An Object-Oriented Environment for
Robot System Architectures*

(YO/VF« 9)005577_,//

David J. Miller Fo
and ’
R. Charleene Lennox

Sandia National Laboratories
P. O. Box 5800
Albuquerque, NM 87185

ABSTRACT
An object-oriented Robot Programming
Environment (RIPE) developed at Sandia National

Laboratories is being used for rapid design and implementation
of a variety ofnp(x cations. A system architecture based on
hierarchies of distributed multiprocessors provides the
computing platform for a layered programming structure that
models the application as a sct of sofiware objects. These
objects are designed to support model-based automated
planning and programming, rcal-time sensor-based activity,
eror handling, and robust communication. The object-
onented paradigm provides mechanisms such as inheritance
polymorphism which allow the implementation of the
systcm to satisfy the goals of software reusability, extenmblhty,
reliability, and portability. By designing a hierarchy of generic

parent classes and device-specific subclasses which inherit the

same interface, a Robot Independent Programming Language
(RIPL)is realized. Work cell tasks demonstrating robotic cask
handling operations for nuclear waste facilitics are successfully
implemented using this object-oriented software environment.

1. INTRODUCTION

This paper discusses the Robot Independent Programming
Environment (RIPE) developed at Sandia National Laboratories.
RIPE is an object-oriented approach to robot system software
architectures. The primary accomplishment of this effort is a
software environment which facilitates the rapid design and
implementation of complex robot systems to support diverse
research efforts and applications. RIPE allows robot system
developers to concentrate on algorithm design and optimization,
as well as testing and evaluation of new control, sensing,
computing, and communications technologies without having to
focus on overall system software development and integration.
This is achieved by modeling the robot system as a set of software
classes. As a result, RIPE hides device integration details and
provides uniform interfaces to all objects in the system. A
separation of concept from implementation characterizes RIPE’s
software classes and provides software reusability, extensibility,
reliability, and portability.

In the following sections, the problems associated with
complex robot software systems (which we have experienced
first hand) are reviewed, together with past approaches dealing
with these problems. We then discuss the underlying object-
oriented concepts and distributed computing architecture upon
which RIPE is based. RIPE currently supports automatic motion
planning and programming of robotic and machining devices
based on models of the environment, sensor-based control, error

*This work was supported by the U. S. Department of Energy under Contract DE-
AC04-76DP0O0789

1

handling, and robust communication. The RIPE architecture also
supports development of advanced software concepts such as
graphical interfaces for robot system control.

The detailed design of RIPE is then defined, followed by a
discussion of two implementations involving robotic cask
handling operations for nuclear waste facilities. These systems
show how the class hierarchy, consisting of generic parent classes
and device-specific subclasses sharing the same interface, results
in a Robot Independent Programming Language (RIPL). Finally,
a brief discussion of error handling and additional future work is
presented.

2. CURRENT APPROACHES TO ROBOT
SOFTWARE

Sandia is currently developing robot systems for applications
including hazardous material handling, automated assembly, and
robotic edge finishing. Supporting this work are research
laboratories investigating controls and optimization, telerobotics,
grasping and dexterous manipulation, vision, tactile and
proximity sensing, path planning and collision avoidance,
oscillation damped movement, autonomous vehicles, flexible
arms, and simulation. The diversity of Sandia’s robotics effort
implies that the software environment must support a wide
variety of requirements and devices. It also must serve users with
different levels of expertise in robot system programming.

2.1 The Problems

As our robotics effort has developed we have experienced many
of the problems common to robot programming:

« the inability of robot languages to handle integration of sensors
into the motion control system

« the difficulty of extending application code to include new tasks
or new devices

« the high expense of application programming

« the small amount of code that is reusable for new systems

« the focus on manipulator-level rather than on task-level
programming
* the management of system complexity

« the time consuming process of wriling and debugging low-level
(c.g. communication) software before beginning to test new
algorithms

« the need for real-time control of mechanical devices
» the necessity of implementing robust errorhandling and recovery

MASTER

DISTRIBUTION OF THIS DOCUMENT IS UNLIMIT

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image
products. Images are produced from the best available
original document.

It has been our experience that software development costs are a
significant part of the overall intelligent robot system
development costs. Finding solutions to robot software problems
reduces these costs and thereby increases the viability of using
intelligent robot systems in applications where it was once
considered too costly.

2.2 Other Approaches to Solving the Problems

Various approaches have been used to try to solve these
problems. Vendor supplied robot programming languages have
been enhanced to provide extended sensor capabilities, real-time
path modification, and user-friendly interfaces. VAL-II [18] and
AML/X {14] are examples of such languages which have evolved
until they resemble general-purpose, high-level computer
languages. However, applications written in these languages are
specific to the vendor's robot and, therefore, are not portable.

One approach is to replace the robot control system with a new
control system embedded within an existing operating system,
written in a general purpose language, and using primitive
functions included in a library. RCCL (6] and KALI [1}, for
example, provide such intermediate level robot control
primitives. These primitives can be called by off-line
programming systems and can provide an environment for
research into control and optimization algorithms. Frequently
neither RCCL nor KALI is a viable option for industry work cells
or research labs since they require the replacement of the robot
control system hardware.

In attempts to move beyond manipulator-level programming of
basic robot motions in a three-dimensional work space, task-level
languages such as AUTOPASS [9] and LAMA [11] were
defined. They were somewhat premature and were never fully
implemented due to the unsolved subproblems of grasp planning,
path planning, and fine motion planning [8]. However, it is
generally agreed that task-level languages are needed to solve the
problems relating to the expense and complexity of robot system
programming.

A number of the more recent approaches {7, 19, 20] use
conventional programming languages to help solve the problems
of system complexity, real-time constraints, sensor integration,
and modeling. These approaches have the advantages gained by
using a language which is reliable, well-supported, portable, and
familiar. In addition, these approaches focus on the total work
cell system rather than only on the robot. The drawback is that,
to date, the software has often been single purpose and not easily
extended to other applications.

2.3 Approach for RIPE

RIPE was developed to support model-based automated planning
and programming of robotic and machining devices, integration
of sensor technologies, development of next generation robot
system programming languages with graphical interfaces, error
handling, and robust communication. It is built upon well-
established software operating systems and programming
languages. RIPE is an environment for complex system
integration which stresses use of off-the-shelf hardware (e.g.
commercial robots) where appropriate as well as providing
support for advanced system development.

2.3.1 Computing Architecture

The RIPE computing architecture consists of a hierarchical
multiprocessor approach which employs distributed general and
special purpose processors. This architecture provides the
computing power required by the RIPE software to control
complex diverse subsystems in real-time while coordinating
reliable communications between them. Advances in
microprocessor technology allow general purpose processors to
achieve the computing performance required by complex robot
control algorithms while remaining compatible with a large base
of existing software.

2.3.2 Object-Oriented Design

Central to the design of RIPE is object-oriented programming.
Object-oriented design results in software architectures based on
the objects that comprise a system and its environment rather than
on the functions it performs [12]. Robot systems perform actions
on certain objects within a defined work space. The software
controlling the robot systemn can be viewed as an operational
model of the world in which the robot exists. Therefore, RIPE is
organized around representations of the objects in the work space
so that its structure reflects the physical structure of the system.
Controlled complexity is achieved by creating, combining, and
manipulating software objects instantiated from previously
defined software classes to perform the specific tasks of the
system.

Object-oriented programming is based on the concepts of
abstract data types, classes, objects, generic operations, message
passing, type hierarchies/inheritance, and polymorphism [12].
Applying these concepts to RIPE results in modularity,
encapsulation, abstraction, and information hiding. Abstract data
types, classes, and objects allow the designer to model the
physical robotic work cell entities in RIPE by defining only their
attributes, behavior, and interfaces. Examples of such entities
include work pieces or parts with geometric attributes, devices
(e.g. NC machines, fixtures, machine tools, tool changers, robots,
grippers, other end effectors), and sensors for contact switches,
force control, and vision.

Since the software classes in RIPE are defined to represent the
physical objects that are commonly found in a work cell, the
communication interfaces to these generic software classes in
RIPE become the general device independent language used to
program the cell. This is achieved by applying the concept of
polymorphism. Polymorphism (inherent in the object-oriented
programming environment of RIPE) enables objects of a generic
parent class and objects of its device-specific subclasses to
receive the same messages and respond to them appropriately.
The device independent programming language in RIPE resulting
from object-oriented design of robotic work cells is RIPL.

Separating robot system concepts from the actual RIPE
implementation results in robot system software which is
reusable, extensible, reliable, and portable. RIPE’s reusability is
the basis for the design process. Extensibility is provided in RIPE
by defining new software classes which in tum become part of the
general work cell programming language. Use of inheritance to
define subclasses which are extensions or restrictions of RIPE
parent classes greatly lowers the cost and complexity of software
development. System reliability is enhanced by reusing well-

defined RIPE objects, and portability is realized because RIPE
classes are tightly encapsulated and relatively independent of
their environment.

2.3.3 The Development Environment

Our development environment for RIPE has four primary layers:
task-level programming, supervisory control, real-time control
and device drivers. The choice of software at each layer is
influenced by the primary requirements for modeling, sensing,
and motion specification, as well as the widely acknowledged
levels of robot software (task, manipulator, servo) (2, 21]. In
addition, there is a strong relationship between the architecture
employed at each particular layer and robot performance
requirements.

The first layer is synonymous to what is generally referred to
as task-level programming. At this level, world modeling,
planning, and simulation are performed. Currently, this layer is
in the initial stages of definition in our architecture.

The second layer is the supervisory control layer implemented
on a UNIX-based workstation. This layer contains the primary
control programs which coordinate all devices and activities of
the system. UNIX is used by this layer because it provides arich
set of software development tools, is a mature operating system
with emerging standards, and is available on almost all
computers. The C++ language [16] is used to implement the
object-oriented work cell class hierarchies and the supervisory
code which manipulates these classes. C++ is a standard high
level language which offers all the necessary features for object-
oriented programming. Because C+~+ is a superset of C, a large
existing base of C code is used, and all of the advantages of C
programming are retained (portability, versatility, and systems
programming facilities).

The third layer in the programming environment handles real-
time control of devices for tasks such as force control. This layer
consists of multiple VME-based 68000 family processors on a

CASK HEAD WORK CELL
CLASS HIERARCHY

backplane network running the VxWorks operating system [22].
VxWorks was selected because of its real-time kemnel, full-
featured development and run-time environments, and its
compatibility with UNIX. C++ runs effectively in this
environment, and therefore, the same software can be used both
at the workstation level and the real-time control layer. An
Ethemet-based local area network ties together the workstations
and VME systems.

The bottom layer contains the device drivers for each
subsystem in a work cell. Some device drivers are relatively
simple and consist of interfacing commands for tasks such as
controlling a bar code reader. Others are sophisticated
programming environments, such as the CIMCORP XR100
gantry robot software system. It is often more practical and
efficient to utilize the vendor-supplied packaged software rather
than attempt to create a new language and external interface.
However, RIPE objects can use KALI or RCCL based commands
to communicate with specialized controllers as well.

In the case of intelligent devices such as robot controllers, a
monitor program located at the controller for the device is written
in the robot programming language. This monitor establishes
communication with an extemal host CPU, waits for a command
from that host, carries out the command when one is received,
and then waits for the next command. The host may send the
command in a format which is directly executable by the robot
controller (such as a VAL-II statement), or it may send a
command code which triggers a subroutine call in the monitor.
The monitor is treated as the part of a distributed robot object
which resides on the robot controller. The messages that it
understands and interprets are defined in the robot class and
frequently have a one-to-one correspondence with the user
interface routines defined for the robot class.

3. DEFINITION OF ROBOT SYSTEMS IN RIPE
The design of RIPE is based not only on our goals of ease of use,

RADIATION SURVEY WORK CELL
CLASS HIERARCHY

[Bcsa][Gcsa][Fosa [cownd

[Canberra 1][Canberra 2][Glean Swipe]

[[GRobot | [Face Plate] [Std Gripper] [Parchet]
[Vison | | [[BarCodeReader | | [Micro Switch |
[Geiger Counter | [Swipe Analyzer |
Figure 2

expressiveness, extensibility, and reusability but also on
compatibility with FAC-SIM [5], a simulation systemn developed
at Sandia for the analysis of robot systems. The partitioning of a
system into classes is fairly straightforward since most classes
reflect the physical objects of the application. The software
classes which do not represent physical objects are termed
“virtual objects” and include CommunicationHandler,
WorldModeler, ErrorHandler. TrajectoryGenerator and
PathPlanner.

3.1 The Generic Objects

The class inheritance hierarchies in RIPE are designed to allow
the programming of tasks using generic classes. Figures 1 and 2
illustrate two example system hierarchies. In the Cask Head
Work Cell, a Cincinnati Milacron robot performs leak detection
and gas sampling operations on the head of a cask containing
nuclear waste. In the Radiation Survey Work Cell, contamination
surveys of the cask are performed by a CIMCORP gantry robot.
The division of a robot system into the three basic classes of
WorkPiece, Station and Device is derived from the concept that
devices carry out actions on work pieces, and stations are
locations in the work space for storing these devices or work
pieces. The definition of the class hierarchy for WorkPiece and
Station is specific to an application, but each work cell has
several kinds of devices, e.g. robots, sensors, grippers, and other
tools. All devices which carry out actions are derived from the
parent class Device. Instead of, or in addition to a manipulator, a
system might employ other devices such as an NC machine, a
conveyor, a remotely controlled fork lift, or a mobile robot.
These have the property of being able to move or transport a work
piece or a tool and thus, derive from the Transport class. Tool is
the parent class of any object used by the robot to perform a task.
Grabber has the attribute of being used to pick up work pieces or
other tools. Grippers, hands, face plates, and hooks are instances
of the Grabber class. A Sensor is a Tool which provides data for
the performance of the task. Besides force sensors, vision
systems, and proximity sensors, examples of the Sensor class
would be a bar code reader used for identification of a work piece,
acontact switch which verifies the presence of a tool in its station,
or a gas sampling device. A tool, such as an air wrench, which is
not an instance of the Grabber or Sensor class, derives directly
from the Tool class.

Each subclass of Device which is also a generic parent class is
highlighted in Figures 1 and 2. Although not shown in Figures 1
and 2, virtual objects such as ErrorHandler and
CommunicationHandler are also generic parent classes. The
routines that define the user interface to a generic class, along
with other attributes and routines common to all instances of that
class, are defined at the generic parent level of the hierarchy.

Figure 3 shows the definition of the Robot class. The attributes
are defined in the data structures such as current and home. The
actions that are common to all robots are found in the definitions
of the routines. The keyword virtual at the beginning of each
function declaration indicates that the routine is to be defined by
a device-specific subclass. All robots can be commanded to
move, but the definition for executing a move is specific to a
particular robot. Note the presence of default values for some
parameters in the virtual routines, for example speed in the move,

ROBOT CLASS DEFINITION

class Robot: public Transport
{ protected:
point home,
current ;
int current_coordinate._type,
double speed;
int current_speed_attribute,

double accel;
int cunul_&cel_m:ihue H

public:
// Abwna class 50 constructor is empty
—Robot()

virtual it move (point loc, int motion_attributes,double specd=0.0) ;
/! Absolute move to loc.

virtual int move_rel (point delta, int motion_attributes,

double speed=0.0) ;
/! Move to a position delta away from current position.

virtual int move_home () ;
// Move to home (ready) position.
virtual void approach (point loc, int axis, double dist) ;
/I Move to a position dist away from loc along axis.
viral int depart (int axis, int direction, double dist,
double increment=0.0) ;
/! Move along the specified axis distance dist.

virtual int move_react (point loc, Seasor * FS_ptr) ;
/I Move to position loc under force control.

virtual int move_comply (point loc, int mamincrs, Sensor * FS_ptr,
double fmax = F_MAX) ;
// Move to position loc with compliance specified in f.

virtual it path_move (peth_point * p, int motion_attributes) ;
" MoF\,r:touchpoiminpahp. P

virtual int path_move_rel (path_point * p, int motion_attributes) ;
// Move relative to each point in path p.

virtual void sfop O ;
{/ Cause the robot to stop.

virtual int sef_speed (double s, int speed_attributes) ;
/] Set the robot member speed to 5.

virtual double get_speed (int specd_attributes) ;
/! Retumn the value of robot member speed.

virtual int open_gripper(;
1/ Open the gripper

virtual int close_gripper() ;
/I Close the gripper

virtual int get_effector (Device * t_pur) ;
/! Move 1o station and pick up effector.

virtual int put_ ofhclor(Dcvu:e *t ptr);
/! Stow end effector at station.

virtual int perform (int task) ;

/! Execute a taught sequence

virtual void where (point cur_loc, int coordinate_type);
// Set cur_loc to the Cartesian position of the robot.

virtual int report_status () ;
/1 Print the current status of the robot.

Figure 3

move_rel, and path_move declarations in Figure 3. Including
optional parameters and default values provides flexibility in the
subclass definition and in the application. For example, if the user
wants to specify a speed during a move, he invokes the desired
move routine with the speed parameter set. If he does not set the
speed parameter, the default speed, which is established earlier by
a call to set_speed, is used.

3.2 Derived Objects for Specific Applications

Figures 1 and 2 show how objects in specific work cells are
derived from their generic parent classes. The bottom level of the
hierarchy enumerates the software representation of the physical
objects in the work cell. The Cask Head Work Cell, as
represented in Figure 1 for example, required programming of the
CMRobot class as well as other types of subclasses representing
the different devices and work pieces. The interface to CMRobot
is already defined in parent class Robot. The interface serves as
akind of template so that the programming is a matter of "filling
in the blanks." For example, the code for the move routine
consists of translating the command into the format the
Cincinnati Milacron controller expects and invoking the
Communicationt andler's routine send_msg.

If a subclass has more capabilities than the parent, the user
interface to the subclass is the set of routines defined for the
parent class plus additional ones defined in the subclass. The
CMRobot class has been extended for research into oscillation-
damped movement of a flexible beam. Routine
flex_beam_damping uses the move_comply command and torque
feedback to actively damp vibrations of a cantilevered beam.
‘When only the routines specified in the generic parent class are
used in programming an application, a different derived object
representing a different physical device can be substituted, and
the commands in the application code remain the same. These
routines define the primitives for RIPL.

Figure 2 shows the derived objects for the Radiation Survey
Work Cell. A comparison of the two work cells shows that the
same set of generic classes can provide very different software
object systems. The tasks performed in the application determine
which class routines will be invoked in the supervisory code.
Thus, changing the way the supervisor uses these class routines
can result in the implementation of an entirely different task even
though the class definitions remain unchanged.

4. APPLICATION OF RIPE

The Cask Head Work Cell and Radiation Survey Work Cell were
constructed as part of the Advanced Handling Technologies
Project (AHTP) at Sandia National Laboratories {4]. The AHTP
includes efforts to automate cask handling operations at nuclear
waste facilities, These work cell prototypes serve as proof-of-
concept systems to demonstrate cask handling operations that
might be performed robotically.

4.1 Cask Head Work Cell Example

The AHTP consists of several subprojects, one of which is the
Cask Head Operations (CHO) project. The CHO project
investigates robotic performance of cask head operations

required before and after nuclear fuel bundle unloading. The
Cask Head Work Cell was designed as a prototype system for

cask head operations which include leak detection, gas sampling
(port cover removalfreplacement and coupling/decoupling of the
sampling apparatus at the port), and bolting and unbolting
operations. Robust algorithms were required for mating the
torque wrench to various bolt heads on a cask head mock-up
using force feedback. The requirements for the work cell
operations illustrate the application of the RIPE environment.

One of the premises on which object-oriented design is based
states that designers should avoid as long as possible describing
and implementing the specific tasks of a system[12]. Rather, they
should produce a high level design that defines only a set of
classes which characterizes the behavior of the objects in the
system. We followed this principle by designing and
implementing the necessary Cask Head Work Cell classes, as
discussed above, independent of any application to which they
would be applied. As anticipated, implementation of the actual
cask head operations was fast and straightforward. All that was
required was to create and manipulate the work cell objects to
perform the specific tasks of the system. Also, other applications
of the work cell such as flexible beam oscillation damping
research [15] were easily implemented because the classes had
been designed completely independent of any particular work cell
activity.

4.1.1 Computing Environment

Figure 4 illustrates the computing architecture that is used to
control the Cincinnati Milacron work cell doing cask head
operations. The primary components include a Sun 3/60
workstation, a VME bus with two Force 68020 CPU’s, global
memory, an 8-port serial I/O card, a Cincinnati Milacron series

CINCINNATI MILACRON
HARDWARE PLATFORM
Display Mok USH.IN;EEAG
S Y60 Ethornet | The Restof
(Pupervisory Host Computes)
Keyboard/Mouso
SUPERVISOR TASK
« o > ENP-10
Ethernet

T3-786 robot, and a Lord force sensor. The computing elements,
robot, and force sensor are all commercial subsystems. Special
end effectors and grippers were designed and built at Sandia.

The distributed VME multiprocessors coordinated by the Sun
workstation allow individual CPUs to control each subsystem in
the work cell and provide support for continuous tasks,
concurrency, synchronization, data sharing, communications,
real-time control, and sensor-based activity. In addition, this
architecture reflects the hierarchical layered approach to
hardware which corresponds with the different levels of robot
software (task, manipulator, servo). However, the design of
RIPE allows the software to be mapped onto multiple layers of
the hardware, depending upon the application. For example, the
servo level normally resides at the robot controller, but whenever
compliant motion is performed, some of the servo software
functions are executed on the VME bus CPUs. Similarly, the
manipulator level software may reside on either the robot
controller, VME bus, or the Sun workstation. The task-level
software will normally be at the workstation level. Finally,
model-based control requires that knowledge about the work cell
and its contents be distributed among the software objects that
logically represent their physical counterparts, and these objects
may reside at any level of the hardware.

4.1.2 Software

To perform cask head operations, four software tasks were
required. All of the tasks are implemented in C++ and utilize the
communication and device class libraries discussed above to
perform their functions. A UNIX environment exists on the Sun
workstation, and a VxWorks environment controls the VME
hardware. Figure 4 shows how the tasks are distributed among
the work cell CPUs for the Cask Head Operation task.

The first task allows the operator to interact with work cell
devices. The current implementation uses SunView [17], but
future interfaces will be built with a recently developed object-
oriented package called InterViews [10]. The second task, which
also resides on the Sun, serves as the work cell supervisor. It
accepts commands from the operator through the first task and
carries out these commands by initiating appropriate work cell
actions (which may be performed by other hardware
components). ‘

The remaining two tasks reside on the VME bus CPUs. One
task monitors the Lord force sensor (mounted on the wrist of the
Cincinnati Milacron robot) and computes position updates to
control robot movement whenever the torque wrench has to mate
with a bolt. The other task provides the communications to the
robot controller, utilizing the DDCMP protocol [3]. Both tasks
use a serial J/O card for message transmission to the force sensor
and robot controller.

Figure 5 illustrates the objects that are created by these tasks
whenever they are executed. The work cell supervisor creates a
LORDForceSensor object and a CMRobot object. These two
objects are, in a sense, distributed over multiple environments.
The way they are created (argument list specification) determines
how they are distributed and how they communicate with the
actual devices. In figure 5 the shaded boxes indicate the
communication objects created by the device objects.

For example, if the force sensor were to be controlled directly

CASK HEAD WORK CELL EXAMPLE

-

| e ———]

becssncsnensaaa

o

*eesssessassasssnsssagfucnncnnncncnan recrrrcscocosass, .

+ VME CPU1

Cmd State Table] |

procsnsnnanmcvocscncns
Laecssccsesasasessenansasse

oooooooooooooo

LORD Force Sensor] [Cincinnati Milacron Robot

Figure §

from the Sun workstation, a LORDForceSensor object could be
created with a parameter list that would cause the creation of a
UnixSerial object for direct communication to the force sensor
device through a Sun serial port. In our implementation for cask
head operations, the LORDForceSensor object and CMRobot
object are distributed across both the Sun workstation and a VME
CPU due to the real-time requirements of force servo control.
They communicate through UnixClient /VxServer objects over
the Ethernet between the UNIX environment on the workstation
and the VxWorks environment on the VME bus. The
LORDForceSensor and CMRobot objects on the VME CPU, in
turn, create VxSerial and VxDdemp communications objects
respectively which allow them to talk to the actual hardware in
the work cell. To achieve the update rate necessary for force
control, an additional VxDdemp object is created on a second
VME CPU to handle the low-level protocol and message
transmission to the robot controller. The two distributed
VxDdemp objects communicate with each other over the VME
bus through a VxSocket object.

Finally, the LORDForceSensor object also creates a
CmdStateTable object which reads a configuration file that
defines the specific behavior of the Lord force sensor device. For
example, using the CmdStateTable information, the
LORDForceSensor object knows that it must send an "OA<CR>"
(Output ASCIT) command to the force sensor in order to obtain
ASCII readings of the current forces being sensed. By isolating
device-specific attributes and commands into files that are
managed by the CmdStateTable object, methods that control the
device's behavior are written generically and can reside in the
parent Tool, Sensor, or ForceSensor classes rather than in the
LORDForceSensor class. These methods therefore can be used
by other types of force sensor classes derived from the parents
(such as the JR3ForceSensor class) which have their own
configuration files.

Figure 6 illustrates one portion of code for the Force Control
Task residing on the first VME CPU. It shows how the objects in

FORCE CONTROL CODE EXAMPLE
I/Defines and includes for class definitions

1/ Create server object for communication with host
func ptr_testserver = testserver ;
p_func ptr_panicfunc = pamcﬁmc
VxServer MyServer(SERVER_NUM, pir_testserv
ptr_panicfunc, TABLE_LEN, msg_t.n.ble[O]),

im'lcmervel(VxServa‘ TestServer)
{/ Spawned by MyServer
(

LORDForceSensor* TestSensor ;
force* fptr ;

CMRobot* ptr_robot ;

point new_loc;

/] Create force sensor and robot objects
TestSensor = new LORDForceSensor("LORDStateTbl",
4, 19200, DEBUG_OFF) ;
fptr = new force ;
ptr_robot = new CMRobot("em1", 1401, DEBUG_OFF) ;

1/ \.»Vait for a command from the client
len = TestServer->recelve_msg (line, MAX_SOCKET_MSG+1,
LU_MONITORY);

// Initiate robot communication & configure sensor
ptr_robot->perform (WAIT_FOR_BEGIN_REMOTE);
TestScnsor->set_blas () ;
TestSensor->set_output_mode (BINARY_MODE) ;
table_entry = ptr_robot->report_Var_entry (HOST_ENTRY);

1/ Select a work cell activity
switch(table_entry)

/] Feel for bolt with torque wrench until they mate
case 1:
while (i < 22) {

new_loc{Z] =-0.150; new_loc[R] =0.0;

printf"MOVE DOWN -0.150 INCHES\n"™) ;

ptr_robot->move_rel (new_loc);

TestSensor->take_reading (fptr) ;

if (fptr->¢_gain(Z] > -10.0) {
printf("SUCCESS IS TRUE\") ;
success = TRUE ; break ;
}
else {
new_loc[Z] = 0.150;
printf("MOVE UP 0.150 INCHES\") ;
ptr_robot->move_rel (new_loc);
new_Joc[Z] =0.0; new_loc[R]=-5.5;
prinf("ROTATE 5.5 DEGREES\n") ;
ptr_robot->move_rel (new_loc);
i+
}
}

’ } // End this work cell activity

Figure 6

the work cell are created and used to perform a simple bolting
operation. Messages are sent to the LORDForceSensor and
CMRobot objects to obtain force readings and initiate robot
motion until the torque wrench is properly seated on a bolt.

4.2 Radiation Survey Work Cell Example

The Radiation Survey Work Cell was the first experimental
system to be built for AHTP. Its initial application, the Robotic

Radiation Survey and Analysis System (RRSAS), was completed
in August, 1987 [13], and included operations to locate a half
scale cask mock-up in the work cell using stereo vision, identify -
cask contents by reading bar codes, and perform both non-contact
and contact radiation surveys. Key technologies such as
automatic motion planning and programming of the CIMCORP
XR100 gantry robot and force sensor integration to maintain
constant force contact with the cask surface during contamination
surveys are demonstrated by RRSAS. RRSAS was completed
prior to the development of RIPE.

Some subsequent studies currently under development include
the Impact Limiter Handling project and the Cask Tiedown
project [4]. These projects will investigate robotic removal,
handling, and replacement of cask impact limiters and tiedowns.
They also require technologies similar to those developed in
RRSAS, including machine vision and force control. These new
projects are being executed using RIPE.

Although RRSAS was originally implemented in C from a
function-oriented top-down design, its highly modular structure
and generic functions for robot control make it possible to use
some of the existing code for the methods of the C++ gantry robot
class (GRobot). Also, because the generic Robot class had
already been defined and much had been learned during
development of the CMRobot class, implementation of the
GRobot class was fairly automatic. Similarly, the Radiation
Survey Work Cell employs a JR3 force sensor rather than a Lord
force sensor, so a8 JR3ForceSensor class also had to be
implemented. This again was facilitated by the existence of
generic parent classes (Tool, Sensor, ForceSensor).

4.2.1 Computing Environment

Aside from the specialized subsystems required by RRSAS, the
primary hardware components of the Radiation Survey Work
Cell are the same as those found in the Cask Head Work Cell (Sun
workstation, VME bus, robot, sensors). There is of course a
different robot and a different force sensor, and the VME bus uses
Heurikon 68020 CPUs rather than Force CPUs (transparent to the
software). As stated earlier, this hierarchical distributed approach
is our standard architecture which provides the power,
compatibility, flexibility, and extensibility needed to implement
complex work cell environments.

4.2.2 Software

The first application using RIPE in the Radiation Survey Work
Cell performs force controlled movement of the robot arm for the
random contact swipe survey. The original force servo control
system in RRSAS consisted of a PDP/11 with an RT-11
environment [13]. This is replaced by a much more powerful
VME based 68020 CPU and a VxWorks environment. The new
swipe survey software (Swipe Server) is a C++ application which
creates and manipulates a GRobot and JR3ForceSensor object to
monitor a JR3 force sensor mounted on the wrist of the gantry
robot and make real-time trajectory corrections to the robot arm.
The corrections are based on the contact force detected between
the robot’s end effector (swipe planchet) and the cask. The
control structure maintains a 4.0 + 1.0 pound normal contact force
during the swiping motion.

Figure 7 illustrates the objects that are created by the Swipe
Server. If this figure is compared with Figure 5, it can be seen

RADIATION SURVEY WORK CELL EXAMPLE

sescsmmsnaanay
csasscccacas

BB AAI ISR SORIER L

pooresssssonssssosmsonnons

| [cimcorP Gantry Robot |

Figure 7

that the object hierarchies are nearly identical. ‘I'he primary
differences reside at the communication and servo level, where
additional state machine firmware is utilized on the VME serial
I/O card to handle the JR3 packet protocol and to synchronize
position updates with a special trajectory card in the robot
controller. At the manipulator level, the interface is identical to
that found in the Cask Head Work Cell application. Again, the
objects behave according to how they are created. The work cell
devices can be directly controlled by objects residing on the Sun
workstation whenever there are no real-time requirements, or
they can be controlled in real time by objects distributed across
VME CPUs.

Two additional comments can be made about the Swipe Server
application. First, it illustrates the ability of our object-oriented
environment to coexist with more traditional function-oriented
environments. Rather than rewrite all of the RRSAS supervisory
software, which is over 15,000 lines of C code, it was only
necessary to replace a handful of modules which interfaced the
supervisor to the PDP/11. The new modules create a UnixClient
object which allows the RRSAS supervisor to communicate with
the new VME-based Swipe Server through a VxServer object over
the Ethemet. Everything else in the supervisor remains
unchanged. Second, the Swipe Server utilizes GRobot methods
which illustrate an object-oriented implementation of a task-level
capability that allows the supervisor to ask the robot to “swipe the
surface of a designated work piece", in this case the cask. The
code segments in Figure 8 show how the generic manipulator
level methods of the GRobot class are pieced together to create
this task-level function. Similar implementations could be used
in other work cells with other robots to provide this highly useful
capability.

4.3 Error Handling
Frequently, extensive error detection and recovery procedures for
complex robot systems are needed to ensure reliability. It is of

particular importance for remote systems which must perform
autonomously in hazardous environments, such as the cask

SWIPE OPERATION CODE EXAMPLE

int GRobot::swipe_operation (Scasor* FSensor, float inc)
{

int numincs;
intstat=0;

siat = move_till_touch (FSensor);
if (stat) rewurn(stat) ;
numincs = SWIPE_DIS / INC_MAG;
siat = make_swipe (FSensor, inc, numincs);
if (stat) return(stat) ;
depart (FORCE_AXIS, BACK_DIST, BACK_INC);
retumnto_preswipe_location ();
clear_offsets_and zero_alter();
) return(stat) ;

int GRobot::move_tlll_touch (Sensor* FSensor)
{

point loc ;

intstat=0;

FSensor->desired_values[Y] = TOUCH_SET ;
loc[X] =0.0; loc[Y] = APPRO_INC; loc[Z] =0.0;

loc[D} =0.0; loc[E]=0.0; loc[R]=0.0;
stat = move_react (loc, FSensor) ;
return(stat) ;

}
int GRobot::make_swipe (Sensor* FSensor, float inc, int numincs)
{

point loc ;

intstat=0;

FSensor:
FSensor:
FSensor-
FSensor:

>desired_values{X)] =0.0;
>desired_values[Y] = SWIPE_FORCE ;
>desired_values(Z] = 0.0 ;
>desired_values(D] = 0.0 ;
FSensor->desired_values[E] = 0.0 ;
FSensor->desired_values(R) = 0.0 ;
loc[SW_AXIS)] = inc ;

st = move_comply (loc, numincs, FSensor) ;
return(stat) ;

Figure 8

handling operations presented earlier. When a robot system
contains many distributed components which all interact with one
another, the number of unique system states can be very large. It
is difficult to anticipate all of these states when designing control
software, and therefore, it is difficult to guarantee that the
software will provide appropriate automated responses to them.
In addition, the interaction between the software environment and
the actual work cell it controls makes error recovery difficult to
implement without continuous knowledge feedback regarding
the current physical state of the work cell. This implies that error
handling be sensor-based as well as model-based.

From a software point-of-view, there should be uniform,
standardized methods for handling failures. These methods
should be relatively transparent and not clutter mainline code.
Furthermore, they should be easily tailorable to new subsystems
and applications by providing flexible recovery options and logic
flow control. Finally, error recovery procedures should be
modular and localized whenever possible, and they should be
implemented in parallel with normal work cell control code.

The object-oriented approach used in RIPE applies well to
error handling and satisfies the requirements just enumerated.
Each intelligent device in the work cell has its own set of
conditions or assertions which determines whether an action
involving that device was successful or not. This implies that
error handling code for a device is naturally associated with the
RIPE class that logically models that device. This satisfies our
requirements for modularity and localization. To achieve
transparency and to avoid combining device object methods with
error recovery code, we create a new error handler software class
hierarchy which parallels RIPE’s device class hierarchy. In other
words, a generic ErrorHandler class is defined, and then device-
specific error handler classes are derived from this generic parent
class. The two hierarchies are then tied together by each device
class initializer which automatically creates an instance of its
corresponding error handler class whenever an instance of the
device class is created.

Having the two class hierarchies results in RIPE error handler
methods being implemented separately but in parallel with its
device class methods. RIPE also tailors each error handler for the
specific device it corresponds with by using the model-based
information for that device which resides in the device’s class
definition. Error handling capabilities are added incrementally to
support new subsystems and to make old subsystems more robust
as new error conditions and recovery mechanisms are discovered
during work cell operations. This is done without modifying
existing code and risking adding new bugs into the system. The
generic ErrorHandler defines uniform, standardized ways for the
device-specific error handlers to react to failures. This includes
wrappers created as inline functions or macros which will
generate calls to an error handler’s interrupt service routine
whenever an abnormal condition is detected.

To tie all of this together, a Global_ErrorHandler class has
also been defined, which is instantiated whenever the main
supervisory applications code begins execution. This class is
derived from the Task class provided with the C++ environment.
It utilizes UNIX signals to generate global interrupts in order to
control the logic flow of the high level application whenever an
error occurs. Another set of wrappers are supplied with this class
which utilizes the UNIX setjmp/longjmp environment to provide
options such as retry, continue, start over, skip, or abort,
depending upon how well the local device-specific error handlers
respond to a failure.

Currently, the Global ErrorHandler and generic local
ErrorHandler are in their initial stages of development and
testing. RIPE supports evolution towards a long term goal for
intelligent execution monitoring tasks. Such tasks will fully
utilize the world model and sensors to maintain an accurate
representation of the work cell in real-time as part of the overall
software environment.

5. Conclusions and Future Work

The two completed implementations demonstrate that the design
of RIPE has resulted in modular, reusable, extensible, and
portable robot system software, and therefore has increased
software development productivity and reliability of robot

applications. The layered object-oriented software environment
reflects the physical system. This simplifies the work for robot
software developers by allowing them to construct control
software environments in much the same way that the hardware
system developers integrate the actual physical devices into a
working system. This in turn facilitates communication between
hardware and software engineers during system integration.
Systems can be implemented faster due to the reusability and
portability of the software. Also, RIPE can be used on most
commercially available computing equipment because the
development is based on a standard language and off-the-shelf
operating systems. RIPE's device hierarchy and its
communication interfaces which are inherent to object-oriented
programming contribute to the development of a standardized .
Robot Independent Programming Language (RIPL) which is
used to program different intelligent robot systems.

The ability to create RIPE objects in different ways by
supplying different parameter sets provides for a very flexible
system with an open-ended architecture having three levels of
generic interfaces. An application normally will directly create
objects representing specific devices and work pieces in the work
cell, whereas the communication objects will be created
internally, with the details of the message transmission hidden
from the applications code. This provides generic interfaces that
result in architecture independence. In other words, an
application can be modified to run either in a single CPU
environment or a distributed environment simply by changing the
way it creates its objects, and consequently the way it
communicates with work cell devices.

The second level of generic interfaces exists at the device level.
Because there are generic device classes for robots and sensors
(Robot, Sensor, ForceSensor), whose attributes and methods are
inherited by specific robot and sensor classes (CMRobot,
LORDForceSensor) derived from the generic classes, the
application interface to a device will look the same no matter
what device is used. In other words, if the Lord force sensor is
replaced in the Cask Head Work Cell application by a JR3 force
sensor, the application remains unchanged except for the way it
creates its force sensor object (one line of code). This, in tum,
leads to the third level of generic interfaces, the user level.
Through inheritance and polymorphism, the same messages are
sent to a CMRobot as are sent to a GRobot. Likewise, the same
messages are sent to a LORDForceSensor as are sent to a
JR3ForceSensor. This is illustrated by our two different work
cell examples.

As a result, RIPL begins to develop as a natural consequence
of RIPE. The code sequence already discussed in Figure 6
contains routine calls such as receive_msg for communications,
perform and move_rel for robot control, and set_bias,
set_output_mode, and take reading for force sensor control.
These calls, as well as the Robot declarations in Figure 3, form the
basis for RIPL. Currently, RIPL is an intermediate manipulator
level language, upon which a task-level language is being
constructed. An example of this is the swipe command used in
the Radiation Survey Work Cell.

We are currently enhancing the class hierarchies for the
Radiation Survey Work Cell to perform new tasks such as mating
a storage cask to a storage facility door, manipulating impact

[

limiters, and securing tiedowns. In addition, we are
implementing the RIPL primitives for GMF and PUMA robot
classes which will be used in future glovebox and inspection
applications. We acknowledge that RIPE and RIPL must be
evolutionary to be successful.

Acknowledgments

The authors wish to acknowledge the contributions of the
following: W. Davidson for his communications software and
system integration support, B. Petterson for robot force control,
and M. Griesmeyer, C. Selleck and J. Wemer for their helpful
discussions in the course of this work.

References

(1] Backes, P., S.Hayati, V. Hayward, and K. Tso, "The KALI
Multi-arm Robot Programming and Control Environment,” Proc.
of NASA Conf. on Space Telerobotics, January 31-February 2,
1989.
[2] Blaha, I.R., J.P. Lamoureux, and K.E. McKee, "Higher Order
Languages for Robots,” MTIAC Report AD-A193 796, October
1986.
{3] Cincinnati Milacron, Communcations Manual Ver. 4.0 Robot
Control, Part No.5010321-134, Cincinnati, OH 45209.
(4] Griesmeyer, JM., W.D. Drotning, A.K. Morimoto, and P.C.
Bennett, "Cask System Design Guidance for Robotic Handling,"
SAND89-2444, (in preparation).
[5] Griesmeyer, J.M., "Generalized simulation environment for
factory systems.” Tools for the Simulation Profession 1989, 20-
28, 1989.
(6] Hayward, V., and Paul, R., "Robot Manipulator Control under
UNIX RCCL: A Robot Control *C’ Library,” Int. J. of Robotics
Research 5(4):94-111, Winter 1986.
[7] LaLonde, W.R., D.A. Thomas, and K. Johnson, "Smalltalk As
a Programming Language for Robotics?,"” Proc. 1987 IEEE Int.
Conr. on Robotics and Automation, 1456-1461, March31-April 3
1987.
(8] Latombe, J.-C., ‘Toward Automatic Robot Programming,”
Proc. 1983 Int. Conf. on Advanced Robotics, 203-12, Vol. 1,
1983,
(9] Lieberman, M, and M.A. Wesley, “AUTOPASS: An
Automatic Programming System for Computer Controlled
Mechanical Assembly,” IBM Journal of Research and
Development, 21:4, July 1977.
[10] Linton, M.A., JM. Vlissides, and P.R. Calder, "Composing
User Interfaces with InterViews," Computer, 8-22, February
1989.
(11} Lozano-Perez, T., and P. Winston, "LAMA: A Language for
Automatic Mechanical Assembly,” Proc. 5th Int. Joint Conf. on
Artificial Intelligence, 710-716, Aug. 1977.
[12] Meyer, B., Object-oriented Software Construction, Prentice
Hall, 1988.
(13] Miller, D.J., "Supervisory Control for a Complex Robotic
System,” Robots 12/Vision '88, June 6-9 1988.
(14] Nackman, LR., M.A. Lavin, R.H. Taylor, W.C. Dietrich,
and D.D. Grossman,"AML/X: A Programming Language for
Design and Manufacturing,” Proc. 1986 Fall Joint Computer
Conf., 145-59, November 2-6 1986.

10

[15] Petterson, B., R. Robinett, and C. Lennox, "Lag-Stabilized
Force Feedback Damping,” in preparation.

{16] Stoustrup, B., The C++ Programming Language, Addison-
Wesley Pub. Co., 1987.

[17] Sun Microsystems, SunView Programmer's Guide, Part No.
800-1345-10, Mountain View, CA 94043,

[18] UNIMATION Inc., User's Guide to VAL-II, Programming
Manual, Version 2.0, #398AGI, Shelter Rock Lane, Danbury,
CT. 068100.

{19] Van Brussel, H., D. DeWinter, P. Valckenaers, and H. Claus,
"A Universal Programming Structure for Multi-robot Assemble
Systems,” Proc 8th Int. Conf. Assembly Automation, 209-226,
March 1987.

[20] Volz, R.A., and T.N. Mudge, "Robots Are (Nothing More
Than) Abstract Data Types,” Robotics Research: The Next Five
Years and Beyond, August 1984.

{21] Volz, R.A. "Report of the Robot Programming Language
Working Group: NATO Workshop on Robot Programming
Languages,” IEEE J. of Robotics and Automation, 4:1, February
1988.

(22] Wind River Systems, Inc., VxWorks Reference Manual, Ver
4.0, Emeryville, CA 94608.

Jo suotuido pue
BJ 10 ‘uonjepusw

10 ‘IaImjoejnuew

1onpoid [ertsuIwod sy1veds Kue 03 Uy 90U
PRI 3Y) ISYION JUSWIUIIA0D

‘ssouayedwios ‘Lovinaoe ay) Joj Ajiq

oM 35N)1 JBY) SIU3sa1dal 1o ‘pasoposip ssavoad
‘pardunt 1o ssardxa ‘Ayueirem Aue soyew ‘s3akojdwio

"Joaayy Aoudde Aue 1o JUSWIUIIAOL) $3IBIS PONU[)
‘uoljeunojul Kue Jo ssounjosn Io

341 JO 950y} 199J31 IO 31E)S AJLIBSSIOU J0U Op UIAIAY Ppassaidxs sioyne
SMalA 9y], joarayy Aousde Aue 10 juswuIaN0D SIS PoNUp) o Aq Buwioa
-Wod3! “WUsWasIOpua sy A[dul 10 33NINSUCD A[LIESS300U J0U SIOP ISIMISYI0

“JIewopen ‘sweu ape1) £q 01AIdS J0 ‘ss9001d ¢
‘Joa1ayy £>uade Aue J0U JUIWUINAOC) SANEIG

-19J3Y "sIySu poumo A[reAnd sBurryur j0U pin

10 “yonpoid ‘snjeredde
-Isuodsa1 10 Kyqiqer) [e8a] Kue sownsse Jo

nay) jo Aue Jou

e ue se paredoid sem jrodar sy

$31e1S Patiuf) 3y jo KousBe ue £q pesosuods J1om JO JUN0DD

ITNIVIOSIA

