

Received by OSTI
JAN 16 1990

Strategies for High Efficiency Operation
of the E-Beam Excited Atomic Xenon Laser
Using High-Power and High-Energy Loading

SAND--89-3025C

DE90 005196

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Mieko Ohwa and Mark J. Kushner
University of Illinois
Department of Electrical and Computer Engineering
Gaseous Electronics Laboratory, 607 East Healey
Champaign, IL 61820
(217) 244-5137

and

Peter J. Peters
Twente University
Department of Physics, P. O. Box 217
7500 AE Enschede
The Netherlands

and

Edward L. Patterson and P. Jerry Brannon
Sandia National Laboratories
Albuquerque, New Mexico 87185
(505) 844-3886

ABSTRACT

E-beam excitation of the atomic xenon laser is theoretically and experimentally investigated using short-pulse high-power deposition ($> \text{MW/cm}^3\text{-atm}$) and low-power high-energy loading ($\leq 1 \text{ kJ/l-atm}$). Scaling laws are derived to maximize laser power and energy efficiency.

ots
DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

MASTER

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

SUMMARY

The e-beam excited atomic xenon laser operates in the near infrared on transitions ranging from $1.73 \mu\text{m}$ to $3.65 \mu\text{m}$. The laser is operated in gas mixtures consisting of less than a few percent of xenon and rare gas buffers at pressures of 0.5-10 atm. The highest efficiencies have been obtained in Ar/Xe mixtures. In this paper we report on an investigation of short-pulse high-power and low-power high-energy loading of the atomic xenon laser. Results from a model for the Xe laser [1] are compared to experiments to derive scaling laws for these pumping schemes. Experiments on high-power-deposition (1-10 MW/cm³-atm) pumping of Ar/Xe mixtures were performed using a short pulse (30 ns) coaxial electron beam [2]. High-energy deposition ($\leq 1 \text{ kJ}/\ell\text{-atm}$) was obtained using a long pulse (1 ms) λ -type e-beam source at power depositions of $\leq 1 \text{ KW}/\text{cm}^3\text{-atm}$. [3, 4].

When pumping for long periods (> 10 's μs), gas heating may result in convection. To accurately model the Xe laser under these conditions, hydrodynamics effects must be considered. The kinetics and optical time scales (< 100 's ns), however, are small compared to the convective time scale. We therefore separately integrated the hydrodynamic conservation equations to obtain the gas density and temperature as a function of (\vec{r}, t) . We then assumed that the local intrinsic laser power efficiency is a function of the local fractional ionization and gas temperature for a given gas density and mixture. The laser efficiency can then be separately calculated as a function of these parameters using the kinetics model described in Ref. 1.

Due to the large oscillator strengths of the atomic transitions of interest (5d \rightarrow 6p), electron collision mixing and quenching (ECMQ) of the laser levels are important. There is a critical electron density, n_c , above which ECMQ dominates and oscillation cannot be sustained, n_c corresponds to a fractional ionization, f_I , of $0.8 - 1.0 \times 10^{-5}$ [1]. Maximum laser power efficiency is obtained at $f_I = 2-3 \times 10^{-6}$. High-power deposition may result in high electron densities which exceed n_c during the current pulse. High-energy loading, even

at low-power deposition, can also eventually quench laser oscillation, because the electron density generally increases with increasing gas temperature as experienced with high-energy loading.

Using high-power deposition ($> \text{MW's/cm}^3\text{-atm}$), laser oscillation was not observed during the current pulse. A delay of up to 100's of ns passed before oscillation began. These results, reproduced by the model, are explained by the electron density during the current pulse exceeding n_c . Oscillation occurred in the afterglow when the electron density decayed below n_c . For short e-beam pulses, much of the deposited energy still resides in ions and in excited states at the onset of oscillation. Therefore, a reasonable energy efficiency may be recouped. When pumping with high-energy loading ($\leq 1 \text{ kJ/l}$), the laser pulse terminated prior to the end of the current pulse. These results, also reproduced by our model, are explained by an increase in f_I above n_c during the pulse, a consequence of increasing gas temperature and convective rarification.

In order to improve laser efficiency at high-energy loading, gas mixtures must be used which have a higher heat capacity but which do not significantly interfere with the kinetic pathways leading to the upper laser level. He/Ar/Xe and Ne/Ar/Xe mixtures meeting these requirements have been experimentally [4] and theoretically characterized. In both cases, the laser efficiency remains close to that which is obtained in Ar/Xe mixtures; however, there may be a change in the laser spectrum.

References

1. M. Ohwa, T . J. Moratz, and M. J. Kushner, "Excitation Mechanisms of the Electron-Beam-Pumped Atomic Xenon (5d \leftrightarrow 6p) laser in Ar/Xe Mixtures", to be published in *J. Appl. Phys.*
2. P. J. M. Peters, Y. F. Lan, and W. J. Witteman, "High Pressure Near-Infrared Atomic Ar:Xe Laser Pumped by a Small Coaxial E-Beam Device", *Gaseous Electronics Conference*, Palo Alto, CA, October 1989.
3. E. L. Patterson, G. E. Samlin, and P. J. Brannon, "A 1-ms electron-beam-pumped laser kinetics experiment", *Conference on Quantum Electronics and Laser Science*, Baltimore, MA, April 26, 1989.
4. E. L. Patterson, G. E. Samlin, and P. J. Brannon, "A Study of an E-Beam Excited Atomic Xenon Laser at High Energy Loading", submitted to *J. Quant. Electron.*