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ABSTRACT

An object-oriented Robot Independent Programming 
Environment (RIPE) developed at Sandia National 
Laboratories is being used for rapid design and implementation 
of a variety of applications. A system architecture based on 
hierarchies of distributed multiprocessors provides the 
computing platform for a layered programming structure that 
models the application as a set of software objects. These 
objects are designed to support model-based automated 
planning and programming, real-time sensor-based activity, 
error handling, and robust communication The object- 
oriented paradigm provides mechanisms such as inheritance 
and polymorphism which allow the implementation of the 
system to satisfy the goals of software reusability, extensibility, 
reliability, and portability. By designing a hierarchy of generic 
parent classes and device-specific subclasses which inherit the 
same interface, a Robot Independent Programming Language 
(RIPL) is realized. Work cell tasks demonstrating robotic cask 
handling operations for nuclear waste facilities are successfully 
implemented using this object-oriented software environment

1. INTRODUCTION
This paper discusses the Robot Independent Programming 
Environment (RIPE) developed at Sandia National Laboratories. 
RIPE is an object-oriented approach to robot system software 
architectures. The primary accomplishment of this effort is a 
software environment which facilitates the rapid design and 
implementation of complex robot systems to support diverse 
research efforts and applications. RIPE allows robot system 
developers to concentrate on algorithm design and optimization, 
as well as testing and evaluation of new control, sensing, 
computing, and communications technologies without having to 
focus on overall system software development and integration. 
This is achieved by modeling the robot system as a set of software 
classes. As a result, RIPE hides device integration details and 
provides uniform interfaces to all objects in the system. A 
separation of concept from implementation characterizes RIPE’s 
software classes and provides software reusability, extensibility, 
reliability, and portability.

In the following sections, the problems associated with 
complex robot software systems (which we have experienced 
first hand) are reviewed, together with past approaches dealing 
with these problems. We then discuss the underlying object- 
oriented concepts and distributed computing architecture upon 
which RIPE is based. RIPE currently supports automatic motion 
planning and programming of robotic and machining devices 
based on models of the environment, sensor-based control, error
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handling, and robust communication. The RIPE architecture also 
supports development of advanced software concepts such as 
graphical interfaces for robot system control.

The detailed design of RIPE is then defined, followed by a 
discussion of two implementations involving robotic cask 
handling operations for nuclear waste facilities. These systems 
show how the class Merarchy, consisting of generic parent classes 
and device-specific subclasses sharing the same interface, results 
in a Robot Independent Programming Language (RIPL). Finally, 
a brief discussion of error handling and additional future work is 
presented.

2. CURRENT APPROACHES TO ROBOT 
SOFTWARE
Sandia is currently developing robot systems for applications 
including hazardous material handling, automated assembly, and 
robotic edge finishing. Supporting this work are research 
laboratories investigating controls and optimization, telerobotics, 
grasping and dexterous manipulation, vision, tactile and 
proximity sensing, path planning and collision avoidance, 
oscillation damped movement, autonomous vehicles, flexible 
arms, and simulation. The diversity of Sandia's robotics effort 
implies that the software environment must support a wide 
variety of requirements and devices. It also must serve users with 
different levels of expertise in robot system programming.

2.1 The Problems
As our robotics effort has developed we have experienced many 
of the problems common to robot programming:

• the inability of robot languages to handle integration of sensors
into the motion control system

• the difficulty of extending application code to include new tasks
or new devices

• the high expense of application programming

• the small amount of code that is reusable for new systems

• the focus on manipulator-level rather than on task-level
programming

• the management of system complexity

• the time consuming process of writing and debugging low-level
(e.g. communication) software before beginning to test new
algorithms

• the need for real-time control of mechanical devices

• the necessity of implementing robust error handling and recovery
code
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It has been our experience that software development costs are a 
significant part of the overall intelligent robot system 
development costs. Finding solutions to robot software problems 
reduces these costs and thereby increases the viability of using 
intelligent robot systems in applications where it was once 
considered too costly.

2.2 Other Approaches to Solving the Problems
Various approaches have been used to try to solve these 
problems. Vendor supplied robot programming languages have 
been enhanced to provide extended sensor capabilities, real-time 
path modification, and user-friendly interfaces. VAL-II [18] and 
AML/X [14] are examples of such languages which have evolved 
until they resemble general-purpose, high-level computer 
languages. However, applications written in these languages are 
specific to the vendor’s robot and, therefore, are not portable.

One approach is to replace the robot control system with a new 
control system embedded within an existing operating system, 
written in a general purpose language, and using primitive 
functions included in a library. RCCL [6] and KALI [1], for 
example, provide such intermediate level robot control 
primitives. These primitives can be called by off-line 
programming systems and can provide an environment for 
research into control and optimization algorithms. Frequently 
neither RCCL nor KALI is a viable option for industry work cells 
or research labs since they require the replacement of the robot 
control system hardware.

In attempts to move beyond manipulator-level programming of 
basic robot motions in a three-dimensional work space, task-level 
languages such as AUTOPASS [9] and LAMA [11] were 
defined. They were somewhat premature and were never fully 
implemented due to the unsolved subproblems of grasp planning, 
path planning, and fine motion planning [8]. However, it is 
generally agreed that task-level languages are needed to solve the 
problems relating to the expense and complexity of robot system 
programming.

A number of the more recent approaches [7, 19, 20] use 
conventional programming languages to help solve the problems 
of system complexity, real-time constraints, sensor integration, 
and modeling. These approaches have the advantages gained by 
using a language which is reliable, well-supported, portable, and 
familiar. In addition, these approaches focus on the total work 
cell system rather than only on the robot The drawback is that 
to date, the software has often been single purpose and not easily 
extended to other applications.

2.3 Approach for RIPE
RIPE was developed to support model-based automated planning 
and programming of robotic and machining devices, integration 
of sensor technologies, development of next generation robot 
system programming languages with graphical interfaces, error 
handling, and robust communication. It is built upon well- 
established software operating systems and programming 
languages. RIPE is an environment for complex system 
integration which stresses use of off-the-shelf hardware (e.g. 
commercial robots) where appropriate as well as providing 
support for advanced system development.

2.3.1 Computing Architecture
The RIPE computing architecture consists of a hierarchical 
multiprocessor approach which employs distributed general and 
special purpose processors. This architecture provides the 
computing power required by the RIPE software to control 
complex diverse subsystems in real-time while coordinating 
reliable communications between them. Advances in 
microprocessor technology allow general purpose processors to 
achieve the computing performance required by complex robot 
control algorithms while remaining compatible with a large base 
of existing software.

2.3.2 Object-Oriented Design
Central to the design of RIPE is object-oriented programming. 
Object-oriented design results in software architectures based on 
the objects that comprise a system and its environment rather than 
on the functions it performs [12]. Robot systems perform actions 
on certain objects within a defined work space. The software 
controlling the robot system can be viewed as an operational 
model of the world in which the robot exists. Therefore, RIPE is 
organized around representations of the objects in the work space 
so that its structure reflects the physical structure of the system. 
Controlled complexity is achieved by creating, combining, and 
manipulating software objects instantiated from previously 
defined software classes to perform the specific tasks of the 
system.

Object-oriented programming is based on the concepts of 
abstract data types, classes, objects, generic operations, message 
passing, type hierarchies/inheritance, and polymorphism [12]. 
Applying these concepts to RIPE results in modularity, 
encapsulation, abstraction, and information hiding. Abstract data 
types, classes, and objects allow the designer to model the 
physical robotic work cell entities in RIPE by defining only their 
attributes, behavior, and interfaces. Examples of such entities 
include work pieces or parts with geometric attributes, devices 
(e.g. NC machines, fixtures, machine tools, tool changers, robots, 
grippers, other end effectors), and sensors for contact switches, 
force control, and vision.

Since the software classes in RIPE are defined to represent the 
physical objects that are commonly found in a work cell, the 
communication interfaces to these generic software classes in 
RIPE become the general device independent language used to 
program the cell. This is achieved by applying the concept of 
polymorphism. Polymorphism (inherent in the object-oriented 
programming environment of RIPE) enables objects of a generic 
parent class and objects of its device-specific subclasses to 
receive the same messages and respond to them appropriately. 
The device independent programming language in RIPE resulting 
from object-oriented design of robotic work cells is RIPL.

Separating robot system concepts from the actual RIPE 
implementation results in robot system software which is 
reusable, extensible, reliable, and portable. RIPE’s reusability is 
the basis for the design process. Extensibility is provided in RIPE 
by defining new software classes which in turn become part of the 
general work cell programming language. Use of inheritance to 
define subclasses which are extensions or restrictions of RIPE 
parent classes greatly lowers the cost and complexity of software 
development. System reliability is enhanced by reusing well-
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defined RIPE objects, and portability is realized because RIPE 
classes are tightly encapsulated and relatively independent of 
their environment
2.3.3 The Development Environment
Our development environment for RIPE has four primary layers: 
task-level programming, supervisory control, real-time control 
and device drivers. The choice of software at each layer is 
influenced by the primary requirements for modeling, sensing, 
and motion specification, as well as the widely acknowledged 
levels of robot software (task, manipulator, servo) [2, 21]. In 
addition, there is a strong relationship between the architecture 
employed at each particular layer and robot performance 
requirements.

The first layer is synonymous to what is generally referred to 
as task-level programming. At this level, world modeling, 
planning, and simulation are performed. Currently, this layer is 
in the initial stages of definition in our architecture.

The second layer is the supervisory control layer implemented 
on a UNIX-based workstation. This layer contains the primary 
control programs which coordinate all devices and activities of 
the system. UNIX is used by this layer because it provides a rich 
set of software development tools, is a mature operating system 
with emerging standards, and is available on almost all 
computers. The C-h- language [16] is used to implement the 
object-oriented work cell class hierarchies and the supervisory 
code which manipulates these classes. C-H- is a standard high 
level language which offers all the necessary features for object- 
oriented programming. Because C-H- is a superset of C, a large 
existing base of C code is used, and all of the advantages of C 
programming are retained (portability, versatility, and systems 
programming facilities).

The third layer in the programming environment handles real­
time control of devices for tasks such as force control This layer 
consists of multiple VME-based 68000 family processors on a

backplane network running the VxWorks operating system [22]. 
VxWorks was selected because of its real-time kernel full- 
featured development and run-time environments, and its 
compatibility with UNIX. C-h- runs effectively in this 
environment, and therefore, the same software can be used both 
at the workstation level and the real-time control layer. An 
Ethernet-based local area network ties together the workstations 
and VME systems.

The bottom layer contains the device drivers for each 
subsystem in a work cell. Some device drivers are relatively 
simple and consist of interfacing commands for tasks such as 
controlling a bar code reader. Others are sophisticated 
programming environments, such as the CIMCORP XR100 
gantry robot software system. It is often more practical and 
efficient to utilize the vendor-supplied packaged software rather 
than attempt to create a new language and external interface. 
However, RIPE objects can use KALI or RCCL based commands 
to communicate with specialized controllers as well.

In the case of intelligent devices such as robot controllers, a 
monitor program located at the controller for the device is written 
in the robot programming language. This monitor establishes 
communication with an external host CPU, waits for a command 
from that host, carries out the command when one is received, 
and then waits for the next command. The host may send the 
command in a format which is directly executable by the robot 
controller (such as a VAL-II statement), or it may send a 
command code which triggers a subroutine call in the monitor. 
The monitor is treated as the part of a distributed robot object 
which resides on the robot controller. The messages that it 
understands and interprets are defined in the robot class and 
frequently have a one-to-one correspondence with the user 
interface routines defined for the robot class.

3. DEFINITION OF ROBOT SYSTEMS IN RIPE
The design of RIPE is based not only on our goals of ease of use,
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expressiveness, extensibility, and reusability but also on 
compatibility with FAC-SIM [S], a simulation system developed 
at Sandia for the analysis of robot systems. The partitioning of a 
system into classes is fairly straightforward since most classes 
reflect the physical objects of the application. The software 
classes which do not represent physical objects are termed 
"virtual objects" and include CommunicationHandler, 
WorldModeler, ErrorHandler. TrajectoryGenerator and 
PathPUmner.

3.1 The Generic Objects
The class inheritance hierarchies in RIPE are designed to allow 
the programming of tasks using generic classes. Figures 1 and 2 
illustrate two example system hierarchies. In the Cask Head 
Work Cell, a Cincinnati Milacron robot performs leak detection 
and gas sampling operations on the head of a cask containing 
nuclear waste. In the Radiation Survey Work Cell, contamination 
surveys of the cask are performed by a CIMCORP gantry robot 
The division of a robot system into the three basic classes of 
WorkPiece, Station and Device is derived from the concept that 
devices carry out actions on work pieces, and stations are 
locations in the work space for storing these devices or work 
pieces. The definition of the class hierarchy for WorkPiece and 
Station is specific to an application, but each work cell has 
several kinds of devices, e.g. robots, sensors, grippers, and other 
tools. All devices which cany out actions are derived from the 
parent class Device. Instead of, or in addition to a manipulator, a 
system might employ other devices such as an NC machine, a 
conveyor, a remotely controlled fork lift, or a mobile robot 
These have the property of being able to move or transport a work 
piece or a tool and thus, derive from the Transport class. Tool is 
the parent class of any object used by the robot to perform a task. 
Grabber has the attribute of being used to pick up work pieces or 
other tools. Grippers, hands, face plates, and hooks are instances 
of the Grabber class. A Sensor is a Tool which provides data for 
the performance of the task. Besides force sensors, vision 
systems, and proximity sensors, examples of the Sensor class 
would be a bar code reader used for identification of a work piece, 
a contact switch which verifies the presence of a tool in its station, 
or a gas sampling device. A tool, such as an air wrench, which is 
not an instance of the Grabber or Sensor class, derives directly 
from the Tool class.

Each subclass of Device which is also a generic parent class is 
highlighted in Figures 1 and 2. Although not shown in Figures 1 
and 2, virtual objects such as ErrorHandler and 
CommunicationHandler are also generic parent classes. The 
routines that define the user interface to a generic class, along 
with other attributes and routines common to all instances of that 
class, are defined at the generic parent level of the hierarchy.

Figure 3 shows the definition of the Robot class. The attributes 
are defined in the data structures such as current and home. The 
actions that are common to all robots are found in the definitions 
of the routines. The keyword virtual at the beginning of each 
function declaration indicates that the routine is to be defined by 
a device-specific subclass. All robots can be commanded to 
move, but the definition for executing a move is specific to a 
particular robot. Note the presence of default values for some 
parameters in the virtual routines, for example speed in the move.

ROBOT CLASS DEFINITION

class Robot: public Transport

{protected:
point home,

current;
int cuiTent_coordinate_type,

double speed;
int cun,ent_speed_attribute,

double accel;
int curre<*_accel_ai!ribute;

public:
// Abstract class so constructor is empty
RobotO;
virtual -RobotO;

virtual int move (point loc, int motion_attributes,double speed=0.0); 
// Absolute move to loc.

virtual int mova_ral (point delta, int motion_attributes, 
double rpeed=0.0);

// Move to a position delta away from current position.

virtual int mov»_homeQ:
// Move to borne (ready) position.

virtual void approach (point loc, int axis, double dist);
// Move to a position dut away from loc along axis.

virtual int depart (int axis, int direction, double dist, 
double incrementsO.O);

// Move along the specified axis distance dist.

virtual int <noV«_r*aCf (point loc. Sensor * FS_ptr);
// Move to position loc under force control.

virtual int move_comply (poirt loc, int numiners, Sensor * FS_plr, 
double fmax » F_MAX);

// Move to position loc with compliance specified in f.

virtual int patft_/now (path_point * p, intmotion_attributes );
// Move to each point in path p.

virtual int path_move_rel (path_point * p, int motion_attributes );
// Move relative to each point in path p.

virtual void Stop 0;
// Cause the robot to stop.

virtual int S«t_spaad (double s, int speed_attributes);
// Set the robot member speed tot.

virtual double get_speed (int speed_attributes);
// Return the value of robot member speed.

virtual int open jgrlpparQ;
//Open the gripper

virtual int close jgripperQ;
// Close the gripper

virtual int get_effec tor (Device * t_ptr);
// Move to station and pick up effector.

virtual int put_affector (Device * t_ptr);
// Stow aid effector at station.

virtual int perform (int task);
// Execute a taught sequence

virtual void where (point cur_loc, int coordinale_type);
// Set curjoc to the Cartesian position of the robot.

virtual int reportjstatus 0;
// Print the current status of the robot.

u______________________________________________
Figures
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move_rel, and pathjnove declarations in Figure 3. Including 
optional parameters and default values provides flexibility in the 
subclass definition and in the application. For example, if the user 
wants to specify a speed during a move, he invokes the desired 
move routine with the speed parameter set If he does not set the 
speed parameter, the default speed, which is established earlier by 
a call to sel_speed, is used.

3.2 Derived Objects for Specific Applications
Figures 1 and 2 show how objects in specific work cells are 
derived from their generic parent classes. The bottom level of the 
hierarchy enumerates the software representation of the physical 
objects in the work cell. The Cask Head Work Cell, as 
represented in Figure 1 for example, required programming of the 
CM Robot class as well as other types of subclasses representing 
the different devices and work pieces. The interface to CMRobot 
is already defined in parent class Robot. The interface serves as 
a kind of template so that the programming is a matter of "filling 
in the blanks." For example, the code for the move routine 
consists of translating the command into the format the 
Cincinnati Milacron controller expects and invoking the 
CommunicationHandler's routine sendjnsg.

If a subclass has more capabilities than the parent, the user 
interface to the subclass is the set of routines defined for the 
parent class plus additional ones defined in the subclass. The 
CMRobot class has been extended for research into oscillation- 
damped movement of a flexible beam. Routine 
flex_beam_damping uses the move_comply command and torque 
feedback to actively damp vibrations of a cantilevered beam. 
When only the routines specified in the generic parent class are 
used in programming an application, a different derived object 
representing a different physical device can be substituted, and 
the commands in the application code remain the same. These 
routines define the primitives for RIPL.

Figure 2 shows the derived objects for the Radiation Survey 
Work Cell. A comparison of the two work cells shows that the 
same set of generic classes can provide very different software 
object systems. The tasks performed in the application determine 
which class routines will be invoked in the supervisory code. 
Thus, changing the way the supervisor uses these class routines 
can result in the implementation of an entirely different task even 
though the class definitions remain unchanged.

4. APPLICATION OF RIPE
The Cask Head Work Cell and Radiation Survey Work Cell were 
constructed as part of the Advanced Handling Technologies 
Project (AHTP) at Sandia National Laboratories [4]. The AHTP 
includes efforts to automate cask handling operations at nuclear 
waste facilities. These work cell prototypes serve as proof-of- 
concept systems to demonstrate cask handling operations that 
might be performed robotically.

4.1 Cask Head Work Cell Example
The AHTP consists of several subprojects, one of which is the 
Cask Head Operations (CHO) project. The CHO project 
investigates robotic performance of cask head operations 
required before and after nuclear fuel bundle unloading. The 
Cask Head Work Cell was designed as a prototype system for

cask head operations which include leak detection, gas sampling 
(port cover removal/replacement and coupling/decoupling of the 
sampling apparatus at the port), and bolting and unbolting 
operations. Robust algorithms were required for mating the 
torque wrench to various bolt heads on a cask head mock-up 
using force feedback. The requirements for the work cell 
operations illustrate the application of the RIPE environment 

One of the premises on which object-oriented design is based 
states that designers should avoid as long as possible describing 
and implementing the specific tasks of a systemj 12]. Rather, they 
should produce a high level design that defines only a set of 
classes which characterizes the behavior of the objects in the 
system. We followed this principle by designing and 
implementing the necessary Cask Head Work Cell classes, as 
discussed above, independent of any application to which they 
would be applied. As anticipated, implementation of the actual 
cask head operations was fast and straightforward. All that was 
required was to create and manipulate the work cell objects to 
perform the specific tasks of the system. Also, other applications 
of the work cell such as flexible beam oscillation damping 
research [IS] were easily implemented because the classes had 
been designed completely independent of any particular work cell 
activity.

4.1.1 Computing Environment
Figure 4 illustrates the computing architecture that is used to 
control the Cincinnati Milacron work cell doing cask head 
operations. The primary components include a Sun 3/60 
workstation, a VME bus with two Force 68020 CPU’s, global 
memory, an 8-port serial I/O card, a Cincinnati Milacron series
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SUPERVISOR TASK

ENP-10

Controller

VME BUS

SYS6IK

ROBOT
COMM

Cmcarati Milacrco
Robot Coctrofler Force Sensor

MULTIBUS

Figure 4

5



T3-786 robot, and a Lord force sensor. The computing elements, 
robot, and force sensor are all commercial subsystems. Special 
end effectors and grippers were designed and built at Sandia.

The distributed VME multiprocessors coordinated by the Sun 
workstation allow individual CPUs to control each subsystem in 
the work cell and provide support for continuous tasks, 
concurrency, synchronization, data sharing, communications, 
real-time control, and sensor-based activity. In addition, this 
architecture reflects the hierarchical layered approach to 
hardware which corresponds with the different levels of robot 
software (task, manipulator, servo). However, the design of 
RIPE allows the software to be mapped onto multiple layers of 
the hardware, depending upon the application. For example, the 
servo level normally resides at the robot controller, but whenever 
compliant motion is performed, some of the servo software 
functions are executed on the VME bus CPUs. Similarly, the 
manipulator level software may reside on either the robot 
controller, VME bus, or the Sun workstation. The task-level 
software will normally be at the workstation level. Finally, 
model-based control requires that knowledge about the work cell 
and its contents be distributed among the software objects that 
logically represent their physical counterparts, and these objects 
may reside at any level of the hardware.

4.1.2 Software
To perform cask head operations, four software tasks were 
required. All of the tasks are implemented in C-H- and utilize the 
communication and device class libraries discussed above to 
perform their functions. A UNIX environment exists on the Sun 
workstation, and a VxWorks environment controls the VME 
hardware. Figure 4 shows how the tasks are distributed among 
the work cell CPUs for the Cask Head Operation task.

The Erst task allows the operator to interact with work cell 
devices. The current implementation uses SunView [17], but 
future interfaces will be built with a recently developed object- 
oriented package called Interviews [10]. The second task, which 
also resides on the Sun, serves as the work cell supervisor. It 
accepts commands from the operator through the first task and 
carries out these commands by initiating appropriate work cell 
actions (which may be performed by other hardware 
components).

The remaining two tasks reside on the VME bus CPUs. One 
task monitors the Lord force sensor (mounted on the wrist of the 
Cincinnati Milacron robot) and computes position updates to 
control robot movement whenever the torque wrench has to mate 
with a bolt The other task provides the communications to the 
robot controller, utilizing the DDCMP protocol [3]. Both tasks 
use a serial I/O card for message transmission to the force sensor 
and robot controller.

Figure 3 illustrates the objects that are created by these tasks 
whenever they are executed. The work cell supervisor creates a 
LORDForceSensor object and a CMRobot object. These two 
objects are, in a sense, distributed over multiple environments. 
The way they are created (argument list specification) determines 
how they are distributed and how they communicate with the 
actual devices. In figure 5 the shaded boxes indicate the 
communication objects created by the device objects.

For example, if the force sensor were to be controlled directly

CASK HEAD WORK CELL EXAMPLE

CM RobotLord Force Sensor

LORO Force Sensor Cincinnati Milacron Robot

VMECPU1

Force Sensor

VMECPU2

Robot

FigureS

from the Sun workstation, a LORDForceSensor object could be 
created with a parameter list that would cause the creation of a 
UnixSerial object for direct communication to the force sensor 
device through a Sun serial port In our implementation for cask 
head operations, the LORDForceSensor object and CMRobot 
object are distributed across both the Sun workstation and a VME 
CPU due to the real-time requirements of force servo control. 
They communicate through UnixClient tVxServer objects over 
the Ethernet between the UNIX environment on the workstation 
and the VxWorks environment on the VME bus. The 
LORDForceSensor and CMRobot objects on die VME CPU, in 
turn, create VxSeruA and VxDdcmp communications objects 
respectively which allow them to talk to the actual hardware in 
the work cell. To achieve the update rate necessary for force 
control an additional VxDdcmp object is created on a second 
VME CPU to handle the low-level protocol and message 
transmission to the robot controller. The two distributed 
VxDdcmp objects communicate with each other over the VME 
bus through a VxSocket object

Finally, the LORDForceSensor object also creates a 
CmdStateTable object which reads a configuration file that 
defines the specific behavior of the Lord force sensor device. For 
example, using the CmdStateTable information, the 
LORDForceSensor object knows that it must send an MOA<CR>” 
(Output ASCII) command to the force sensor in order to obtain 
ASCH readings of the current forces being sensed. By isolating 
device-specific attributes and commands into files that are 
managed by the CmdStateTable object, methods that control the 
device’s behavior are written genetically and can reside in the 
parent Tool, Sensor, or ForceSensor classes rather than in the 
LORDForceSensor class. These methods therefore can be used 
by other types of force sensor classes derived from the parents 
(such as the JR3ForceSensor class) which have their own 
configuration files.

Figure 6 illustrates one portion of code for the Force Control 
Task residing on the first VME CPU. It shows how the objects in
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FORCE CONTROL CODE EXAMPLE
//Defines and includes for class definitions

// Create server object for communication with host 
fiinc ptr_testserver s testserver; 
p_func ptr_panicfunc *= panicfunc;
VxServer MyServerfSERVERJ/UM, ptr_testserver,

ptr_panicfunc, TABLEJLEN, msg_table[0]>;

int testservesfVxServer* TestServer)
// Spawned by MyScrver

{
LORDForceSensor* TestSensor; 
force* fptr;
CMRobot* ptr_robot; 
point new_loc;

//Oeate force sensor and robot objects
TestSensor = newLORDForceSensorfLORDStateTbr,

4, 19200, DEBUG_OFF);
fptr = new force;
ptr_robot = new CMRobotf cml", 1401, DEBUG_OFF);

//Wait for a command from the client
len = TcaSava->nc*IV0_msg Cine, MAX_SOCKET_MSG+l, 

LU_MONrrOR);

// Initiate robot communication & configure sensor 
ptr_robot->p*fform(WAITJFOR_BEGINJREMOTE); 
TestScnior->**f_Wa* Q;
TcsxScnsor->SSt_OUtput_moda (BINARY_MODE); 
table_entiys ptr_robot->r»port_ Var_»ntry (HOST ENTRY);

//Select a work cell activity 
switch(tab!e_entiy)

//Feel for bolt with torque wrench until they mate
cast* l:

while (i< 22) {
new loc[Z] = -0. ISO; new loc[R] = 0.0; 
printffMOVE DOWN -0.150 INCHESVn"); 
ptr_roix)t->mova_r*/ (newJoe); 
TestScnsor->fafrst_rM<f/f?0 ((ptr); 
if ( fptr->t aainfZl > -10.0) ( 

printf("SUCCESS IS TRUEVn"); 
success = TRUE; break;

)
else {

new loc[Z] s 0.150; 
printffMOVE UP 0.150 INCHESVn"); 
ptr_robot->mov*_/»/ (new_loc);
newJoc[Z] = 0.0; newJoc(R] = -5 J;
printffROTATE 55 DEGREESVn"); 
ptr_robot->mov*_re/ (new_loc); 
i++;

}
}

} // End this work cell activity

Figureb

the work cell are created and used to perform a simple bolting 
operation. Messages are sent to the LORDForceSensor and 
CMRobot objects to obtain force readings and initiate robot 
motion until the torque wrench is properly seated on a bolt.

4.2 Radiation Survey Work Cell Example
The Radiation Survey Work Cell was the first experimental 
system to be built for AHTP. Its initial application, the Robotic

Radiation Survey and Analysis System (RRS AS), was completed 
in August, 1987 [13], and included operations to locate a half 
scale cask mock-up in the work cell using stereo vision, identify 
cask contents by reading bar codes, and perform both non-contact 
and contact radiation surveys. Key technologies such as 
automatic motion planning and programming of the CIMCORP 
XR100 gantry robot and force sensor integration to maintain 
constant force contact with the cask surface during contamination 
surveys are demonstrated by RRSAS. RRSAS was completed 
prior to the development of RIPE.

Some subsequent studies currently under development include 
the Impact Limiter Handling project and the Cask Tiedown 
project [4]. These projects will investigate robotic removal, 
handling, and replacement of cask impact limiters and tiedowns. 
They also require technologies similar to those developed in 
RRSAS, including machine vision and force control. These new 
projects are being executed using RIPE.

Although RRSAS was originally implemented in C from a 
function-oriented top-down design, its highly modular structure 
and generic functions for robot control make it possible to use 
some of the existing code for the methods of the C-H- gantry robot 
class (GRobot). Also, because the generic Robot class had 
already been defined and much had been learned during 
development of the CMRobot class, implementation of the 
GRobot class was fairly automatic. Similarly, the Radiation 
Survey Work Cell employs a JR3 force sensor rather than a Lord 
force sensor, so a JR3 ForceSensor class also had to be 
implemented. This again was facilitated by the existence of 
generic parent classes (Tool, Sensor, ForceSensor).
4.2.1 Computing Environment
Aside from the specialized subsystems required by RRSAS, the 
primary hardware components of the Radiation Survey Work 
Cell are the same as those found in the Cask Head Work Cell (Sun 
workstation, VME bus, robot, sensors). There is of course a 
different robot and a different force sensor, and the VME bus uses 
Heurikon 68020 CPUs rather than Force CPUs (transparent to the 
software). As stated earlier, this hierarchical distributed approach 
is our standard architecture which provides the power, 
compatibility, flexibility, and extensibility needed to implement 
complex work cell environments.

4.2.2 Software
The first application using RIPE in the Radiation Survey Woik 
Cell performs force controlled movement of the robot arm for the 
random contact swipe survey. The original force servo control 
system in RRSAS consisted of a PDP/11 with an RT-11 
environment [13]. This is replaced by a much more powerful 
VME based 68020 CPU and a VxWorks environment The new 
swipe survey software (Swipe Server) is a C++ application which 
creates and manipulates a GRobot and JR3ForceSensor object to 
monitor a JR3 force sensor mounted on the wrist of the gantry 
robot and make real-time trajectory corrections to the robot arm. 
The corrections are based on the contact force detected between 
the robot’s end effector (swipe planchet) and the cask. The 
control structure maintains a 4.0 ± 1.0 pound normal contact force 
during the swiping motion.

Figure 7 illustrates the objects that are created by the Swipe 
Server. If this figure is compared with Figure S, it can be seen
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that the object hierarchies are nearly identical. The primary 
differences reside at the communication and servo level, where 
additional state machine firmware is utilized on the VME serial 
I/O card to handle the JR3 packet protocol and to synchronize 
position updates with a special trajectory card in the robot 
controller. At the manipulator level, the interface is identical to 
that found in the Cask Head Work Cell replication. Again, the 
objects behave according to how they are created. The work cell 
devices can be directly controlled by objects residing on the Sun 
workstation whenever there are no real-time requirements, or 
they can be controlled in real time by objects distributed across 
VME CPUs.

Two additional comments can be made about the Swipe Server 
application. First, it illustrates the ability of our object-oriented 
environment to coexist with more traditional function-oriented 
environments. Rather than rewrite all of the RRSAS supervisory 
software, which is over 15,000 lines of C code, it was only 
necessary to replace a handful of modules which interfaced the 
supervisor to the PDP/11. The new modules create a UnixClient 
object which allows the RRSAS supervisor to communicate with 
the new VME-basedSwtpe Server through a VxServer object over 
the Ethernet. Everything else in the supervisor remains 
unchanged. Second, the Swipe Server utilizes GRobot methods 
which illustrate an object-oriented implementation of a task-level 
capability that allows the supervisor to ask the robot to "swipe the 
surface of a designated work piece", in this case the cask. The 
code segments in Figure 8 show how the generic manipulator 
level methods of the GRobot class are pieced together to create 
this task-level function. Similar implementations could be used 
in other work cells with other robots to provide this highly useful 
capability.

4.3 Error Handling
Frequently, extensive error detection and recovery procedures for 
complex robot systems are needed to ensure reliability. It is of 
particular importance for remote systems which must perform 
autonomously in hazardous environments, such as the cask

SWIPE OPERATION CODE EXAMPLE

int GRobot :SW/p*_op*rat/on (Sensor* FSensor, float me)
{

int reunifies; 
intstatsO;

tut = move_till_tOUCh (FSensor);
if (tut) retum(sut);
reunifies » SWIPEJ3IS / INCJriAG;
sue = makm_tvfipe (FSensor, inc, numincs);
if (tut) retum(tUt);
depart (FORCE_AXIS, BACKJMST, BACKJNQ; 
ratumto_preswipe_locatlon Q; 
claar_otfsats_and_zaro_alter Q; 
retum(sUt);

}
int GR6boL:move_tlll_touch (Sensor* FSensor)
(

point loc; 
int tut s 0;

FSensor->desired_v«luet[Y] = TOUCH SET; 
loc[X] = 0.0; loc[Yl = APPROJNC; locIZ]=0.0; 
loc[D]-0.0; loc[E]-0.0; loc(R] = 0.0;
tut = mova remet(loc, FSensor); 
retum(tut);

}
int GRobot; :meke_S wipe (Sensor* FSensor, float inc, int numincs) 
{

point loc; 
intstatsO;

FScnsor-xlesircd_values[X] = 0.0;
FSensor-xlesired_values[Y] *= SWIFE_FORCE; 
FSensor-xlesired_values[Z] * 0.0;
FSensor-xlesired_values[D] = 0.0;
FSensor-xlesired_values[E]» 0.0;
FSensor-xiesired_values[R] ■ 0.0; 
loc[SW_AXIS] = inc;
tut - move_comply (loc, numincs, FSensor); 
refund tut);

}

Figures

handling operations presented earlier. When a robot system 
contains many distributed components which all interact with one 
another, the number of unique system states can be very large. It 
is difficult to anticipate all of these states when designing control 
software, and therefore, it is difficult to guarantee that the 
software will provide appropriate automated responses to them. 
In addition, the interaction between the software environment and 
the actual work cell it controls makes error recovery difficult to 
implement without continuous knowledge feedback regarding 
the current physical state of the work cell. This implies that error 
handling be sensor-based as well as model-based.

From a software point-of-view, there should be uniform, 
standardized methods for handling failures. These methods 
should be relatively transparent and not clutter mainline code. 
Furthermore, they should be easily tailorable to new subsystems 
and applications by providing flexible recovery options and logic 
flow control. Finally, error recovery procedures should be 
modular and localized whenever possible, and they should be 
implemented in parallel with normal work cell control code.
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The object-oriented approach used in RIPE applies well to 
error handling and satisfies the requirements just enumerated. 
Each intelligent device in the work cell has its own set of 
conditions or assertions which determines whether an action 
involving that device was successful or not This implies that 
error handling code for a device is naturally associated with the 
RIPE class that logically models that device. This satisfies our 
requirements for modularity and localization. To achieve 
transparency and to avoid combining device object methods with 
error recovery code, we create a new error handler software class 
hierarchy which parallels RIPE’s device class hierarchy. In other 
words, a generic ErrorHandler class is defined, and then device­
specific error handler classes are derived from this generic parent 
class. The two hierarchies are then tied together by each device 
class initializer which automatically creates an instance of its 
corresponding error handler class whenever an instance of the 
device class is created.

Having the two class hierarchies results in RIPE error handler 
methods being implemented separately but in parallel with its 
device class methods. RIPE also tailors each error handler for the 
specific device it corresponds with by using the model-based 
information for that device which resides in the device’s class 
definition. Error handling capabilities are added incrementally to 
support new subsystems and to make old subsystems more robust 
as new error conditions and recovery mechanisms are discovered 
during work cell operations. This is done without modifying 
existing code and risking adding new bugs into the system. The 
generic ErrorHandler defines uniform, standardized ways for the 
device-specific error handlers to react to failures. This includes 
wrappers created as inline functions or macros which will 
generate calls to an error handler’s interrupt service routine 
whenever an abnormal condition is detected.

To tie all of this together, a Global_ErrorHandler class has 
also been defined, which is instantiated whenever the main 
supervisory applications code begins execution. This class is 
derived from the Task class provided with the C++ environment. 
It utilizes UNIX signals to generate global interrupts in order to 
control the logic flow of the high level application whenever an 
error occurs. Another set of wrappers are supplied with this class 
which utilizes the UNIX setjmpllongjmp environment to provide 
options such as retry, continue, start over, skip, or abort, 
depending upon how well the local device-specific error handlers 
respond to a failure.

Currently, the GlobalJsrrorHandter and generic local 
ErrorHandler are in their initial stages of development and 
testing. RIPE supports evolution towards a long term goal for 
intelligent execution monitoring tasks. Such tasks will fully 
utilize the world model and sensors to maintain an accurate 
representation of the work cell in real-time as part of the overall 
software environment.

5. Conclusions and Future Work
The two completed implementations demonstrate that the design 
of RIPE has resulted in modular, reusable, extensible, and 
portable robot system software, and therefore has increased 
software development productivity and reliability of robot

applications. The layered object-oriented software environment 
reflects the physical system. This simplifies the work for robot 
software developers by allowing them to construct control 
software environments in much the same way that the hardware 
system developers integrate the actual physical devices into a 
working system. This in turn facilitates communication between 
hardware and software engineers during system integration. 
Systems can be implemented faster due to the reusability and 
portability of the software. Also, RIPE can be used on most 
commercially available computing equipment because the 
development is based on a standard language and off-the-shelf 
operating systems. RIPE’s device hierarchy and its 
communication interfaces which are inherent to object-oriented 
programming contribute to the development of a standardized 
Robot Independent Programming Language (RIPL) which is 
used to program different intelligent robot systems.

The ability to create RIPE objects in different ways by 
supplying different parameter sets provides for a very flexible 
system with an open-ended architecture having three levels of 
generic interfaces. An application normally will directly create 
objects representing specific devices and work pieces in the work 
cell, whereas the communication objects will be created 
internally, with the details of the message transmission hidden 
from the applications code. This provides generic interfaces that 
result in architecture independence. In other words, an 
application can be modified to run either in a single CPU 
environment or a distributed environment simply by changing the 
way it creates its objects, and consequently the way it 
communicates with work cell devices.

The second level of generic interfaces exists at the device level. 
Because there are generic device classes for robots and sensors 
(Robot, Sensor, ForceSensor), whose attributes and methods are 
inherited tty specific robot and sensor classes (CMRobot, 
LORDForceSensor) derived from the generic classes, the 
application interface to a device will look the same no matter 
what device is used. In other words, if the Lord force sensor is 
replaced in the Cask Head Work Cell application by a JR3 force 
sensor, the application remains unchanged except for the way it 
creates its force sensor object (one line of code). This, in turn, 
leads to the third level of generic interfaces, the user level. 
Through inheritance and polymorphism, the same messages are 
sent to a CMRobot as are sent to a GRobot. Likewise, the same 
messages are sent to a LORDForceSensor as are sent to a 
JR3 ForceS ensor. This is illustrated by our two different work 
cell examples.

As a result, RIPL begins to develop as a natural consequence 
of RIPE. The code sequence already discussed in Figure 6 
contains routine calls such as receive jnsg for communications, 
perform and move_rel for robot control, and set_bias, 
set_output_mode, and take_reading for force sensor control. 
These calls, as well as the Robot declarations in Figure 3, form the 
basis for RIPL. Currently, RIPL is an intermediate manipulator 
level language, upon which a task-level language is being 
constructed. An example of this is the swipe command used in 
the Radiation Survey Work Cell.

We are currently enhancing the class hierarchies for the 
Radiation Survey Work Cell to perform new tasks such as mating 
a storage cask to a storage facility door, manipulating impact
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limiters, and securing tiedowns. In addition, we are 
implementing the RIPL primitives for GMF and PUMA robot 
classes which will be used in future glovebox and inspection 
applications. We acknowledge that RIPE and RIPL must be 
evolutionary to be successful.
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