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ABSTRACT
We summarize efforts to extend the theory of poroelastic-
ity to semilinear and nonlinear elastic response, to partially
saturated pores, to inhomogeneous solid frame materials, and
to viscous losses due to localized flow effects. The prospects
for a comprehensive theory of wave propagation in partially
saturated porous media are also discussed.
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1.1 Introduction

A limited theory of poroelasticity was formulated by [Biot
1956a; 1956b]. He assumed linear, isotropic elastic response on
the macroscopic scale for porous media composed of homoge-
neous frame materials and fully saturated pores. The principal
attenuation mechnism of this theory was viscous attenuation
due to shear induced during macroscopic flow of the single-
phase fluid filling the pores. Even with these simplifications,
the resulting theory has remained a scientific oddity for over
30 years: (a) It is relatively hard to analyze the predictions of
this theory [Burridge and Vargas 1979; Berryman 1985; Nor-
ris 1985; Bonnet 1987] because it involves two coupled wave
cquations forming a system somewhat more complex than the
equations of viscoelasticity {Chin 1980] — which are nontrivial
to analyze themselves! (b) The most startling predictions of
the theory — such as the existence of a slow bulk compressional



wave [Biot 1956a] or slow surface [Feng and Johnson 1983] and
extensional waves [Berryman 1983] — are often very hard to
verify in the laboratory [Plona 1980; Berryman 1980a; Salin
and Schon 1981; Lakes, Yoon, and Katz 1983; van der Grin-
ten, van Dongen, and van der Kogel 1985; Lakes, Yoon, and
Katz 1986; Mayes, Nagy, Adler, Bonner, and Streit 1986; Dunn
1986; Dunn 1987|. (¢) Even the validity of the form of the
equations and the physical interpretation of many of the coef-
ficients in the equations remained unclear for 25 years [Biot and
Willis 1957; Geertsma and Smit 1961; Berryman 1980a; Brown
1980; Johnson 1980; Burridge and Keller 1981; Johnson, Plona,
Scala, Pasierb, and Kojima 1982], and in some cases are still
in dispute today [Berryman 1986; Berryman 1988]. It is there-
fore understandable that significant progress towards eliminat-
ing the many simplifying assumptions contained in the original
work had not been made prior to the 1980s. Indeed, why com-
plicate a subject which is already so difficult?

The reason of course is “realism.” For many of the geo-
physical applications of most interest, the pertinent geological
materials are anisotropic and very heterogeneous, composed
of multiple solid frame materials and multiple pore fluids. In
some applications, the exciting waves are of large amplitude
so that linear equations of motion are simply inadequate to
describe the phenomena we want to study. Often we argue
that the elementary theory should suffice to explain the gross
behavior of such materials, justifying our approximations with
the comparative simplicity and elegance of the resulting theory.
If the theory is really successful at explaining the preponder-
ance of experimental data, then of course our arguments are
justified and it would appear to be of only academic interest
to expend such effort as would be required to construct a truly
comprehensive theory. On the other hand, the theory to date
has been unable to explain some of the most elementary ex-
perimental results for waves in geological materials, so it is
essential to produce a sophisticated theory capable of treating
most of the complications encountered in practice.

Various extensions of the elementary theory have been in-
troduced. Biot himself had generalized the theory to include



anisotropic effects for dynamic problems [Biot 1962a] and non-
linear effects for quasistatic problems [Biot 1973]. When the
saturating fluid is air [Sabatier, Bass, Bolen, Attenborough,
and Sastry 1986; Attenborough 1987], connections between
Biot’s theory and earlier work on rigid frame porous media
[Zwikker and Kosten 1949] have also been explored. Various
other authors have treated the generalization to partial satura-
tion at very low frequencies in an intuitively appealing manner
[Domenico 1974; Brown and Korringa 1975; Domenico 1977;
Murphy 1982; Murphy 1984], but without having any clear
procedure for generalizing their results for higher frequencies.
The form of the equations for the elastic coefficients when the
solid frame material is composed of two or more constituents
has been known for some time [Brown and Korringa 1975], but
no method for obtaining the required data has been suggested.

One goal of our research is a comprehensive theory of dy-
namic poroelasticity. Irreversible pore collapse [Schatz 1976] is
important in some of our applications, but we have neglected
such effects initially in order to construct what is otherwise
a quite general Lagrangian variational principle?* for nonlin-
ear and semilinear (reversible) deformations of dry and fluid
saturated porous solids. This approach is very closely related
to an Eulerian variational formulation of [Drumheller and Bed-
ford 1980] for flow of complex mixtures of fluids and solids. We
have shown that our theory reduces correctly to Biot’s equa-
tions of poroelasticity [Biot 1956a] for small amplitude wave
propagation and that it also reduces correctly to Biot’s theory
of nonlinear and semilinear rheology for porous solids [Biot
1973] when the deformations are sufficiently slow. The result-
ing theory is a nontrivial generalization of Biot’s ideas includ-
ing explicit equations of motion for changes of solid and fluid
density. Furthermore, if we assume that capillary pressure ef-
fects may be neglected, then the linear theory also shows that
calculations on problems with only partially saturated pores
may be reduced to computations of the same level of diffi-
culty as those for fully saturated pores [Berryman and Thigpen
1985b]. Appropriate boundary conditions have been found to



guarantee that solutions of these equations are unique [Dere-
siewica and Skalak 1963; Berryman and Thigpen 1985b]. We
expect the general theory to give a very good account of the
behavior of wet porous materials during elastic deformations.

In the presentation that follows, we will concentrate on
three extensions of the theory of poroelasticity that tend to
make the theory more realistic for applications to rocks. First,
we show how the theory may be generalized to partially satu-
rated porous media. Then, we use an effective medium method
to find estimates of the coefficients in the equations when the
frame material is inhomogeneous. Finally, we analyze the at-
tenuation of the fast compressional wave in heterogeneous me-
dia and show that the physically correct damping coeflicient
depends not on the global permeability, but on a simple spatial
average of the local permeability.

1.2 Wave Equations for Multiple Fluid Saturation

When the mechanical and thermodynamical processes set
in motion by a deformation are reversible, an energy func-
tional which includes all the important effects involved in the
motion may be constructed. Equations of motion may then
be found by an application of Hamilton’s principle. Such vari-
ational methods based on energy functionals are well-known
in continuum mechanics [Bedford 1985]. Thus, the only really
new feature in the present context is the degree of complexity;
porous earth may be composed of many types of solid con-
stituents and the pore space may be filled with a mixture of
water and air. Some irreversible effects may also be included
in the variational method (e.g., losses of energy due to drag be-
tween constituents) when they may be analyzed in terms of a
dissipation functional. Other irreversible effects such as those
associated with collapse of the pore space lie outside the scope
of the traditional variational approaches; the forms normally
used for the energy functionals are quadratic with constant
coeflicients in the linear problems or simply positive definite
polynomials with constant coefficients for nonlinear problems.
During pore collapse, the usual assumptions about the form
of the energy functionals are violated, so the usefulness of the
variational method is questionable. However, if we restrict dis-



cussion to linear processes, the variational methods are entirely
adequate.

Using these variational methods, [Berryman and Thigpen
1985b] have shown that the general equations of motion for
linear elastic wave propagation through a porous medium con-
taining both liquid and gas (or, more generally, any two fluids)
in the pores are given by

0B g

Aeyohie) = — 11
©0FO = " gp0) ~ T (L)

piayiiayi + D Plamyolii(syi — figy)s)

=gl
i (1.2)

OF,
- (s) .
- [p(s)O 6“(;):’,;’ + A¢¢(a)06i1] g + d(s)i + p(a)Ob(a)t"

and

Peryoiicni + D P0Gy = o)) = Bro(Xe) i + diyi + Pimobeayi (13)
(S

where vy = gor l and ¢ = g,1, or s. The generalization to multiple
pore fluids is immediate: let the index y range over all fluids in
the pores, and the index ¢ range over all the fluids and the solid
frame. The displacements are uyy. The local densities (mass
per unit volume of constituent) are p). The partial densities
(mass per unit total volume) are p) = é()p). The internal
energies of these immiscible constituents are E). The induced
mass coefficients are p(,y. The body forces are given by b,
and the drag forces by dy). Thigpen and Berryman [1985]
have shown that the drag forces may be written in the form
diy)i = — Yo¢ Diye) (t(e)i —t(s)i) Where Diy¢) is a symmetric, positive
semidefinite matrix whose matrix elements satisfy 3°_ D(,¢) =0
for ¢ = g or I. For the present discussion, we will ignore the
effects of contact line motion that can be an added source of
dissipation in partially saturated porous media [Miksis 1988].

One major simplification that occurs in the equations for
partial saturation follows from (1.1) and the approximation



Ay = 0. We find that

where p, is the pressure for constituent ¢. Eq. (1.4) implies
that all the pressures are equal — which is consistent with an
assumption that capillary pressure effects are negligible for
acoustics (also see [Santos, Corberd, and Douglas 1990; Santos,
Douglas, Corberd, and Lovera 1990]). Without this approxi-
mation, the number of compressional waves through a porous
medium will generally be one more than the number of fluids
in its pores. This result is however dependent on the spa-
tial arrangement of the fluids. If one fluid dominates and the
others are mixed into the dominate one, then only two com-
pressional waves are expected. When (1.4) is valid, only two
compressional waves will be found regardless of the spatial ar-
rangement of the fluids.

The subscript may subsequently be dropped from p. If
2e(e)ij = )i + Weji, then the first two strain invariants are
defined by Iy = eqeyis and Iigy2 = %[I(zf)l —e(f)ije(g)j,']‘ The changes
in density are defined by Ap) = p(ey — pero- In terms of these
invariants, the standard definitions of the internal energies are
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for y =¢,1. Applying (1.4) to (1.5) and (1.6), we find
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The coefficients in (1.5) have been shown elsewhere [Berryman
and Thigpen 1985c] to be related to known quantities: a =
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d = [B(5)0/P(s)0)* K(5)/ (0 — ¢(sy0) Where o =1 - K*/K(,). The bulk
and shear moduli of the drained porous solid frame are K*
and p*. The bulk modulus of the (assumed) single constituent
composing the microscopically homogeneous frame is K. If
the solid frame is composed of two or more constituents, then
these formulas must be modified. The coefficient h,, is related
to the bulk modulus K,) of the y-th fluid constituent by
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Now we define the linearized increment of fluid content for
partial saturation to be
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If only one fluid phase is present, (1.9) reduces to the exact
result obtained previously [Berryman and Thigpen 1985c]. If
more than one fluid phase is present, then we observe that by
defining an effective total fluid density change according to
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with ¢(sy0 = 3, é(yy0 and we find that (1.9) reduces again to

the exact result. Furthermore, applying (1.8), it is straight
forward to show that (1.4) implies that
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for ¥ = g or I. Substituting (1.11) into both sides of (1.10)
shows that the effective bulk modulus of the multiphase fluid
is given by
Sy _ 5 $ene 119
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which is just the harmonic mean or Reuss average of the con-
stituents’ bulk moduli.



To check the consistency of our definition of ¢, we can show
easily that

¢= Zd’(’y)O[I(s)l — Iyl (1.13)
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If we define the average displacement of a fluid relative to the
solid frame by
Weyyi = eyyoltry = wsil (1.14)

for v = g or I and the total relative fluid displacement by

wy :Zw(_,);, (1.15)
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then (1.13) becomes
C = Wiy, (116)

Eq. (1.16) reduces to the standard definition for full saturation
when only one fluid saturates the pore space and is a natural
generalization of this definition for partially saturated materi-
als.

The total relative fluid displacement w; defined by (1.15)
is important in partial saturation problems not only because
of the analogy just developed with the fully saturated prob-
lems, but also for convenience in applying boundary condi-
tions in practical problems. Berryman and Thigpen [1985D]
have shown previously that uniqueness of the solutions to the
equations (1.1)-(1.3) demands the specification of either p or
the normal component of this same w; on the boundaries of
the porous material. Therefore, it proves most convenient to
combine these equations so that ) and w; are the dependent
variables. We will subsequently drop the subscript (s) on u;
since no confusion will arise and also define e = I(,);. In addi-
tion, the zero subscripts on density and volume fraction may
also be dropped in the remainder of the analysis.

To determine the relations among p,¢, and e, substitute
(1.11) and the first equation of (1.4) into (1.8) to eliminate
Apey for all ¢, Using known identities and rearranging terms,
we find easily that

p=MC¢-Ce (1.17)



where the coefficients C and M are given by

C ={[(c = bg) — 20/ Koy + by / K () + by/ Kyl o} ', (1.18)

and
M=Cls (1.19)

with
o= 1—1{*/]((,). (1.20)

Substituting (1.12) into (1.18) gives

C = {[(c = b0/ K(s) + b0/ K(p)) o}~ (1.21)

which is the standard result for single-phase saturation [Gass-

mann 1951].

Next we suppose the body forces vanish and sum the equa-
tions (1.2) and (1.3) to obtain
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where p = 37, p(). Dividing (1.3) through by ¢;), and rearrang-
ing terms, we find
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In (1.23) and (1.24), «(, is the electrical tortuosity of the pore
space occupied only by the gas, while a( is the electrical tor-
tuosity of the pore space occupied only by the liquid. Intro-
ducing a Fourier time dependence of the form ezp(—iwt) into
(1.23) and (1.24), combining, rearranging terms, and keeping

the same names for the transformed and untransformed vari-
ables, we have
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where
08 = @mpe0 + Dy /@ (1.26)

and
115(27)01’(.7) = P(gh)o- (1,27)

In (1.26), y#yso7=1or g as y = g or I. Inverting the matrix
in (1.25) and summing the results gives
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where
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Using the expressions for w,); from (1.25) again, we find
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where p; has been eliminated in the second step of (1.30) using
(1.28).

The final form of these equations is found by substituting
(1.30) into (1.22), using (1.18) in the result and also in (1.28),

and finally rearranging terms. The equations then take the
familiar form

V2@ + (H — p)Ve — CV¢ + w(pyutl + pun @) = 0, (1.31)
CVe — MV¢ 4 v (pwu il + pww®) = 0, (1.32)

where the inertial coefficients are given by
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The coefficient H is given by
* 4 *
H=K"+ IH +0oC (1.36)

while ¢ and M are given by (1.18) and (1.19). Thus, we find
the remarkable result that the equations of motion for partial
saturation and for full saturation are the same — the only differ-
ence being that the inertial coefficients are more complicated
when the porous solid is only partially saturated.

1.3 Biot’s Theory of Poroelasticity

Now we will change notation somewhat and consider two
porous media (i.e., host and inclusion) each of whose connected
pore space is saturated with a single-phase viscous fluid. The
fraction of the total volume occupied by the fluid is the void
volume fraction or porosity ¢, which is assumed to be uniform
within a constituent but which may vary between the the host
and inclusion. The bulk modulus and density of the fluid are
K; and p;, respectively, in the host. The bulk and shear mod-
uli of the drained porous frame for the host are K and u. For
now we assume the frame of the host is composed of a single
constituent whose bulk and shear moduli and density are K,p,,
Um, and p,,. Corresponding parameters for the inclusion will be
distinguished by adding a prime superscript. The frame mod-
uli may be measured directly {Stoll and Bryan 1970; Stoll 1977]
or they may be estimated using one of the many methods de-
veloped to estimate elastic constants of composites [Berryman

1980b).

For long-wavelength disturbances (A > kh, where b is a typi-
cal pore size) propagating through such a porous medium, we
define average values of the (local) displacements in the solid
and also in the saturating fluid. The average displacement vec-
tor for the solid frame is @ while that for the pore fluids is ;.



The average displacement of the fluid relative to the frame is
@ = ¢(i; — ). For small strains, the frame dilatation is

e=e;tey+e, =V -1, (1.37)

where e,,e,,e, are the Cartesian strain components. Similarly,
the average fluid dilatation is

ef:V~11’f (138)

(e; also includes flow terms as well as dilatation) and the in-
crement of fluid content is defined by

(=V -0 =¢(e—ej) (1.39)

With these definitions, Biot [1956a; 1956b; 1962b] shows that
the strain-energy functional for an isotropic, linear medium is a
quadratic function of the strain invariants [Love 1944] I) = ¢, I,
and of ¢ having the form

2F = He? — 2CeC + M(? — 4ul,, (1.40)

where
1
12_—_eye,+ezem+exey—z(73+73+7f), (1.41)

and 7;,7y,7: are the shear strain components. Our earlier def-
initions (1.5) and (1.6) for partial saturation are completely
consistent [Bedford and Drumbheller 1979; Berryman and Thig-
pen 1985¢c] with these definitions.

With time dependence of the form ezp(—iwt), the Fourier

transformed version of the coupled wave equations of poroe-
lasticity in the presence of dissipation take the form

pV2i@ 4+ (H — p)Ve — CV¢ +w?(pi + pyd) = 0, (1.42)
CVe — MV{ + w?(psil + qi) = 0, (1.43)
where
p=2¢ps+(1-¢)pm (1.44)
and

g = psla/é + iF(€)n/rw). (1.45)



The kinematic viscosity of the.liquid is 5, the permeability of
the porous frame is &, and the dynamic viscosity factor [Biot
1956b] is given (for our present choice of sign for the frequency
dependence) by

F() = 76T(©)/[1+2T(©)ie], (1.46)
where bt -
rio - St asm
and
£ = (Wh?/n)?. (1.48)

The functions ber(¢) and bei(¢) are the real and imaginary parts
of the Kelvin function. The dynamic parameter h is a char-
acteristic length generally associated with (and comparable in
magnitude to) the steady-flow hydraulic radius. The electri-
cal tortuosity « is a pure number related to the frame inertia
which has been measured [Johnson, Plona, Scala, Pasierb, and
Kojima 1982] for porous glass bead samples and has also been
estimated theoretically [Berryman 1980a; Brown 1980]. The
electrical tortuosity o« and the fluid flow tortuosity r are re-
lated by o = 72 = ¢F, where F is the electrical formation factor.

The coefficients H,C, and M are given by [Gassmann 1951;
Brown and Korringa 1975]

H:K+§p+oC, (1.49)
C={l(c—~ ¢)/Km +¢/K;]/o} ", (1.50)
M=C/o, (1.51)
where
c=1-K/Kpn. (1.52)

The wave equations (1.42) and (1.43) decouple into Helm-
holtz equations for three modes of propagation if we note that
the displacements # and « can be decomposed as

GT=VY+VxfB w=VY+Vxy, (1.53)



where T,y are scalar potentials and 4,y are vector potentials.
Substituting (1.53) into Biot’s equations (1.42) and (1.43), we
find they are satisfied if two pairs of equations hold:

(V2+k)F =0, {=-T,5, (1.54)
where I', = p;/q and
(V2 +k3)Ag = 0. (1.55)

In this notation, the subscripts +,—, and s refer respectively to
the fast and slow compressional waves and the shear wave.
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Figure 1.1. A spherical inclusion in a porous medium could be
the result of local variations in fluid content, grain composition,
porosity, permeability, etc.

The wave vectors in (1.54) and (1.55) are defined by

k2 =w(p—psT, ) (1.56)



and
k2 = (2/2A)(b+ £ F [(b— /) + 4ed]?), (1.57)

where
b=pM —p;C, c=psM —qC, d=p;H — pC, f=qH —p;C, (1.58)

with
A=MH-C? (1.59)

The linear combination of scalar potentials has been chosen to

be

where
Ty = d/[(k+A/w?)® — 8] = [(kx A /W) = fl/c. (1.61)

With the identification (1.61), the decoupling is complete.

Since (1.54) and (1.55) are valid for any choice of coordi-
nate system, they may be applied to boundary value problems
with arbitrary symmetry. Biot’s theory has therefore been
applied to the scattering of elastic waves from a spherical in-
homogeneity [Berryman 1985]. The results of that calculation
will be summarized in the next section.

1.4 Scattering Theory for a Spherical Inclusion

The full analysis of scattering from a spherical inhomo-
geneity in a fluid-saturated porous medium is quite tedious.
Fortunately, much of this work has already been done [Berry-
man 1985] and we may therefore merely quote the pertinent
results here.

Let the spherical inhomogeneity (see Figure 1.1) have ra-
dius a. For the present, we will place no restrictions on the
properties of the inhomogeneous region. Thus the frame bulk
and shear moduli, the grain bulk modulus, the density, the
porosity, and the permeability of a solid inclusion may all be
different from those of the host. Furthermore, the bulk mod-
ulus, density, and viscosity of the fluid in an inhomogeneous
region may also all be different from those of the host fluid.
Suppose now that a plane fast compressional wave is generated



at a free surface far from the inclusion. Then, if the incident
fast compressional wave has the form

ey

= 2;4-0— expi(kyz —wt), (1.62)
lk+

the radial component of the scattered compressional wave con-
tains both fast and slow parts in the far field and is given by
uyr = (iky) " Yeapi(kyr — wt)/kyr[BSY
— B{" cos0 — B{Y (3 cos 20 + 1) /4] (1.63)
~ (k=) tezpi(k_r — wt)/k_r[BS™)
~ B cos 0 — B{)(3cos 20 + 1)/4).

Then, with the definitions k4 = kia and «, = k,a and with no
restrictions on the materials, we find that

(=) _ ik2 Ao B ), 4
Bo "= 3T, T + 3 [(C MT_)(K+ 30)
7 7 4 ’ ’ c’ C
—(C' = M'T_)(K + zp) +(C = MT)(C' ~ M r_)(ﬂ—, - —M)}
(1.64)
and
3 -1 ~ / ’
B(()+) — K+A0 [K - K+ (C _ Mr—)(c /M _ C/M)] + (K+/K_)3Bg_).

3 K'+3p
(1.65)
Expansions of the other coefficients in the small parameter
¢ = C/K have been given in [Berryman 1985]. However, for the
present application, only the first two coefficients are needed
and these happen to be the only ones known exactly at present.
Of course, the full scattered wave also contains transverse com-
ponents of the compressional wave, relative fluid/solid dis-
placement, and mode converted shear waves. However, the
scattering coefficients for these contributions are linearly de-
pendent on the the coeflicients in (1.63) and therefore contain
no new information. It is sufficient then to base our discussion
on the expression (1.63).
As an elementary check on our analysis, we should first
consider the limit in which the porosity ¢ vanishes. Then the



fluid effects disappear from the equations and only the first
line of (1.63) survives. Furthermore, it is not difficult to check
[Berryman 1985] that the coefficients BSY) for n =0, 1,2 reduce
to the well-known results for scattering from a spherical elastic
inclusion in an infinite elastic medium [Berryman 1980b]. For
example,

B{Y = —ik3 Ao(K' — K)/(3K' + 4p) (1.66)

in this limit as expected.

These results have a multitude of potential uses. One
straightforward application is the calculation of energy losses
from elastic wave scattering by randomly distributed particles.
A second important application is to use these results as the
basis for an effective medium approximation for the effective
constants of complex porous media. The second application is
the one we will address in the next section.

1.5 Microscopic Heterogeneity

As we have noted previously, the equations of poroelas-
ticity have several significant limitations. For example, these
equations were derived with an explicit long-wavelength (low-
frequency) assumption and also with strong implicit assump-
tions of homogeneity and isotropy on the macroscopic scale.
Another restriction assumes that the pore fluid is uniform and
that it fully saturates the pore space. For the present applica-
tion, we will assume that a single fluid saturates all the pore
space for host as well as inclusion and the scattering is caused
by microscopic heterogeneity in the solid properties.

Before deriving our main results, consider the problem of
the porous frame without a saturating fluid (or with a highly
compressible saturating gas). Then, since we take C = M =
ps = 0 in this limit, each term of Eq. (50) vanishes identically
and the fluid dependent terms of Eq. (49) also vanish, leav-
ing only the terms for the elastic behavior of the porous frame
remaining. Since no slow wave can propagate under these cir-
cumstances, the second line of Eq. (1.63) disappears and only
the fast wave terms contribute to the scattering. This limit
is formally equivalent to the problem of elastic wave scatter-



ing from a spherical inclusion which has been treated in detail
previously (see [Berryman 1980b] and other references therein).
The effective medium approximation requires the weighted av-
erage of the single-scattering results to vanish. This method
simulates the physical requirement that the forward scatter-
ing should vanish at infinity if the impedance of the “effective
medium” has been well matched to that of the composite. The
resulting condition is that the volume weighted average of each
of the B{P)s for n = 0 — 2 must vanish. Using the convention
that the effective constants for the composite porous medium
are distinguished by an asterisk, the formulas for the effective
bulk (K*) and shear(y*) moduli for the drained porous frame
of a microscopically heterogeneous medium are

L :< ! > (1.67)

K*+2pr 7 \K(Z)+ 3p*
and . X
= :<u(i)+p> (1.68)
where
F = (u/6)(9K +8u)/(K + 2u). (1.69)

The spatial(#) average is denoted by (). The remaining con-
stant to be determined is the effective density which is just
the average density [Berryman 1985]. Eq. (1.67) follows eas-
ily from the volume average of (1.66), while Eq. (1.68) follows
similarly from the volume average of Bf. Note that the equa-
tions for K* and p* are coupled and therefore must be solved
iteratively (i.e., self-consistently). Although the form of the
equations (1.67) and (1.68) is identical to that obtained for
elastic composites, the results can be quite different since the
local constants K(#) and p(7) appearing in the formulas are
frame moduli of the constituent spheres of drained porous ma-
terial, not (necessarily) the moduli of the individual material
grains. Of course, since the formula reduces correctly in the
absence of porosity to the corresponding result for the purely
elastic limit, the user of Eqgs. (1.67) and (1.68) has some dis-
cretion about conceptually lumping grains together to form a
porous frame or treating them as isolated elastic inclusions.



Now we will restrict discussion to the very low frequency
limit where
Iy = H/C (1.70)

and
. =0. (1.71)

With these restrictions, the relevant scattering coefficients re-
duce to

- ik3CA
B = 3HM’(—§I rm etk + 3u+00) .
_C'(K + gﬂ +00)],
and
R s e U R
The resulting conditions on the effective constants are
(CLE@D+ 3+ D0 - COIE 4 3 47Ty (7
M(Z)[K(Z) + 5p]
and o . 3 .
<M)_111'(;) Ef(gfff” %)~ (1.75)

Recall that the averages in (1.74) and (1.75), as elsewhere in
this paper, refer to spatial averages over (possibly) porous con-
stituents of the overall porous aggregate. The limitations on
the assumed geometry of the resulting aggregate have been
discussed previously [Berryman 1986b]. Note that (1.74) and
(1.75) depend on the effective medium frame moduli K* and
p* determined by (1.67) and (1.68). The new constants deter-
mined by (1.74) and (1.75) are C* and ¢*. The expressions for
C* and ¢* are coupled as written but may be uncoupled after
some algebra. The final expressions for these constants are

oc2() — (a*)2
¢ = U*/[<Mtf)> +< K((f))Jr(g”Z >] (176)




and

ot = <K(5(i’)§w >/<K(5)1+ §“*>, (1.77)

Notice that both constants are determined explicitly by the
formulas, in contrast to the frame moduli K* and p* which are
determined only implicitly by (67) and (68). The author has
also shown [Berryman 1986b] that (1.76) and (1.77) are com-
pletely consistent with all known constraints [Gassmann 1951;
Brown and Korringa 1975] on the form of these coefficients.

The same idea used to derive (1.76) and (1.77) was also
used to show [Berryman and Thigpen 1985a| that the speed of
waves propagating through a mixture of liquid and gas in the
low frequency limit is given by Wood’s formula [Wood 1957]
as expected [Brown and Korringa 1975; Murphy 1984].

1.6 Local-flow Biot Theory

A convincing demonstration has been given [Mochizuki
1982] that, if we assume global fluid-flow effects dominate the
viscous dissipation, Biot’s theory of poroelasticity cannot ex-
plain the observed magnitude of wave attenuation in partially
saturated rocks. Since the same theory explains the wave
speeds quite well, it is reasonable to suppose that a small
change in the theory may be adequate to repair this flaw. Many
possible explanations are possible of course, but within the
context of Biot’s theory the simplest postulate is to suppose
that local ~ rather than global — fluid-flow effects dominate the
dissipation [Berryman 1986a; Berryman 1988]. We will distin-
guish two related issues in this section which are summarized
in the following questions: (a) Does the physics of wave prop-
agation require that the value of the permeability « appearing
in Biot’s equations should be that for global flow or for lo-
cal flow? Then, if we can show that the value should be that
for local flow, (b) does this change in the interpretation make
enough difference so that the theory can explain the correct
magnitude for the attenuation?

To address the first question, we explore the consequences
of assuming that Biot’s theory should be applied at the local



flow level rather than at the global flow level. This assessment
is easily done by examining the dispersion relations. When
the Fourier time dependence is e~*! with angular frequency
w sufficiently low, Biot’s theory predicts [see Eq. (1.57)] the
dispersion relations for the fast (+) and slow (-) compressional
modes in any homogeneous porous material to be

2 2
P
kzz-w—l-*-zw—Ll——vz v2)? 1.78
o Sl oL (1= /03] 179)
and
2 . _wqoH
B (1.79)
where
vi = H/p,v3=Clps,9 = psn/x. (1.80)

The fraction of the total volume occupied by the fluid is the
void volume fraction or porosity ¢, which is assumed to be
uniform. The bulk modulus and density of the fluid are K; and
p;. The bulk and shear moduli of the drained porous frame are
K and p. For simplicity we assume the frame is composed of
a single constituent whose bulk and shear moduli and density
are Ko, pm, and p,,. Then the coeflicients H,C, and M are given
by (1.49)-(1.52). The overall density is

p=dps+ (1= ¢)pm. (1.81)

The kinematic viscosity of the fluid is n and the permeability
of the porous frame is «.
Defining the quality factor for the fast compressional wave
Q+ by
2
W
K==

(1+3/Q4], (1.82)

Ut
we find [Berryman, Thigpen, and Chin 1988] that Q. is given
by
1/Q4 =w%’-(1—vg/vi)2, (1.83)

Since 1/Q, is proportional to the permeability, the attenuation
is therefore greatest in regions of high permeability. Thus, we
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Figure 1.2. Illustration of a simple experiment to prove that
the attenuation of the fast wave depends on the local — not
the global ~ value of permeability x. A fast wave incident
normal to the impermeable partitions will experience a small
but finite attenuation even though the global permeability in
this direction vanishes identically.

might say that the regions of high permeability control the
attenuation.

In the very low frequency limit, the slow compressional
mode is known to reduce to Darcy flow with slowly changing
magnitude and direction as the driving potential gradient os-
cillates sinusoidally [Johnson, Koplik, and Dashen 1987]. Now
consider a layered porous material (whose constants depend



only on depth z) with constituents having identical physical
constants except for the permeability x which varies widely
from layer to layer but which has a constant value x, within
the n-th layer (lying in the range z,.1 < z < z, with z, = 0).
Thus, the permeability is a piece-wise constant function of -.
The thickness of the n-th layer is given by I, = z, — z,—1. If
we impose a potential gradient along the z-direction in such a
layered material, it is well-known that the effective permeabil-
ity for fluid flow is found by taking the harmonic mean of the
constituent permeabilities, ¢.e.,

1 I
= - —_ 1.84
l/fo LG:nn’ ( 8)

where the total sample length L is given by the sum of the
layer thicknesses

L=l (1.85)

From (1.84), we can conclude that the regions of lowest per-
meability dominate the effective overall permeability for fluid
flow through a porous layered medium. Thus, we might say
that the regions of low permeability control the fluid flow — at
least for this special choice of geometry.

The apparent attenuation of a fast compressional mode at
normal incidence on such a structure has two distinct compo-
nents: (a) Reflection and mode conversion at layer interfaces
will have a tendency to degrade the fast wave, but this effect
will be quite small at low frequencies for the model structure
we are considering. (b) The attenuation within a layer is de-
termined by the quality factor for that layer, as shown by Eq.
(1.82). Assuming the attenuation is small enough, we may ap-
proximate (1.82) within any layer by k4(z) = (1 +4/2Q4+(2)],
where the functions k4(z) and @, (z) take the piece-wise con-
stant values appropriate for the depth argument 2. Neglecting
the small effects of reflection and mode conversion, the behav-
ior of the fast compressional wave at normal incidence is then
easily seen to be given by

w 1

d
o) “20+(2)

A+cxp[i/dzk+(z)—iwt] ~ Ayezplimz—iwl— ], (1.86)
Vs
0



where A, is the amplitude of the wave at z = 0. In writing
(1.86), we have used the piece-wise constant property of the
functions. The integral in the exponent is given by

r

/ z ! = wl — 222 [dzk(z
/d 20,() 20" o/v+) /d (=) (1.87)

0 0

At the z = L boundary of the material, we have

L
/dz;c(z) =3 lnkn. (1.88)
0 n

If the layering is periodic with period much less than either z
or L or if it is statistically homogeneous on this length scale,
then we may approximate the integral in the exponent of (1.86)
using (1.87) and

/dzrc(z) ~ KqZ, (1.89)
0

where the effective permeability for attenuation measurements
is given by the mean

1
Ka :z;h‘mn. (1.90)

It is well-known that the mean is always greater than or equal
to the harmonic mean of any function; thus,

Ky < Kq. (1.91)

The answer to our first question is that the physics of wave
propagation dictates that local-flow effects must dominate the
attenuation of the fast compressional wave. The necessity of
this conclusion is nicely illustrated in Figure 1.2. Suppose that
a fast compressional wave is incident on a layered material with
alternating permeable and impermeable layers. If the imper-
meable layers are very thin and have an acoustic impedance
closely matching that of the permeable layers, their presence



has a negligible effect on the propagating fast wave. The vis-
cous attenuation of the fast wave occurs solely in the permeable
layers and magnitude of that attenuation is completely deter-
mined by the permeability of these layers. By contrast, the
global permeability of this material in the direction normal to
the layering vanishes identically. If this zero value were used
in our predictions, the magnitude of the attenuation would be
grossly under estimated. Although this choice of geometry is
extreme, it clearly shows that errors in estimates of attenu-
ation will arise if the value of permeability for global flow is
used.

Now, can the theory predict the correct magnitude for
the attenuation even with this change in the interpretation
of the permeability factor? To predict the wave attenuation
from measurements of permeability, we need some indepen-
dent means of measuring the local permeability distribution.
Normal laboratory flow experiments will not suffice, because
they necessarily measure the global permeability. One promis-
ing method of estimating the local permeability uses image
processing techniques to measure pertinent statistical proper-
ties of rock topology from pictures of cross sections [Berryman
and Blair 1986; Berryman and Blair 1987]. This approach is
still under development and we will not attempt to describe it
in detail here.

Another approach, which is ultimately much less satisfac-
tory than the image processing method but much easier to use
at present, is to suppose that we can obtain reasonable esti-
mates of the local permeability «; from the known values of
the global permeability kg, the tortuosity r = (¢#)%, and the
porosity 6. To do so requires some formula, so we will use
a form of the Kozeny-Carman relation derived by Walsh and
Brace [1984]. For tubes of arbitrary ellipsoidal (major and mi-
nor axes a,b) cross-section the effective permeability of straight
sections of such tubes is given by & = (7/44)[a®b3/(a? + b?)]. The
porosity for an ellipsoidal tube is ¢ = mab/A and the specific sur-
face area is well approximated by s ~ 27[(a?+2)/2]3 /A. Then, a
Kozeny-Carman relation satisfied by «, ¢, and s can be shown



to be .
k=18 (192)

for the effective permeability of a single tube oriented along the
pressure gradient. If the tube is at an angle 6 to this gradient,
then Walsh and Brace [1984] show that

K=

a (1.93)

5272’

22| -

where r = 1/cosf. If we suppose that (1.92) and (1.93) are fairly
representative of the material of interest, then (1.92) describes
the maximum local permeability x; and (1.93) the effective
global permeability k. We then conclude that

k1 = T2kg = ¢Fkg. (1.94)

The tortuosity r has been measured for many sandstones; the
values for samples studied by [Simmons, Wilkens, Caruso,
Wissler, and Miller 1982; Simmons, Wilkens, Caruso, Wissler,
and Miller 1983] lie in the range 1.5 < r < 5, with most values
r ~ 2. To obtain estimates of attenuation close to experiment
[Murphy 1982], we need to increase the value of permeability
used in Mochizuki’s calculations [Mochizuki 1982] by a factor
of 72 ~ 10. This requirement implies a tortuosity of r ~ 3, which
is clearly well within the established experimental bounds. A
more detailed analysis leading to the same qualitative conclu-
sions has also been presented recently [Berryman, Thigpen,
and Chin 1988]. These arguments provide strong evidence for
the plausibility of a local-flow explanation of the observed dis-
crepancies. However, a completely satisfying demonstration
must await the collection of the required data on local-flow
permeability.

One unfortunate consequence of the observation that local
permeability controls attenuation is that measured attenuation
in wet rocks cannot be used as a diagnostic of the global fluid-
flow permeability. Nevertheless, since the mean of the local
permeabilities will always be greater than the true fluid-flow
permeability regardless of the actual spatial distribution of the



constituent «’s, the effective permeability obtained from atten-
uation measurements can be used to provide an upper bound
on the desired global permeability.

1.7 Discussion

What then are the prospects for a comprehensive theory of
poroelasticity? It appears likely at this point that we will soon
have a completely satisfactory linear theory of bulk waves in-
cluding effects of partial saturation and inhomogeneous frame
materials. A satisfactory nonlinear theory of bulk waves in-
cluding effects of fracture, plastic low, and pore collapse is at
a more elementary stage, but is still likely to be achieved in the
1990s. At present it appears that the problems most likely to
cause real trouble are those involving surface waves rather than
the bulk waves. Surface waves depend critically on the nature
of the equations of motion near interfaces. Using the standard
boundary conditions of poroelasticity [Deresiewicz and Skalak
1963; Berryman and Thigpen 1985b], it has been shown that
a slow surface wave [Feng and Johnson 1983] or slow exten-
sional wave [Berryman 1983] is expected only when a closed-
pore boundary condition applies at the porous surface. Yet,
the experimental data to date seem to show that such slow
surface waves [Mayes, Nagy, Adler, Bonner, and Streit 1986]
do in fact propagate when the open-pore boundary condition
applies. It is possible that the presence of a thin damage re-
gion close to the surface has a major effect on the conclusions
of the theory regarding the propagation of the surface waves.
However, it could also be that these experiments are pointing
out still another subtle deficiency of the equations we use to
describe wave propagation in porous media.
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