each direction when they are
needed at the cell center. Figure 17 illustrates the nomenclature used for cell (IJ). The

T
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Vg(‘IJ)

1
PUY)
€(19)
Ug(iiL) Ugm(1J) Ug(id)

A “ 1 e
UgltaL) Vgm{ld) Uglid)
Ugm(1¥)
ngi'*’)
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T
Vg (isB)
Vgl(14B)
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FIGURE 17 General Finite-Difference Nomeneclature for
Evaluation of Energy Dissipation
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indexes IJ, IJL, IJR, I1dB, and IJT refer to cells at the center, left, right, bottom, and top,
respectively. The average values of the phase velocities at the cell centers, denoted by

Usmr Vsme Ugm’ and ng, are as follows:
Usm(IJ) = [US(IJL) + US(IJ)]/Z (5.38)
Vsm(IJ) = [V (IJB) + v (13)1/2

and similarly for the gas phase. All six variables for cell IJ are shown in Fig. 17, where
the cell edge velocities (together with their notation) are also given. The finite-
differencing is straightforward, in general, using forward in time and central in space
(FTCS) differencing. There is ambiguity in evaluating some of the gradient terms at the
obstacle boundary. Therefore, for reference purposes, we summarize all the expressions
used and give suggestions for alternatives here.

The general implicit finite-difference approximation to Eq. 5.27 is given by

2 2
B s 1 =L n n+l _ n
Tl = €0, at ( U ) sas{(Usm ) (Usm) 1/ac (1J) (5.39a)
and
- 3 n n+l.2 _ n \2
T2 = €0 EE(ZVS) = =p ses[(vsm ) (vsm) 1/(13) At (5.39b)
2 g 2 \n+l n+l
cl = espsUs el ps(esUsm) (IJ)[U (1J) - U (IJL)] [Ax {5.39¢)
2 ¥y 2 .n+l n+l
€2 = e p V] Iy - ps(eSVsm) (IJ)[V (1J) - v (IJB)] N (5.39d)
aUs n+l n+l
€3z e p UV, 5 - ps(ssusmvsm) (IJ)[US(IJT) —US(IJB)] /2hy (5.39e)
Ch = &s | e u v O)™lanm ) - v (L™ ax  (5.390)
= 85P%Ys Tax Ps'%s sm sm 8 s X .
~PUL = ¢ U gp U G(s) = (e U m)n*l(IJ)[P(IJR)—P(IJL)]“+1/2AX
§ ox s (5.39g)
- [e(edu_ 1" (IJ)[e(IJR) - e(IJL)]n+l/ 2A%
sm
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apP n+l

- ar e _ n+l -
-PVL = espSVs 3y vsc(e)ay (esvsm) (IJ)[P(1JT) - P(IJB)] ~/24y
(5.39h)
~[G(e)Vsm]n+l(IJ)[e(IJT) - e(138)1™ /22y
-FRIC = USBX(US-Ug) + Vssy(vs—vg) (5.391)
= - _ n+l
= [Usmsx((usm Ugm),e,os)(Usm Ugm)} (1J3)
n+l
+ [Vsmsy((vsm—vgm),e,ps)(vsm-vgm)] (n
n+l .
~-POTSOL = espsng = psg(ssvsmg )y (1) (5.39§)

The energy dissipation is then given by

dKE

dts =Tl + T2 + C1 + C2 + C3 + C4 - PUL - PVL - FRIC - POTSOL (5.40)

The rate of dissipation, -dKES/dt, should always be greater than or equal to zero.

We now consider the special cases of the derivatives in Eqg. 5.39 for the six
locations around an obstacle, such as that shown in Fig. 8. At present, three "flags" are
used to keep track of whether the obstacle is above, below, or to the left of the cell
under consideration. These flags are numbered as follows:

FLAG = 1: Obstacle surface above
FLAG = 2: Obstacle surface to the left
FLAG = 3: Obstacle surface below

A special subcase is a cell next to a line of symmetry; this applies to cells 1 and 5, which
have a line of symmetry to their left. These flags will be extended in the future to
handle additional cases of more than one obstacle surface associated with a cell and lines
of symmetry to the right, top, and bottom. Only the expressions that differ from
Egs. 5.39a-5.39i are listed below.

FLAG = 1 (obstacle surface above)

To evaluate term C3, we finite-difference Eq. 5.3%e over an interval, Ay/2, next
to the obstacle and set the normal veloecity on its solid surface to zero, because it is
inpenetrable, to obtain
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n+l n+l

3 = ps(s U v (1) {5.3%¢e"

UenVem (o - Usm/(Ay/z)]

Neither pressure nor void fraction are defined inside the obstacle. One way to
evaluate the term PVL is to assume zero gradients of pressure and void fraction on the
obstacle surface and to set P(IJT) equal to P{IJ) and eS(IJT) to eS(I‘J‘) to obtain

n+l n+l

~ PVL = (esvsm) (1J)[P(1J)-P(1JB)]  ~/2ay

n+l

-[G(e)Vsm} (I1J3)[e(1J) - e(IJB)}n+l/2Ay {(5.39h")

An alternative is to extrapolate the pressures and void fractions linearly, to obtain values
on the obstacle surface and then to use this result to evaluate the gradients. This is
equivalent to replacing 2Ay by Ay in Eq. §5.39h"

Cells 1 and 5

These cells are next to a line of symmetry. In this case, some ambiguity arises
concerning the approximation of term C4. One choice is to evaluate the gradient using
the average value of the veloeity in the right half and the zero gradient in the left half
to obtain

C4=p (e UV )n+1(IJ)[Vsm(IJR) - vsm(13)1n+1/2Ax (5.39f"

s sm sm

Another choice is to assume zero gradient of axial veloeity in the x direction in the left
half of the cell and, therefore,

C4 =0 (5.39f")

The evaluation of the term PUL also gives rise to some ambiguity. One choice is
to assume that both the pressure and the void fraction have zero gradient on the left half
of the cell, so that P(IJL) is set equal to P(IJ) and eS(IJL) is set equal to eS(IJ) in
Eq. 5.39g to obtain

- PUL = (esUsm)n+1(IJ)[P(IJR) - p(10) 1™ 20x

(5.39¢"
[G(e)Usm]n+l(IJ)[e(IJR) - (1T (2ax)

Another possibility is to extrapolate linearly the pressures and void fractions to the line
of symmetry, as was done to evaluate PVL. The result would be equivalent to setting 24x
to Ax in Eq. 5.39g'.
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FLAG = 2 (obstacle surface to the left)

The evaluation of this term is highly prone to inaccuracy, probably because of
the very high velocity of axial solids near the obstacle surface, due to the neglect of the
gas and solids shear terms. Hwang 30 observed, in his gas-particle calculations, that
numerical instability ean actually occur if the velocity of the particles is too high.
Although hydrodynamic computations are stable, the kinetic energy dissipation may be
underestimated (too negative). The term C4 is evaluated by averaging Vg, next to the
obstacle and then finite-differencing over Ax to obtain

n+l

C4 = o, (e U v (IJ)[V (IJ) * v (IJR)]n+l/ Ax (5.39f™)

sm m
Another possibility is to evaluate term C4 in a manner similar to that used with
term C3 for FLAG = 1:

Ch = p (e U_V ) n+l(IJ)[Vsm(IJ)-O]n+l/(Ax/2) (5.39£"™)

The term PUL is treated the same as it was for FLAG = 1 for cell 1 (i.e., Eq. 5.39¢g' is
used).

FLAG = 3 (obstacle surface below)

Term C3 is treated as was term C3 for FLAG = 1, except that the sign is
changed:

- n+l n+l "
€3 = o (esusmvsm) [(USm - 0)/(ay/2)) T(13) (5.39e")

The term PVL is evaluated analagously to the evaluation of the term PVL for FLAG = 1,
to obtain

)n+l n+1/ Ay

PVL = (e V (I (P(IIT) - P(1J)]
s sm

(5.39n")

- [c(e)Vsm]n+l(IJ)[e(IJT) - (11128

or with 24y replaced by Ay.

The sum of the terms T1, T2, and C1-C4 represents the kinetic energy
dissipation, dKESPD/dt, in the power dissipation model. The steady-state energy
dissipation finite-difference equations are identical to the above.
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5.2.4 Energy Dissipation Erosion Model

After the energy dissipation has been computed, it must be transformed into an
erosion rate. This requires the choice of an erosion model. The one chosen for the
preliminary calculations is given by

Ecp = C (-dKEs/dt)dP/Esp (5.41)

where dKES/dt is given by Eq. 5.27 for time-dependent energy dissipation and by Eq. 5.37
(DIFFSC, DIFFSMX, and DIFFSMY set to zero) for time-averaged energy dissipation; d
is the particle diameter and Eg, is the specific energy, which is a material property
related to hardness, p. Some typical values of hardness are given in Table 3 for the
materials used by Wood and Woodford®" and in Table 4 for data from Ushimaru et al., 2
who claim that Ii‘.sp ® 2 X p. ’

The energy dissipation erosion model given by Eq. 5.41 can be interpreted in
either of two ways. It can be thought of as the extension of the power dissipation erosion
model given by Eq. 5.10, with V¢/A, = d, or as a generalization of Rittinger's law given
by Eq. 5.19, but with no threshold energy. We chose C = 0.1 and ESp = ps we call this the
monolayer energy dissipation erosion model.

In their cold fluidized-bed erosion experiments, Wood and Woodforcl68 found that
the erosion rate increased with increasing particle diameter. For example, they obtained
erosion rates of 0.036, 0.48, and 1.16 mm/1000 h for aluminum tubes for 100-, 930-, and
1900-um silica sand; these values suggest a very nearly linear dependence. Basically
linear dependence was found for all the other materials tested. Therefore, the choice of
the particle size dependence in the energy dissipation erosion model given by Eq. 5.41.
appears reasonable.

The boundary conditions used in the computations performed in this section are
given by Egs. 5.39¢', 5.39h, 5.39f', 5.39¢g", 5.39f™, 5.39e", and 5.39h".
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TABLE 3 Hardness of Materials Tested by Wood and Woodford

Diamond
Pyramid
Crystal Hardne ..
Material  Structure  (kgf/mm Composition
Aluminum fece 18.5 99.99% Al
Iron bce 90 Electrolytic Fe (99.95%)
Copper fce 104 OFHC Cu (99.99%)
Nickel fce 131 Ni 270 (99.95%)
Cobalt fce 210 Electrolytic Co (99.92%)
SA213-T11 bce 177 0.1 C: 0.44 Mny 0.65
Sis 1.22 Crs 0.48 Mo
SS304 18 Cry 8 Niy 1.7 Mn:
0.5 si3 0.05 C.
$8316 fce 171 17 Cry 12 Niy 1.7 Mny
2.0 Moy 0.5 siy 0.05 C.
A 286 fec 393 53 Fej 26 Nij; 15 Cr; 1.3
Mo 0.2 Als 2.0 Tig 1.35
Mns 0.5 81 30.05 C3
0.01 SB
Stellite 6B fece 377 Co: 29.9 Cr3 2.2 Nij 1.3
Fe3 1.0 Mo; 4.3 W3 0.48
Sij 1.61 Mng 0.99 C.
High—-speed bce 1010 1.2 C; 3.75 Cry 1.6 V3§
Steel 2.75 Wy 8 Mo 8.25 Co.
Limestone (Cald) 134
Silica Sand 766
Alundum (A1203) 1890

40.5-kg load.

Source: Ref. 65.
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TABLE 4 Typical Values of
Material Hardness

Hardness, P

2)

Metal (kgf/mm
Lead 5
Aluminum 22-35
Copper 42~-1290
Brass 42-180
Nickel 115-350
Hardened steel 900

Source: Ref. 82.
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6 CALCULATION OF ENERGY DISSIPATION AROUND AND EROSION RATES
OF AN OBSTACLE IN A TWO-DIMENSIONAL FLUIDIZED BED

Results of energy dissipation computed from the energy dissipation model are
presented in this section. Both time-averaged and fluctuating results are included. The
energy dissipation rates are compared with the kinetic energy available for the Finnie
erosion model. This comparison is done on a consistent basis, using the monolayer energy
dissipation erosion model. A methodology for the consistent and meaningful comparison
of the energies is developed. The erosion rates are computed and compared. Because of
lack of directly usable data for validation of the erosion models, the computed erosion
rates are compared with published literature results obtained under similar operating
conditions.

The computed void fraction, gas and solid phase velocity, and pressure fields
were found to be relatively insensitive to (1) the parameters in the solids elastic modulus,
G, and (2) the treatment of the pressure gradient term.47 Therefore, only one
representative set of time-averaged and one set of time-dependent FLUFIX
hydrodynamics outputs were used fo calculate the energy dissipations discussed in the
next two sections. These results are for hydrodynamic model A, given by Egs. 2.1-2.6,
and elastie modulus model 1, given by

G(e) = exp [~600(e - 0.376)] (6.1)

as discussed in Seec. 2.1.

6.1 TIME-AVERAGED ENERGY DISSIPATION CALCULATIONS

Pressure, gas and solid veloecity components, and void fraction time-averaged
over a 2.0-s time scale are given in Fig. 18 for all the cells bordering the obstacle. The
velocity components have been resolved at the cell centers by averaging the values at
the cell edges. The dimensions of the obstacle, its location in the fluidized bed, and
other details are given in Fig. 1.

The results show that the void fraction is high on the bottom and side and low on
the top, where solids are settled. The gas and solids are accelerated around the obstacle
with a gas velocity on the side approaching the jet velocity of 5.78 m/s. Plots of the
entire time-averaged porosity and gas and solids velocity fields are shown in Figs. 10 and
13.

Using Eg. 5.37 with DIFFSC, DIFFSMX, and DIFFSMY set to zero and the time-
averaged FLUFIX hydrodynamic ouputs, time-averaged energy dissipation was computed
for the cells around the obstacle. The total energy dissipation, and all of its components
are shown in Table 5. The units of erg/(s-em®) are consistent with the units of the
FLUFIX hydrodynamic results. The # sign refers to the cell numbers around the
obstacle. IJ is the number of the cell internal to the FLUFIX code. Also shown in the
table are the energy dissipation rates for the lower and upper corner cells, IJ = 70 and
169, respectively.
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P = 1.02208] P = 1.02213| P = 1.02221
US = 2.13 Ug = 4.53 Us = 6.07
Vg = -23.8 Vg =-10.1 Vg = 67.8
Ug = 0.97 Ug = -0.43 Ug = 8,13
V,= -2.54 V. = 26.4 V.. =240
T% = 0.37 Th = 0.39 TE = 0.63
P = 1.02706
Ug = 2.92
V. = 96.6
| Key UZ = 125
V, = 384
P = Pressure, 105 Pa ™= 0.80
U. = Solids veloeity in x direction, em/s
VSS = Solids velocity in y direction, ecm/s Obstacle P = 1.03190
Ug = (as veloeity in x direction, cm/s U, = 2.01
V_ = Gas veloeity in y direction, cm/s Vg = 92.9
T% = Porosity, gas volume fraction, ¢ Ug. = -14.7
V, =444
T% =  0.80
P = 1.04143 P = 1.04129| P = 1.04097
US =  4.81 Ug = 13.2 Us = 16.4
Vg = 52.3 v, = 27.8 Vg = 57.1
Ug = 38.8 Ug = 95.8 Ug = 96.1
V, = 26.4 V, =122 V, =273
T% = 0.75 TE = (.68 T% = 0.65

FIGURE 18 Time-Averaged Porosities, Veloéities, and Pressixi'es around an Immersed

Obstacle — Hydrodynamic Model A, dp = 500 um, Vjet = 5.78 m/s, Vsecondary = 0.26 m/s

SUM1, which is the sum of terms C1 through C4 given by Egs. 5.39¢ through
5.39f, represents the kinetic energy dissipation, dKE pp/dt, which is obtained from the
power dissipation model, Eq. 5.10a. The results for SUMI clearly show why the power
dissipation model is inadequate: some values are positive and some values are negative.
All values should be negative so that the erosion rate would be positive. The reason for
the sign variations can be seen by examining Figs. 13 or 18, The solids are being
accelerated above the lower corner and decelerated near the upper corner. They are also
decelerated below and above the obstacle. Hence, the reason for the sign variations and
the unacceptability of the power dissipation erosion model. The results obtained by
Usimaru et al.”“ were fortuitous, in that they had decelerating solids flow in their slurry
jet pump model.

PTOT is the sum of PUL and PVL, given by Egs. 5.39g and 5.39h. RESID is the
sum of all the terms given by Eq. 5.40 (with T1 and T2 equal to zero) and represents the
total energy dissipation. All these terms are negative, as they should be. The total
time-averaged energy dissipation in SI units is tabulated in Table 6 for reference, where
it is compared with the time average of the transient energy dissipation (ealculated in
See. 6.2, where the reason for the differences is discussed).



TABLE 5 Computed Time-Averaged Energy Dissipation, dKE./dt, and its Components in erg/(s-cmz)

# 1J Cl* c2* c3* C4* SUM1 PUL* PVL* PTOT FRIC* POTSOL* RESID
1 68 188 -35529 ~276 ~-2841 -38457 128 8949 9077 34262 -30998 -50798
2 69 1697 -6881 -1547 1078 -5653 1526 6187 7713 10642 -21320 -2688
- 10 -507 17773 1011 21832 40108 2626 32609 35236 68001 -47606  -15523
3 103 13 35065 -127 12795 47746 -30 26654 26624 113897 ~44666  —48110
4 136 39 -31151 58 20032 -11023 17 19469 19486 82562 -46815 ~-66256
5 167 47 -8551 -68 -852 -9423 215 -8815 -8601 -6195 35958 -30586
6 168 26 -618 -125 ~4873 -5590 ~-283 -2841 -3124 ~4141 14504 -12829
- 169 134 -20939 -185 25585 4595 -98 24250 24151 57476 -59731 -17301
Note: to convert to W/cmz, multiply by 1077.

# = Cell designations in Figure 19

IJ = Cell locations in Computer program

SUM 1 = Cl & C2 & C3 & C4
PTOT = PUL & PVL

RESID =
* Terms are given is Egs. 5.3%9c - 5.39f

Energy dissipation rate given by Eq. 5.40

19
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We «can compare the energy TABLE 6 Comparison of Time-
dissipated in the vicinity of the obstacle Averaged Energy Dissipation and
with the total energy dissipation in the bed, Time-Averaged Transient Energy
given by Dissipation, -dKE/dt (1()—3 W/cm3)

E, = [(Av)jet + (av) 1 e gh (6.2)

Equation 6.2, derived in App. C, states that Cell¥ Time- — Time-Averaged
the energy dissipated in the bed is equal to Number Averaged Transient
that required to support the bed weight,
which is approximately the dissipation due 1 5.08 5.58
to drag. Substituting a bed height of 0.28
m, Eq. 6.2 yields a total bed dissipation of 2 0.27 0.51
17.8 W for ¢_ = 0.4, p. = 2.6 g/m?, and the

s S ioan 3 4.81 1.08
bed conditions given in See. 2.2. From :
Table 6, the energy dissipated around half
the obstacle is 21.13 x 107° W/cm3, or an 4 6.62 4.56
average of 3.5 x 16™° W/em? per cell. 5 3.06 2.52
Assuming that this energy is dissipated in
the monolayer of 0.05 c¢m, the total energ 6 1.29 2.04
dissipated around the obstacle is 1.64 x 10~
W. This is less than 0.1% of the total  Total 21.13 16.29

amount dissipated by frictional drag.

A simple methodology has been  -Locations given in Fig. 8

developed to compare, on a consistent

basis, the computed results of the energy dissipation model with the kinetic energy
available for algebraie erosion models. The Finnie erosion model is chosen to illustrate
the methodology; its total available kinetic energy KEqqps is given by

-2
KE o = MgVg /2 6.3)

where KEpqp has dimensions of w/ m2,

In order to compare the energy dissipation rate with the total kinetic energy
defined by Eq. 6.3, the energy dissipation rate is multiplied by the particle diameter:

Ugp = (-dKEs/dt) dp (6.4)
where Ugpp also has dimensions of W/mz. The particle diameter chosen is 500 um;,

nominally the same as that used in the analysis of the IIT two-dimensional cold fluidized-
bed experiment (see Sec. 2.2).
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The maximum amount of the total kinetic energy available for erosion in the
Finnie erosion model is given by

KE_..,B = 0.075 (&15382/2) = 0.075 KE (6.5)

FM TOT

at an impingement angle of 18.43°. The kinetic energy available for erosion at any other
angle is given by

KE, = (1/8) raszsz £(a) (6.6)

where f(a) is given by Eq. 3.4.

The results computed from Egs. 6.3-6.6 are summarized in Fig. 19 (expressed in
W/cmz) for the six cells surrounding the obstacle. The two corners have been suppressed,
because the corners have no area. Also shown are the angles of the solid veloeity vector
with respect to each surface.

As Fig. 19 shows, the results from the monolayer energy dissipation model are
very much lower than the total kinetie energy available for the Finnie model, 5 r}xsvs
The monolayear energy dissipation model results are closer to those for the Finnie
maximum model, which uses only 7.5% of the maximum kinetic energy. The spatial trend
is basically the same.

The impingement angles are close to 90° on the very top and bottom; so very low
available energies, KEp, are computed with the Finnie model, Eq. 6.6. No available
kinetic energy is computed on the top of the side, because the solids flow away from the
obstacle.

15.4 6.5
104.6 9.9
7.8 0.7
0.07 0.14
a=84.9° =65.8°
33.3
KEY 2220.0
Energy Dissipation = Ugp 16 (6) . g
05 heV2 = KE e
STUTOT OBSTAGLE a--178
Finnie Maximum = KEgp 24.2
_— 1967.0
Finnie = KEg 147.6
UNITS ARE: 1075 W/em? 0.0
- a=-1.23°
25.6 1.4
436.0 114.0
32.7 8.6
0.3 1.7
=84.8° [0=64.6°

FIGURE 19 Time-Averaged Energy Dissipation, Calculated Results
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6.2 TRANSIENT AND TIME-AVERAGED TRANSIENT ENERGY DISSIPATION
CALCULATIONS

Fluctuating energy dissipation values around the obstacle were computed using
Eqg. 6.4. They are plotted for all six cells in Fig. 20, using a particle diameter, d_ =
0.05 cm. The time averages of the transient results for -dKES/dt, Eq. 6.4, are tabulated
in Table 6, where they are compared with the time-averaged results. The two results
generally compare favorably. The differences are probably caused by (1) the neglect of
DIFFSC, DIFFMX, and DIFFSMY in Eq. 5.37, and (2) inaccurate evaluation of term C4 on
the side of the obstacle. The sums of the two sets of results agree closely. This close
agreement acts as a consistency check on the two sets of independent computations.

S —
o 5| 6
+ 4
o Obstacle
& o3
ol o
+ 11 2
C/L

Energy Dissipation, (dKEg/dt)dp (10-4W/cm2)
8]

Time (s)

FIGURE 20 Fluctuating Energy Dissipation, Computed Results (dKE./dt) dp (dp = 500 um)
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A rough estimate of the accuracy of the fluctuating energy dissipation
calculations can be obtained by the average of the occasional peaks of positive energy
dissipation in Fig. 20, which is about 8 x 107™° W/em? (1.6 x 10™> W/em3). The time
average of the transient computations is believed to be inherently more accurate than
the time-averaged computations.

Because it is difficult to follow all six curves in Fig. 20, the energy dissipation
for only the two cells under the obstacle is replotted in Fig. 21. For cell 1, the figure
clearly reveals the high frequency oseillations (9-10 Hz), which agree with the bubbling
frequency observed in the high-speed motion picture study discussed in Sec. 2.2. The
computed energy dissipation fluctuations closely follow the computed porosity
fluetuations plotted in Fig. 8. Minima in the porosity fluctuations correspond to maxima
in the energy dissipation. The fluctuating dissipated energy plotted in Fig. 21 differs
from the erosion rate by only a factor of hardness, so the energy curves may be thought
of as relative erosion rates. Hence, the erosion rate of cell 1 is muech higher than that of
cell 2. Erosion results will be presented and discussed in Sec. 6.3.

The passage of the bubbles and associated solids motion causing particles to
strike the obstacle over tubes may be closely connected with the erosion process in
fluidized beds. This concept has been put forward on an intuitive basis by Asai et al.
and Leckner et al. 1 Lockwood™“ attempted to make a connection between in-bed tube
geometry and its effect on bubble growth, bubble size, and pressure fluctuations. Thus,
so-called "high-quality fluidization" (i.e., smoother operating fluidized beds) may result
in less erosion.

Obstacle —

2

- -~ ) -~ -
\\/f‘é-’ \,’\~F-\\’/\"," TN T Nn T T
-

0 0.5 1.0 1.5 2.0
Time (s)

FIGURE 21 Fluctuating Energy Dissipation, Computed
Results (dKEs/dt)dp, for Cells 1 and 2 (dp = 500 um)
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A breakdown of the component contributions to the total energy dissipation for
cell 1 is given in Fig. 22. The breakdown is analogous to that done in Table 5 for the
time-averaged computations. For clarity, only the major contributions are plotted.
Here, T1 and T2 represent term 1 in Eq. 5.25 and are given by Egs. 5.39a and 5.39b.
Although the sum of these terms shows strong oscillations, it oscillates around zero.
SUM1 represents term 2 in Eq. 5.25 and is the sum of terms C1 through C4 given by Egs.
5.39, ete. This term is negative, because the solids decelerate as they approach the
lower surface of the obstacle. The terms PTOT and FRIC are both positive; when they
are subtracted, in Eq. 5.40, they become dissipative. -(PTOT + FRIC) represent terms 4
and 3 + 5, respectively, in Eq. 5.25. The last term, POTSOL, is negative. When it is
subtracted, in Eq. 5.40, it becomes positive, because it represents a gain in potential
energy. -POTSOL represents term 6 in Eq. 5.25. The time average of these various
terms is close to the values given in Table 5. The sum of the time average of all the
terms is given in Table 6.

16.0 T ; ‘ f | 1
12.0 —}j:eTI+T2 —— 4: FRIC - — 6: POTSOL |
—-— 2:8UMI= - - 3+5: PTOT=
- cCi+C2 PUL+PVL
E 8.0 +C3+C4 B
~
=
o 4.0
o
- 0.0
2
e
[+
o
g —400
2
>
N
a; —800
=
l
—|2.0_ ]
""6-0 L l | I | ! {
0.0 0.5 1.0 1.5 2.0
Time (s)

FIGURE 22 Breakdown of the Five Main Terms of the Trméiéht Energy Dissipation,
dKE./dt (the numbers refer to the terms in Eq. 5.25)
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The maximum kinetic energy available for the Finnie erosion model, given by
Eq. 6.3, is plotted in Fig. 23 for the six cells surrounding the obstacle. Once again, the
high-frequency oscillations at cell 1 are clearly seen. Note the lower-frequency but
higher-amplitude kinetic energy oscillations on the side of the obstacle. The maximum
amount of kinetic energy available for the Finnie erosion model, KEFM, is only 7.5% at
18.43°, given by Eq. 6.5.

The amount of effective (erosion producing) kinetie energy available for erosion
at any other angle, KEp, given by Eq. 6.6 is plotted in Fig. 24. Very small kinetic
energies are calculated for cells 1 and §, because the solids impingement in these regions
is almost normal to the obstacle surface. Larger rates are computed at cells 2 and 3,
becuase the impingement angle are closer to 18.43°. The large spikes are caused by
changes in the solids flow direction at cell 3. These spike tops are cut off in order that
the variation in the other five cells can be seen more clearly. The maximum values of
the three cut-off peaks in Fig. 24 are 80, 40, and 15 x 10"5W/cm2, respectively.

The transient calculations for Egs. 6.3-6.6, time-averaged over 2 s, are tabulated
in Fig. 25. Comparison of these results with those for Fig. 19 shows that tzhe
time-averaged energy and time-averaged transient maximum kinetic energy, 0.5 msvS .
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FIGURE 23 Total Kinetic Energy Available for Finnie
Erosion Model
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FIGURE 24 Kinetic Energy Available for Finnie Erosion Model with Angular
Dependence

are not equal; the latter are consistently larger. If we time-average this transient
kinetic energy, we obtain
> 2 > 3 3

. + 3 >
<m v > =p<gv > =p<g >2xXv > +9p <g'v'’> (6.7)
s s s S s S S s s S S

because pg is constant. The time-averaged maximum kinetic energy was obtained by
using the time-averaged porosity and solids density, neglecting the time average of the
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FIGURE 25 Time-Averaged Transient Energy Dissipation,
Calculated Results (dp = 500 um)

product of the fluctuations. Comparison of the two sets of calculations allows us to
quantify the magnitude of the error incurred.

The time averages of the transient energy dissipation calculations are not always
higher than the time-averaged values. The difference, however, is within the estimated
error in the calculations (8 x 10'5 W/cmz). This type of inaccuracy does not exist with
the caleulations of kinetic energy. The time-averaged and time-averaged transient
values of the kinetic energy available at any angle are close, but they differ for the
reasons discussed for the maximum available kinetic energy.

6.3 EROSION RATE CALCULATIONS

The time average of the transient energy dissipation computations is believed to
be inherently more accurate than the time-averaged computations. Only the former
were used to calculate the erosion rates.

The energy dissipation rates shown in Fig. 25 were converted to erosion rates for
aluminum. The hardness used was 30 kgf/ mm?2 (294 MN/mZ). This value is the average
of the range quoted by Ushimaru et al.82. The results are displayed in Fig. 26. The
transient erosion rates are shown in Fig. 27. These are, to our knowledge, the first
computations of local erosion rates in fluidized beds. In calculating the erosion rates for
the monolayer energy dissipation erosion model, we applied the empiricism that, when
metal is removed, fewer than 10% of the grains in contact with the surface actually
remove metal. (The remaining particles cause only elastic deformation, not resulting in
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FIGURE 26 Time-Averaged Transient Calculated
Erosion Rates for Aluminum, Hardness = 30 kgf/ mm?2
(294 MN/m?), d, = 500 um

material wear.87) Clearly, this proportion is influenced by the hardness of the erodent
relative to the eroding surface and the erosion mechanism, cutting tool (impaction) or
sandpaper (abrasion). This factor of 10% may be justified when the hardness of the
particle is comparable with that of the wall over a fairly wide range, but it is not on a
strong theoretical foundation; its value, or a model for it, should be investigated
further. It is not the purpose of this study to investigate materials property models, but
rather to develop a best-estimate mechanistic erosion model that incorporates the state
of present knowledge of material properties and the results of hydrodynamic modeling.

The erosion rates computed from the monolayer energy dissipation erosion model
fall between those for the Finnie maximum erosion model, Eq. 6.5, and the Finnie erosion
model with angular dependence, Eq. 6.6, for cells, 1,4,5, and 6 and below for cells 2 and
3‘

Because the bottom of the obstacle is located directly above the jet, the erosion
rate is higher there than on the side or top. The spatial variation in the erosion rates
computed from the monolayer energy dissipation erosion model basically follow those
caleculated from the Finnie maximum erosion model. However, the erosion rates
computed from the monlayer energy dissipation erosion model are supsected to be too
high at the top of the obstacle, because experimental evidence shows that predicted
solids loading are too high.

Time-averaged erosion rates computed from the Finnie maximum erosion model
are large on the sides of the obstacle (cells 3 and 4), because solids velocities are
important there. These erosion rates are of the order of 200 mm/1000 h, which are much
too high for wear of aluminum by glass beads. The upper bound on tube erosion rates
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given by Eq. 6.5, represents the maximum percentage of the total kinetic energy
available for erosion, but only part of this energy is actually used in eroding the target.

Finnie's erosion model with the angular dependence, Eq. 6.6, is basically a cutting
tool model, hence, it fails to predict both normal impaction erosion wear (cells 1 and 5)
and abrasive erosion wear that oceurs on the lateral sides of the obstacle (cells 3 and 4).
Finnie's model prediets zero erosion rate for cell 4. In this cell, the solids flow tends to
be deflected away by the obstacle and, under these conditions, Finnie's model does not
predict any tube wear.

The experimental fluidized-bed tube wear data of Wood and Woodford®® and
Parkinson et al.%? indicate that the erosion rate of aluminum is about 0.3 mm/1000 h for
bed material consisting of silica sand. The erosion rate of 0.3 mm/1000 h for the Wood
and Woodford data was deduced for 500-um partiecles by linearly interpolating the data
taken over a particle size range of 100 to 1900 um. The fluidizing velocity varied from
1.5 to 3.6 m/s.

The erosion rate of approximately 0.3 mm/1000 h for the data of Parkinson
et al.93 was obtained for bare aluminum alloy (RTZ HE 30) tubes. This rate was the
average for Run 1, which had a bed material consisting of an equal mixture of 1-2-mm
and 0.5-mm silica sand of mean surface diameter 0.86 mm (860 um) and a fluidizing
veloecity of 2 m/s. The maximum erosion rate on any tube was approximatelg 1 mm/
1600 h. The agreement of this erosion rate with Wood and Woodford's results® may be
fortuitous. The aluminum alloy was probably harder (not reported), and the average
particle diameter was larger. Considering the many differences between the
experiments, the agreement is remarkable.

The average calculated erosion rate of 0.9 mm/1000h from the Finnie erosion
model with angular dependence seems to agree more closely with the experimental data
than those of the monolayer energy dissipation erosion model (1.6 mm/100 h). This
order-of magnitude agreement may be fortuitous, or it may occur because the average
computed gas velocity next to the obstacle ~4 m/s is close to the average interstitial
gas veloeity of the experiments, ~4 m/s, at an assumed fluidized-bed porosity of =0.5.

The transient erosion rates for hardened steel are plotted in Fig. 27. The
hardness used was 900 kgf/mm2 (8.8 x 108 MN/mz) from Table 4. The time-averaged
values of the transient erosion rates are displayed in Fig. 28. Because these rates differ
from aluminum erosion rates by a factor of 30, the same comments apply as those made
above in regard to the comparison of the energy dissipation rates from the energy
dissipation and Finnie erosion models. The experimental data of Wood and Woodford
indicate an erosion rate of 0.015 mm/ 1000 h for 316 stainless steel for bed material
consisting of 500-um silica sand and fluidizing velocity in the range of 1.5 to 3.6 m/s.
Considering the many geometrical differences, the order-of-magnitude agreement is
encouraging.

Other erosion data help to place our computed erosion rates in perspective.
Using a~AlyO4 with an average particle size of 2.5 um and a loading of 1270 ppm at
700°C, an FeCrAlY-coated pin of IN 738 eroded at a rate of approximately 40 mm/100 h
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FIGURE 28 Time-Averaged Transient Calculated Erosion
Rates for Hardened Steel, Hardness = 900 kgf/mm2
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a combustion gas velocity of 345 m/s.94 Grimethorpe reported erosion rates of 2.5
mm/1000 h for the tube bank "C" 9 and about 10 mm/1000 h above the bed material
injection port, located about 0.5 m from the bottom row of 'cubes;95 the jet velocity was
50-80 m/s.

The superficial gas fluidizing veloecity was 1.9 m/s, so the average interstitial gas
veloeity is again near 4 m/s, close to that next to the obstacle. The average particle size
was approximately 1000 ym (dolomite). Several uncertainties exist in the comparison:

e The hardness of the tubes at 800-900°C in Grimethorpe may be
much less than that of hardened steel at room temperature given in
Table 4 and used in the erosion calculations.

e The hardness of dolomite is less than that of silica sand, but Wood
and Woodfora®® found no significant difference in the erosion rates
of these two materials at the same particle size.

This same report referred to inferred erosion rates of DeCoursin,96 2-10 mm/h
near a 2-mm jet in an air distributor cap in an AFBC having a comparable velocity.
Severe erosive wear of the Grimethorpe bed material injection port deflector plate was
reported; in practice, it may have to be replaced at frequent intervals, or a more
resistant deflector system will have to be developed. Research was reported in progress
at Babeock & Wilcox.

Vaux and Newby97 report erosion rates of from about 0.0001 to 0.1 em/min for
304 stainless steel tubing subject to a 1.17-mm diameter, 320-m/s steam jet in a
fluidized bed composed of 75-ym MgO, 88-mm nickel, and 72-um iron powder for tube
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spacings of 1-28 em. At a tube spacing of 10 e¢m, the penetration rate of the 304 SS tube
in the 72-um iron powder fluidized bed is about 0.1 em/min. This is the distance from
the jet inlet to the bottom of the rectangular object. Assuming that the erosion rate is
roughly proportional to the square of the jet velocity at such close spacings, we estimate
an erosion rate of about 20 mm/1000 h at a jet veloeity of 5.78 m/s.

Large-diameter particles erode faster than small-diameter particles. For
example, Wood and Woodford®® found that high-speed steel was eroded about five times
as fast with 1.0-mm silica sand as with 0.1-mm sand. Finally, Ushimaru et a1.82 used
their power dissipation model to compute a maximum erosion rate of about 1 mm/100 h,
which agreed well with data for a conventional slurry jet pump. The angle of approach of
the particles at roughly 50-m/s was near zero.
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7 CONCLUSIONS AND RECOMMENDATIONS

A summary of the hydrodynamic calculations for a rectangular two-dimensional
fluidized bed containing an obstacle showed good agreement with the limited
experimental data. The bubble frequencies of approximately 4 Hz around and 9-10 Hz
under the obstacle and the size of the first bubble agree reasonably well with the results
of a high-speed motion picture study. The time-averaged porosity distribution also
agrees reasonably well with data taken with a gamma-ray densitometer. The computed
results are relatively insensitive to the hydrodynamie model and solids elastic modulus
parameter.

A critique of six erosion models from the literature was performed. They were
shown to have various flaws. For example, Finnie's model predicts no erosion at 0 and
90°. None of the erosion models ineludes hydrodynamic parameters. A methodology was
developed to use these models with the hydrodynamic outputs of the FLUFIX computer
program.

The energy dissipation model was developed, and was shown to generalize the so-
called power dissipation model developed for low-angle erosion caused by slurries. The
basis for the model was shown to be both ball-mill grinding and abrasive-wear laws. By
generalizing these laws to multiple dimensions, it was possible to include impaction
effects as well. Thus, it was possible to show that impaction and abrasion erosion are
basically governed by the same mechanism: the imparting of the force of the particle
stream to the eroding material surface or, alternatively, the transfer of a portion of the
particle energy to the same surface. The monolayer energy dissipation model was
adopted for the preliminary computations.

A methodology was developed to compare the energies available to the Finnie
and monolayer energy dissipation models. Both time-averaged computations and time-
averaged transient computations were performed using the hydrodynamic outputs of the
FLUFIX code for a two-dimensional, cold fluidized bed containing a rectangular
obstacle. The results of the latter computations are believed to be inherently more
accurate; they are reasonably close, and act as a cross-check on the two independent
computations. To our knowledge, these are the first such calculations of their kind.
Differences are believed to result from neglecting the cross-correlation terms in the
time-averaged energy dissipation model, as well as from inaccuracies in evaluating
derivatives at the boundary of the obstacle. The power dissipation model was found to be
inadequate. The energy dissipation rates computed from the energy dissipation model
are closer to the maximum available from the Finnie model than from the Finnie model
with angular dependence. If the results of the energy dissipation model were multiplied
by 10%, to account for the empiricism that indicates that not all the grains in contact
with the surface remove metal, the results would generally lie between those from the
former two models. The variation of the erosion rate around the obstacle differs from
that of the Finnie model with angular dependence.

Because of lack of directly useful erosion data to validate the erosion
calculations, the results were compared with available literature erosion data taken in
cold fluidized beds and found to agree within an order of magnitude. The Finnie model
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with angular dependence would appear to agree better with the data. However, if the
10% factor is applied, the results of the energy dissipation model agree to within the
same order of magnitude. Comparison with other, nonfluidized-bed erosion experiments
helped place the computations in perspective further.

It is concluded that, in order to validate the models, properly a single-obstacle
erosion experiment must be performed. The material property relationships also need to
be extended to include, for example, attrition of the particles and realistic stress-strain
relationships.
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NOMENCLATURE
Area, m2
e/(vk)
Constant given by Eq. 3.10a, (55/2m1/2)/kg

Correction factors for nonsphericity
Erosion constant defined by Eq. 3.15¢

Compaction modulus; nondimensional constant in Finnie's erosion model,
Eqg. 3.1, to allow for nonideal model particle behavior (0 < ¢ < 1)

Particle concentration, kg/ m3
Particle diameter, m

Energy dissipation rate as defined by Eq. 5.25 = e__, W/ m?3

vs?
Erosion rate, m/s

Brittle and ductile eroéion rates, m/s

Maximum erosion rate from Finnie's model given by Eq. 3.5, m/s

Young's modulus of particle and target, respectively, Pa

Power dissipation erosion rate given by Eq. 15.9

Reduced Young's modulus of elasticity given by Eq. 3.8, Pa

Specific energy of eroding material (related to hardness), Pa

Rate of kinetiec energy dissipation per unit volume, W/ m3

Force, N

Coefficient of friction

Solids elastic modulus, Pa

Hardness, Pa

Elastic constants defined by Eq. 3.7b = (1 - Yl?;)/(erp) and (1 - yi)/(wEt)

respectively, Pa~
Ratio of vertical to horizontal foreces in Finnie's erosion model, Eq. 3.1
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Ky Dimensionless erosion resistance given by Eq. 3.17a

K4 Constant given by Eq. 3.10b, (m/s)l/Z

g Acceleration due to gravity, m/s®

M Mass of abrasive particles, kg

m - Mass flux of solids = ¢ p_ |$s}, kg/(m>-s)

Ng Number of cycles to failure

N Impaction frequency, s

Nim Impact number given by Eq. 3.17b

P Pressure, Pa; Power dissipation defined by Eq. 5.7, W/m?
p Eroding surface flow stress related to hardness, Pa

Zs Particle flux = (1 - s)ps$sA

Rp Particle radius, m

r* Ratio of rebound to approach velocity, VZ/V1

S Specific erosion rate given by Eq. 3.27, dimensionless

Sp Moh's scale hardness of particles, Pa

Ss Brinell Hardness, Pa

t Time, s

U Energy, J

Ug,US Gas and solid phase velocities in the x direction, respectively, m/s
Up Veloeity of abrasive particles, m/s

\' Veloeity, m/s; Volume, m3

Vc Crater volume, m3

Vg,VS Gas and solid phase velocities in the y direction, respectively, m/s
Val Threshold veloeity defined by Eq. 3.8, m/s
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Vp Threshold velocity defined by Eq. 3.12

VisVy Approach and rebound velocities, respectively, m/s

v Velocity veetor, m/s

|v] Magnitude of veloeity vector, m/s

v Relative velocity = v - Vpy m

w Volume of eroding surface, removed, m3

Wb Volume of eroding surface removed by deformation (brittle) erosion, m3

Wy Volume of eroding surface removed by cutting (ductile) erosion, m?

X Lateral coordinate, m

y Axial coordinate, m

Greek Letters

o Impingement angle, degrees

a Transitor Impingement angle, degrees

BX,By Fluid-particle friction coefficient in the x- and y-directions, respectively,
kg/(m* -s)

yp,y . Poisson's ratio of particle and target, respectively

A Layer thickness = (Vf/At)

$ Viscous boundary layer thickness; thickness of layer removed, m

€ -Gas volume fraction

ey Deformation wear factor, Pa

€; Tensile stress at failure

e Solids volume fraction =1 - ¢

e¥* Compaction gas volume fraction

€ 1€y Energy to remove a given volume of target material for brittle and ductile

erosion, respectively, J/ m? or Pa
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NNy Mechanical efficiency of impact for brittle and ductile erosion, respectively
0,904 Yield strength for brittle and duectile erosion, respectively, Pa
oc Tensile strength at failure, Pa

oy Elastie load limit, Pa

T Solids stress, related to particle-to-particle pressure, Pa

?sv Solids viscous stress, Pa

0 Density, kg/ m3

or ,pp Fluid and particle densities, respectively, kg/ m3

Ps?Py Solid and gas phase densities, respectively, kg/m3

b Ratio of depth of contact to depth of cut in Finnie's erosion model, Eq. 3.1
) Cutting wear factor, Pa

e Fluid viscosity, Pa-s

Subscripts

b Brittle

d Ductile

f Fluid

F Finnie

FM Finnie maximum

g Gas

p Particle

s Solids

sS Steady state

t Target

X x-direction coordinate
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y y-direction coordinate
Superscripts

. Denotes time rate of change
> Denotes a vector quantity

= Denotes a tensor gquantity

n,n+1 Time levels nAt and (n+1)At, respectively
Operators

4 Total derivative following the solids = .3 .
d ts ot ]
v Divergence

v Gradient

<> Time average
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APPENDIX A:

SOME CONVERSION FACTORS USEFUL IN EROSION CALCULATIONS

Energy

107 ergl/s = J/s = W

Energy Dissipation

n b %= kg/s> = 3/(s'n’) = W/n®
>
dv
dKE /dt = m_ —> = kg/(m-s3) = J/(s-m3) = W/m3
s 5 45

Erosion rate
1 mm/1000 h = 1 um/h = 2.77 x 10710 m/s

Power

J = Nem = kg-mz/s2
Pressure

10 dyne/cm2 = Pa
9.8 x 109 kgf/mm2 = Pa

Pa = J/m3 = kg/(m~sz)
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APPENDIX B: DEFINITIONS

Elasticity. A material is elastic so long as the strain disappears with the removal
of the load. The elastic limit is the greatest stress a material is capable of developing
without incurring permanent deformation on removal of the stress. In the case of ferrous
materials (e.g., steel or iron), the deformation (strain), up to the elastic limit, is
proportional to the stress; this is known as Hooke's law. The slope of the curve, E, is
called the elasticity Young's modulus (see Fig. B.1). At the yield point (or yield stress),
the material starts to act inelastically (or plastically). Brittle metals, such as cast iron,
have a stress-strain curve that rises continuously until rupture occurs. However, ductile
materials may show a domain of plasticity before fracture (Fig. B.1). When a material is
deformed in its plastic range, it becomes permanently deformed.

Fatigue. Materials subjected to repeated stresses show failures at a stress
considerably lower than the ultimate strength of the material; such failures are referred
to as fatigue failures. In this case, spreading of small ecracks occurs.

Hardness. Hardness is the ability of a material to resist penetration, wear, or
scratching. The property of hardness is complex in nature and cannot be said to depend
solely upon strength or any individual property. A number of methods for determining
relative hardness are used. Some of them measure the penetrability of the material, as
is done for the Brinell, Rockwell, Vickers, and Monotron testing machines. The Shore
Scleroscope uses a dropped weight, for which the height of bounce is measured. Certain
nonmetallic materials are tested for
hardness by their resistance to scratching
by another substance. Ten materials

arranged in order form the basis of ) Brittle

comparison in Mohs' scale of hardness. In 3 Point

Table 3, Sec. 5.2.4, the respective Diamond

Pyramid hardnesses of different materials Break (2) Ductile

used in fluidized-bed combustors are .

listed.65 < Break
8
@n

Strain. A strain is a dimensionless
number; for a compressive or a tensile load, ,
the strain is expressed as the ratio of the Slope = Elasticity Modulus, E
change of length, AL, per unit of length, L,
as follows:

Strain = AL/L (B.1) Strain (AL/L)

FIGURE B.1 Stress-Strain Diagram for
In general, the strain is a tensor of order 3. Brittle and Duectile Materials
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APPENDIX C:

DERIVATION OF THE ENERGY DISSIPATED
BY A FLUIDIZED BED

The purpose of this appendix is to derive an approximate expression for the total
energy dissipated by a fluidized bed. This expression is then eompared with the solids
energy dissipation rates around the rectangular obstacle analyzed in Section 6.

A derivation similar to that used to derive the energy dissipated by the solids
phase, Eq. 5.25, can be used to obtain the energy dissipated by the gas phase.98 If all
terms except the one corresponding to term 4 involving the drag are neglected, we obtain

—e_=v - (v. -%) (C.1)

The gas veloeity in the x direction is much less than the gas velocity in the y direction,
which is much greater than the solids veloeity in the y direction. Consequently, Eq. C.1
is approximately equal to the total kinetic energy dissipated per unit volume and may be
integrated over the volume of the bed, Vbegr to obtain the total energy dissipated, E, as

-E_=-~[e dVv=[V B (V. -V)dv
v vg g vy s 8

(C.2)
Vbed Vbec:i
Since, as shown by Bouillard, Lyczkowski and Gidaspow,99
%y

"R V- V) = (e, - e) (egg) (C.3)
Equation C.3 may be rearranged, assuming Pg<<Pgs to obtain

-By (Vs - Vg) ~ eo_ &8 (C.4)
Substitution of Eq. C.4 into Eq. C.2 produces

E, = f Vg o e.g dV (C.5)

Vbed
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Because dV = dAdy, Eq. C.5 may be rewritten as

h
E - [ oz (g e dy) V¢ dA (C.6)
Abed
h
Because solids do not leave the bed, og f €y dy represents the total solids mass per unit
0

cross-sectional bed area, fg esoh, where €50 is the initial solids porosity in the fluidized
bed having height, h. Therefore, Eq. C~-6 may be expressed as

E, = (o S gh) | Vg e dA (C.7)
A

bed

The integral in Eq. C.7 represents the total gas superficial velocity and equals that
entering through the bed bottom.

As shown in Fig. 2 (Sec. 2.2), pure gas enters the bed through the jet and
secondary flow areas, Aoy and Agoor respectively at velocities V’et and Vg..»
respectively. The final approximate result for the total energy dissipated by the bed is

therefore given by

E, = (ps €0 gh) [(AV)jet + (AV)SeC] (C.8)

Equation E.8 is the final result given in Eq. 6.2.



