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ABSTRACT

We describe the construction of a class of cubic gauge-invariant
actions for superstring field theory, and the gauge-fixing of one rep-
resentative. Fermion string fields are taken in the — 1/2-picture and
boson string fields in the O-picture, which makes a picture-changing
insertion carrying picture number —2 necessary. The construction of
all such operators is outlined. We discuss the gauge il + 6 j = 0, in
which the action formally linearizes. Nontrivial scattering amplitudes

are obtained by approaching this gauge as a limit.
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1. INTRODUCTION

In this talk we wish to describe recent progress we have made in developing
open superstring field theory.[ll To start out, it is perhaps worthwhile to make
some general remarks on the motivation behind string field theory as well as

alternatives to the string field approach.

As we all know, string theory was discovered and is still best understood
as some kind of loop expansion of an as yet poorly understood fundamental
theory. The formulation of this fundamental theory is the prime goal of most
workers in this field. We think it is reasonable to search for this formulation
in the framework of an action principle, but it is not clear from the beginning
even what the fundamental dynamical variables should be. String field theory is
the most straightforward way to discover this action principle, because it takes
as dynamical variables fields associated with the particle states present in the

theory at zero loops.

But it is by no means necessary that the zero loop particle states be associated
in such a direct way with the fundamental dynamical variables. A popular anal-
ogy to contemplate is the relation between the fundamental variables of QC D and
the hadrons. This analogy is most persuasive in the context of ’t Hooft’s 1/N_otors
expansion of QC D which resembles very closely the dual loop expansion.m How-
ever, if something like this is at work, a simple flat space quantum field theory
like Yang-Mills theory can’t possibly be the answer. For one thing, string theory
contains gravity, so the putative fundamental theory must be generally covariant.
For another thing, the short distance structure of string theory is ultrasoft, unlike
the hard parton structure associated with the asymptotic freedom of nonabelian
gauge theory. One might speculate that the answer is some generally covariant
quantum field theory, but in how many dimensions? In fact, this kind of picture
of string theory was tried over a decade ago in the context of a “wee parton”

approximation to QC’D.M Perhaps the “wee parton” assumption is linked to the

requirement of general covariance; it certainly accounts for the softness of string



theory.

Yet another possibility is a fundamental formulation in terms of the two di-
mensional world sheet in which topology change is taken as a dynamical variable.
A version of this idea was proposed over a decade ago in the context of the light
cone ga.uge.m Or maybe the framework for this idea should be universal moduli

space.ls’el

In any case, even if string field theory is not the ultimate formulation of string
theory, it should be possible to develop an effective action principle which would
at least be valid at the classical level. Wendtdiscovered a flaw in Witten’s
initial extension of his action principle for the interacting open bosonic string
to the superstring. It would be unsettling if this flaw were fatal. Our work,
we believe, provides a new formulation of open superstring field theory which
surmounts this difficulty. It does not touch on efforts to develop a superstring
field theory based on the manifestly supersymmetric formalism,[sl nor does it deal
with the problem of developing a string field theory which does not contain open

strings.

2. STRING AND SUPERSTRING FIELD THEORY

We turn now to an introductory description of what string field theory is!”!

Ordinary field theory assigns a number (or finite collection of numbers) to each
point in space-time. String field theory generalizes this concept by replacing the
space of points in space-time by the space of paths in space-time. Thus the string
field is a functional of curves: A[z*(c),c(0)]. Because paths in space-time are
not restricted to lie in equal-time hyperplanes, the theory must be a very special
field theory for which it is possible to recover our customary notion of a unitary
time evolution. We can implement this special feature by requiring the dynamics
to be such that the domain of the string field can be consistently restricted to
those paths which do lie in equal time hyperplanes. That is, it should be possible
to formulate the theory on a submanifold of the full space of paths. In this sense
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we might describe such a theory as “topological” on path space. From this point
of view, Witten’s proposal that the string field action be a Chern-Simons three
form on path space is very natural.

[lolare: string

The basic ingredients of Witten’s version of string field theory
fields A; a derivation acting on string fields, @, which is taken to be the first-
quantized BRST operator; an associative exterior product, *, for which @ is a

derivation:

Q(A+*B)=QA=xB +(-—)‘4A* QB;

and a volume form on path space, [, which assigns a number, [ A, to each string
field. The ghost numbers assigned to these objects are —1/2 for A, +1 for Q,
+3/2 for *, and —3/2 for [. In terms of these quantities Witten’s action for open
bosonic string field theory takes the form

S=-;-/A*QA+%/A*A*A,

and its gauge invariance is just

AA=QA+AxA—-AxA.

In order to extend these ideas to the spinning string, Witten introduced a
fermionic partner ¥ for the bosonic string field A and took the natural gener-
alizations to the spinning string of @, *, and [. These objects have total ghost
number 1, 1/2, and —1/2, respectively. Unfortunately, there is no assignment of
ghost number to A and ¥ which allows the construction of a Chern-Simons three
form action without the use of picture-changing operators. In his initial formu-
lation Witten assigned A ghost and picture number —1/2 and —1, respectively.

These assignments for ¥ were 0 and —1/2 respectively. Then his proposed action



takes the form

S = %/A*QA+%/Y(U=-7-2|-)\II*Q\II+%/X(U= g)A*A*A+/A*\I'*\II.

In this expression X is the local operator introduced by Friedan, Martinec, and
Shenker " which changes picture number by +1 unit. Y is the inverse picture
changing operator which changes picture number by —1. Both are inserted into
the action at the midpoint of the string singled out by the definition of * and [

and denoted by o = 5. These operators have the explicit representations[n’m]

Y(z) =c(2)6'(v(2))
X(2) ={Q,0(8(2))}

where 6 is the Dirac delta function and © is the Heaviside step function satisfying
©’ = 4. Here c is the reparametrization ghost, 4 the superghost, and 3 the
superantighost. The argument of the fields is just z = e“*". X and Y satisfy

the short distance product relation

X(Z)Y(ZI) z’—:: ZI.

Now we can describe the flaw that Wendt mdiscovered in this version of su-
perstring field theory. The source of the difficulty is that the picture changing

operator X (z) has a singular operator product with itself:

XX ~ @ —

2l — 2 (z__zl)2'

This causes a difficulty with the proof of gauge invariance because the bosonic

gauge transformation of A is
AA=QA+X(oc= %)(A*A—A*A).

When one tries to check the nonlinear gauge invariance of the action, one finds

two X’s colliding at the same point. The hope that somehow this singularity is



cancelled is dashed by Wendt’s explicit calculation of the four string function,
which gives the wrong result. One can try to fix the problem by adding terms
to the action with higher powers of A with coefficients designed to cancel the
discrepancy. This is less than satisfactory because (1) the coefficient of the A*
term is infinite and this presumably is true also of higher terms and (2) it would

destroy the very attractive Chern-Simons form of the action.

Our solution to the difficulty is based on the idea that the classical string
field should be described in the 0~picture.[l4] There are several motivations for
this idea:

(1) The SL(2) invariant string state is in the 0-picture sector.

(2) Working in this picture corresponds to the manifestly dual form of the

Neveu-Schwarz dual resonance amplitudes for spinning strings.

(3) Most importantly, picture changing operators are in less dangerous config-

urations.

This last point is easily understood. In the O-picture, A carries total ghost
number +1/2. Thus QA and A * A both carry ghost number 3/2, so there is no
need for a picture changing operator to balance ghost number. For example the

field equations in this picture read:

QA+ AxA+ X[ *¥] =0
QU+ AxV +T*xA=0

and X appears only in the coupling of ¥ to A. Moreover the bosonic gauge

transformation of A is now simply
AA=QA+A+xA-AxA

so there is no collision of insertions in proving the gauge covariance of the field

equations. One does need a new inverse picture changing operator Y_, in order



to balance ghost number in the action, however:

1 1
S = /Y_z(d =-125-)[§A* QA+ §A*A* A]

+/Y(a=.’25)[w*Q\p+A*\p*xp].

The operator Y_, had not previously appeared in the literature so our first
task was to construct it. It must be a world sheet operator attached to the
midpoint of the string and so must be local or bilocal in the complex plane:
z = ¢ are both associated with the midpoint of the string. It must also change
picture number P and ghost number each by —2 units. We actually employ the
bilocal choice

Yo, =YY (-)=Y¥

for our construction because it leads to the simplest and most manageable for-
mulation. In the —1-picture bilocal insertions had been previously proposed by
Lechtenfeld and Samuel™ Since 0.Y is BRST trivial, one can say that such a
choice is in some sense equivalent to a completely local choice. However, there is
a short distance singularity in Y(:)Y(z) as z — 1, so there is a divergence in the

trivial part.

We systematically searched for all local candidates for Y_;. Since there is
a 1-1 correspondence between local operators and Fock states |[Y_;) = Y(0)]0)
with |0) the SL(2) invariant Fock state, we searched for a Fock state with picture
number —2 and ghost number —5/2 (since |0) has ghost number —1/2) satisfying

a) Lorentz and scale invariance (in particular ap = 0 and Lo = 0);
b) BRST invariance (i.e. it is annihilated by Q);
¢) It is not BRST trivial;

d) It is normalized so that X(2)Y_3(2) = Y (2).



Condition a) plus ghost and picture number constraints limit the choice to 15
candidates. Of these 10 turn out to be primary and among the primary ones 7 are
BRST invariant. However, the space of trivial states satisfying these conditions is
found to be 10 dimensional so the coset space of candidates is only 5 dimensional.
Only a 1 dimensional subspace of the coset space of nontrivial states is BRST
invariant, so finally Y_, is unique up to BRST equivalence. Although different
choices are equivalent on-shell, they do lead to different off-shell actions. We
work with the simple bilocal choice Y'Y

3. NEW GAUGE INVARIANCES

For the fermionic kinetic term of the string field action, it has been pointed
out™®that the necessary inverse picture changing insertion gives rise to new
gauge invariances in addition to those associated with BRST invariance. A similar
feature applies to our new bosonic kinetic term. To understand this, notice that
Y (2) = ¢(2)é'(y(z)) is annihilated by ¢(z) and by v2(z). In fact, these new gauge
invariances are needed to choose the gauge So¥ = 0. Kugo and Terao achieve this
gauge by first constructing a BRST invariant projection operator that annihilates
the redundancies due to the new gauge invariances. They start by introducing a

nonlocal version of X,
Xo = {Q,0(8)}.

Then one can easily show that Y XY =Y and XY Xy = X, so that P = XY
is a projection operator. By virtue of these properties one can first restrict ¥
to satisfy ¥ = PV and then use the @ gauge invariance to set So¥ = 0. The
resulting propagator is then b Xo/Lo = bo6(50)/ Fo.

It is clear that identical considerations apply to our form of the bosonic kinetic
term, only now all of the four operators ¢(z),c(—1),v%(¢),¥*(—%) annihilate Y_,.

Thus we introduce two nonlocal X’s

Xi: = {Q’ @(ﬂi)},



where

1 ' 1)
Bs = E(ei’"/"ﬂ-m + €743, ).

Then P = X, X_Y(:)Y (—1) is a BRST invariant projection operator which kills
the new redundancies. One can then first restrict A to satisfy A = PA, and then

fix the @) invariance in a convenient way.

Before turning to gauge-fixing, we note that the interaction terms are sep-
arately invariant under the new gauge invariances because each of the four op-
erators ¢(1), ¢(—1),v%(:),7%(—%) have negative conformal weight. Insertion of a
negative weight local primary field at the midpoint of a Witten vertex always

vanishes because of the curvature singularity there.

4. GAUGE-FIXING

We next consider a general class of Siegel-like gauges for the fixing of the Q
gauge invariances. For the bosonic string this class of gauges is simply v-b A =0
where v - b = E" Unbn, and the v, are any set of numbers. For general v the

propagator following from this condition is

_ b-v

Yy =
L-v

b- I(v)
L. I(v)

Q

where I(v)-n = (=)**'v,. If I(v) x v, the propagator simplifies to ££. This is

true of the standard Siegel gauge v - b = by, for example.

For the spinning string, it is awkward to attempt general gauges of exactly
this form. Instead, we use v and the projection operator P to construct a new

projection operator

This construction works equally well in the fermionic and bosonic sectors, with

P being the appropriate projector. The general class of gauges we consider then



are specified by
A=PA="P,A,

and the corresponding propagators are just

b.-v
B __ T
07 =Py — X4 X_P]
b-
7 =p,—= X, PT
L-v

for the bosonic and fermionic components respectively, where the transpose is
taken with respect to the string inner product. In general these propagators
are prohibitively complicated. However, for special choices of v they become
manageable. The fermionic propagator simplifies for v-b = bo or by = J(by+b-1).
But the bosonic propagator only simplifies significantly for the latter choice,

which is the one we studied most intensively.

5. by GAUGE

The gauge v - b = by is particularly simple because b, commutes with local
operators located at z = +i. In fact, the simplification is spectacular: the gauge
choice formally causes the cubic term in the action to vanish! The reason is that
b; is a derivation of the % algebra. For example, applying b, to the Lh.s. of the
field equation for fields satisfying b. A = 0 gives

0=L+A+b+(A*A)=L+A+(b+A.)*A—A*b+A=L+A,

linearizing the field equation. Similarly the cubic term in the action can be shown
to formally vanish. One uses the fact that b, A = 0 implies A = b,c, A to replace
one of the A’s by b;c+A. Then one integrates by parts to throw the b, onto the
remaining two A’s, which then vanish. This gauge would have the same dramatic
consequences for the bosonic string so as preparation we studied this case very

carefully.
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Of course, we know the interactions can’t really be a gauge artifact. The
resolution presumably lies in the fact that one can not reach this gauge for all
field configurations. In fact, at the linearized level one can prove that for field
configurations in the nonvanishing eigenspace of L4, such a gauge can be reached.
But this proof breaks down for fields in the kernel of L. This same caveat applies
also to Siegel gauge v-b = by, but there it is less problematic because a nontrivial
kernel of Ly exists only for special on-shell values of the space-time momentum
p- In contrast, the kernel of L, is nontrivial for all p. Thus one can’t regulate
the problem by taking p slightly off-shell. Instead, we regulate our calculations
by employing a nearby gauge v - b = b, + iebg, letting € — 0 at the end of the
calculation. In this way we explicitly confirm that general tree amplitudes for
the bosonic string and selected ones for the superstring come out correctly. The
results of these calculations are independent of ¢, as they should be. Since the
vertex function is proportional to €, this implies that there are compensating

singularities in that amplitude.

The manner in which moduli space is covered in the limit € — 0 is interesting.
In Siegel gauge, all the diagrams of a cubic field theory provide an essential
contribution. In particular, the six string tree diagram with three internal lines
meeting at a cubic vertex is nonzero. We find that in the limit € — 0 this diagram
vanishes! The multiperipheral diagrams in which every vertex has at least one

external line suffice to cover moduli space.

6. CONCLUSIONS

Our work strongly indicates that the difficulty discovered by Wendt is absent
in our formulation of superstring field theory. The only qualification is that we
haven’t done a careful study of loop diagrams. But since the problem was initially
present at tree level, it is significant that we have removed the difficulty at that
level. Since the product of two Y’s is just as singular as the product of two X’s,

the potential for a problem is present. However, in our scheme such singularities
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are prevented because of the nonlocal X.’s that each propagator inserts between

each pair of potentially colliding Y’s.

In our work, we were led to consider a fascinating gauge choice which formally
linearizes the theory. This gauge is somewhat analogous to the temporal or
axial gauge choice in Chern-Simons gauge theories in 2 4+ 1 dimensions. In that
case one also linearizes the field equations, but nonlinearities do remain in the
constraints due to gauge invariance. One might expect similar features in the
case of superstring field theory. Linearization of the action does not guarantee
linearization of constraints. The problem with checking this idea is that the
canonical phase space of string field theory is not well understood. If one considers
the path integral approach to Chern-Simons theories, one can see the analogy
with our situation more clearly. In that case it is not really allowed to set Aq to
zero for all field configurations: one can only set the nonzero frequency modes
to zero. The zero mode of 4y then participates in the interactions, and in fact
integration over it precisely imposes the constraints of the phase space approach.
In the case of string field theory, the analogue of the zero frequency mode of Aq
would be the kernel of L.

To conclude, let us review the status of string field theory. Our work has
provided us with a satisfactory formulation of spinning string field theory in
the NSR formalism for open strings. Such a formulation does not implement
space-time supersymmetry manifestly. For that one would have to employ the
Green-Schwarz formalism, which is not yet developed sufficiently to apply to
string field theory. There has been much recent activity in this direction along
the lines of seeking linearizing gauge choices™® In spite of dramatic claims of
progress, this approach is still problematic.[w] Another gap in our understanding
is the absence of a satisfactory string field theory involving only closed strings.
In this area there has been recent progress in finding at least a gauge fixed action

which produces correct tree amplitudes.[zol

With our work, we now have an action principle for all the open string the-
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ories. Since it uses string fields as dynamical variables, it is an admittedly cum-

bersome formulation. Because of this, one hopes that a simpler action principle

might be possible based on a different choice of variables. We have suggested

other approaches in the introduction, and it is clearly important to explore these

and other possibilities.
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