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ABSTRACT

Sandia National Laboratories joined with two other laboratories,
Los Alamos National Laboratory and Naval Research Laboratory, to
study and implement a highly parallelized tracker/correlator
algorithm. Significant progress was made at Sandia on a specific
algorithm and code. This report summarizes the accomplishments
by Sandia during FY ‘89 on this project.
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A. EXECUTIVE SUMMARY

A joint effort was started among three laboratories (Sandia
National Laboratories, Los Alamos National Laboratory, and Naval
Research Laboratory) to implement a highly parallelized tracker/
correlator algorithm for the Strategic Defense Initiative. Since
April, 1989, Sandia has focused on the parallelization of a
specific serial tracker/correlator algorithm (referred to as TRC)
for post-boost and mid-course tracking. The NCUBE Hypercube (1024
processors with distributed memory) was to be the hosting system
at Sandia. :

The TRC code was transported to a CRAY X-MP 416 computer for
detailed analysis and study utilizing the tools available on this
system. This implementation was also made to permit larger test
problems to be run. Memory requirements and the data organization
of the TRC were a major concern for the parallel implementation.

Two major breakthroughs on the TRC have been accomplished by
Sandia. Both greatly affect the serial version of the TRC and at
the same time bring the parallelization problem within reach.

The most important was the tremendous reduction in the amount of
memory required to run the TRC. Sandia’s effort has taken the
requirement, based on problem size, from an 0(n2) memory
allocation to a linear memory requirement of O(cn), ¢ < 1. For
example, a test scenario of 16 Post Boost Vehicles each carrying 9
Reentry Vehicles (160 objects total), receiving reports from 16
sensor platforms on nonuniform 10 second reporting intervals, for
a total scenario time of 431 seconds, originally required 18.3
Mbytes of memory. (This reported amount was actually from a
version already modified by Sandia to eliminate a code problem.
An earlier test of an unmodified version, run at another site,
required 60 Mbytes of memory.) The new Sandia version executes
the identical problem in 1.4 Mbytes. With these changes, Sandia
was able to successfully run the full range of test scenarios set
out for the parallelization group, including the largest scenario
of 2000 objects.

The second breakthrough was in the complete elimination, without
loss of program functionality, of a costly input/output (I/0)
sequence of operations originally contained in the TRC. Since the
hypercube has distributed memory, large amounts of data file I/O
would result in time consuming communications between processors.
From these changes, the amount of time required to run Sandia’s
serial version nearly halved the running time for the original
modified version.

Using these results, work continues on the parallelization of the
TRC algorithm at Sandia. Implementation has begun on the
distributed node processors of the NCUBE. Target track generators
are also being implemented on the hypercube. Additional studies
have been started on other algorithms to better understand the
problems associated with multiple sensor, multiple target tracking
and correlation.
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B. TECHNICAL REPORT

The following report describes the technical work performed by
Sandia National Laboratories, Parallel Computing Science Division,
on the implementation of midcourse tracking and correlation for
massively parallel computing during the 1989 fiscal year.

1.0 ProjectkIntroduction

Since April 1, 1989, Sandia National Laboratories has been
actively working on a project to examine and implement a highly
parallelized tracker/correlator algorithm for the Strategic
Defense Initiative. Sandia’s principal efforts during this six
month period have been to focus on the parallelization of a
specific serial tracker/correlator algorithm (TRC) for post-boost
and mid~course tracking. An intensive analysis of the algorithm
and code was undertaken and the results of this work are described
in this report.

1.1 Background

In December of 1988, a meeting was held at Sandia National
Laboratories to initiate a cooperative effort among researchers
and practitioners of parallel computing to study parallelism of
tracker/correlator algorithms for a variety of parallel
architectures. The result of this meeting was a collaboration
among three laboratories (Sandia National Laboratories, Los Alamos
National Laboratory, and Naval Research Laboratory) with active
research and development programs in parallel computing. The
Naval Research Laboratory would be assisted under contract by Ball
Systems Engineering and D. H. Wagner & Associates. Coordination
of these groups would be through SDIO/POET. ‘ ‘

Each of these laboratories has a strong mission interest in high
performance computing. Consequently, each had existing research
and development programs to study highly parallel approaches for
solving large scientific problems. At Sandia, this project had
access to a 1024-processor NCUBE Hypercube and a four-processor
CRAY X-MP; at Los Alamos, it had access to an eight-processor
Alliant and a 24-processor Encore; and at NRL, there was access to
a 128-processor BBN Butterfly. By collaborating and sharing
computing resources, the project has been able to highly leverage
the staff and resources working on the tracking problem.

To begin the project, each of the laboratories were supplied a
complete software source code tape of the TRC. Two reports, one
detailing the algorithm design [B&W 1] and the other describing
the algorithm implementation [B&W 2], were also provided for a
common starting point of reference.



1.2 Program at Sandia National Laboratories

Support for Sandia’s program has been through the Electronic
Systems Division of the U. S. Air Force. The remainder of this
report covers only the work that has been done specifically at
Sandia National Laboratories. It must be emphasized that
throughout this reporting perlod there has been excellent
cooperation among the groups in the laboratories working on this
project. All of the efforts put forth have been aimed at
producing a better product and there has been cooperation in
sharing information and planning for the project.

Preliminary studies in the area of target tracking included review
of major references in the field, e.g. [Blackman 86} and [Bate
71]. A course in Multiple Target Tracking [Drummond 88a] was also
attended. Parallel methods developed for other projects as well
as general expositions of parallel algorithms have been drawn on,
e.g., [Gustafson 88 & 89], [Bertsekas 89], and [Fox 88].

2.0 Project Objective

The overall objective of this project has been to study -
parallelism for tracker/correlator algorithms using a variety of
parallel computer architectures. Specifically for FY 789, the
objective has been to investigate the tracker/correlator developed
for the Naval Research Laboratory by Ball Systems Engineering and
D. H. Wagner & Associates, and to develop a highly parallel
version of the TRC algorithm.

Sandia has taken major steps toward accompllshlng the
parallelization of the TRC algorithm as will be described later in
this report. Through this effort and the current studies of other
tracker/correlator algorithms (described near the end of this
report) Sandia has made proper progress toward the overall
objective.

3.0 Tracker/Correlator (TRC) Status

From the start of this project at Sandia, it was recognized that
to put a parallel version of the TRC on the NCUBE the algorithm
and implemented code were, out of necessity, going to be very
closely re-examined. Since the NCUBE does not have shared memory
into which one can simply place large arrays, the data structures
and data organization were critical. One of the time consuming
parts of using individual processors with only local memory is the
communication necessary between processors. Therefore, both time
and memory are primary controlling and critical factors in
analyzing the algorithm.

Many times there is a trade-off between memory and execution time.
That is, when one attempts to optimize memory usage there is often
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a penalty to be paid in the time required to solve the problem.
However, the work accomplished on the TRC at Sandia has, in fact,
resulted in a tremendous improvement in the memory requirements of
the serial version and at the same time, produced 1mproved
execution time of the serial TRC.

3.1 Approach

Inltlally, it was agreed by the project group that a parallel
version of the serial TRC should be implemented on all of the
systems indicated in (1.1) with minimal changes to the methods and
structure of the serial version. Following that work, a truly
parallel version of the TRC algorithm would be developed to
optimally exploit the MIMD (Multiple Instruction Multiple Data)
parallelism in distributed memory computers such as hypercubes.
Finally, the project would develop new highly parallel
tracker/correlator algorithms and software.

At Sandia the project currently stands between task one and task
two described above. The general approach taken at Sandia in

- addressing this project has been careful and systematic. The team
studied the algorithm closely and gained an understanding of how
the data structures impacted the execution of such an algorithm on
distributed processors. It was believed that concurrency could be
attained by dividing the problem down into cluster processing on
each processor. Since multiple clusters could be handled in the
serial version, should there ever be more clusters than
processors, then extra clusters would 51mply be assigned to
processors in a modulo fashion. That is, simply start back at the
first processor for the next round of cluster assignments,
proceeding to the second, and so on until all clusters were
assigned. As clusters split,sa‘new cluster would be assigned to
the next available _processor. :

Each of the NCUBE/Ten processor nodes had a relatively small
amount of memory, 512 Kbytes. Part of that memory would be used
by the executable TRC program, the operating system, and the
interprocessor communication buffer. Thus, TRC array storage
became a major factor in the NCUBE implementation. It was also
noted from serial executions of the code that the number of final
objects tracked by the TRC could be considerably larger than the
truthfile objects. While this problem has not been fully resolved
and there will naturally be some differences in the number of
objects due to sensor inaccuracies, some aspects specific to the

~TRC are understood and will be discussed in 1ater sections.

.2 Summary of Task Milestones for FY’89

When Sandia submitted its proposal for work on this project,
certain points were made regarding the tasks to be performed.

This section will briefly respond to those points and then each of
the items noted w111 be expanded upon in the sections to follow.



Sandia has carried out an intensive analysis and review of the TRC
algorithm and implementation. A number of errors in the original
implementation were discovered and corrected. Of major importance
has been the changes made to the code in computer memory
utilization and the elimination of a linked history file that
required very large amounts of execution time simply for data
movement. Although Sandia considers most of this analysis to be
completed, there are still areas requiring some study depending
upon new discoveries about code/algorithm behavior.

Work is currently ongoing to produce a version of the TRC on the
hypercube nodes. An early, stripped-down version of the TRC was
transported to the host processor on the hypercube. However, the
performance of this code was poor since that host was a micro-
processor with less power than many current, desk-top systems.
(Note that an NCUBE2 hypercube, soon to be installed at Sandia,
will have a SUN 4/280 workstation as its host.) There still
remains work to be done to reach the full implementation on the
NCUBE hypercube.

Joint development of a set of test problems for this project has
proven to be beneficial to all participants. These test problems
permit the participants to study scalability on each of the
different machines and also to examine how clustering and
separation of objects affects correlation. Three of the test
cases were sufficiently large to eliminate many host systems that
might be considered to run these problems: (a) 8 PBVs, 9 RVs/PBV,
(b) 16 PBVs, 9 RVs/PBV, and (c¢) 20 PBVs, 99 RVs/PBV. For example,
Sandia first executed the TRC on a SUN 3/140 workstation and had
little trouble with small problems ( ~10 objects ). Much beyond
that size problem, the system exhausted its memory space.

3.3 Implementation on Different Systems

It was apparent that a larger machine would be helpful to study
the serial performance and behavior of the TRC. The CRAY systems
available at Sandia, CRAY 1-S and CRAY X-MP 416, provided a good
set of analysis tools and the necessary computing power to extend
the range of test scenarios. Particularly with the X-MP,
significant benefit could be realized by all investigators of mid-
course tracking. The space target tracks and sensor platform
generators (SPACETRACKS and SPACEGEN) were fully implemented on
the CRAY systems so test scenarios could be generated directly on
the same machine used to execute the TRC. Major improvements in
the serial version of TRC have been accomplished. In fact,
without the changes made, the CRAY 1-S was unable to execute the
data set of 2 PBVs, 9 RVs/PBV.

Use of a SUN workstation for the modified TRC will still be
maintained as an option since it is a way for Sandia to obtain any
future updates for the TRC. As noted above, within a few months a
SUN 4/280 will be installed as the NCUBE host. Data entry could
then be made directly to the NCUBE from any SUN system.
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3.4 Major Breakthroughs

Two major breakthroughs on the TRC have been accomplished by
Sandia. Both greatly affect the serial version of the TRC and at
the same time bring the full parallelization problem within reach.
Although both breakthroughs were fairly complex to develop and
implement, in the end, relatively few lines of code needed to be
modified. For the dlscu551on that follows, a target map is
defined to be composed of the current position, velocity, and
covarlance matrix description for each target object.

The first breakthrough was to overcome the tremendous amounts of
memory storage required to run the TRC and it came in two stages.
The first stage was the correction of an error in the way that a
binning array was initialized for map merging. Without this
correction, even small test scenarios pushed the memory limits of
most computers. The memory requirements shown in Table 1 are for
the original TRC code with this error corrected, but without the
second part of the memory changes that altered the program arrays.
Without this error correction, most of the problems shown could
not have been run. (For example, an earlier test run at another
site of the 16 PBVs - 9 RVs problem required 60 Mbytes of memory.)

The second stage of this breakthrough occurred when it was
understood how much array space was unused in the TRC
implementation. The redesign of several arrays eliminated this
sparse representation of data. For the discussion at this point,
the best way to describe the changes are by comparing the results
in Table 1 with those of Table 2. Note that Sandia’s effort
(shown in Table 2) has 51gn1f1cantly reduced the memory
requirement from an O(n2) problem to a linear memory requirement
O(cn), ¢ < 1. With these changes, Sandia was able to successfully
run the full range of test scenarios set out for the
parallelization group, including the largest scenario of 2000
objects.

All problems in Table 2 were run for the full time prescribed for
the scenarios. Handover took place at 243 seconds after first
launch and tracking/correlation continued until 674 seconds, for a
total time of 431 seconds. All tests were performed with 16
sensor platforms (8 infrared and 8 radar) each reporting on 10
second intervals as designated in the test scenarios. For Table
1, only two problems were fully run, while the memory requirements
were determined for the other problems but not run to completion.
There was no attempt to go beyond those problems shown in Table 1.

These results have been summarlzed in graphic form in Figure 1.
Memory requlrements for both versions of the TRC code have been
plotted for comparison. 1In this format, the great differences
become most evident. Figure 2 details the linearity of Sandia’s
version for the leftmost corner of Figure 1 and emphasizes the
contlnulty of the linear curve.



Problem Objects CPU secs. Memory
CRAY words ~ bytes
1 PBV - 9 RVs 10 ——— - o
2 PBVs-= 9 RVs 20 42.3 326,144 (1,305,000
4 PBVs- 9 RVs 40 77.1 610,816 |2,443,000
8 PBVs- 9 RVs 80 ——— 1,445,120 5.8 M
16 PBVs- 9 RVs 160 ——— 4,579,072 18.3 M

Table 1. TRC Performance Using Corrected Original Implementation

Problem Objects | CPU secs. Memory

CRAY words ~ bytes

1 PBV - 9 RVs 10 9.4 141,056 564,000
2 PBVs-= 9 RVs 20 26.8 170,496 682,000
4 PBVs- 9 RVs 40 46.8 189,952 760,000
8 PBVs- 9 RVs 80 92.7 243,456 974,000
16 PBVs- 9 RVs 160 217.3 359,424 11,438,000
1 PBV =99 RVs 100 133.6 276,736 [1,107,000
99 PBVs- 0 RVs 99 242.7 226,304 905,000
20 PBVs-99 RVs 2000 5034.4 3,471,104 13.9 M

Table 2. TRC Performance with Sandia Modifications
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The second major breakthrough was the complete elimination of a
costly sequence of input/output (I/0) file operations. A linked
history file was maintained to relate target maps with sensor
reports for Constructed Track Complex assignment and also to
maintain map/report information for map merging. This file was
continually accessed throughout the entire run of the TRC. These
changes significantly reduced the amount of time required to run
various scenarios. The improved times shown in Table 2 compared
to Table 1 are primarily a result of changing I/0 requirements for
the TRC. Figure 3 compares the timing results extracted from the
tables. Based on the results obtained, the Sandia version appears
to have cut the execution time nearly in half.

From Figure 3 additional observations can be made. First, the
timing curve for the current Sandia version is not quite linear,
but on the order O(n + an2) with the coefficient, a < 1. Results
from running the original TRC are too few to significantly plot,
but timing results reported from other sites indicated non-linear
growth also. That is, the curve shown in Figure 3 also moves up-
ward away from a straight line at a much steeper slope. Second,
the timing for one problem, 99 PBVs - 0 RVs, is well above the
curve for the other problem sets. Both observations have their
genesis in a pair of 0(n2) operations within the TRC. As
currently designed, the report-to-cluster assignment operation is
a function of (number of reports*number of clusters). An area to
be addressed is the improvement in preprocessing cluster
selection. When cluster splitting occurs, this assignment
operation increases in magnitude. The report—-to-maps assignment
is a product operation also, but is actually capped by the number
of maps in a particular cluster. Therefore, the total report-to-
map assignment will usually play a lesser role.

Tn‘ 250 N *"99 PBV = 0 RV
o : ~
c
8 A
b 200
o
g 150 1 Corrected
fal Original
Version ~
E 100 T ;EEi- SNL Version
3]
o -
g 50
&)

1 T T T I T 1 T
25 50 75 100 125 150 175 200

Number of Objects
Figure 3. Time Comparison between SNL and Original TRC Versions
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4.0~Modification Details for the TRC

Previous sections of this report have provided high-level

informationkabout a number of changes that have been made to
Sandia’s version of the TRC. Most of these changes were the
result of determlnlng how to 1mplement the TRC on the NCUBE. :
Several changes were the result of investigating strange phenomena
as they occurred and dlscoverlng what happened.

Not all of the mater;al presented here resulted in~changes,‘but

rather addresses concerns that Sandia had with the TRC. This part
of the report will provide details and specific discussions

related to key modlflcatlons to the TRC and special areas of
concern.

4.1 Memory Utilizatien Changes

A number of the multi~dimensiona1 arrays in the TRC are sparse
matrices, i.e., are filled primarily with zeroes. This situation
exists regardless of the size of a partlcular problem being run
and results in memory requirements for any given problem that are
essentially a square function of the number of maps needed to run
the problem. At this time two areas in which large amounts of
memory can be saved have been identified. These are in the
history id assignment process and in the Constructed Track Complex
(CTC) output routine. Although there are other areas in which
~memory use can be improved, the above two areas were found to have
the greatest potential for sav1ngs.

4.1.1 Changes to HISTASGN and GENNEAR;

The subroutine HISTASGN used five large, two-dimensional arrays
for storage. Three of these arrays were in the local common block
PHISTBLK and two were in the include file <HIST>. Of these five
arrays RPTHIST and PRPTHIST were only used for debug printout.
These two arrays were dimensioned (MXSCAN by MXHIST + 1). The
third array, REPORT, was dimensioned (NMAXCLIST by MXHIST + 1) and
was used to store report numbers associated with a history id for
use in the subroutine HISTASGN. The fourth array, PBIN, was used
to store map addresses assigned to each previous history id and
the fifth array, BIN, was used to store map addresses assigned to
each new history id. These last two arrays were dlmen51oned
(NMAXCLIST by MXHIST + 1). :

In the modified vers1on of HISTASGN three of the above arrays
(REPORT, RPTHIST, and PRPTHIST) have been deleted as has a one-
dimensional array named IDXSORT. Arrays RPTHIST and PRPTHIST were
deleted because their debug function wasn’t considered 1mportant
enough to warrant the amount of memory they used. The information
they contained was available in other arrays and Wlth approprlate
1ndex1ng, could still be accessed. ;
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The function of the REPORT array was incorporated in a redefined
PBIN array and as a result, the REPORT array was ho longer needed.
This redefined PBIN array is dimensioned (4 by MXMAPS) where
(MXHIST = MXMAPS) and for each map, M, it contains: ‘

PBIN (1,M) = previous history id
PBIN (2,M) = new history id

PBIN (3,M) = report number, and
PBIN (4,M) = map address.

The information stored in the BIN array (map addresses) was not
changed. However, the map addresses are now stored linearly and
must be accessed differently. As shown in Figure 4, BIN (1)
through BIN (I) now contain the map addresses of the maps
associated with new history id, I, where I = NUMMAPS (1) and
NUMMAPS is an array containing the number of maps associated with
each new history id. The function of NUMMAPS has not been
redefined. Similarly, BIN (I+1) through BIN (I+J) are map
addresses associated with history id 2 where J = NUMMAPS(2), and
so on for the remaining history ids.

NUMMAPS array: 1 location for each bin / new history id

Npy | Np | N3 | Ng | o ¢« o o o | Ni [Nj$1] « . .
N1 N2 N3 ‘ Ng
maps maps [maps maps G

BIN array: Nj locations for the ith bin

Address of first map in bin 4 is
MAPAD = BIN ( N7 + Ny + N3 + 1)

Figure 4. New Access to BIN Array Using Linear Indexing

The changes to the subroutine HISTASGN have not changed its
function nor its basic structure. However, because maps
associated with a cluster are not accessed sequentially by history
id the new storage scheme results in the requirement that the PBIN
array be sorted by previous history id for each cluster after the
map data for the cluster has been stored in PBIN. In addition,
the PBIN array is sorted by report number for
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each previous history id in a cluster. The second sort replaces
the call to subroutine SORTINDX and the need for the array
IDXSORT. Subroutine SORTINDX was replaced by a much. simpler sort
process because the number of reports associated with a single
history id is relatively small. The earlier version had a greater
overhead in calling the subroutine SORTINDX than the actual amount
of time requlred to perform the sort

Durlng the process of modifying HISTASGN and as a result of trying
_to run the TRC code it was discovered that HISTASGN processed
time~continued maps and included them in the maps sent to the
subroutine GENNEAR through the BIN and NUMMAPS arrays. (There
were some errors discovered in HISTASGN during this process that
have been corrected. These errors are discussed later in the
report in Section 4.4.) The new version of HISTASGN only sends to
GENNEAR maps for which reports have been received since the last
snapshot. This last change ellmlnated some unnecessary work in
the map merglng calculatlons.

~All changes to GENNEAR 1nvolve‘indexing of the BIN array to
retrieve and store data in a one~dimensional rather than two-
dimensional manner. There have been no changes to the function or
structure of GENNEAR.

The changes to the way memory was used in the subroutine HISTASGN
have resulted in a huge reduction in its memory requirements. For
example, total memory required by the REPORT, PBIN, and BIN arrays
- for an 8 PBV - 9 RV/D problem that required 330 maps was 326,700

~ CRAY words (SUN computer equivalent approx. 1,300,000 bytes or 1.3
Mbytes). The same memory requirement using the new version of
HISTASGN became 1650 CRAY words (SUN computer equivalent approx.
6600 bytes). Even more significant than this specific savings was
the fact that the memory requirement for HISTASGN now only grows
as a linear function of the number of maps.

4.1.2 Changes~to‘CTCOUT and CONVRT

Three arrays in the <NICTC> include file were identified as
~possible candidates for memory savings. Among them, they used
nearly three-fourths of the total memory requlred to run
scenarios. This factor results after the savings from changes to
the subroutine HISTASGN were removed. Another reason for looking
at these arrays was that they are non-linear functions of the
problem size. The arrays are CTCMAPS, CTCRPT, and CTCRPTWT. The
array CTCMAPS was used to store the map addresses associated with
a Constructed Track Complex (CTC) and was dimensioned to (MXCTC by
MXMAP) where MXCTC equals MXMAP. Arrays CTCRPT and CTCRPTWT were
used to store the report addresses and report weights associated
with each CTC. These two arrays were each dimensioned (MXCTC by
MXRPT) . Array CTCMAPS was used only in subroutine CONVRT and
arrays CTCRPT and CTCRPTWT were used only in subroutine CTCOUT.
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Subroutine CONVRT was only used to transfer data between common
blocks for output to the network interface. Since Sandia is not
connected to the network this entire subroutine was not needed.
However, for the present the subroutine has been left intact
except that the array CTCMAPS references have been commented out.
The function of the CTCMAPS array could have been maintained by
using two arrays of dimension MXMAP where one array held the
number of maps associated with each CTC and the other held the map
addresses. This is analogous to the way in which the BIN and
NUMMAPS arrays were modified for the new version of HISTASGN and
this kind of change would result in memory use that would be
linear rather than as a squared function of the number of maps.

The arrays CTCRPT and CTCRPTWT were used in a loop over CTCs in
subroutine CTCOUT. These arrays were not used outside this loop
and they were constructed inside the loop before they were used at
each snapshot for each CTC. In the modified version of CTCOUT
these arrays have been made one-dimensional with the dimension
MXRPT. As was described above for the array CTCMAPS, these arrays
were part of the network interface and as such are not applicable
at Sandia. However, it would be possible to retain the full
capability by the addition of a one~dimensional array dimensioned
to MXCTC. This array would contain the number of reports
associated with each CTC and the report addresses and report
weights would be stored linearly within the CTCRPT and CTCRPTWT
arrays respectively.

The modifications to subroutines CTCOUT and CONVRT have resulted
in large savings in memory requirements. For example, in the case
of the test scenario with 8 PBVs - 9 RV/D resulted in a savings of
more than 600,000 CRAY words of memory (equivalent of approx.
2,400,000 bytes or 2.4 Mbytes).

Altogether the changes to HISTASGN, CTCOUT, and CONVRT have
reduced the total memory requirements for the test scenario used
in the examples above from more than 1,600,000 CRAY words to about
300,000 words. In equivalent values this means a reduction from
6.4 Mbytes to 1.2 Mbytes. The major significance of this work is
that these changes have resulted in the memory needed bg the TRC
code, based on problem size, to be improved from an O(n<) problem
to one of 0O(n).

4.2 Linked History File Changes

The linked history file was recognized by the group very early
into the project as a potential problem area in the parallel-
ization effort. The original version of TRC made heavy use of
this file causing frequent input/output operations to take place.
On a parallel system such as the NCUBE, this would have meant
frequent I/O operations from code where I/O0 is indirect at best.
The running characteristics of the code were analyzed on a
machine, such as
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the CRAY, where I/O0 normally wasn’t thought to be a particular
problem. It was discovered that a very significant fraction of
total run time goes to reading and writing the linked history
file.

A linked history file entry was written from the subroutine
FILLSCN each time a map is updated by incorporating information
from a sensor report. The linked history file was read in four
subroutines. In HISTASGN and CTCASGN the information examined was
the scan number and the report number for the last relevant entry,
i.e. the scan number was checked to determine if the linked
history file was from the current scan. In CTCOUT and SNAPSHOT
the information being retrieved after multiple reads was the map
id at the previous snapshot, and the report numbers used to update
the map at each scan since the last snapshot. :

For the subroutines HISTASGN and CTCASGN use of the linked history
file was very easy to replace. Changes to these subroutines to
eliminate these file accesses were to add the sensor report number
used to update this map to the integer map array IMAP and a
variable that indicated the first linked history index in a scan
was added to a common block. For this, changes were made to the.
include files <MAP> and <GENRL> and to the subroutines FILLSCN,
CTAMAIN, HISTASGN, and CTCASGN.

The use of the linked history file in the subroutines SNAPSHOT and
CTCOUT was to produce detailed ASCII printout of what happened.
Elimination of the linked history file preserved this function
exactly. An existing error (refer to Section 4.4 on Errors and
Appendix A) was corrected in SNAPSHOT where a map address (index
into the array IMAP) was being substituted for a map id (unique
map index). Two approaches were devised for retaining the
functionality of the linked history file. The first approach is
currently installed in the TRC. The second approach has been
presented as an alternative. Using memory to replace the linked
history file increased the total memory requirements very
slightly. For example, with 8 PBVs -~ 9 RV/Ds, the extra memory
was 3600 CRAY words (SUN equivalent of 14,400 bytes). In light of
the great amount of run time dedicated to the linked history file,
this was viewed as an excellent trade-off.

There were already arrays indexed by the variable RPTAD (report
address) that contained report number and scan number for all
reports since the last snapshot. The subroutine CTCOUT already
made limited use of the information in these arrays. The new :
approach creates an array, for each map, that contains the map id
at the last snapshot (actually the address of the map) and the
count or reports and the list of report addresses that fully
describe the report history since the last snapshot.
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An alternative approach was to create a common block that
contained the information formerly written to the linked history
file for a period of one snapshot. This information was stored in
memory and written over for each snapshot. 1In a sense, this
became a circular buffer. The information was accessed by record
number in the same manner that the linked history file was read.

A separate array was used to store the map id from the previous
snapshot as this was the only information needed from a previous
snapshot. Functionality of the subroutines FILLSCN, CTCOUT, and
SNAPSHOT was not changed by these modifications.

4.3 Sensor Resolution and Sensor Noise Considerations

Clearly sensor resolution is not infinite. The sensor simulation
package (SPACEGEN) employed in the current work on the TRC takes
this into account by adding random noise to the sensor readings.
Each sensor report is adjusted by adding a random number
multiplied by a resolution amplitude.

For the data sets that were shared for common use by this group,
the noise amplitude was set to 0.0057 which has been interpreted
by Sandia to be 104 radians. This noise level (resolution level)
was such that definite problems with tracking and correlating were
observed. 1In a meeting of the group at Los Alamos in June, it was
noted that the TRC code had about 3.3 times as many resolved
tracks as there were objects providing the simulated sensor data
(actual count known from the scenario generator). The sensor
report scatter was great enough that each object was being tracked
as if it were 3 or 4 objects by grouping together only those
sensor reports that had similar noise components. This
significantly affects the memory requirements and other execution
characteristics for any given test case.

In several examples where attempts were made to follow the
tracking of a single object step by step, the apparent situation
was that the new location of the object was fixed by the current
sensor without significant dependence on any of the previous-
reports., This created a curious situation. The Kalman filter
process was to incorporate each additional sensor report into a
cumulative least square fitting of the data. It was also found
that generating lower noise sensor data significantly improved the
result. ‘

The problem was found to arise from the following situation. 1In
the Kalman filter process, the weighting for the current report
was determined to be inversely proportional to the variance
assigned to it. That is, the smaller the variance, the greater
the assigned weight. From a measurement standpoint, the variance
cannot simply be determined from an isolated observation.
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Estimating the variance can be accomplished in at least three
ways: (1) simply keep track of the differences between where the
object was expected to be locatedkand where the sensor reports
indicate, (2) consider an input parameter in the initialization
file so that just as a sensor noise level is postulated in
generating the sensor data, so also is the variance
correspondlngly postulated for processing the sensor data, and {3)
hard-code an "approprlate" number into the code to represent the
variance. :

The TRC program used option (3) describe above. But the value for
the variance hard-coded into subroutine PPRSCAN corresponded more
closely to an infrared sensor error of 1073 radians than 104
radians. Hence, compared to the data belng processed, the current
sensor report was over-weighted by an order of magnitude.
 Significantly better tracking was observed when the hard-coded
variance number was increased to more closely match the simulated
sensor data. The possible alternative options listed prev1ously
suggest an additional area of analy51s to assess which option is
most reasonable.

Finally, the supplied data sets for the TRC code had the cluster
splitting threshold set to 1000 meters. With this level of sensor
report uncertainty, splitting occurred very frequently. But
typically the map split off was traveling on a path that would not
encounter another sensor report.

4.4 Error Corrections to the TRC Code

Although Sandia was not specifically looklng for errors in the TRC
implementation, during the course of moving the code among the
SUN, NCUBE, and CRAY computers, several errors have become known
and have been corrected. All of these errors are listed in
Appendix A. One error in particular will be elaborated at this
point since it was, in fact, a domlnatlng factor in dr1v1ng memory
requirements to be extremely large in the original version of the
TRC. ~

The subroutine GENNEAR seemed to require large amounts of memory
for the table of distances between maps with the same report
history. The space required was N(N+1)/2 where N was the number
of maps in the history bin. Examination of the contents of the
large bins turned up an error. The bins with a large number of
entries were those for which no report had been received. The
error was that this list was being accumulated over clusters. In
the subroutine HISTASGN the array PNUMMAPS was used to store the
number of maps associated with each history id where the history
id was the index to the PNUMMAPS array. Each time HISTASGN was
called, the PNUMMAPS array was zeroed. However, it was found that
PNUMMAPS (0) also needed to be set to zero for each cluster to
prevent maps with a prev1ous hlstory id of zero from belng
accumulated over all clusters.
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This same type of problem can occur for non-zero history ids when
cluster splitting takes place. When a cluster is split, the maps
associated with the original cluster are split between the two new
clusters. However, the history id associated with these maps is
left unchanged. This can result in clusters that have duplicate
history ids and the wrong number of maps stored in the PNUMMAPS
array for a history id. As described above, to ensure that this
cannot happen, the PNUMMAPS array must be zeroced for each cluster
before the map data are assembled in HISTASGN.

From this discovery arose a secondary question. For map merging
purposes, should those maps for which no report has been received
be treated as a bin even within a cluster, or, in fact, should the
maps simply be ignored by GENNEAR? In Sandia’s version, GENNEAR
~does ignore those maps. :

4.5 Modifications to the SPACEGEN Codes

Sandia also envisioned moving the programs that generated the
object tracks and sensor reports for the TRC to the NCUBE. Two
effects would result from this plan. 1In the short term, data
could simply be generated on the same machine as runs the TRC and
files would not have to be transmitted over communication lines
between different machines. 1In the long term, parallelization of
the sensor report inputs to the TRC would move the execution of
TRC closer to a real-time environment.

Since large data files were to be generated for larger scenarios
it was prudent to also transport the generator code to the CRAY.
Execution time and memory space again became significant factors
in simply getting the data files created.

The generic reference to SPACEGEN actually involved several
programs: SPACETRACKS, SPACEGEN, SPACEGENTOSDI, and a sort routine
that might (or might not) be available via the hosting computer
system. SPACEGEN generated sensor reports by taking the track
truth files from SPACETRACKS and applying each sensor platform
‘data to all tracks in sequence. The resultant file was then
sorted with sensor platform report scan time steps as the primary
sort key. For moderate and large data files, this sorting process
can use large amounts of disk space and be time consuming. Plans
have been made to modify SPACEGEN to place the time loop outside
the sensor and target track loops so that final sorting is no
longer required. This approach also more attunes the data
generation to an actual threat scenario.

The programs SPACEGEN and SPACEGENTOSDI were used to generate
sensor data reports in a suitable form for input to the TRC code.
Both programs used the ground truth target track data generated by
the SPACETRACKS program and they must store these data in array
space.
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4.5.1 Memory Utilization Changes

The target track data were stored in nine, 2-dimensional arrays
kthat were dimensioned by the maximum number of targets and the
‘maximum number of orbit legs for a target. (An orbit leqg is
defined to be a portion of a trajectory that conforms to a
specific orbit equatlon. Sllghtly different orbits may be used by
a boost vehicle at various times during flight.) In practice,
the PBV type targets have 2N + 1 orbits legs, where N = number of
Reentry Vehicles (RV) + number of Decoys (D). However, the RVs
and Ds have only one orbit leg each. The 2-dimensional array
storage scheme was based on the PBV number of legs and would
therefore result in a substantial waste of memory. This problem
only became apparent when generating TRC sensor input for the 20
PBV - 99 RV/D scenario. This problem required 3,700,000 words of
CRAY memory (SUN approximate equivalent of between 14.8 and 29.6
Mbytes of memory, depending on the prec131on desired).

The sandia modified versions of both SPACEGEN and SPACEGENTOSDI
use the same nine arrays to store the groundtruth target track
data, but the arrays are only one dimensional. Space is allocated
to these arrays based upon the sum of the maximum number of PBVs
multiplied by twice the number of RVs and Ds per PBV and the
maximum number of targets (PBVs + RVs + Ds). The number of orbit
legs for each target was already being stored. 1In the modified
version, this value was used to increment the index for these nine
arrays. These changes resulted in a reduction from 3,700,000 CRAY
words (SUN approx. equivalent of 14.8 Mbytes) to 120,000 words
(SUN approx. equlvalent of 0.5 Mbytes) for the 20PBV -~ 99 RVs/Ds
problen.

4.5.2 Error Corrections

A few minor errors were also found in the SPACEGEN suite of
programs and those are described fully at the end of Appendix A.
One error was noted in the SPACETRACKS subroutine QROOT which
computes the zeroes of particular quartic equations. 1In this
subroutine, complex variables are equivalenced to real variables.
Within the computer memory this can cause difficulties since the
imaginary part is equivalenced quite possibly with whatever
resides in the second word of storage. Although all FORTRAN
compilers permitted this to pass, execution of statements
involving these complex variables could~have~generated spurious
results. As it turned out, the variables were used in a
comparison that apparently had zeroes already in memory and there
were no side effects. :

5.0 Continuing Work on Parallelization

Sandia continues to move toward a massively parallel tracker/
correlator. All of the work up to this point on the serial
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version was actually geared to the parallel version and, in a
sense, can be considered a part of the parallelization effort.
Certainly, from the study and analysis performed, the team has a
much clearer view of the areas of concern associated with this
problem.

5.1 TRC on the NCUBE

The SPACEGEN suite of codes has been moved to the NCUBE and
changes to the code are underway to permit the code to execute on
the node processors. Several possible node arrangements are
being examined for the TRC to execute on the node processors.
Under the current NCUBE configuration at Sandia, a heterogeneous
super node may be necessary to handle the TRC requirements. On
the other hand, sufficient progress has been made on the serial
version to suggest that perhaps the most critical segments of code
can execute on single nodes for problems near 100 objects. This
has positive implications for very large problems, e.g., 100,000
objects over 1024 processors. To achieve parallel load balance
there will be several control nodes in communication with worker
nodes for preliminary processing and cluster assignments. This
form of heterogeneous processing has been utilized in another
Sandia project [Gustafson 89].

All of these considerations are affected somewhat by the fact that
Sandia plans to install a new NCUBE2 Hypercube that will contain
1024 nodes with node processors executing at nearly 10 times the
rate of the current processors. Each node processor will have an
associated 4 Mbytes of memory rather than the current 0.5 Mbytes.

5.2 Progress on Other Algorithms and Codes

Sandia was also requested to examine two other algorithms. Copies
of the relevant codes have been obtained and work has been started
to analyze these algorithms. The first algorithm was from
Alphatech and was written in FORTRAN to run on the shared memory
Alliant parallel computer. For this midcourse algorithm
implementation, Alphatech has been running small test problems
using facilities at Argonne National Laboratory. The second
algorithm was from MITRE in Bedford, Massachusetts. The algorithm
was written in Pascal and runs on a DEC VAX computer. Primarily a
boost-phase tracker, this algorithm has no spawning of new objects
from the boosters. The test data sets for this algorithm are
fairly small with time starting at launch and extending for
approximately 50 seconds after the launch.

Both algorithms are being studied to learn more about tracking and
correlation of many objects. Reports and papers from other groups
(Oliver E. Drummond of Hughes Aircraft [Drummond 88b] , Keh-Ping
Dunn of MIT Lincoln Laboratory [Dunn 89], etc.) and proceedings
from the SDI Panels on Tracking [SDIO 89] are also under review.
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APPENDIX A

Details of Error Corrections for the TRC

In the subroutine INITPBV, the file name LUTTYO was misspelled
with a "zero" instead of the letter “oh". The SUN simply
opens and writes to a disk file. Both NCUBE and CRAY FORTRAN
abort the program when executing the statement.

In the subroutine CTCOUT, the index, RPTAD, used in a print
loop was not defined within the loop, making the printout

meaningless.

(Add " RPTAD = CTCRPT(ICTC,IRPT) " within the loop 560)

The subroutine TEMPTURE contained a zero divide when both
radiation values were zero. When executing on the SUN the
problem was ignored. On the NCUBE and the CRAY, the program
aborted. Setting the temperature to zero was not an
acceptable solution because it would be used as a divisor
later. The problem was resolved by setting the temperature to
1.0. o

The predicted impact latitiude was wrong. In the subroutine
IMPACT, it appeared that the calculation was changed from
using arctan(y,x) to using z/r without a corresponding change
to use arccos.

(Use " POS(1) = 90.0 - RTOD * DACOS( P3(3)/DLEN ) " )

The predicted impact longitude and time went bad late in
tracking. In the subroutine IMPACT, the polar coordinate
description of the current position of the object forced the
sine of EO to be positive, i.e., the value becomes wrong as
the object moved from the 2nd to the 3rd quadrant.
(Change " ESINEO = DSQRT( ESINEO ) "
to " ESINEO = DSIGN ( DSQRT( ESINEO ), RRDOT ) *®
and add to the definition of EO
" IF ( EO .LT. 0 ) EO = EO + TWOPT " )

In the subroutine HANDOFF, the variable SCNTIM was not updated
from the initial definition. If later Post Boost Vehicles
(PBVs) were scheduled for more than the threshold value,
HNDOFFDELTA, later, those PBVs were never processed.

(A possible fix to this problem is to add the <NISCAN AUX>
include file to the subroutine CTAMAIN and set SCNTIM to the
value contained in the variable TSCAN containing the current
scan time after the call to the subroutine NETINT.)

When the option was selected to list the sensor~repdrts from
the subroutine LOADSCAN, the azimuth and the elevation were
reversed between heading labels and values displayed.
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10.

11.

The display line sent to the terminal for each scan:

WSCAN xxx at Time xXxXX.X%X X IR Reports processed in
XXX. XXX seconds”

is inconsistent and confusing. The scan number and the
seconds used for this output are for the scan just completed,

but the time and the number and type of reports are for the
scan just beginning.

GENNEAR seemed to require a lot of space for the table of
distances between maps with the same report history. The
space required is n(n+1)/2 where n is the number of maps in
the history bin. The bins with a large number of entries
were those for which no report had been recieved. The error
was that this list was being accumulated over clusters. In
the subroutine, HISTASGN, the array element PNUMMAPS(0) must
be zeroed at the beginning of processing for each cluster.

All PNUMMAPS entries must be cleared between clusters. The
same type of problem described in Item 9 can occur for non-
zero history-ids when cluster splitting occurs. When a
cluster is split the maps associated with the original cluster
are split between the two new clusters. However, the history
id associated with these maps was left unchanged. This can
result in clusters that have duplicate history ids and the
wrong number of maps stored in the PNUMMAPS array for a
history id. Clearing the PNUMMAPS array ensures this cannot
happen.

Inconsistent (wrong) dimensions in the group of routines
SCENEPRUNE, DUPSCENEOUT, COPYDATAOUT. The array IDXSAME (aka.
DUPSCN) was dimensioned NMAXSCENE in one place and NMAXLIST
the others. What the dimension should be was not clear.
Consistency is desirable, however. SCENEPRUNE is simply the
driver, where the storage is defined. DUPSCENEOUT looks at
all the scenes and constructs a list of duplicates.
COPYDATAOUT looks at the list of duplicates and copies all of
the scenes that are NOT in the duplicate list. A duplicate is
a scene that is the same as an earlier scene. The issue is
confused by the fact that while all this work is required to
mark a scene as a duplicate, the list being constructed in
DUPSCENEOUT includes all duplicates when there are multiple
duplications. That is, the duplicate list can be larger than
the scene list. 1In the Sandia version, DUPSCENEOUT has been
changed to eliminate the unnecessary accumulation of multiple
duplicates. This allows one to know how to dimension the
array IDXSAME. The change to the code in DUPSCENEOUT is to
simply jump out to label 10, after an entry is added to the
"SAME" list. Hence an adequate dimension is NMAXSCENE.
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1z2.

i3.

14.

15.

1s6.

17.

Additional changes were made to DUPSCENEOUT which enhance

‘clarity, but do not affect the output from the subroutine.

Change the DO statements for loops 10 and 30 so that the loop
range covers only "I" greater than "J", removing the if test

for that condition. Also move the loop 40 inside the test on
number of maps, so it is not executed when the result is not

needed.

The subroutine SNAPSHOT uses the variable MAPID when it wants
the unigue map identifier for a map that is time-continued.
However, in SNAPSHOT and some other places, MAPID is the map
address (map index). What should be used is the value from
IMAP (LMAPIDENT,MAPID) . This occurs in SNAPSHOT (depending
upon version used) 32 code lines after the linked hlstory file
is read. ‘

In HISTASGN, format 6060 defines a single output line of 630
characters. This is unacceptable in CRAY and NCUBE FORTRAN.
(Change "FORMAT (10(13X, 10I5))" to FORMAT (13X,10I5)" ).

In CHLINV, an external reference to a non-existant subroutine,

PRTERR, was deleted. Also in GENNEAR, an external reference
to a non-existant file, GETEXT, was deleted. ‘

In QROOT of SPACETRACKS, the equivalence of complex variables
to real variables was eliminated. Comparisons are made using
the actual real variables.

Subroutine PROCPBV read in the RV/D sequénce data improperly
in SPACETRACKS. This data was part of the session data and

"was read in separately for each session within the data for a

PBV. The error occurred because the character string

~positions that the characters (R or D) were read into were not

incremented for multiple sessions. This resulted in tracks
that were output with incorrect identifiers. The problem was
corrected by using a new character variable to read the data
and then moving the data into the appropriate string position
in the original character string variable.
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