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ABSTRACT

We summarize efforts to extend the theory of poroelastic- 
ity to semilinear and nonlinear elastic response, to partially 
saturated pores, to inhomogeneous solid frame materials, and 
to viscous losses due to localized flow effects. The prospects 
for a comprehensive theory of wave propagation in partially 
saturated porous media are also discussed.
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1.1 Introduction
A limited theory of poroelasticity was formulated by [Biot 

1956a; 1956b], He assumed linear, isotropic elastic response on 
the macroscopic scale for porous media composed of homoge­
neous frame materials and fully saturated pores. The principal 
attenuation mechanism of this theory was viscous attenuation 
due to shear induced during macroscopic flow of the single­
phase fluid filling the pores. Even with these simplifications, 
the resulting theory has remained a scientific oddity for over 
30 years: (a) It is relatively hard to analyze the predictions of 
this theory [Burridge and Vargas 1979; Berryman 1985; Nor­
ris 1985; Bonnet 1987] because it involves two coupled wave 
equations forming a system somewhat more complex than the 
equations of viscoelasticity [Chin 1980] - which are nontrivial 
to analyze themselves! (b) The most startling predictions of 
the theory - such as the existence of a slow bulk compressional



wave [Biot 1956a] or slow surface [Feng and Johnson 1983] and 
extensional waves [Berryman 1983] - are often very hard to 
verify in the laboratory [Fiona 1980; Berryman 1980a; Salin 
and Schon 1981; Lakes, Yoon, and Katz 1983; van der Grin- 
ten, van Dongen, and van der Kogel 1985; Lakes, Yoon, and 
Katz 1986; Mayes, Nagy, Adler, Bonner, and Streit 1986; Dunn 
1986; Dunn 1987]. (c) Even the validity of the form of the 
equations and the physical interpretation of many of the coef­
ficients in the equations remained unclear for 25 years [Biot and 
Willis 1957; Geertsma and Smit 1961; Berryman 1980a; Brown 
1980; Johnson 1980; Burridge and Keller 1981; Johnson, Fiona, 
Scala, Pasierb, and Kojima 1982], and in some cases are still 
in dispute today [Berryman 1986; Berryman 1988]. It is there­
fore understandable that significant progress towards eliminat­
ing the many simplifying assumptions contained in the original 
work had not been made prior to the 1980s. Indeed, why com­
plicate a subject which is already so difficult?

The reason of course is “realism.” For many of the geo­
physical applications of most interest, the pertinent geological 
materials are anisotropic and very heterogeneous, composed 
of multiple solid frame materials and multiple pore fluids. In 
some applications, the exciting waves are of large amplitude 
so that linear equations of motion are simply inadequate to 
describe the phenomena we want to study. Often we argue 
that the elementary theory should suffice to explain the gross 
behavior of such materials, justifying our approximations with 
the comparative simplicity and elegance of the resulting theory. 
If the theory is really successful at explaining the preponder­
ance of experimental data, then of course our arguments are 
justified and it would appear to be of only academic interest 
to expend such effort as would be required to construct a truly 
comprehensive theory. On the other hand, the theory to date 
has been unable to explain some of the most elementary ex­
perimental results for waves in geological materials, so it is 
essential to produce a sophisticated theory capable of treating 
most of the complications encountered in practice.

Various extensions of the elementary theory have been in­
troduced. Biot himself had generalized the theory to include



anisotropic effects for dynamic problems [Biot 1962a] and non­
linear effects for quasistatic problems [Biot 1973]. When the 
saturating fluid is air [Sabatier, Bass, Bolen, Attenborough, 
and Sastry 1986; Attenborough 1987], connections between 
Biot’s theory and earlier work on rigid frame porous media 
[Zwikker and Kosten 1949] have also been explored. Various 
other authors have treated the generalization to partial satura­
tion at very low frequencies in an intuitively appealing manner 
[Domenico 1974; Brown and Korringa 1975; Domenico 1977; 
Murphy 1982; Murphy 1984], but without having any clear 
procedure for generalizing their results for higher frequencies. 
The form of the equations for the elastic coefficients when the 
solid frame material is composed of two or more constituents 
has been known for some time [Brown and Korringa 1975], but 
no method for obtaining the required data has been suggested.

One goal of our research is a comprehensive theory of dy­
namic poroelasticity. Irreversible pore collapse [Schatz 1976] is 
important in some of our applications, but we have neglected 
such effects initially in order to construct what is otherwise 
a quite general Lagrangian variational principle24 for nonlin­
ear and semilinear (reversible) deformations of dry and fluid 
saturated porous solids. This approach is very closely related 
to an Eulerian variational formulation of [Drumheller and Bed­
ford 1980] for flow of complex mixtures of fluids and solids. We 
have shown that our theory reduces correctly to Biot’s equa­
tions of poroelasticity [Biot 1956a] for small amplitude wave 
propagation and that it also reduces correctly to Biot’s theory 
of nonlinear and semilinear rheology for porous solids [Biot 
1973] when the deformations are sufficiently slow. The result­
ing theory is a nontrivial generalization of Biot’s ideas includ­
ing explicit equations of motion for changes of solid and fluid 
density. Furthermore, if we assume that capillary pressure ef­
fects may be neglected, then the linear theory also shows that 
calculations on problems with only partially saturated pores 
may be reduced to computations of the same level of diffi­
culty as those for fully saturated pores [Berryman and Thigpen 
1985b]. Appropriate boundary conditions have been found to



guarantee that solutions of these equations are unique [Dere- 
siewica and Skalak 1963; Berryman and Thigpen 1985b]. We 
expect the general theory to give a very good account of the 
behavior of wet porous materials during elastic deformations.

In the presentation that follows, we will concentrate on 
three extensions of the theory of poroelasticity that tend to 
make the theory more realistic for applications to rocks. First, 
we show how the theory may be generalized to partially satu­
rated porous media. Then, we use an effective medium method 
to find estimates of the coefficients in the equations when the 
frame material is inhomogeneous. Finally, we analyze the at­
tenuation of the fast compressional wave in heterogeneous me­
dia and show that the physically correct damping coefficient 
depends not on the global permeability, but on a simple spatial 
average of the local permeability.

1.2 Wave Equations for Multiple Fluid Saturation
When the mechanical and thermodynamical processes set 

in motion by a deformation are reversible, an energy func­
tional which includes all the important effects involved in the 
motion may be constructed. Equations of motion may then 
be found by an application of Hamilton’s principle. Such vari­
ational methods based on energy functionals are well-known 
in continuum mechanics [Bedford 1985]. Thus, the only really 
new feature in the present context is the degree of complexity; 
porous earth may be composed of many types of solid con­
stituents and the pore space may be filled with a mixture of 
water and air. Some irreversible effects may also be included 
in the variational method (e.g., losses of energy due to drag be­
tween constituents) when they may be analyzed in terms of a 
dissipation functional. Other irreversible effects such as those 
associated with collapse of the pore space lie outside the scope 
of the traditional variational approaches; the forms normally 
used for the energy functionals are quadratic with constant 
coefficients in the linear problems or simply positive definite 
polynomials with constant coefficients for nonlinear problems. 
During pore collapse, the usual assumptions about the form 
of the energy functionals are violated, so the usefulness of the 
variational method is questionable. However, if we restrict dis­



cussion to linear processes, the variational methods are entirely 
adequate.

Using these variational methods, [Berryman and Thigpen 
1985b] have shown that the general equations of motion for 
linear elastic wave propagation through a porous medium con­
taining both liquid and gas (or, more generally, any two fluids) 
in the pores are given by

' w dp«) 4)o
(i.i)

P(s)0^(s)i + 'y ] /,(«7)o(W(«)t ^(7)»)
y=g,i

= [P(i)0^u^ 1 + j + d(s)i + P(s)ob(s)i,

(1.2)

and

P(7)0^(7)i + ^ y/?(7f)o(^(7)« — = ^l(7)o('^0),* T ^(7)* P(7)0^(7)» (b3)

where -y = g or l and £ = g,l, or s. The generalization to multiple 
pore fluids is immediate: let the index j range over all fluids in 
the pores, and the index £ range over all the fluids and the solid 
frame. The displacements are U(q,-. The local densities (mass 
per unit volume of constituent) are The partial densities 
(mass per unit total volume) are p^) = <^^p^y The internal 
energies of these immiscible constituents are E^y The induced 
mass coefficients are p(Sy)o- The body forces are given by 
and the drag forces by d^y. Thigpen and Berryman [1985] 
have shown that the drag forces may be written in the form 
d(yy = '“(*)») where is a symmetric, positive
semidefinite matrix whose matrix elements satisfy Yly D{iO - 0 
for £ = g or l. For the present discussion, we will ignore the 
effects of contact line motion that can be an added source of 
dissipation in partially saturated porous media [Miksis 1988].

One major simplification that occurs in the equations for 
partial saturation follows from (1.1) and the approximation



(1.4)

A^o 0. We find that

where is the pressure for constituent Eq. (1.4) implies 
that all the pressures are equal - which is consistent with an 
assumption that capillary pressure effects are negligible for 
acoustics (also see [Santos, Corbero, and Douglas 1990; Santos, 
Douglas, Corbero, and Lovera 1990]). Without this approxi­
mation, the number of compressional waves through a porous 
medium will generally be one more than the number of fluids 
in its pores. This result is however dependent on the spa­
tial arrangement of the fluids. If one fluid dominates and the 
others are mixed into the dominate one, then only two com­
pressional waves are expected. When (1.4) is valid, only two 
compressional waves will be found regardless of the spatial ar­
rangement of the fluids.

The subscript may subsequently be dropped from p. If 
2e(|),j = u^ij + then the first two strain invariants are
defined by Z(01 = e(0« and I{02 = i[/(201-c(0yc(eWi]. The changes 
in density axe defined by - P(()o- In terms of these
invariants, the standard definitions of the internal energies are

(1.5)

P(j)0E(l) = -h(y)Apfy) (1.6)

for 7 = g,l. Applying (1.4) to (1.5) and (1.6), we find

P = ^-(cl{s)1 + dAp(s))
<?(s)0

(1.7)

The coefficients in (1.5) have been shown elsewhere [Berryman 
and Thigpen 1985c] to be related to known quantities: a =



<!>{,)qK*/{(T - <£(/)o) + §A1*, b= -2/i*, c = <f>(s)0K*/p(s)0((T - 4>U)oh and 
d = [^(.)o/P(*)o]2^'(.)/(<t - ^(/)o) where o- = 1 - K*/K(s). The bulk 
and shear moduli of the drained porous solid frame are K* 
and p*. The bulk modulus of the (assumed) single constituent 
composing the microscopically homogeneous frame is K^. If 
the solid frame is composed of two or more constituents, then 
these formulas must be modified. The coefficient is related 
to the bulk modulus of the 7-th fluid constituent by

fc<7> = (1.8)

Now we define the linearized increment of fluid content for 
partial saturation to be

CS/(,)1+E^A%, (1.9)

If only one fluid phase is present, (1.9) reduces to the exact 
result obtained previously [Berryman and Thigpen 1985c]. If 
more than one fluid phase is present, then we observe that by 
defining an effective total fluid density change according to

^(/)o
P(/)°

AP(f) =
ha)o
P(s)o AP{9) +

^(f)o
P{l)Q AP(0 (1.10)

with <f>y)0 = <£(7)o and we find that (1.9) reduces again to
the exact result. Furthermore, applying (1.8), it is straight 
forward to show that (1.4) implies that

AP(i) _ P 
P(-y)o K(rt)

(1.11)

for j = g or l. Substituting (1.11) into both sides of (1.10) 
shows that the effective bulk modulus of the multiphase fluid 
is given by

^(/)o _ ^(7)0
K(J) ~ y K( 7)

(1.12)

which is just the harmonic mean or Reuss average of the con­
stituents’ bulk moduli.



To check the consistency of our definition of we can show 
easily that

C=£^)°['<0l-'(7)l]- (113)
7

If we define the average displacement of a fluid relative to the 
solid frame by

w(y)i =: <^(7)o[u(7)i — 'u(»)t'] (fd^)

for j = g or l and the total relative fluid displacement by

wi = ^rw(y)i, (1.15)
7

then (1.13) becomes
C = . (1.16)

Eq. (1.16) reduces to the standard definition for full saturation 
when only one fluid saturates the pore space and is a natural 
generalization of this definition for partially saturated materi­
als.

The total relative fluid displacement Wi defined by (1.15) 
is important in partial saturation problems not only because 
of the analogy just developed with the fully saturated prob­
lems, but also for convenience in applying boundary condi­
tions in practical problems. Berryman and Thigpen [1985b] 
have shown previously that uniqueness of the solutions to the 
equations (1.1)-(1.3) demands the specification of either p or 
the normal component of this same to,- on the boundaries of 
the porous material. Therefore, it proves most convenient to 
combine these equations so that U(sy and w, are the dependent 
variables. We will subsequently drop the subscript (s) on it,- 
since no confusion will arise and also define e = I^. In addi­
tion, the zero subscripts on density and volume fraction may 
also be dropped in the remainder of the analysis.

To determine the relations among p,(, and e, substitute 
(1.11) and the first equation of (1.4) into (1.8) to eliminate 
Ap(£) for all £. Using known identities and rearranging terms, 
we find easily that

p = MC-Ce (1.17)



where the coefficients C and M are given by

C ~ {[(a ~ ^(g) ~ <f>(l))/K(s) + + , (1-18)

and
M = C/<r (1.19)

with
tr=l-K*/Ki,). (1.20)

Substituting (1.12) into (1.18) gives

C = {[(a - <f>(f)0)/K(3) + ^a/K^/a}-1 (1.21)

which is the standard result for single-phase saturation [Gass- 
mann 1951].

Next we suppose the body forces vanish and sum the equa­
tions (1.2) and (1.3) to obtain

r djEV,) .
pui + pig)W(g)i + p(ou»(/)i = ~ tfijlj (L22)

where p — Dividing (1.3) through by </>(f)o and rearrang­
ing terms, we find

a(g)P(g) ••
+ 4(g) ^ +

(99)

(9)

P(gl) ••
Wi9)i ~ -l2W0)i = ~P 1*

%)
(1.23)

and

P(l)Ui + —7----W(l)i +<P(l)
D

<i>
(/o .
2W{l)i - 
(0

ryig) ••
= -p.'--

<P(1)
(1.24)

In (1.23) and (1.24), is the electrical tortuosity of the pore 
space occupied only by the gas, while op) is the electrical tor­
tuosity of the pore space occupied only by the liquid. Intro­
ducing a Fourier time dependence of the form exp(-iujt) into 
(1.23) and (1.24), combining, rearranging terms, and keeping 
the same names for the transformed and untransformed vari­
ables, we have

_w2 ( q(g) -r(,) \ f W(g)i \ = +u;2p(ff)ouA
V -r(/) «(/) J V w(t)i J \ ~P,i + W2p(,)oUi J (1.25)



where
^(7)09(7) — a(7)^(7)0 + *-^(77)/W (1.26)

and
^(7)0r(7) — P(gt)0- (1.27)

In (1.26), 7 ^ 7 so 7 r: / or 5 as 7 = 3 or /. Inverting the matrix 
in (1.25) and summing the results gives

-w2[9(s)?(0-r(s)r(0H' = -(s(s) + s(0)P,»' + u'2Kj;)/)(0 + s(0^(ff)]ui (L28)

where
S(7) — 9(7) "t r(7)- (1.29)

Using the expressions for from (1.25) again, we find

^2p(y)w(y)i = {[P(g)(m + r(a)) + + r(o)]P,*'
7

- + (r(s) + r0))P(g)P(0

+ 9(<7)^(/)]u*}/a;2[^)9(0 - r(#)r(')] (L3°)
 P(g)^O) + r(g)) + PoMs) + r(o)

— , w*
S(9) + S0)

_ (P(9) ~ PQ))2 ^

S(9) + S(0

where pti has been eliminated in the second step of (1.30) using 
(1.28). ’

The final form of these equations is found by substituting 
(1.30) into (1.22), using (1.18) in the result and also in (1.28), 
and finally rearranging terms. The equations then take the 
familiar form

pV2u+ (H - p)Ve - CVC + w2(/3Uu'U + Puww) — 0, (1.31)

CVe - MV< + u>2(pwuu + pwww) = 0, 

where the inertial coefficients are given by

Puu
(Pin) - Pm)2

*(<) + *(0

(1.32)

(1.33)



P(g)Hl) + P0)s(9) . (r(0 ~ r(g))(^(g)-P(0)— . — Puw "T
s(s) + s(0 s(9) + s(0

(1.34)

and
Pww —

q(g)q(i) - r(g)r(<) 

s(j?) + s(0
The coefficient H is given by

H = K* + +aC
O

(1.35)

(1.36)

while C and M are given by (1.18) and (1.19). Thus, we find 
the remarkable result that the equations of motion for partial 
saturation and for full saturation are the same - the only differ­
ence being that the inertial coefficients are more complicated 
when the porous solid is only partially saturated.

1.3 Biot’s Theory of Poroelasticity
Now we will change notation somewhat and consider two 

porous media (i.e., host and inclusion) each of whose connected 
pore space is saturated with a single-phase viscous fluid. The 
fraction of the total volume occupied by the fluid is the void 
volume fraction or porosity which is assumed to be uniform 
within a constituent but which may vary between the the host 
and inclusion. The bulk modulus and density of the fluid are 
K/ and p/, respectively, in the host. The bulk and shear mod­
uli of the drained porous frame for the host are K and p. For 
now we assume the frame of the host is composed of a single 
constituent whose bulk and shear moduli and density are A'm, 
pm, and pm. Corresponding parameters for the inclusion will be 
distinguished by adding a prime superscript. The frame mod­
uli may be measured directly [Stoll and Bryan 1970; Stoll 1977] 
or they may be estimated using one of the many methods de­
veloped to estimate elastic constants of composites [Berryman 
1980b].

For long-wavelength disturbances (A > h, where ft is a typi­
cal pore size) propagating through such a porous medium, we 
define average values of the (local) displacements in the solid 
and also in the saturating fluid. The average displacement vec­
tor for the solid frame is u while that for the pore fluids is uj.



The average displacement of the fluid relative to the frame is 
w — <f>(uf - u). For small strains, the frame dilatation is

e = ex + ey + ez = V ■ u, (1-37)

where ex,ey,ez are the Cartesian strain components. Similarly, 
the average fluid dilatation is

ef=V-uf (1.38)

(ey also includes flow terms as well as dilatation) and the in­
crement of fluid content is defined by

C = V-«; = ^(c-c/). (1.39)

With these definitions, Biot [1956a; 1956b; 1962b] shows that 
the strain-energy functional for an isotropic, linear medium is a 
quadratic function of the strain invariants [Love 1944] L = e, /2, 
and of C having the form

2E = He2 - 2Ce( + M<2 - 4/i J2, (1.40)

where
h = eyez + ezex exey - -(7x + 7y + 7?). (1-41)

and 7*,7^,7* are the shear strain components. Onr earlier def­
initions (1.5) and (1.6) for partial saturation are completely 
consistent [Bedford and Drumheller 1979; Berryman and Thig­
pen 1985c] with these definitions.

With time dependence of the form exp(-iuit), the Fourier 
transformed version of the coupled wave equations of poroe­
lasticity in the presence of dissipation take the form

pV2u + {H - p)Ve-CVC + u>2(pu + pfw) = 0, (1.42)

CVe — MVC + w2(p/^+ qw) - 0, (1.43)

where
P = 4>Pf + {l- <!>)Pm (1.44)

and
9 = />/[a/^ + iF(C»?/Kw]. (1.45)



The kinematic viscosity of thexliquid is the permeability of 
the porous frame is k, and the dynamic viscosity factor [Biot 
1956b] is given (for our present choice of sign for the frequency 
dependence) by

f(f) = jfr(f)/[l + 2T(0Af], (1.46)

where
 6er'(£) - ibei'jt)

ber(£) — ibei(£)

and
t = {uh2/ri)i.

(1.47)

(1.48)

The functions ber(£) and bei(£) are the real and imaginary parts 
of the Kelvin function. The dynamic parameter /i is a char­
acteristic length generally associated with (and comparable in 
magnitude to) the steady-flow hydraulic radius. The electri­
cal tortuosity a is a pure number related to the frame inertia 
which has been measured [Johnson, Fiona, Scala, Pasierb, and 
Kojima 1982] for porous glass bead samples and has also been 
estimated theoretically [Berryman 1980a; Brown 1980]. The 
electrical tortuosity a and the fluid flow tortuosity r are re­
lated by a = r2 = where F is the electrical formation factor.

The coefficients H,C, and M are given by [Gassmann 1951; 
Brown and Korringa 1975]

H = K + ^fi + aC, (1.49)

c = {[(<7 - <f>)/Km + t/KA/a}-1, (1.50)

M = C/a, (1.51)

where
a = 1 — K/Km. (1.52)

The wave equations (1.42) and (1.43) decouple into Helm­
holtz equations for three modes of propagation if we note that 
the displacements u and w can be decomposed as

u - VT + V x /?, w = + V x x i (1.53)



where T,j/> are scalar potentials and f3,x are vector potentials. 
Substituting (1.53) into Biot’s equations (1.42) and (1.43), we 
find they are satisfied if two pairs of equations hold:

(V2 + k])j3 = o, x = (1.54)

where Ih - Psjq and

(v2 + 4M± = 0- U-55)

In this notation, the subscripts +,-, and s refer respectively to 
the fast and slow compressional waves and the shear wave.

Figure 1.1. A spherical inclusion in a porous medium could be 
the result of local variations in fluid content, grain composition, 
porosity, permeability, etc.

The wave vectors in (1.54) and (1.55) are defined by

(1.56)



and
k2± = (u2/2A)(b + fT[(b- If + 4c^), (1.57)

where

b = pM — pjC, c — pfM — qC, d = pjH — pC, f = qH — pjC, (1.58) 

with
A — MH — C2. (1.59)

The linear combination of scalar potentials has been chosen to 
be

A± = r±r + Tp, (i.60)

where
r± - d/[(k±A/u2)2 -b] = [(k+A/u2)2 - f]/c. (1.61)

With the identification (1.61), the decoupling is complete.
Since (1.54) and (1.55) are valid for any choice of coordi­

nate system, they may be applied to boundary value problems 
with arbitrary symmetry. Biot’s theory has therefore been 
applied to the scattering of elastic waves from a spherical in­
homogeneity [Berryman 1985]. The results of that calculation 
will be summarized in the next section.

1.4 Scattering Theory for a Spherical Inclusion
The full analysis of scattering from a spherical inhomo­

geneity in a fluid-saturated porous medium is quite tedious. 
Fortunately, much of this work has already been done [Berry­
man 1985] and we may therefore merely quote the pertinent 
results here.

Let the spherical inhomogeneity (see Figure 1.1) have ra­
dius a. For the present, we will place no restrictions on the 
properties of the inhomogeneous region. Thus the frame bulk 
and shear moduli, the grain bulk modulus, the density, the 
porosity, and the permeability of a solid inclusion may all be 
different from those of the host. Furthermore, the bulk mod­
ulus, density, and viscosity of the fluid in an inhomogeneous 
region may also all be different from those of the host fluid. 
Suppose now that a plane fast compressional wave is generated



at a free surface far from the inclusion. Then, if the incident 
fast compressional wave has the form

u = z-rr~ expi(k+z — wt), (1-62)

the radial component of the scattered compressional wave con­
tains both fast and slow parts in the far field and is given by

u\r = (ik+) 1expi(k+r — u>t)/k+r[BQ+^

- B[+) cos 6 - 5^+)(3 cos 29 + l)/4]

— (ik_)~1expi(k_i— u>t)/k_r[BQ~^

- SS~) cos 9 - B(2-\3 cos 29 + l)/4].

(1.63)

Then, with the definitions k± = k±a and k, = ksa and with no 
restrictions on the materials, we find that

M_) = i/ci Ao
ZM’(T+-T-)(K' + iri

(C-MT-)(K' + -p)

- (C - M’T-XK + -p) + (C- Mr_)(C/ - M'
o

T \M' MJM < 
(1.64)

and

B (+) _ 
o —

[K' - K + {C- MT-){C'/M' - C/M)) 
3* K' -I- |/i

-(-(«+/*-)3Z?o \

(1.65)
Expansions of the other coefficients in the small parameter 
e = CjK have been given in [Berryman 1985]. However, for the 
present application, only the first two coefficients are needed 
and these happen to be the only ones known exactly at present. 
Of course, the full scattered wave also contains transverse com­
ponents of the compressional wave, relative fluid/solid dis­
placement, and mode converted shear waves. However, the 
scattering coefficients for these contributions are linearly de­
pendent on the the coefficients in (1.63) and therefore contain 
no new information. It is sufficient then to base our discussion 
on the expression (1.63).

As an elementary check on our analysis, we should first 
consider the limit in which the porosity vanishes. Then the



fluid effects disappear from the equations and only the first 
line of (1.63) survives. Furthermore, it is not difficult to check 
[Berryman 1985] that the coefficients for n = 0,1,2 reduce 
to the well-known results for scattering from a spherical elastic 
inclusion in an infinite elastic medium [Berryman 1980b]. For 
example,

B(0+) = -iK%AQ(K' - A')/(3A" + 4/i) (1.66)

in this limit as expected.
These results have a multitude of potential uses. One 

straightforward application is the calculation of energy losses 
from elastic wave scattering by randomly distributed particles. 
A second important application is to use these results as the 
basis for an effective medium approximation for the effective 
constants of complex porous media. The second application is 
the one we will address in the next section.

1.5 Microscopic Heterogeneity
As we have noted previously, the equations of poroelas­

ticity have several significant limitations. For example, these 
equations were derived with an explicit long-wavelength (low- 
frequency) assumption and also with strong implicit assump­
tions of homogeneity and isotropy on the macroscopic scale. 
Another restriction assumes that the pore fluid is uniform and 
that it fully saturates the pore space. For the present applica­
tion, we will assume that a single fluid saturates all the pore 
space for host as well as inclusion and the scattering is caused 
by microscopic heterogeneity in the solid properties.

Before deriving our main results, consider the problem of 
the porous frame without a saturating fluid (or with a highly 
compressible saturating gas). Then, since we take C = M = 
pj = 0 in this limit, each term of Eq. (50) vanishes identically 
and the fluid dependent terms of Eq. (49) also vanish, leav­
ing only the terms for the elastic behavior of the porous frame 
remaining. Since no slow wave can propagate under these cir­
cumstances, the second line of Eq. (1.63) disappears and only 
the fast wave terms contribute to the scattering. This limit 
is formally equivalent to the problem of elastic wave scatter­



ing from a spherical inclusion which has been treated in detail 
previously (see [Berryman 1980b] and other references therein). 
The effective medium approximation requires the weighted av­
erage of the single-scattering results to vanish. This method 
simulates the physical requirement that the forward scatter­
ing should vanish at infinity if the impedance of the “effective 
medium” has been well matched to that of the composite. The 
resulting condition is that the volume weighted average of each 
of the B^s for n = 0 - 2 must vanish. Using the convention 
that the effective constants for the composite porous medium 
are distinguished by an asterisk, the formulas for the effective 
bulk (K*) and shear(^*) moduli for the drained porous frame 
of a microscopically heterogeneous medium are

1 1 ^
K* + \ K{x) -f |/i* / (1.67)

and
1 -( 1 >

H* + F* \ n(x) + F* / (1.68)

where
F = (fi/G)(9K + 8/i)/(tf + 2/i). (1.69)

The spatial(x) average is denoted by (•). The remaining con-
stant to be determined is the effective density which is just 
the average density [Berryman 1985]. Eq. (1.67) follows eas­
ily from the volume average of (1.66), while Eq. (1.68) follows 
similarly from the volume average of 8% • Note that the equa­
tions for K* and n* are coupled and therefore must be solved 
iteratively (i.e., self-consistently). Although the form of the 
equations (1.67) and (1.68) is identical to that obtained for 
elastic composites, the results can be quite different since the 
local constants K{x) and ^(x) appearing in the formulas are 
frame moduli of the constituent spheres of drained porous ma­
terial, not (necessarily) the moduli of the individual material 
grains. Of course, since the formula reduces correctly in the 
absence of porosity to the corresponding result for the purely 
elastic limit, the user of Eqs. (1.67) and (1.68) has some dis­
cretion about conceptually lumping grains together to form a 
porous frame or treating them as isolated elastic inclusions.



Now we will restrict discussion to the very low frequency 
limit where

l'+ - HjC (1.70)

and
r_ = o. (1.71)

With these restrictions, the relevant scattering coefficients re­
duce to

B(-) _ 
o —

{k^CAq

+ f/i)

— C'(K + -/j. +

■ [C(K' + ^ + a'C) 

<rC)],
(1.72)

and

B (+) _ 
o —

4d0 [K' - K + {a' - <t)C) 
3i K' + f/i

+ (k+A-)3bo ’ (1.73)

The resulting conditions on the effective constants are

/C’[g(g) + ^-+^)C(x)] -C(g)[A- + |>x»+^C-]N „
\ M(f)[A-(*) + §^] /“ ' '

and
-K{x)-K*+ [<r(x) - a*]C* 

K(x) + |/i*
)=°. (1.75)

Recall that the averages in (1-74) and (1.75), as elsewhere in 
this paper, refer to spatial averages over (possibly) porous con­
stituents of the overall porous aggregate. The limitations on 
the assumed geometry of the resulting aggregate have been 
discussed previously [Berryman 1986b]. Note that (1-74) and 
(1.75) depend on the effective medium frame moduli K* and 
//* determined by (1.67) and (1.68). The new constants deter­
mined by (1.74) and (1-75) are C* and cr*. The expressions for 
C* and <7* are coupled as written but may be uncoupled after 
some algebra. The final expressions for these constants are



and

<r — / <r{x)
\K(x) + l/i1*

)Kk(x) + U») (1.77)

Notice that both constants are determined explicitly by the 
formulas, in contrast to the frame moduli K* and /x* which are 
determined only implicitly by (67) and (68). The author has 
also shown [Berryman 1986b] that (1.76) and (1.77) are com­
pletely consistent with all known constraints [Gassmann 1951; 
Brown and Korringa 1975] on the form of these coefficients.

The same idea used to derive (1.76) and (1.77) was also 
used to show [Berryman and Thigpen 1985a] that the speed of 
waves propagating through a mixture of liquid and gas in the 
low frequency limit is given by Wood’s formula [Wood 1957] 
as expected [Brown and Korringa 1975; Murphy 1984].

1.6 Local-flow Biot Theory

A convincing demonstration has been given [Mochizuki 
1982] that, if we assume global fluid-flow effects dominate the 
viscous dissipation, Biot’s theory of poroelasticity cannot ex­
plain the observed magnitude of wave attenuation in partially 
saturated rocks. Since the same theory explains the wave 
speeds quite well, it is reasonable to suppose that a small 
change in the theory may be adequate to repair this flaw. Many 
possible explanations are possible of course, but within the 
context of Biot’s theory the simplest postulate is to suppose 
that local - rather than global - fluid-flow effects dominate the 
dissipation [Berryman 1986a; Berryman 1988], We will distin­
guish two related issues in this section which are summarized 
in the following questions: (a) Does the physics of wave prop­
agation require that the value of the permeability k appearing 
in Biot’s equations should be that for global flow or for lo­
cal flow? Then, if we can show that the value should be that 
for local flow, (6) does this change in the interpretation make 
enough difference so that the theory can explain the correct 
magnitude for the attenuation?

To address the first question, we explore the consequences 
of assuming that Biot’s theory should be applied at the local



flow level rather than at the global flow level. This assessment 
is easily done by examining the dispersion relations. When 
the Fourier time dependence is e~,wt with angular frequency 
(j sufficiently low, Biot’s theory predicts [see Eq. (1.57)] the 
dispersion relations for the fast (+) and slow (-) compressional 
modes in any homogeneous porous material to be

kX - yrt1 + iu3~jr(l ~ vl/vl)2) (1.78)*4 pqQ

and
2 _ iuqQH 
~~ MH - C2 (1.79)

where
= H/p,vl = C/pf,qo = P/V/k- (1.80)

The fraction of the total volume occupied by the fluid is the 
void volume fraction or porosity </>, which is assumed to be 
uniform. The bulk modulus and density of the fluid are Kf and 
Pj. The bulk and shear moduli of the drained porous frame are 
K and p. For simplicity we assume the frame is composed of 
a single constituent whose bulk and shear moduli and density 
are A'm, and pm. Then the coefficients H, C, and M are given 
by (1.49)-(1.52). The overall density is

p = <j>pf + (1 - <j>)pm. (1.81)

The kinematic viscosity of the fluid is r) and the permeability 
of the porous frame is k.

Defining the quality factor for the fast compressional wave
Q+ by

*+ = ^[1+ *■/<?+]. (L82)

we find [Berryman, Thigpen, and Chin 1988] that Q+ is given 
by

1/Q+ =u>^-(l-vl/vl)2. (1.83)

Since 1/Q+ is proportional to the permeability, the attenuation 
is therefore greatest in regions of high permeability. Thus, we



Porous medium 
permeability k

■Thin
impermeable
layer

Figure 1.2. Illustration of a simple experiment to prove that 
the attenuation of the fast wave depends on the local - not 
the global - value of permeability k. A fast wave incident 
normal to the impermeable partitions will experience a small 
but finite attenuation even though the global permeability in 
this direction vanishes identically.

might say that the regions of high permeability control the 
attenuation.

In the very low frequency limit, the slow compressional 
mode is known to reduce to Darcy flow with slowly changing 
magnitude and direction as the driving potential gradient os­
cillates sinusoidally [Johnson, Koplik, and Dashen 1987]. Now 
consider a layered porous material (whose constants depend



only on depth z) with constituents having identical physical 
constants except for the permeability k which varies widely
from layer to layer but which has a constant value Kn within
the 7i-th layer (lying in the range z„_i < z < zn with z0 = 0). 
Thus, the permeability is a piece-wise constant function of z. 
The thickness of the n-th layer is given by ln = zn - zn_i. If 
we impose a potential gradient along the z-direction in such a 
layered material, it is well-known that the effective permeabil­
ity for fluid flow is found by taking the harmonic mean of the 
constituent permeabilities, i.e.,

(1.84)

where the total sample length L is given by the sum of the 
layer thicknesses

n

From (1.84), we can conclude that the regions of lowest per­
meability dominate the effective overall permeability for fluid 
flow through a porous layered medium. Thus, we might say 
that the regions of low permeability control the fluid flow - at 
least for this special choice of geometry.

The apparent attenuation of a fast compressional mode at 
normal incidence on such a structure has two distinct compo­
nents: (a) Reflection and mode conversion at layer interfaces 
will have a tendency to degrade the fast wave, but this effect 
will be quite small at low frequencies for the model structure 
we are considering. (6) The attenuation within a layer is de­
termined by the quality factor for that layer, as shown by Eq. 
(1.82). Assuming the attenuation is small enough, we may ap­
proximate (1.82) within any layer by k+(z) = ^[l + i/2Q+(z)], 
where the functions k+(z) and Q+(z) take the piece-wise con­
stant values appropriate for the depth argument z. Neglecting 
the small effects of reflection and mode conversion, the behav­
ior of the fast compressional wave at normal incidence is then 
easily seen to be given by

Z z

z — iut------
0



where A+ is the amplitude of the wave at z = 0. In writing 
(1.86), we have used the piece-wise constant property of the 
functions. The integral in the exponent is given by

jd*i^) = ^-vllv+)2idzK(2)'

o o

At the z = L boundary of the material, we have

LJ dzn(z) =

(1.87)

(1.88)

If the layering is periodic with period much less than either z 
or L or if it is statistically homogeneous on this length scale, 
then we may approximate the integral in the exponent of (1.86) 
using (1.87) and

Z

JdzK(z) ~ Kaz, (1.89)
0

where the effective permeability for attenuation measurements 
is given by the mean

(1.90)
n

It is well-known that the mean is always greater than or equal 
to the harmonic mean of any function; thus,

Kf < Ka. (1.91)

The answer to our first question is that the physics of wave 
propagation dictates that local-flow effects must dominate the 
attenuation of the fast compressional wave. The necessity of 
this conclusion is nicely illustrated in Figure 1.2. Suppose that 
a fast compressional wave is incident on a layered material with 
alternating permeable and impermeable layers. If the imper­
meable layers are very thin and have an acoustic impedance 
closely matching that of the permeable layers, their presence



has a negligible effect on the propagating fast wave. The vis­
cous attenuation of the fast wave occurs solely in the permeable 
layers and magnitude of that attenuation is completely deter­
mined by the permeability of these layers. By contrast, the 
global permeability of this material in the direction normal to 
the layering vanishes identically. If this zero value were used 
in our predictions, the magnitude of the attenuation would be 
grossly under estimated. Although this choice of geometry is 
extreme, it clearly shows that errors in estimates of attenu­
ation will arise if the value of permeability for global flow is 
used.

Now, can the theory predict the correct magnitude for 
the attenuation even with this change in the interpretation 
of the permeability factor? To predict the wave attenuation 
from measurements of permeability, we need some indepen­
dent means of measuring the local permeability distribution. 
Normal laboratory flow experiments will not suffice, because 
they necessarily measure the global permeability. One promis­
ing method of estimating the local permeability uses image 
processing techniques to measure pertinent statistical proper­
ties of rock topology from pictures of cross sections [Berryman 
and Blair 1986; Berryman and Blair 1987]. This approach is 
still under development and we will not attempt to describe it 
in detail here.

Another approach, which is ultimately much less satisfac­
tory than the image processing method but much easier to use 
at present, is to suppose that we can obtain reasonable esti­
mates of the local permeability kl from the known values of 
the global permeability kg, the tortuosity r = and the
porosity <j>. To do so requires some formula, so we will use 
a form of the Kozeny-Carman relation derived by Walsh and 
Brace [1984]. For tubes of arbitrary ellipsoidal (major and mi­
nor axes a,6) cross-section the effective permeability of straight 
sections of such tubes is given by k = (7r/4A)[a363/(a2 + 62)]. The 
porosity for an ellipsoidal tube is <£ = nab/A and the specific sur­
face area is well approximated by s ~ 27r[(a2 + &2)/2]2/A. Then, a 
Kozeny-Carman relation satisfied by k, <j>, and s can be shown



to be
k = 1^!

2 s2
(1.92)

for the effective permeability of a single tube oriented along the 
pressure gradient. If the tube is at an angle 6 to this gradient, 
then Walsh and Brace [1984] show that

1 4>3
2 s2r2’ (1.93)

where r = l/cos6. If we suppose that (1.92) and (1.93) are fairly 
representative of the material of interest, then (1.92) describes 
the maximum local permeability kl and (1.93) the effective 
global permeability kg. We then conclude that

kl — t2kg = <f>FKG- (1.94)

The tortuosity r has been measured for many sandstones; the 
values for samples studied by [Simmons, Wilkens, Caruso, 
Wissler, and Miller 1982; Simmons, Wilkens, Caruso, Wissler, 
and Miller 1983] lie in the range 1.5 < r < 5, with most values 
r ~ 2. To obtain estimates of attenuation close to experiment 
[Murphy 1982], we need to increase the value of permeability 
used in Mochizuki’s calculations [Mochizuki 1982] by a factor 
of r2 ~ 10. This requirement implies a tortuosity of r ~ 3, which 
is clearly well within the established experimental bounds. A 
more detailed analysis leading to the same qualitative conclu­
sions has also been presented recently [Berryman, Thigpen, 
and Chin 1988]. These arguments provide strong evidence for 
the plausibility of a local-flow explanation of the observed dis­
crepancies. However, a completely satisfying demonstration 
must await the collection of the required data on local-flow 
permeability.

One unfortunate consequence of the observation that local 
permeability controls attenuation is that measured attenuation 
in wet rocks cannot be used as a diagnostic of the global fluid- 
flow permeability Nevertheless, since the mean of the local 
permeabilities will always be greater than the true fluid-flow 
permeability regardless of the actual spatial distribution of the



constituent «’s, the effective permeability obtained from atten­
uation measurements can be used to provide an upper bound 
on the desired global permeability.

1.7 Discussion
What then are the prospects for a comprehensive theory of 

poroelasticity? It appears likely at this point that we will soon 
have a completely satisfactory linear theory of bulk waves in­
cluding effects of partial saturation and inhomogeneous frame 
materials. A satisfactory nonlinear theory of bulk waves in­
cluding effects of fracture, plastic flow, and pore collapse is at 
a more elementary stage, but is still likely to be achieved in the 
1990s. At present it appears that the problems most likely to 
cause real trouble are those involving surface waves rather than 
the bulk waves. Surface waves depend critically on the nature 
of the equations of motion near interfaces. Using the standard 
boundary conditions of poroelasticity [Deresiewicz and Skalak 
1963; Berryman and Thigpen 1985b], it has been shown that 
a slow surface wave [Feng and Johnson 1983] or slow exten- 
sional wave [Berryman 1983] is expected only when a closed- 
pore boundary condition applies at the porous surface. Yet, 
the experimental data to date seem to show that such slow 
surface waves [Mayes, Nagy, Adler, Bonner, and Streit 1986] 
do in fact propagate when the open-pore boundary condition 
applies. It is possible that the presence of a thin damage re­
gion close to the surface has a major effect on the conclusions 
of the theory regarding the propagation of the surface waves. 
However, it could also be that these experiments are pointing 
out still another subtle deficiency of the equations we use to 
describe wave propagation in porous media.
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