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ABSTRACT
Sandia National Laboratories joined with two other laboratories, 
Los Alamos National Laboratory and Naval Research Laboratory, to 
study and implement a highly parallelized tracker/correlator 
algorithm. Significant progress was made at Sandia on a specific 
algorithm and code. This report summarizes the accomplishments 
by Sandia during FY #89 on this project.
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A. EXECUTIVE SUMMARY
A joint effort was started among three laboratories (Sandia 
National Laboratories, Los Alamos National Laboratory, and Naval 
Research Laboratory) to implement a highly parallelized tracker/ 
correlator algorithm for the Strategic Defense Initiative, since 
April, 1989, Sandia has focused on the parallelization of a 
specific serial tracker/correlator algorithm (referred to as TRC) 
for post-boost and mid-course tracking. The NCUBE Hypercube (1024 
processors with distributed memory) was to be the hosting system 
at Sandia.
The TRC code was transported to a CRAY X-MP 416 computer for 
detailed analysis and study utilizing the tools available on this 
system. This implementation was also made to permit larger test 
problems to be run. Memory requirements and the data organization 
of the TRC were a major concern for the parallel implementation.
Two major breakthroughs on the TRC have been accomplished by 
Sandia. Both greatly affect the serial version of the TRC and at 
the same time bring the parallelization problem within reach.
The most important was the tremendous reduction in the amount of 
memory required to run the TRC. Sandia's effort has taken the 
requirement, based on problem size, from an 0(n2) memory 
allocation to a linear memory requirement of O(cn), c < 1. For 
example, a test scenario of 16 Post Boost Vehicles each carrying 9 
Reentry Vehicles (160 objects total), receiving reports from 16 
sensor platforms on nonuniform 10 second reporting intervals, for 
a total scenario time of 431 seconds, originally required 18.3 
Mbytes of memory. (This reported amount was actually from a 
version already modified by Sandia to eliminate a code problem.
An earlier test of an unmodified version, run at another site, 
required 60 Mbytes of memory.) The new Sandia version executes 
the identical problem in 1.4 Mbytes. With these changes, Sandia 
was able to successfully run the full range of test scenarios set 
out for the parallelization group, including the largest scenario 
of 2000 objects.
The second breakthrough was in the complete elimination, without 
loss of program functionality, of a costly input/output (I/O) 
sequence of operations originally contained in the TRC. Since the 
hypercube has distributed memory, large amounts of data file I/O 
would result in time consuming communications between processors. 
From these changes, the amount of time required to run Sandia's 
serial version nearly halved the running time for the original 
modified version.
Using these results, work continues on the parallelization of the 
TRC algorithm at Sandia. Implementation has begun on the 
distributed node processors of the NCUBE. Target track generators 
are also being implemented on the hypercube. Additional studies 
have been started on other algorithms to better understand the 
problems associated with multiple sensor, multiple target tracking 
and correlation.
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The following report describes the technical work performed by 
Sandia National Laboratories, Parallel Computing Science Division, 
on the implementation of midcourse tracking and correlation for 
massively parallel computing during the 1989 fiscal year.

1.0 Project Introduction
Since April 1, 1989, Sandia National Laboratories has been 
actively working on a project to examine and implement a highly 
parallelized tracker/correlator algorithm for the Strategic 
Defense Initiative. Sandia's principal efforts during this six 
month period have been to focus on the parallelization of a 
specific serial tracker/correlator algorithm (TRC) for post-boost 
and mid-course tracking. An intensive analysis of the algorithm 
and code was undertaken and the results of this work are described 
in this report.
1.1 Background
In December of 1988, a meeting was held at Sandia National 
Laboratories to initiate a cooperative effort among researchers 
and practitioners of parallel computing to study parallelism of 
tracker/correlator algorithms for a variety of parallel 
architectures. The result of this meeting was a collaboration 
among three laboratories (Sandia National Laboratories, Los Alamos 
National Laboratory, and Naval Research Laboratory) with active 
research and development programs in parallel computing. The 
Naval Research Laboratory would be assisted under contract by Ball 
Systems Engineering and D. H. Wagner & Associates. Coordination 
of these groups would be through SDIO/POET.
Each of these laboratories has a strong mission interest in high 
performance computing. Consequently, each had existing research 
and development programs to study highly parallel approaches for 
solving large scientific problems. At Sandia, this project had 
access to a 1024-processor NCUBE Hypercube and a four-processor 
CRAY X-MP; at Los Alamos, it had access to an eight-processor 
Alliant and a 24-processor Encore; and at NRL, there was access to 
a 128-processor BBN Butterfly. By collaborating and sharing 
computing resources, the project has been able to highly leverage 
the staff and resources working on the tracking problem.
To begin the project, each of the laboratories were supplied a 
complete software source code tape of the TRC. Two reports, one 
detailing the algorithm design [B&W 1] and the other describing 
the algorithm imp1ementation [B&W 2], were also provided for a 
common starting point of reference.



1.2 Program at Sandia National Laboratories
Support for Sandia's program has been through the Electronic 
Systems Division of the U. S. Air Force. The remainder of this 
report covers only the work that has been done specifically at 
Sandia National Laboratories. It must be emphasized that 
throughout this reporting period, there has been excellent 
cooperation among the groups in the laboratories working on this 
project. All of the efforts put forth have been aimed at 
producing a better product and there has been cooperation in 
sharing information and planning for the project.
Preliminary studies in the area of target tracking included review 
of major references in the field, e.g. [Blackman 86] and [Bate 
71]. A course in Multiple Target Tracking [Drummond 88a] was also 
attended. Parallel methods developed for other projects as well 
as general expositions of parallel algorithms have been drawn on, 
e.g., [Gustafson 88 & 89], [Bertsekas 89], and [Fox 88].

2.0 Project Objective
The overall objective of this project has been to study 
parallelism for tracker/correlator algorithms using a variety of 
parallel computer architectures. Specifically for FY '89, the 
objective has been to investigate the tracker/correlator developed 
for the Naval Research Laboratory by Ball Systems Engineering and 
D. H. Wagner & Associates, and to develop a highly parallel 
version of the TRC algorithm,
Sandia has taken major steps toward accomplishing the 
parallelization of the TRC algorithm as will be described later in 
this report. Through this effort and the current studies of other 
tracker/correlator algorithms (described near the end of this 
report) Sandia has made proper progress toward the overall 
objective.

3.0 Tracker/Correlator (TRC) Status
From the start of this project at Sandia, it was recognized that 
to put a parallel version of the TRC on the NCUBE the algorithm 
and implemented code were, out of necessity, going to be very 
closely re-examined. Since the NCUBE does not have shared memory 
into which one can simply place large arrays, the data structures 
and data organization were critical. One of the time consuming 
parts of using individual processors with only local memory is the 
communication necessary between processors. Therefore, both time 
and memory are primary controlling and critical factors in 
analyzing the algorithm.
Many times there is a trade-off between memory and execution time. 
That is, when one attempts to optimize memory usage there is often
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a penalty to be paid in the time required to solve the problem. 
However, the work accomplished on the TRC at Sandia has, in fact, 
resulted in a tremendous improvement in the memory requirements of 
the serial version and at the same time, produced improved 
execution time of the serial TRC.
3.1 Approach
Initially, it was agreed by the project group that a parallel 
version of the serial TRC should be implemented on all of the 
systems indicated in (1.1) with minimal changes to the methods and 
structure of the serial version. Following that work, a truly 
parallel version of the TRC algorithm would be developed to 
optimally exploit the MIMD (Multiple Instruction Multiple Data) 
parallelism in distributed memory computers such as hypercubes. 
Finally, the project would develop new highly parallel 
tracker/corre1ator algorithms and software.
At Sandia the project currently stands between task one and task 
two described above. The general approach taken at Sandia in 
addressing this project has been careful and systematic. The team 
studied the algorithm closely and gained an understanding of how 
the data structures impacted the execution of such an algorithm on 
distributed processors. It was believed that concurrency could be 
attained by dividing the problem down into cluster processing on 
each processor. Since multiple clusters could be handled in the 
serial version, should there ever be more clusters than 
processors, then extra clusters would simply be assigned to 
processors in a modulo fashion. That is, simply start back at the 
first processor for the next round of cluster assignments, 
proceeding to the second, and so on until all clusters were 
assigned. As clusters split, a new cluster would be assigned to 
the next available processor.
Each of the NCUBE/Ten processor nodes had a relatively small 
amount of memory, 512 Kbytes. Part of that memory would be used 
by the executable TRC program, the operating system, and the 
interprocessor communication buffer. Thus, TRC array storage 
became a major factor in the NCUBE implementation. It was also 
noted from serial executions of the code that the number of final 
objects tracked by the TRC could be considerably larger than the 
truthfile objects. While this problem has not been fully resolved 
and there will naturally be some differences in the number of 
objects due to sensor inaccuracies, some aspects specific to the 
TRC are understood and will be discussed in later sections.
3.2 Summary of Task Milestones for FY'89
When Sandia submitted its proposal for work on this project, 
certain points were made regarding the tasks to be performed.
This section will briefly respond to those points and then each of 
the items noted will be expanded upon in the sections to follow.



Sandia has carried out an intensive analysis and review of the TRC 
algorithm and implementation. A number of errors in the original 
implementation were discovered and corrected. Of major importance 
has been the changes made to the code in computer memory 
utilization and the elimination of a linked history file that 
required very large amounts of execution time simply for data 
movement. Although Sandia considers most of this analysis to be
completed, there are still areas requiring some study depending 
upon new discoveries about code/algorithm behavior.
Work is currently ongoing to produce a version of the TRC on the 
hypercube nodes. An early, stripped-down version of the TRC was 
transported to the host processor on the hypercube. However, the 
performance of this code was poor since that host was a micro­
processor with less power than many current, desk-top systems. 
(Note that an NCUBE2 hypercube, soon to be installed at Sandia, 
will have a SUN 4/280 workstation as its host.) There still 
remains work to be done to reach the full implementation on the NCUBE hypercube.
Joint development of a set of test problems for this project has 
proven to be beneficial to all participants. These test problems 
permit the participants to study scalability on each of the 
different machines and also to examine how clustering and 
separation of objects affects correlation. Three of the test 
cases were sufficiently large to eliminate many host systems that 
might be considered to run these problems: (a) 8 PBVs, 9 RVs/PBV, 
(b) 16 PBVs, 9 RVs/PBV, and (c) 20 PBVs, 99 RVs/PBV. For example, 
Sandia first executed the TRC on a SUN 3/140 workstation and had 
little trouble with small problems ( -10 objects ). Much beyond 
that size problem, the system exhausted its memory space.
3.3 Implementation on Different Systems
It was apparent that a larger machine would be helpful to study 
the serial performance and behavior of the TRC. The CRAY systems 
available at Sandia, CRAY 1-S and CRAY X-MP 416, provided a good 
set of analysis tools and the necessary computing power to extend 
the range of test scenarios. Particularly with the X-MP, 
significant benefit could be realized by all investigators of mid­
course tracking. The space target tracks and sensor platform 
generators (SPACETRACKS and SPACEGEN) were fully implemented on 
the CRAY systems so test scenarios could be generated directly on 
the same machine used to execute the TRC. Major improvements in 
the serial version of TRC have been accomplished. In fact, 
without the changes made, the CRAY 1-S was unable to execute the 
data set of 2 PBVs, 9 RVs/PBV.
Use of a SUN workstation for the modified TRC will still be 
maintained as an option since it is a way for Sandia to obtain any 
future updates for the TRC. As noted above, within a few months a 
SUN 4/280 will be installed as the NCUBE host. Data entry could 
then be made directly to the NCUBE from any SUN system.
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3.4 Major Breakthroughs
Two major breakthroughs on the TRC have been accomplished by 
Sandia. Both greatly affect the serial version of the TRC and at 
the same time bring the full parallelization problem within reach. 
Although both breakthroughs were fairly complex to develop and 
implement, in the end, relatively few lines of code needed to be 
modified. For the discussion that follows, a target map is 
defined to be composed of the current position, velocity, and 
covariance matrix description for each target object.
The first breakthrough was to overcome the tremendous amounts of 
memory storage required to run the TRC and it came in two stages. 
The first stage was the correction of an error in the way that a 
binning array was initialized for map merging. Without this 
correction, even small test scenarios pushed the memory limits of 
most computers. The memory requirements shown in Table 1 are for 
the original TRC code with this error corrected. but without the 
second part of the memory changes that altered the program arrays. 
Without this error correction, most of the problems shown could 
not have been run. (For example, an earlier test run at another 
site of the 16 PBVs - 9 RVs problem required 60 Mbytes of memory.)
The second stage of this breakthrough occurred when it was 
understood how much array space was unused in the TRC 
implementation. The redesign of several arrays eliminated this 
sparse representation of data. For the discussion at this point, 
the best way to describe the changes are by comparing the results 
in Table 1 with those of Table 2. Note that Sandia's effort 
(shown in Table 2) has significantly reduced the memory 
requirement from an 0(n2) problem to a linear memory requirement 
0(cn), c < 1. With these changes, Sandia was able to successfully 
run the full range of test scenarios set out for the 
parallelization group, including the largest scenario of 2000 
objects.
All problems in Table 2 were run for the full time prescribed for 
the scenarios. Handover took place at 243 seconds after first 
launch and tracking/correlation continued until 674 seconds, for a 
total time of 431 seconds. All tests were performed with 16 
sensor platforms (8 infrared and 8 radar) each reporting on 10 
second intervals as designated in the test scenarios. For Table 
1, only two problems were fully run, while the memory requirements 
were determined for the other problems but not run to completion. 
There was no attempt to go beyond those problems shown in Table 1.
These results have been summarized in graphic form in Figure 1. 
Memory requirements for both versions of the TRC code have been 
plotted for comparison. In this format, the great differences 
become most evident. Figure 2 details the linearity of Sandia's 
version for the leftmost corner of Figure 1 and emphasizes the 
continuity of the linear curve.



Problem Objects CPU secs. Memc
CRAY words 2EY- bytes

1 PBV - 9 RVs 10 — — —

2 PBVs- 9 RVs 20 42.3 326,144 1,305,000
4 PBVs- 9 RVs 40 77.1 610,816 2,443,000
8 PBVs- 9 RVs 80 —_ 1,445,120 5.8 M

16 PBVs- 9 RVs 160 — 4,579,072 18.3 M

Table 1. TRC Performance Using Corrected Original Implementation

Problem Objects CPU secs. Memc
CRAY words 2EY- bytes

1 PBV - 9 RVs 10 9.4 141,056 564,000
2 PBVs- 9 RVS 20 26.8 170,496 682,000
4 PBVs- 9 RVs 40 46.8 189,952 760,000
8 PBVs- 9 RVS 80 92.7 243,456 974,000

16 PBVS- 9 RVs 160 217.3 359,424 1,438,000
1 PBV -99 RVS 100 133.6 276,736 1,107,000

99 PBVS- 0 RVs 99 242.7 226,304 905,000
20 PBVs-99 RVs 2000 5034.4 3,471,104 13.9 M

Table 2. TRC Performance with Sandia Modifications
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Corrected Original Version

SNL Version

750 1000 1250 1500 1750 2000
Number of Objects

Figure 1. Memory Comparison between SNL and Corrected Original 
TRC Versions

Number of Objects
Figure 2. Linearity of Memory for Sandia Version of TRC
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The second major breakthrough was the complete elimination of a 
costly sequence of input/output (I/O) file operations. A linked 
history file was maintained to relate target maps with sensor 
reports for Constructed Track Complex assignment and also to 
maintain map/report information for map merging. This file was 
continually accessed throughout the entire run of the TRC. These 
changes significantly reduced the amount of time required to run 
various scenarios. The improved times shown in Table 2 compared 
to Table 1 are primarily a result of changing I/O requirements for 
the TRC. Figure 3 compares the timing results extracted from the 
tables. Based on the results obtained, the Sandia version appears 
to have cut the execution time nearly in half.
From Figure 3 additional observations can be made. First, the 
timing curve for the current Sandia version is not quite linear, 
but on the order 0(n + an2) with the coefficient, a < 1. Results 
from running the original TRC are too few to significantly plot, 
but timing results reported from other sites indicated non-linear 
growth also. That is, the curve shown in Figure 3 also moves up­
ward away from a straight line at a much steeper slope. Second, 
the timing for one problem, 99 PBVs - 0 RVs, is well above the 
curve for the other problem sets. Both observations have their 
genesis in a pair of 0(n2) operations within the TRC. As 
currently designed, the report-to-cluster assignment operation is 
a function of (number of reports*number of clusters). An area to 
be addressed is the improvement in preprocessing cluster 
selection. When cluster splitting occurs, this assignment 
operation increases in magnitude. The report-to-maps assignment 
is a product operation also, but is actually capped by the number 
of maps in a particular cluster. Therefore, the total report-to- 
map assignment will usually play a lesser role.

99 PBV 0 RV

Corrected
Original
Version

SNL Version

Number of Objects
Figure 3. Time Comparison between SNL and Original TRC Versions
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4.0 Modification Details for the TRC
Previous sections of this report have provided high-level 
information about a number of changes that have been made to 
Sandia's version of the TRC. Most of these changes were the 
result of determining how to implement the TRC on the NCUBE. 
Several changes were the result of investigating strange phenomena 
as they occurred and discovering what happened.
Not all of the material presented here resulted in changes, but 
rather addresses concerns that Sandia had with the TRC. This part 
of the report will provide details and specific discussions 
related to key modifications to the TRC and special areas of 
concern.
4.1 Memory Utilization Changes
A number of the multi-dimensional arrays in the TRC are sparse 
matrices, i.e., are filled primarily with zeroes. This situation 
exists regardless of the size of a particular problem being run 
and results in memory requirements for any given problem that are 
essentially a square function of the number of maps needed to run 
the problem. At this time two areas in which large amounts of 
memory can be saved have been identified. These are in the 
history id assignment process and in the Constructed Track Complex 
(CTC) output routine. Although there are other areas in which 
memory use can be improved, the above two areas were found to have 
the greatest potential for savings.
4.1.1 Changes to HISTASGN and GENNEAR
The subroutine HISTASGN used five large, two-dimensional arrays 
for storage. Three of these arrays were in the local common block 
PHISTBLK and two were in the include file <HIST>. Of these five 
arrays RPTHIST and PRPTHIST were only used for debug printout. 
These two arrays were dimensioned (MXSCAN by MXHIST + 1). The 
third array, REPORT, was dimensioned (NMAXCLIST by MXHIST + 1) and 
was used to store report numbers associated with a history id for 
use in the subroutine HISTASGN. The fourth array, PBIN, was used 
to store map addresses assigned to each previous history id and 
the fifth array, BIN, was used to store map addresses assigned to 
each new history id. These last two arrays were dimensioned 
(NMAXCLIST by MXHIST + 1).
In the modified version of HISTASGN three of the above arrays 
(REPORT, RPTHIST, and PRPTHIST) have been deleted as has a one­
dimensional array named IDXSORT. Arrays RPTHIST and PRPTHIST were 
deleted because their debug function wasn't considered important 
enough to warrant the amount of memory they used. The information 
they contained was available in other arrays and, with appropriate 
indexing, could still be accessed.



The function of the REPORT array was incorporated in a redefined 
PBIN array and as a result, the REPORT array was no longer needed. 
This redefined PBIN array is dimensioned (4 by MXMAPS) where 
(MXHIST = MXMAPS) and for each map, M, it contains:

PBIN (1,M) = previous history id 
PBIN (2,M) = new history id 
PBIN (3,M) = report number, and
PBIN (4,M) * map address.

The information stored in the BIN array (map addresses) was not 
changed. However, the map addresses are now stored linearly and 
must be accessed differently. As shown in Figure 4, BIN (1) 
through BIN (I) now contain the map addresses of the maps 
associated with new history id, I, where I = NUMMAPS (1) and 
NUMMAPS is an array containing the number of maps associated with 
each new history id. The function of NUMMAPS has not been 
redefined. Similarly, BIN (1+1) through BIN (I+J) are map 
addresses associated with history id 2 where J = NUMMAPS(2), and 
so on for the remaining history ids.

NUMMAPS array: 1 location for each bin / new history id

maps maps maps maps
Ni locations for the ith binBIN array:

Address of first map in bin 4 is 
MAPAD = BIN ( Ni + N2 + N3 + 1 )

Figure 4. New Access to BIN Array Using Linear Indexing

The changes to the subroutine HISTASGN have not changed its 
function nor its basic structure. However, because maps 
associated with a cluster are not accessed sequentially by history 
id the new storage scheme results in the requirement that the PBIN 
array be sorted by previous history id for each cluster after the 
map data for the cluster has been stored in PBIN. In addition, 
the PBIN array is sorted by report number for
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each previous history id in a cluster. The second sort replaces 
the call to subroutine SORTINDX and the need for the array 
IDXSORT. Subroutine SORTINDX was replaced by a much simpler sort 
process because the number of reports associated with a single 
history id is relatively small. The earlier version had a greater 
overhead in calling the subroutine SORTINDX than the actual amount 
of time required to perform the sort.
During the process of modifying HISTASGN and as a result of trying 
to run the TRC code it was discovered that HISTASGN processed 
time-continued maps and included them in the maps sent to the 
subroutine GENNEAR through the BIN and NUMMAPS arrays. (There 
were some errors discovered in HISTASGN during this process that 
have been corrected. These errors are discussed later in the 
report in Section 4.4.) The new version of HISTASGN only sends to 
GENNEAR maps for which reports have been received since the last 
snapshot. This last change eliminated some unnecessary work in 
the map merging calculations.
All changes to GENNEAR involve indexing of the BIN array to 
retrieve and store data in a one-dimensional rather than two- 
dimensional manner. There have been no changes to the function or 
structure of GENNEAR.
The changes to the way memory was used in the subroutine HISTASGN 
have resulted in a huge reduction in its memory requirements. For 
example, total memory required by the REPORT, PBIN, and BIN arrays 
for an 8 PBV - 9 RV/D problem that required 330 maps was 326,700 
CRAY words (SUN computer equivalent approx. 1,300,000 bytes or 1.3 
Mbytes). The same memory requirement using the new version of 
HISTASGN became 1650 CRAY words (SUN computer equivalent approx. 
6600 bytes). Even more significant than this specific savings was 
the fact that the memory requirement for HISTASGN now only grows 
as a linear function of the number of maps.
4.1.2 Changes to CTCOUT and CONVRT
Three arrays in the <NICTC> include file were identified as 
possible candidates for memory savings. Among them, they used 
nearly three-fourths of the total memory required to run 
scenarios. This factor results after the savings from changes to 
the subroutine HISTASGN were removed. Another reason for looking 
at these arrays was that they are non-linear functions of the 
problem size. The arrays are CTCMAPS, CTCRPT, and CTCRPTWT. The 
array CTCMAPS was used to store the map addresses associated with 
a Constructed Track Complex (CTC) and was dimensioned to (MXCTC by 
MXMAP) where MXCTC equals MXMAP. Arrays CTCRPT and CTCRPTWT were 
used to store the report addresses and report weights associated 
with each CTC. These two arrays were each dimensioned (MXCTC by 
MXRPT). Array CTCMAPS was used only in subroutine CONVRT and 
arrays CTCRPT and CTCRPTWT were used only in subroutine CTCOUT.



Subroutine CONVRT was only used to transfer data between common 
blocks for output to the network interface. Since Sandia is not 
connected to the network this entire subroutine was not needed. 
However, for the present the subroutine has been left intact 
except that the array CTCMAPS references have been commented out. 
The function of the CTCMAPS array could have been maintained by 
using two arrays of dimension MXMAP where one array held the 
number of maps associated with each CTC and the other held the map 
addresses. This is analogous to the way in which the BIN and 
NUMMAPS arrays were modified for the new version of HISTASGN and 
this kind of change would result in memory use that would be 
linear rather than as a squared function of the number of maps.
The arrays CTCRPT and CTCRPTWT were used in a loop over CTCs in 
subroutine CTCOUT. These arrays were not used outside this loop 
and they were constructed inside the loop before they were used at 
each snapshot for each CTC. In the modified version of CTCOUT 
these arrays have been made one-dimensional with the dimension 
MXRPT. As was described above for the array CTCMAPS, these arrays 
were part of the network interface and as such are not applicable 
at Sandia. However, it would be possible to retain the full 
capability by the addition of a one-dimensional array dimensioned 
to MXCTC. This array would contain the number of reports 
associated with each CTC and the report addresses and report 
weights would be stored linearly within the CTCRPT and CTCRPTWT 
arrays respectively.
The modifications to subroutines CTCOUT and CONVRT have resulted 
in large savings in memory requirements. For example, in the case 
of the test scenario with 8 PBVs - 9 RV/D resulted in a savings of 
more than 600,000 CRAY words of memory (equivalent of approx.
2.400.000 bytes or 2.4 Mbytes).
Altogether the changes to HISTASGN, CTCOUT, and CONVRT have 
reduced the total memory requirements for the test scenario used 
in the examples above from more than 1,600,000 CRAY words to about
300.000 words. In equivalent values this means a reduction from 
6.4 Mbytes to 1.2 Mbytes. The major significance of this work is 
that these changes have resulted in the memory needed by the TRC code, based on problem size, to be improved from an O(n^) problem 
to one of 0(n).
4.2 Linked History File Changes
The linked history file was recognized by the group very early 
into the project as a potential problem area in the parallel­
ization effort. The original version of TRC made heavy use of 
this file causing frequent input/output operations to take place. 
On a parallel system such as the NCUBE, this would have meant 
frequent I/O operations from code where I/O is indirect at best. 
The running characteristics of the code were analyzed on a 
machine, such as
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the CRAY, where I/O normally wasn't thought to be a particular 
problem. It was discovered that a very significant fraction of 
total run time goes to reading and writing the linked history 
file.
A linked history file entry was written from the subroutine 
FILLSCN each time a map is updated by incorporating information 
from a sensor report. The linked history file was read in four 
subroutines. In HISTASGN and CTCASGN the information examined was 
the scan number and the report number for the last relevant entry, 
i.e. the scan number was checked to determine if the linked 
history file was from the current scan. In CTCOUT and SNAPSHOT 
the information being retrieved after multiple reads was the map 
id at the previous snapshot, and the report numbers used to update 
the map at each scan since the last snapshot.
For the subroutines HISTASGN and CTCASGN use of the linked history 
file was very easy to replace. Changes to these subroutines to 
eliminate these file accesses were to add the sensor report number 
used to update this map to the integer map array IMAP and a 
variable that indicated the first linked history index in a scan 
was added to a common block. For this, changes were made to the 
include files <MAP> and <GENRL> and to the subroutines FILLSCN, 
CTAMAIN, HISTASGN, and CTCASGN.
The use of the linked history file in the subroutines SNAPSHOT and 
CTCOUT was to produce detailed ASCII printout of what happened. 
Elimination of the linked history file preserved this function 
exactly. An existing error (refer to Section 4.4 on Errors and 
Appendix A) was corrected in SNAPSHOT where a map address (index 
into the array IMAP) was being substituted for a map id (unique 
map index). Two approaches were devised for retaining the 
functiona1ity of the linked history file. The first approach is 
currently installed in the TRC. The second approach has been 
presented as an alternative. Using memory to replace the linked 
history file increased the total memory requirements very 
slightly. For example, with 8 PBVs - 9 RV/Ds, the extra memory 
was 3600 CRAY words (SUN equivalent of 14,400 bytes). In light of 
the great amount of run time dedicated to the linked history file, 
this was viewed as an excellent trade-off.
There were already arrays indexed by the variable RPTAD (report 
address) that contained report number and scan number for all 
reports since the last snapshot. The subroutine CTCOUT already 
made limited use of the information in these arrays. The new 
approach creates an array, for each map, that contains the map id 
at the last snapshot (actually the address of the map) and the 
count or reports and the list of report addresses that fully 
describe the report history since the last snapshot.



An alternative approach was to create a common block that 
contained the information formerly written to the linked history 
file for a period of one snapshot. This information was stored in 
memory and written over for each snapshot. In a sense, this 
became a circular buffer. The information was accessed by record 
number in the same manner that the linked history file was read.
A separate array was used to store the map id from the previous 
snapshot as this was the only information needed from a previous 
snapshot. Functionality of the subroutines FILLSCN, CTCOUT, and 
SNAPSHOT was not changed by these modifications.
4.3 Sensor Resolution and Sensor Noise Considerations
Clearly sensor resolution is not infinite. The sensor simulation 
package (SPACEGEN) employed in the current work on the TRC takes 
this into account by adding random noise to the sensor readings. 
Each sensor report is adjusted by adding a random number 
multiplied by a resolution amplitude.
For the data sets that were shared for common use by this group, 
the noise amplitude was set to 0.0057 which has been interpreted 
by Sandia to be 10"4 radians. This noise level (resolution level) 
was such that definite problems with tracking and correlating were 
observed. In a meeting of the group at Los Alamos in June, it was 
noted that the TRC code had about 3.3 times as many resolved 
tracks as there were obj ects providing the simulated sensor data 
(actual count known from the scenario generator). The sensor 
report scatter was great enough that each object was being tracked 
as if it were 3 or 4 objects by grouping together only those 
sensor reports that had similar noise components. This 
significantly affects the memory requirements and other execution 
characteristics for any given test case.
In several examples where attempts were made to follow the 
tracking of a single object step by step, the apparent situation 
was that the new location of the object was fixed by the current 
sensor without significant dependence on any of the previous 
reports. This created a curious situation. The Kalman filter 
process was to incorporate each additional sensor report into a 
cumulative least square fitting of the data. It was also found 
that generating lower noise sensor data significantly improved the 
result.
The problem was found to arise from the following situation. In 
the Kalman filter process, the weighting for the current report 
was determined to be inversely proportional to the variance 
assigned to it. That is, the smaller the variance, the greater 
the assigned weight. From a measurement standpoint, the variance 
cannot simply be determined from an isolated observation.
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Estimating the variance can be accomplished in at least three 
ways: (1) simply keep track of the differences between where the 
object was expected to be located and where the sensor reports 
indicate, (2) consider an input parameter in the initialization 
file so that just as a sensor noise level is postulated in 
generating the sensor data, so also is the variance 
correspondingly postulated for processing the sensor data, and (3) 
hard-code an "appropriate" number into the code to represent the 
variance.
The TRC program used option (3) describe above. But the value for 
the variance hard-coded into subroutine PPRSCAN corresponded more 
closely to an infrared sensor error of 10”5 radians than 10”4 
radians. Hence, compared to the data being processed, the current 
sensor report was over-weighted by an order of magnitude.
Significantly better tracking was observed when the hard-coded 
variance number was increased to more closely match the simulated 
sensor data. The possible alternative options listed previously 
suggest an additional area of analysis to assess which option is 
most reasonable.
Finally, the supplied data sets for the TRC code had the cluster 
splitting threshold set to 1000 meters. With this level of sensor 
report uncertainty, splitting occurred very frequently. But 
typically the map split off was traveling on a path that would not 
encounter another sensor report.
4.4 Error Corrections to the TRC Code
Although Sandia was not specifically looking for errors in the TRC 
implementation, during the course of moving the code among the 
SUN, NCUBE, and CRAY computers, several errors have become known 
and have been corrected. All of these errors are listed in 
Appendix A. One error in particular will be elaborated at this 
point since it was, in fact, a dominating factor in driving memory 
requirements to be extremely large in the original version of the TRC.
The subroutine GENNEAR seemed to require large amounts of memory 
for the table of distances between maps with the same report 
history. The space required was N(N+l)/2 where N was the number 
of maps in the history bin. Examination of the contents of the 
large bins turned up an error. The bins with a large number of 
entries were those for which no report had been received. The 
error was that this list was being accumulated over clusters. In 
the subroutine HISTASGN the array PNUMMAPS was used to store the 
number of maps associated with each history id where the history 
id was the index to the PNUMMAPS array. Each time HISTASGN was 
called, the PNUMMAPS array was zeroed. However, it was found that 
PNUMMAPS(0) also needed to be set to zero for each cluster to 
prevent maps with a previous history id of zero from being 
accumulated over all clusters.



This same type of problem can occur for non-zero history ids when 
cluster splitting takes place. When a cluster is split, the maps 
associated with the original cluster are split between the two new 
clusters. However, the history id associated with these maps is 
left unchanged. This can result in clusters that have duplicate 
history ids and the wrong number of maps stored in the PNUMMAPS 
array for a history id. As described above, to ensure that this 
cannot happen, the PNUMMAPS array must be zeroed for each cluster 
before the map data are assembled in HISTASGN.
From this discovery arose a secondary question. For map merging 
purposes, should those maps for which no report has been received 
be treated as a bin even within a cluster, or, in fact, should the 
maps simply be ignored by GENNEAR? In Sandia's version, GENNEAR 
does ignore those maps.
4.5 Modifications to the SPACEGEN Codes
Sandia also envisioned moving the programs that generated the 
object tracks and sensor reports for the TRC to the NCUBE. Two 
effects would result from this plan. In the short term, data 
could simply be generated on the same machine as runs the TRC and 
files would not have to be transmitted over communication lines 
between different machines. In the long term, parallelization of 
the sensor report inputs to the TRC would move the execution of 
TRC closer to a real-time environment.
Since large data files were to be generated for larger scenarios 
it was prudent to also transport the generator code to the CRAY. 
Execution time and memory space again became significant factors 
in simply getting the data files created.
The generic reference to SPACEGEN actually involved several 
programs: SPACETRACKS, SPACEGEN, SPACEGENTOSDI, and a sort routine 
that might (or might not) be available via the hosting computer 
system. SPACEGEN generated sensor reports by taking the track 
truth files from SPACETRACKS and applying each sensor platform 
data to all tracks in sequence. The resultant file was then 
sorted with sensor platform report scan time steps as the primary 
sort key. For moderate and large data files, this sorting process 
can use large amounts of disk space and be time consuming. Plans 
have been made to modify SPACEGEN to place the time loop outside 
the sensor and target track loops so that final sorting is no 
longer required. This approach also more attunes the data 
generation to an actual threat scenario.
The programs SPACEGEN and SPACEGENTOSDI were used to generate 
sensor data reports in a suitable form for input to the TRC code. 
Both programs used the ground truth target track data generated by 
the SPACETRACKS program and they must store these data in array 
space.
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4.5.1 Memory Utilization Changes
The target track data were stored in nine, 2-dimensional arrays 
that were dimensioned by the maximum number of targets and the 
maximum number of orbit legs for a target. (An orbit leg is 
defined to be a portion of a trajectory that conforms to a 
specific orbit equation. Slightly different orbits may be used by 
a boost vehicle at various times during flight.) In practice, 
the PBV type targets have 2N + 1 orbits legs, where N = number of 
Reentry Vehicles (RV) + number of Decoys (D). However, the RVs 
and Ds have only one orbit leg each. The 2-dimensional array 
storage scheme was based on the PBV number of legs and would 
therefore result in a substantial waste of memory. This problem 
only became apparent when generating TRC sensor input for the 20 
PBV - 99 RV/D scenario. This problem required 3,700,000 words of 
CRAY memory (SUN approximate equivalent of between 14.8 and 29.6 
Mbytes of memory, depending on the precision desired).
The Sandia modified versions of both SPACEGEN and SPACEGENTOSDI 
use the same nine arrays to store the groundtruth target track 
data, but the arrays are only one dimensional. Space is allocated 
to these arrays based upon the sum of the maximum number of PBVs 
multiplied by twice the number of RVs and Ds per PBV and the 
maximum number of targets (PBVs + RVs + Ds). The number of orbit 
legs for each target was already being stored. In the modified 
version, this value was used to increment the index for these nine 
arrays. These changes resulted in a reduction from 3,700,000 CRAY 
words (SUN approx. equivalent of 14.8 Mbytes) to 120,000 words 
(SUN approx. equivalent of 0.5 Mbytes) for the 20PBV - 99 RVs/Ds 
problem.
4.5.2 Error Corrections
A few minor errors were also found in the SPACEGEN suite of 
programs and those are described fully at the end of Appendix A. 
One error was noted in the SPACETRACKS subroutine QROOT which 
computes the zeroes of particular quartic equations. In this 
subroutine, complex variables are equivalenced to real variables. 
Within the computer memory this can cause difficulties since the 
imaginary part is equivalenced quite possibly with whatever 
resides in the second word of storage. Although all FORTRAN 
compilers permitted this to pass, execution of statements 
involving these complex variables could have generated spurious 
results. As it turned out, the variables were used in a 
comparison that apparently had zeroes already in memory and there 
were no side effects.

5.0 Continuing Work on Parallelization
Sandia continues to move toward a massively parallel tracker/ 
correlator. All of the work up to this point on the serial



version was actually geared to the parallel version and, in a 
sense, can be considered a part of the parallelization effort. 
Certainly, from the study and analysis performed, the team has a 
much clearer view of the areas of concern associated with this 
problem.
5.1 TRC on the NCUBE
The SPACEGEN suite of codes has been moved to the NCUBE and 
changes to the code are underway to permit the code to execute on 
the node processors. Several possible node arrangements are 
being examined for the TRC to execute on the node processors.
Under the current NCUBE configuration at Sandia, a heterogeneous 
super node may be necessary to handle the TRC requirements. On 
the other hand, sufficient progress has been made on the serial 
version to suggest that perhaps the most critical segments of code 
can execute on single nodes for problems near 100 objects. This 
has positive implications for very large problems, e.g., 100,000 
objects over 1024 processors. To achieve parallel load balance 
there will be several control nodes in communication with worker 
nodes for preliminary processing and cluster assignments. This 
form of heterogeneous processing has been utilized in another 
Sandia project [Gustafson 89].
All of these considerations are affected somewhat by the fact that 
Sandia plans to install a new NCUBE2 Hypercube that will contain 
1024 nodes with node processors executing at nearly 10 times the 
rate of the current processors. Each node processor will have an 
associated 4 Mbytes of memory rather than the current 0.5 Mbytes.
5.2 Progress on Other Algorithms and Codes
Sandia was also requested to examine two other algorithms. Copies 
of the relevant codes have been obtained and work has been started 
to analyze these algorithms. The first algorithm was from 
Alphatech and was written in FORTRAN to run on the shared memory 
Alliant parallel computer. For this midcourse algorithm 
implementation, Alphatech has been running small test problems 
using facilities at Argonne National Laboratory. The second 
algorithm was from MITRE in Bedford, Massachusetts. The algorithm 
was written in Pascal and runs on a DEC VAX computer. Primarily a 
boost-phase tracker, this algorithm has no spawning of new objects 
from the boosters. The test data sets for this algorithm are 
fairly small with time starting at launch and extending for 
approximately 50 seconds after the launch.
Both algorithms are being studied to learn more about tracking and 
correlation of many objects. Reports and papers from other groups 
(Oliver E. Drummond of Hughes Aircraft [Drummond 88b] , Keh-Ping 
Dunn of MIT Lincoln Laboratory [Dunn 89], etc.) and proceedings 
from the SDI Panels on Tracking [SDIO 89] are also under review.
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APPENDIX A
Details of Error Corrections for the TRC

1. In the subroutine INITPBV, the file name LUTTYO was misspelled 
with a "zero" instead of the letter "oh". The SUN simply 
opens and writes to a disk file. Both NCUBE and CRAY FORTRAN 
abort the program when executing the statement.

2. In the subroutine CTCOUT, the index, RPTAD, used in a print 
loop was not defined within the loop, making the printout 
meaningless.
(Add " RPTAD = CTCRPT(ICTC,IRPT) " within the loop 560)

3. The subroutine TEMPTURE contained a zero divide when both 
radiation values were zero. When executing on the SUN the 
problem was ignored. On the NCUBE and the CRAY, the program 
aborted. Setting the temperature to zero was not an 
acceptable solution because it would be used as a divisor 
later. The problem was resolved by setting the temperature to 
1.0.

4. The predicted impact latitiude was wrong. In the subroutine 
IMPACT, it appeared that the calculation was changed from 
using arctan(y,x) to using z/r without a corresponding change to use arccos.
(Use " P0S(1) = 90.0 - RTOD * DACOS( P3(3)/DLEN ) " )

5. The predicted impact longitude and time went bad late in 
tracking. In the subroutine IMPACT, the polar coordinate 
description of the current position of the object forced the 
sine of E0 to be positive, i.e., the value becomes wrong as 
the object moved from the 2nd to the 3rd quadrant.
(Change " ESINEO = DSQRT( ESINEO ) "

to " ESINEO = DSIGN ( DSQRT( ESINEO ), RRDOT ) » 
and add to the definition of E0

" IF ( E0 .LT. 0 ) E0 = E0 + TWOPI " )
6. In the subroutine HANDOFF, the variable SCNTIM was not updated 

from the initial definition. If later Post Boost Vehicles 
(PBVs) were scheduled for more than the threshold value, 
HNDOFFDELTA, later, those PBVs were never processed.
(A possible fix to this problem is to add the <NISCAN_AUX> 
include file to the subroutine CTAMAIN and set SCNTIM to the 
value contained in the variable TSCAN containing the current 
scan time after the call to the subroutine NETINT.)

7. When the option was selected to list the sensor reports from 
the subroutine LOADSCAN, the azimuth and the elevation were 
reversed between heading labels and values displayed.
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8. The display line sent to the terminal for each scan:
"SCAN xxx at Time xxx.xxx x IR Reports processed in 
xxx.xxx seconds"

is inconsistent and confusing. The scan number and the 
seconds used for this output are for the scan just completed, 
but the time and the number and type of reports are for the 
scan just beginning.

9. GENNEAR seemed to require a lot of space for the table of
distances between maps with the same report history. The 
space required is n(n+i)/2 where n is the number of maps in 
the history bin. The bins with a large number of entries
were those for which no report had been recieved. The error 
was that this list was being accumulated over clusters. In 
the subroutine, HISTASGN, the array element PNUMMAPS(O) must 
be zeroed at the beginning of processing for each cluster.

10. All PNUMMAPS entries must be cleared between clusters. The 
same type of problem described in Item 9 can occur for non­
zero history-ids when cluster splitting occurs. When a 
cluster is split the maps associated with the original cluster 
are split between the two new clusters. However, the history 
id associated with these maps was left unchanged. This can 
result in clusters that have duplicate history ids and the 
wrong number of maps stored in the PNUMMAPS array for a 
history id. Clearing the PNUMMAPS array ensures this cannot happen.

11. Inconsistent (wrong) dimensions in the group of routines 
SCENEPRUNE, DUPSCENEOUT, COPYDATAOUT. The array IDXSAME (aka. 
DUPSCN) was dimensioned NMAXSCENE in one place and NMAXLIST 
the others. What the dimension should be was not clear. 
Consistency is desirable, however. SCENEPRUNE is simply the 
driver, where the storage is defined. DUPSCENEOUT looks at 
all the scenes and constructs a list of duplicates.
COPYDATAOUT looks at the list of duplicates and copies all of 
the scenes that are NOT in the duplicate list. A duplicate is 
a scene that is the same as an earlier scene. The issue is 
confused by the fact that while all this work is required to 
mark a scene as a duplicate, the list being constructed in 
DUPSCENEOUT includes all duplicates when there are multiple 
duplications. That is, the duplicate list can be larger than 
the scene list. In the Sandia version, DUPSCENEOUT has been 
changed to eliminate the unnecessary accumulation of multiple 
duplicates. This allows one to know how to dimension the 
array IDXSAME. The change to the code in DUPSCENEOUT is to 
simply jump out to label 10, after an entry is added to the 
"SAME" list. Hence an adequate dimension is NMAXSCENE.
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12. Additional changes were made to DUPSCENEOUT which enhance 
clarity, but do not affect the output from the subroutine. 
Change the DO statements for loops 10 and 30 so that the loop 
range covers only "I" greater than "J", removing the if test 
for that condition. Also move the loop 40 inside the test on 
number of maps, so it is not executed when the result is not 
needed.

13. The subroutine SNAPSHOT uses the variable MAPID when it wants 
the unique map identifier for a map that is time-continued. 
However, in SNAPSHOT and some other places, MAPID is the map 
address (map index). What should be used is the value from 
IMAP(LMAPIDENT,MAPID). This occurs in SNAPSHOT (depending 
upon version used) 32 code lines after the linked history file 
is read.

14. In HISTASGN, format 6060 defines a single output line of 630
characters. This is unacceptable in CRAY and NCUBE FORTRAN. 
(Change "FORMAT (10(13X, 1015))" to FORMAT (13X,10I5)" ).

15. In CHLINV, an external reference to a non-existant subroutine, 
PRTERR, was deleted. Also in GENNEAR, an external reference 
to a non-existant file, GETEXT, was deleted.

16. In QROOT of SPACETRACKS, the equivalence of complex variables 
to real variables was eliminated. Comparisons are made using 
the actual real variables.

17. Subroutine PROCPBV read in the RV/D sequence data improperly 
in SPACETRACKS. This data was part of the session data and 
was read in separately for each session within the data for a 
PBV. The error occurred because the character string 
positions that the characters (R or D) were read into were not 
incremented for multiple sessions. This resulted in tracks 
that were output with incorrect identifiers. The problem was 
corrected by using a new character variable to read the data 
and then moving the data into the appropriate string position 
in the original character string variable.
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