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A NAGNETOTELLURIC STUDY OF THE STILLWATER-SODA LAKES, 

NEVADA GEOTHERMAL AREA 

By W. D. Stanley, R. R. Wahl, J. G. Rosenbaum 

INTRODUCTION 

The Stillwater-Soda Lakes K.G.R.Ai (Known Geothermal Resource 

area) is  located i n  the Carson Desert of west central Nevada, near the 

town of Fallon ( f igure  1 ) .  

shallow d r i l l i ng .  

Two thermal areas have been mapped by 

Near the farming cornunity of  S t i l lwater ,  an area of 
2 about 70 km has been mapped w i t h  groundwater ho t te r  than 20' C and a s  

ho t  as  80' C o r  s l i g h t l y  hotter i n  the center o f  the anomaly (Olmstead, 

et. al . ,  1975). The MT method was selected as  a tool t o  study the 

geothermal area, b o t h  t o  define the extent of the mapped thermal anomalies 

and to determine the broader nature of  the thermal regime and possibly 

the source of the anomalous heat 
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Magnetotell uric Measurements 

MT soundings were made a t  twenty-five sites on four prof i les  i n  

the study area. Mu-metal cored induction coils were used t o  measure the 

orthogonal magnetic, f i e l d  components H,, H Y , and H,. Potential dipoles 

of 100 m l e n g t h  w i t h  cadmium chloride porous pots as  electrodes were 

used to  measure theorthogonal e l e c t r i c  fields E, and'E Y'  

I 

I 

Data were re- 

corded on 1/2" tape w i t h  1 2 b i t  d ig i t i za t ion  

recordings were made over up t o  4 bands from 0 002 t o  256 Hz. 

of the s ta t ions  (2-1 through 2-10) the lowest frequency band w i t h  corner 

frequencies a t  0.002 and 0.05 Hz (Band 2 )  was- included w i t h  the  three 

under minicomputer control ; 

For ten 

higher  frequency bands shown i n  Table 1, (Bands 3-6) b u t  f o r  the re- 

maining 15 s ta t ions  (1-1 through 1-15) this band was not included. 

3 
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' #  . . ' .  
j. 

NO OF RUNS 

4 

4 

2 

2 

1 .  

1 .  

SAMPLE RATE RUN LENGTH 

1024/sec 4 sec 

128/sec 32 sec 

32/sec 128 sec 

2/sec 34 min, 8 sec 

2 Hrs, 16 min, 32 sec 0 . 5 / s e c  
. .  

I 
i Not used 

TABLE 1 

I ----- ----- 
. .  

BAND 

B6 

B5 

B4 

8 3  

B2 

B1 

CORNER FREQ. 

10 - 256 HZ 

1 - 25 HZ 

0.1 - 5 Hz 

0.01 - 0.5 HZ 

0.002 - 0.125 HZ 

0.002 - 0.025 HZ 

. . . . . .  . . . . . . . . . . .  . . . . . .  . . . .  . .  . 

1 1 I 

Each run shown i n  t a b l e  1 consisted of 4096 samples t o  g ive  the  run 

times indicated.  
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DATA PROCESSING 

F ive channel data for  t he '  three magnet,c and br30 elec,r ic f i e l c  

measured were processed as o u t l i n e d i n  the f l ow  c h a r t  o f  f i g u r e  2. 

S 

.___ - .-- 
The f i v e  channels o f  magnetote l lur ic  data, h,, h i ,  h,, e.x, ey (small 

l e t t e r s  denote times se r ies )  were recor&d as d i g i t a l  t ime se r ies  us ing 

three i n d u c t i o n  c o i l s  f o r  t he  magnetic f i e l d s  and p o t e n t i a l  d ipo les f o r  

the e l e c t r i c  f i e lds .  

r e s i s t i v i t i e s  has been described i n  d e t a i l  (Sims, et .  al., 1971 ; Word, 

Processing of the t ime ser ies t o  ob ta in  tensor 
\ 

et .  al., 1969) elsewhere and we present on ly  the  p e r t i n e n t  sequence o f  

steps requi red i n  the processing. 

The f i r s t  s tep i n  processing i s  t o  obta in  the f i v e  t ime se r ies  by 

demwlt iplexing t h e  channel data and header in format ion on the  f i e l d  tape. 
- -  

The var ious runs a re  then s e l e c t i v e l y  ed i ted  

good run f i l e s  a re  se lected as i s  poss ib le - fo r  spec t ra l  averaging. 

the d i s c r e t e  Four ie r  transforms f o r  the f i v e  channels are obtained 

through use o f  t h e  FFT (Fast Four ie r  Transform) algori thm. 

the Four ie r  coef f ic ients  o f  t h e  data channels by c a p i t o l  l e t t e r s ,  thus 

the t ransform pai  r s  are: 

(see Table 1). As many 

Next 

We denote 

+- 
E, + ex  

The ea r th  can be considered a l i n e a r  system where the frequency domain 

c o e f f i c i e n t s  of the h o r i z o n t a l .  e l e c t r i c  and magnetic f i e l d s  are r e l a t e d  

5 
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TAPE : 0 9 TRACK: . 

DE MULTIPLEX CHA:IIIE L 

DATA AND HEPDER 

I NFORF'ATI ON 
4 I H X ; H Y b  ETC. 

SELECT INJLTIPLE FILES 

4096 POINTS LONG FOR 

SPECTRAL AVERACIIIG: 

F I L E  1, F I L E  Z , . .  .FILEN TENSOR AN0 FOUR 

I 
CO'FUTE FFT'S OF 

. ' H,b) h , ( t )  
Hy(w) : h y ( t )  
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by a tensor of rank two for a two-dimensional earth. 
- _  

(1) E, = H,qo(  + HyZxy 

(2) Ey = HxZw + HyZxx 

i f  we compute the cross power spectra of (1) w i t h  a l l  possible horizontal  

components we ob ta in :  
\ 

(3 )  E,E,* = H~,*z, ,  + H ~ E : z ~ ~  

(4) 

(5) 

ExEy* = HxEy*Zxx + HyEy*Zv 

ExHx* = HxHx*Zxx + HyHx*Zxy 

(6) ExHv* = HXHy*Zxx + HyHy*Zxy 

Equations ( 3 )  through (6)  can be grouped in to  six pairs of equation t o  

solve for  Z,, and Zxy. 

earth since their  determinants are: 

Two of the pairs  a r e  unstable f o r  a horizontal 

(HxEx*) (HyHy*) - (HxHy*) (HyEx*) 

(HxEy*)(HyHx*) - (HxH,*)(H Y Y  E *) and 

Similarly we can take cross-powers of ( 2 )  t o  a r r ive  a t  six pairs of  

equations t o  solve f o r  Z 

a 1-D earth. The remaining pairs lead to  four d i f fe ren t  estimators for 

and Z 
YY - xv 

two of w h i c h  are indeterminate ‘for 

Zi j. I t  can be shown (Sims, et.  a l . ,  1971 ) tha t  averaging the 

cross-powers, EXEy*’ e tc .  a over more than one data s e t  leads t o  least 

square minimum-error solution for Z. .._ . _I-n -ad-di t jon the Zi are  

considered t o  be slowly varying w i t h  frequency 2nd can be computed for  

logarithmically spaced frequencies, t h u s  the cross spectra are computed 

over these frequency bands by summing incremental components before the 

l inear  equations are  solved. 

TJ 
- 

1 For this survey the frequency bands were 

_ _  25.9 percent bands.. g i v i n g  10 points Der 109 cycle. 

\ 



The tensor elements are then rotated t o  f i n d  the pr incipal  impedance 

axes, which will exis t  i n  the da ta  over some frequency ranges i f  the 

earth approximates two-dimensionality a t  those frequencies. The principal 

directions are found by computing the angle which maximizes (IZxyI 2 + 
lZyxl 2 ), o r  alternately,  minimizes ( l Z x x l  2 + lZyyl 2 ). The distinction 

of the principal directions i n t o  TE and TM modes is  done by calculating 

the directions for  maximum coherency o f  Hz w i t h  H, and H 

dimensional earth one of the principal directions obtained by Z i j  r o t a t i o n  

should align w i t h  the TE direction, which is the direction f o r  maximum 

Hx-H, coherency. 

different rotations i s  a measure of three-dimensionality. 

For a two Y '  

The departure from the angle computed by the two 

8 
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Tensor r e s i s t i v i t i e s  are computed from the surface impedance 

re1 a ti  ons h i  p : 

where T is the period i n  seconds for  the given frequency band. 

The  tensor r e s i s t i v i ty  amplitude and phase are  p l o t t e d  i f  the phasor 

coherency f o r  a par t icular  frequency band is  h i g h  enough. Phasor 

coherency is a parameter defined as: 

i= l  ,N zrl Phasor Coherency = C,, = 1 - - 

where Zq% oneof the N possible estimates and Cq is the coherency for 

t h a t  estimate. 

identical  , then  the phasor coherency will be unity. 

coherency is  due to  measurement system noise, ambient noise, e tc .  

The range of C,, is:  -a<C,,<l. I f  a l l  the estimates are  

In general, nonunity 

In f ac t ,  

two of the estimates are  biased-down by random noise on H and are n o t  

biased by random noise on E ,  whereas the other two are biased up by 

random noise on E and are  not biased by random noise on H .  Thus ,  for  

about equal random o r  incoherent noise on E and H,  an average o f  t h e  

four estimates shou ld  prbve t o  be b 

can be ident i f ied  as mostly on E o r  mostly on ti, the appropriate estimates 

may be used. 

. 

greater than 0.8, w i t h  some po in t s  used i n  the range 0.5-0.8 on 

extremely bad se t s  of da ta  such as a few of the "high frequency" soundings. 

In this survey, points  were plotted i f  the phasor coherency was 

9 
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plots  of amplitude and phase of  the tensor r e s i s t i v i t i e s  are shown 

i n  figures 3a t o  3 j  f o r  s ta t ions  2-1 throuah 2-10. 

r e s i s t i v i t y  curves are  reasonably well defined by the  mult ipl ic i ty  of po in t s  

from the various overlapping bands. 

magnetic) curves which we have hand smoothed through the data as dashed 

lines, whereas the s o l i d  curves are the computer #generated curves for 

one-dimensional models obtained us lng  a generalized inversion program 

In most instances the 

The figures show TM (transverse 

(B. S m i t h ,  U.S.G.S. , written corn) t o  fit the amp%de' curves, We modeled 

the E curves because the TE values are less distorted than the TM by 

.two-dimensional features. For three-dimnsionalit ies , this is n o t  true, 

of course, b u t  one-dimensional inversion yields a readily obtainable f irst  

apprgximation t o  the geological structures.  

and time required f o r  extensive two-dimensional modeling is not  justified. 

Sketch ing  of the TM and TE r e s i s t i v i t y  curves was aided by alphanumeric 

p l o t t i n g  symbols, w i t h  d i f fe ren t  symbols being used for each band and 

pr incipal  direction. 

versions of the computer plots of f igure 3. 

In most cases the expense 

These symbols a re  n o t  distinguishable i n  the reduced 

Several of the data s e t s  show a large s p l i t  between the TE and TM 

T h i s  apparent two-di- directions,  par t icular ly  2-1 , 2-7,2-8, and 2-10. 

mensional i t y  (and t o  some degree, three-dimensional i t y )  agrees w i t h  

known geology and w i t h  our  gross one-dimensional inversions t o  be d i s -  

cussed below. 

. .  

10 
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ROTATED - T E N S O R  ~ RESISTIVITY . -  . ;: 

8 

. .,. 
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Q 

Q -  
-4 -3 -2 - 1  0 "1 2 k 

~- LOG .FREQUENCY, HZ. - 

t o  2-10. Solid curves on amplitude are computer generated curves 

Figure 3.--Tensor resistivity amplitude and phase data for MT s i tes  2-1 

' for TE models. Dashed lines are hand smoothed fits to data. 

Horizontal axes are log frequency, vertical axes are tensor 

apparent resistivity ampl i tude and ohase. . 
11 . 
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Scatter i n  the data  'is evident, being a t  the extreme a t  the lowest 

frequendes where the degrees of freedom necessary for resolution of 

frequericies lower than abou t  0.004 Hz was insufficient for  good spectral 

estimates. Also ,  sca t te r  is  quite bad i n  the region from .2 Hz t o  8 Hz, 

a known n u l l  i n  natural  electromagnetic activity.  However, even though  

there are many ' 'flyers" i n  the d a t a ,  the res is t ivi ty  

defined except possibly a t  s i t e  2-10. 

The fif teen se t s  of d a t a  from s i t e s  1-1 through 

include a run  of  band 2 (Table 1) were poorer i n  qua 

curves are adequately 
/ 

// 

1-15 which d i d  not 

i t y  t h a n  t h a t  from 

sites 2-1 through 2-10. There are several reasons for this: 

(1) E i g h t  s i t e s  were i n  an i r r i g a t i o n  area near Stillwater and 

s ign i f i can t  power-line and other electrical  noise existed. 

(2) The inductions coi ls ,  which  should be buried for  thermal and 

vibrat ional  s t ab i l i t y ,  were n o t  given nearly as  long t o  

s t a b i  l i  ze. 

(3) h e  1-n s i t e s  were done before the 2-n s i t e s  d u r i n g  a period of 

somewhat low natural  activity.  Also some electronic problems 

i n  the MT system were n o t  loca ted  u n t i l  near t h e  completion o f  

the 1-n s i tes .  

We show fourtypical amplitude curves i n  figure 4 for the " h i g h  

frequency" (1-n) s i tes .  The design of these soundings was t o  o b t a i n  as 
many s i t e s  as possible i n  the sho r t  period o f  time a l lo t ted . for  the survey 

i n  order to  look a t  details  near the known thermal anomalies. 

the da ta  were scattered, useful information was obta ined  and cross-sections 

compiled from one-dimensional inversion of the amp1 itude curves appear 

to  be valuable. 
21 
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Geology and Thermal Regime: The  general geology of  the Carson Basin 

region is  shown i n  plate  1 w i t h  5 mgal Bouguer gravity contours from data 

_- . . _ _  - .  . . . . .. . . . ., .. *- - 

Plate  1 i n  map pocket 

obtained by Wahl (1965) and additional data obtained f o r  this study. The 

Stillwater-Soda Lake K.G.R.A. i s  located i n  the south-central pa r t  of the 

basin ( f ig .  1).  Basalt ic rocks of  Quaternary age a r e  exposed a t  several  

places w i t h i n  the basin. Rattlesnake Hill,  just  NE o f  Fallon is probably 

a basa l t i c  neck or  plug. Upsal Hogback is  a cluster of  several cones of  

basa l t i c  tuff  16 km north of Fallon. 

cones occurred chiefly during Late Pleistocene (Morrison, 1964, p. 100). 

Soda and Little Soda Lakes, 10 km NW of Fallon a r e  small lakes located 

i n  basa l t i c  craters.  Morrison (1964, p. 72) believes these l a t t e r  

c r a t e r s  overlap the Upsal Hogback features  i n  age. ' 

The eruptions t h a t  formed these 

Extensive shallow d r i l l i n g  ( t o  about 40 m) done by the U.S.G.S., U.S. 

Bureau of Reclamation, and Standard O i l  Co. of California have provided 

holes for temperature, thermal gradients,  and water qual i ty  measurements. 

(Olmstead, e t .  a l . ,  1975). 

p r io r  t o  this i n  the S t i l lwa te r  area from water wells,  b u t  l i t t l e  was 

-known about the Soda Lake thermal anomaly except tha t  steam had been 

Considerable information had been avai lable  

J 
I 
I 

found a t  60 m i n  a well. The steam had been used i n  the past  a t  a bath 
I 

house near the well si te.  I 
t 
I 

I 

t .  
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l'he temperature d i s t r ibu t ion  i n  the upper  30 metres as determined 

by d r i l l i n g  i n  the S t i l lwater  and Soda Lake thermal anomalies i s  shown 

i n  f igures .  
interconnection a t  shallow depths. 

Drill holes located between the two thermal areas rule o u t  

Both of the  thermal anomalies are  elongated t o  the n o r t h  and t h i s  

stretching of the isotherms follows the general direction of ground waterl 

flow i n  the area,  which is NE along the  axis of the basin t o  a drainage 

low. An additional factor  i s  t h a t  water is probably coming up from depth 
- along north and NE t r end ing  fau l t s .  

t h e m 1  area nor th  of Soda Lake, where the innermost isotherms are 

aligned w i t h  the  trend between the basa l t ic  centers a t  Soda Lakes and those 

a t  Upsal Foqback. 

Olmstead, e t .  a1.(1975) i n  the same direction. 

This is par t icular ly  evident i n  the 

A l i n e a r  snow melt pattern has a lso been observed by 

Water samples typical ly  show dissolved so l ids  o f  4000-6000 ppm i n  

both the thermal and non-thermal waters from the area w i t h  the thermal 

water be ing  h ighe r  i n  s i l i c a ,  calcium, and f louride,  whereas the 

non-thermal water is h i g h e r  i n  bicarbonate. Reservoir temperatures 

estimated by s i l ica-quartz  and NaKCa geotherrnomters are  140-160° C 

(Mariner et.' ala., 1974). 
. _. 
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Gravity. and Magnetic Data 

The gravity data shown i n  plate  1 are complete Bouguer gravity 
3 values computed w i t h  an assumed density o f  2.67 gmjcc . 

were generated on the computer us ing  an automatic contouring routine. 

A large low w i t h  a closure of about 25 mgals just north of the 

Contours 

Desert Range is  caused by thick unconsolidated alluvium and lacustr ine 

sediments. 

ness o f  2 km fo r  the f i l l ,  b u t  the magnetotelluric interpretat ions sug- 

Previous modeling by Wahl (1 965) indicates a maximum thick- 

gest t h a t  the sediments are  c loser  t o  3 km thick. 

do no t  appear t o  g i v e  r i s e  t o  s ignif icant  anomalies due t o  t h e i r  in te r -  

mediate density values. In general, large gradients a re  due t o  density 

The volcanic ranges 

contrasts between gabbroic rocks (pre-Tertiary sect ion) ,  Tertiary and pre- 

Tertiary sedimentary sequences, Tertiary and Quaternary volcani c s,  and 

unconsolidated sediments, which form a descending sequenceof densi t ies .  . 

There appear t o  be no gravity anomalies related t o  either of the thermal 

areas. 

Aeromagnetic data were obtained w i t h  U.S.G.S. a i r c r a f t  a t  an ele- 

vation of 1.8 km and f l i g h t  l ine spacing of 1.6 km. The d a t a  were not 

corrected for  the IGRF f i e l d  and no processing was done except fo r  ad- 

justments t o  baseline. 

Depth calculations from the magnetic anomalies using half-width formulas 

provide an estimate of 2-4 km t o  the source of the anomalies. 

are w i t h i n  the Tertiary and Quaternary volcanic sections and possibly i n  

buried intrusives. A simplified version of the magnetic map is shown i n  

figure 5. 

The hand-contoured d a t a  a re  presented i n  p la te  2. 

The sources 
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MT Cross-Sections 

The four  geoelectrical  cross-sections constructed from the MT 

one-dimensional inversions an2 shown i n  figure 6 and 7 .  We have made 

some generalizations about what we t h i n k  the e lec t r ica l  layers 

represent i n  terms of geologic units: 

The unconsolidated b a s i n  sediments of Tertiary and  youn!er 

age a r e  represented by the 1d5 and 5-20 ohm-m (sand pattern) layers. 

Along section A-A'  (location on f ig .  5 ) ,  there is a maximum of  about 

2.5 km of 1-5 ohm-m unconsolidated sediments a t  s i t e  2-3. The 5-20 

ohm-metre material a t  the surface from a b o u t  s i t e  2-7 t o  2-10 ( b u t  

below surface a t  2-9) on sect ion AA' probably consists mostly of 

basa l t i c  ashes and tuffs from vents a t  Upsal Hogback. 

sediments a re  probably mostly playa type deposits of  Quaternary age 

The 1-5 ohm-m 

w i t h  high percentages o f  clay. 

5-20 ohm-m material is beneath the 1-5 ohm-m material and probably 

represents Tertiary age unconsolidated sediments. 

f o r  the C-C' s i t e s  were of poor qual i ty ,  our cross-section agrees quite 

well w i t h  a geologic section from Olmstead e t .  a l .  (1975) shown i n  

On section CC' (location on f i g .  5) the. 

A1 thouah the data 

f i g u r e  8. Olmstead interprets  a section o f  Tertiary alluvium o f  

about 1 krn thickness. 

information from a pr ivate  geothermal test  ( to  1292 m) near the center 

o f  the area. 

well. 

His section used s t ra t igraphic  and temperature 

Unfortunately no e l ec t r i ca l  logs a re  available fo r  t h i s  

The thickness of unconsolidated materials on the upthrown 
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and downthrown sides of the f a u l t  between 1-3 and 1-4 agree well w i t h  

Olmstead's section. 

low i n  the central  par t  of S t i l lwater  thermal anomaly tha t  coincides 

w i t h  the f a u l t s  shown on MT section CC' and Olmstead's 

( f ig .  8). 

magnetic minerals t o  non-magnetic ones by hydrothermal a1 terat ion.  This 

has probably taken place i n  the Tertiary volcanic rocks i n  the vicini ty  

of t h e  f au l t .  

Note tha t  on f igure 5 there is  an aeromagnetic 

1 .  geolopic section 

This implies that  h o t  water rising along the f a u l t  has,  converted 

i 



The 20-50 ohm-metre layer  i s  ;'henerally thought  t o  represent Tert iary 

volcanic rocks which probably flooded the developing Carson basin t o  large 

thicknesses. The sounding curves along section A-A' could be approximated 

quite eas i ly  w i t h  resistivities of about 30 ohm-m f o r  this layer ,  except 

a t  

10 ohm-m. 

about 10 ohm-m seemed t o  be called for. 

caused by an area of extensive a1 terat ion i n  the  volcanic rocks. 

suggested th i s  poss ib i l i ty  on the cross-section by u s i n g  an a l t e r a t ion  

pattern superiniposed on the  layer a t  these s i t e s .  

data from s i t e  2-8 suggest a resistive zone a t  depth tha t  does not show 

up on any o f  t he  other  curves. The volcanic ac t iv i ty  a t  Upsal Hogback, 

near s i te  2-8, and the o c m n c e  of  an aeromagnetic h i g h  ( f igure5  ) and 

the h i g h  r e s i s t i v i t y  u n i t  a t  depth suggest t ha t  an intrusive may exist 

s i te  2-5, where we were forced t o  use a r e s i s t i v i ty  of less than 

In a d d i t i o n ,  a t  s i t e s  1-10 and 1-11 r e s i s t i v i t i e s  of 

These lower r e s i s t i v i t i e s  may be 

We have 

The in te rpre ta t ion  of 

a t  about 4 km beneath s i t e  2-8. 

aeromagnetic h i g h  and the change i n  upper u n i t  depth (the extension o f  

the 5-20 ohm-m layer t o  a depth of 2.5 km a t  s i te  2-9) suggest t o  us tha t  

The l inea r  truncation of the 

normal faul t ing has occurred on the  w e s t  side of the  intrusive as shown 

on Section A-A' . 



The most s ignif icant  par t  o F t h e  geoelectrical section is the layer  

of less than 1 ohm-m interpreted t o  occur a t  depths of 4 t o  7 km along most 

of section A-A' arid possibly a t  depths  of about 2.5 km along section C-C' .  

T h i s  layer probably consists of Tert iary and pre-Tertiary marine sediments 

saturated w i t h  water of 150' C o r  greater  and s a l i n i t i e s  of about 20,000 

ppm. Using a temperature of 150' C ,  s a l i n i t y  o f  20,000 ppm, and formation factor  

of IO as reasonahole estimates of formation properties, we calculate a forma- 

t ion  r e s i s t i v i ty  of 0.8 ohm-m, which seems compatible w i t h  most of the MT 

section along sec:tion A-A'. The figure o f  150' C i s  taken from estimates 

o f  reservoir temperatures us ing  geothemometric _ _  ._ data and probably _. repre- 

smts a minimum temperature f o r  the anomalous zone. The s a l i n i t y  of 

20,000 ppm is an estimate of what m i g h t  be expected i n  pre-Tertiary marine 

sediments which haven't been flushed. 

may mean that formation s a l i n i t i e s  a re  even higher due t o  increased so lubi l i ty .  

Higher sal  in- i t ies  and higher temperatures, would of course mean lower 

formation r e s i s t i v i t i e s .  From the MT data we can only s t a t e  tha t  forma- 

t i on  r e s i s t i v i t i e s  must be l e s s  than l ohm-m, b u t  0.3 t o  0.8 ohm-m seems 

In addi t ion ,  the h i g h  temperatures 

the be the most reasonable range. The figure of 0.3 ohm-rr, corresponds 

t o  a s a l i n i t y  o f  60,000 ppm u s i n g  t h e  estimated m i n i m u m  temperature of  150' C 

and formation factor of 10. 

a re  probably i n  the range o f  150-350° C. 

Actual temperatures i n  the conductive zone 
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, The only heat-flow data available are from an experimental heat-flow 

tes t  hole near the middle  o f  the Carson S i n k ,  43 km northeast of Fallon. 

The test  hole was drilled t o  a depth o f  153.9 m and had a heat flow o f  

1.57 HFU (heat f low unit:cal cm S x ~ O - ~ )  calculated from the measured 

thermal gradient. 

deposition o f  playa sediments of 1 mm/year, was determined t o  be 1.9 HFU 

(Olmstead, e t .  a l . ,  1975). T h i s  value i s  only s l i g h t l y  anomalous, 

being about a mean for the northern Basin and Range. I t  i s  not as 

h i g h  as f o r  instance,  values obtained bver a large area around Battle 

Mountain, Nevada (Sass, e t .  a l . ,  1971), which range from 2.5 t o  3.8 HFU. 

Upward convection will b i a s  heat-flow values t o  the high s ide ,  and 

since there appears t o  be no evidence f o r  convection i n  the nature of  

hot s p r i n g s  i n  the t e s t  hole area,  we suspect t ha t  the heat flow 

measurement i: j  n o t  biasea excessively upward. 

-2 -1 

The corrected heat flow u s i n g  an estimated ra te  of 

- 

However, the measurement 

may be biased downward by l a t e ra l  flow of ground water i n  the area. 

The test hole  was i n  the  Carson S i n k ,  the center of drainaae for the 

closed Carson Desert basin. 

Olmstead e t .  a l .  , (1975) show tha t  groundwater f low is  toward the 

Water table  surface measurements by 

Carson S i n k .  

measurepent down, i f  the measurement i s  biased a t  a l l .  

T h i s  influx o f  cold water probably biased the heat-flow 



G- 
i 'i . .  
I .  

/ .  

I 

! 

Olmstead has calculated an estimated d e p t h  of circulation f o r  

recharge water i n  a hypothetical area o f  2 HFU and w i t h  no shallow 

crustal  heat source. Recharge water mus t  c i rcu la te  t o  depths  of 2-6 km 

i n  such a system t o  be heated t o  160-200° C, depending on the thermal 

conductivity of  the rocks. 

layer from t h e  MT cross-sections o f  2.5-7 km. 

thermometric data,  and magnetotell uric data suggest temperatures i n  excess 

of 150' C a t  d e p t h s  of 2-7 km. 

T h i s  range overlaps the depth t o  the conductive 

The heat flow data, geo- 

Rocks a t  these depths a re  probably 

predominately sedimentary rocks w i t h  highly sa l ine  Pore waters which a re  

capped by more impermeable Tertiary vo l  a n i c  flows. The only access t o  the 

h o t  water bearing rocks i s  along Basin and Range f au l t s ,  which provide 

both recharge and discharge paths. 

t o  2-3 indicates  the low re s i t i v i ty  rocks a re  a t  l ea s t  2.5 km thick i n  this 

area, assuming a r e s i s t i v i ty  of 0.5 ohm-m. 

Modeling of the data a t  MT s i t e s  2-1 
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SUMMARY AND CONCLUSIONS 

The occurence of low r e s i s t i v i t y  rocks a t  depths  of 2.5-7 km 

over much of the survey area suggests a major thermal anomaly exists 

i n  the Carson Desert region. There i s  no problem jus t i fy ing  the low res- 

i s t i v i t i e s  obstzrved i f  we assume a rock temperature i n  excess of 

150' C and s a l i n i t i e s  i n  excess of 20,000 ppm. Figure 5 shows the pos- 

i t i on  of major f au l t s  which we in te rpre t  as poss ib l i t i es  from the aero- 

magnetic and M'T data. We have n o t  shown a f a u l t  r u n n i n g  between Upsal 

,Hogback and Soda Lake, although a l l  evidence other  than the geophysics 

po in t s  t o  i t s  existence. 

a shallow sand aquifer (see figure 8) d is t r ibu tes  the thermal waters 

Olmstead p o i n t s  out t ha t  over par ts  of the area,  

r i s ing  from the deep reservoir.  The self sealing and/or f ractur ing 

of t h i s  aquiTer probably plays the major role  i n  determining where the h o t  

water peaches the near surface. Thus  the hydraulic connection between 

major normal f a u l t s  and near surface fractures  may n o t  be a simple one. 

The MT data do not seem t o  indicate any major r e s i s t i v i t y  anomalies 

i n  the upper 1 km of unconsolidated sediments t h a t  may be associated w i t h  

the mapped thermal anomalies. T h i s  is probably because resistivities a re  

normally very 'low i n  the clay sediments and the variation i n  clay content 

and salinit? i s  more impor tan t  i n  determining r e s i s t i v i t i e s  than water 

temperature. Also,  the s a l i n i t y  of the thermal water appears t o  be 

about the same as tha t  of the non-thermal water. 
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The widespread occurence o f  the low r e s i s t i v i t y  rocks suggests 

t o  us tha t  the anomalous heat comes from a deep, broad area of hot crust ,  

ra ther  than from localized intrusive heat sources. T h i s  thermal anomaly 

i s  probably related t o  anomalously t h i n  crust (24 kin) found i n  seismic 

refraction studies (Pakiser and Hill, 1963). 
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