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ABSTRACT

E-beam excitation of the atomic xenon laser is theoretically and experimentally

o

. - investigated using short-pulse high-power deposition (> MW/cm3-atm) and low-power high-
)

"'e‘nergx loading (< 1 kJ/£-atm). Scaling laws are derived to maximize laser power and

energy efficiency.
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SUMMARY

The e-beam excited atomic xenon laser operates in the near infrared on transitions
ranging from 1.73 um to 3.65 pm. The laser is operated in gas mixtures consisting of less
than a few percent of xenon and rare gas buffers at pressures of 0.5-10 atm. The highest
efficiencies have been obtained in Ar/Xe mixtures. In this paper we report on an
investigation of short-pulse high-power and low-power high-energy loading of the atomic
xenon laser. Results from a model for the Xe laser [1] are compared to experiments to
derive scaling laws for these pumping schemes. Experiments on high-power-deposition (I-
10 MW/cm3-atm) pumping of Ar/Xe mixtures were performed using a short pulse (30 ns)
coaxial electron beam [2]. High-energy deposition (< 1 kJ/£-atm) was obtained using a long

pulse (1 ms) A-type e-beam source at power depositions of < 1 KW/cm3-atm. [3, 4].

When pumping for long periods (> 10's us), gas heating may result in convection. To
accurately model the Xe laser under these conditions, hydrodynamics effects must be
considered. The kinetics and optical time scales (<100’s ns), however, are small compared to
the convective time scale. We therefore separately integrated the hydrodynamic conservation
equations to obtain the gas density and temperature as a function of (7, t). We then assumed
that the local intrinsic laser power efficiency is a function of the local fractional ionization
and gas temperature for a given gas density and mixture. The laser efficiency can then be
separately calculated as a function of these parameters using the kinetics model described in

Ref. 1.

Due to the large oscillator strengths of the atomic transitions of interest (5d-+6p),
electron collision mixing and quenching (ECMQ) of the laser levels are important. There is
a critical electron density, n., above which ECMQ dominates and oscillation cannot be
sustained, n. corresponds to a fractional ionization, fy, of 0.8 - 1.0 x 10-5 [1]. Maximum
laser power efficiency is obtained at fy = 2-3 x 10-6. High-power deposition may result in

high electron densities which exceed n. during the current pulse. High-energy loading, even



at low-power deposition, can also eventually quench laser oscillation, because the electron
density generally increases with increasing gas temperature as experienced with high-energy

loading.

Using high-power deposition (> MW’s/cm3-atm), laser oscillation was not observed
during the current pulse. A delay of up to 100’s of ns passed before oscillation began.
These results, reproduced by the model, are explained by the electron density during the
current pulse exceeding n.. Oscillation occurred in the afterglow when the electron density
decayed below n.. For short e-beam pulses, much of the deposited energy still resides in
ions and in excited states at the onset of oscillation. Therefore, a feasonable energy
- efficiency may be recouped. When pumping with high-energy loading (< 1 kJ/£), the laser
pulse terminated prior to the end of the current pulse. These results, also reproduced by
our model, are explained by an increase in f; above n_ during the pulse, a consequence of

increasing gas temperature and convective rarification.

In order to improve laser efficiency at high-energy loading, gas mixtures must be used
which have a higher heat capacity but which do not significantly interfere with the kinetic
pathways leading to the upper laser level. He/Ar/Xe and Ne/Ar/Xe mixtures meeting these
requirements have been experimentally [4] and theoretically characterized. In both cases, the
laser efficiency remains close to that which is obtained in Ar/Xe mixtures; however, there

may be a change in the laser spectrum.
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