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ABSTRACT

We describe the construction of a class of cubic gauge-invariant 

actions for superstring field theory, and the gauge-fixing of one rep­

resentative. Fermion string fields are taken in the — 1/2-picture and 

boson string fields in the 0-picture, which makes a picture-changing 

insertion carrying picture number —2 necessary. The construction of 

all such operators is outlined. We discuss the gauge h\ + 6_j = 0, in 

which the action formally linearizes. Nontrivial scattering amplitudes 

are obtained by approaching this gauge as a limit.
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1. Introduction

In this talk we wish to describe recent progress we have made in developing 
open superstring field theory!1^ To start out, it is perhaps worthwhile to make 

some general remarks on the motivation behind string field theory as well as 
alternatives to the string field approach.

As we all know, string theory was discovered and is still best understood 
as some kind of loop expansion of an as yet poorly understood fundamental 
theory. The formulation of this fundamental theory is the prime goal of most 
workers in this field. We think it is reasonable to search for this formulation 
in the framework of an action principle, but it is not clear from the beginning 
even what the fundamental dynamical variables should be. String field theory is 
the most straightforward way to discover this action principle, because it takes 
as dynamical variables fields associated with the particle states present in the 
theory at zero loops.

But it is by no means necessary that the zero loop particle states be associated 
in such a direct way with the fundamental dynamical variables. A popular anal­
ogy to contemplate is the relation between the fundamental variables of QCD and 
the hadrons. This analogy is most persuasive in the context of’t Hooft’s 1 /Ncoiors 
expansion of QCD which resembles very closely the dual loop expansion. J How­
ever, if something like this is at work, a simple fiat space quantum field theory 
like Yang-Mills theory can’t possibly be the answer. For one thing, string theory 

contains gravity, so the putative fundamental theory must be generally covariant. 
For another thing, the short distance structure of string theory is ultrasoft, unlike 

the hard parton structure associated with the asymptotic freedom of nonabelian 
gauge theory. One might speculate that the answer is some generally covariant 

quantum field theory, but in how many dimensions? In fact, this kind of picture 
of string theory was tried over a decade ago in the context of a “wee parton” 

approximation to QCD. Perhaps the “wee parton” assumption is linked to the 

requirement of general covariance; it certainly accounts for the softness of string
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theory.

Yet another possibility is a fundamental formulation in terms of the two di­
mensional world sheet in which topology change is taken as a dynamical variable. 
A version of this idea was proposed over a decade ago in the context of the light 
cone gauged Or maybe the framework for this idea should be universal moduli

[5,6]space.

In any case, even if string field theory is not the ultimate formulation of string
theory, it should be possible to develop an effective action principle which would

fTlat least be valid at the classical level. Wendt1 discovered a flaw in Witten’s 
initial extension of his action principle for the interacting open bosonic string 
to the superstring. It would be unsettling if this flaw were fatal. Our work, 
we believe, provides a new formulation of open superstring field theory which 

surmounts this difficulty. It does not touch on efforts to develop a superstring 
field theory based on the manifestly supersymmetric formalism, J nor does it deal 
with the problem of developing a string field theory which does not contain open 
strings.

2. String and Superstring Field Theory

We turn now to an introductory description of what string field theory is!9^ 

Ordinary field theory assigns a number (or finite collection of numbers) to each 
point in space-time. String field theory generalizes this concept by replacing the 

space of points in space-time by the space of paths in space-time. Thus the string 

field is a functional of curves: A[rf‘(cr),c((7)]. Because paths in space-time are 
not restricted to lie in equal-time hyperplanes, the theory must be a very special 

field theory for which it is possible to recover our customary notion of a unitary 
time evolution. We can implement this special feature by requiring the dynamics 
to be such that the domain of the string field can be consistently restricted to 

those paths which do lie in equal time hyperplanes. That is, it should be possible 

to formulate the theory on a submanifold of the full space of paths. In this sense
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we might describe such a theory as “topological” on path space. From this point 
of view, Witten’s proposal that the string field action be a Chern-Simons three 

form on path space is very natural.

The basic ingredients of Witten’s version of string field theory^are: string 

fields A; a derivation acting on string fields, Q, which is taken to be the first- 

quantized BRST operator; an associative exterior product, *, for which Q is a 
derivation:

Q(A * B) = QA * B + (~)aA * QB;

and a volume form on path space, J, which assigns a number, f A, to each string 

field. The ghost numbers assigned to these objects are —1/2 for A, -fl for Q, 
+3/2 for *, and —3/2 for f. In terms of these quantities Witten’s action for open 
bosonic string field theory takes the form

s=1-/a,qa+1-Ja,a*a,

and its gauge invariance is just

AA = QA + A*A — A*A.

In order to extend these ideas to the spinning string, Witten introduced a 

fermionic partner $ for the bosonic string field A and took the natural gener­

alizations to the spinning string of Q, *, and f. These objects have total ghost 

number 1, 1/2, and —1/2, respectively. Unfortunately, there is no assignment of 

ghost number to A and ^ which allows the construction of a Chern-Simons three 

form action without the use of picture-changing operators. In his initial formu­

lation Witten assigned A ghost and picture number —1/2 and —1, respectively. 

These assignments for ^ were 0 and —1/2 respectively. Then his proposed action
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takes the form

*A*A + j

In this expression X is the local operator introduced by Friedan, Martinec, and 
Shenker^11^which changes picture number by +1 unit. Y is the inverse picture 

changing operator which changes picture number by —1. Both are inserted into 
the action at the midpoint of the string singled out by the definition of * and J

fl2 13land denoted by cr = These operators have the explicit representations ’

S = \ j A*QA+\ Y{o = + \ j X{o = ^)A

Y(z) =c(z)6'(i(z)) 

X(z) ={Q,Q(/3(z))}

where S is the Dirac delta function and © is the Heaviside step function satisfying 
0' = 6. Here c is the repaxametrization ghost, 7 the superghost, and ft the 
superantighost. The argument of the fields is just z = e,<r+T. X and Y satisfy 
the short distance product relation

X(z)Y(z') 2/- I.z

f7lNow we can describe the flaw that Wendt1 Jdiscovered in this version of su­
perstring field theory. The source of the difficulty is that the picture changing 

operator X(z) has a singular operator product with itself:

X(z)X(z')
z'->z

n
(z-z')2’

This causes a difficulty with the proof of gauge invariance because the bosonic 
gauge transformation of A is

AA = QA + X(a = £)(A * A — A * A).

When one tries to check the nonlinear gauge invariance of the action, one finds 
two X's colliding at the same point. The hope that somehow this singularity is
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cancelled is dashed by Wendt’s explicit calculation of the four string function, 
which gives the wrong result. One can try to fix the problem by adding terms 
to the action with higher powers of A with coefficients designed to cancel the 
discrepancy. This is less than satisfactory because (1) the coefficient of the A4 
term is infinite and this presumably is true also of higher terms and (2) it would 
destroy the very attractive Chern-Simons form of the action.

Our solution to the difficulty is based on the idea that the classical string
[14]field should be described in the 0-picture. There are several motivations for 

this idea:

(1) The SL(2) invariant string state is in the 0-picture sector.

(2) Working in this picture corresponds to the manifestly dual form of the 
Neveu-Schwarz dual resonance amplitudes for spinning strings.

(3) Most importantly, picture changing operators axe in less dangerous config­
urations.

This last point is easily understood. In the 0-picture, A carries total ghost 

number +1/2. Thus QA and A* A both carry ghost number 3/2, so there is no 
need for a picture changing operator to balance ghost number. For example the 
field equations in this picture read:

QA + A*A + X* \I>] =0

Q^ + A*^ + ^*A=0

and X appears only in the coupling of ^ to A. Moreover the bosonic gauge 
transformation of A is now simply

AA = QA + A*A — A*A

so there is no collision of insertions in proving the gauge covariance of the field 

equations. One does need a new inverse picture changing operator F_2 in order
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to balance ghost number in the action, however:

S = j Y-fr -|)[ix . QA + i.4 . ^ . A]

+ J Y(a = * Q* + A » 4' * 41].

The operator YL.2 had not previously appeared in the literature so our first 

task was to construct it. It must be a world sheet operator attached to the 
midpoint of the string and so must be local or bilocal in the complex plane: 

z = ±i are both associated with the midpoint of the string. It must also change 
picture number P and ghost number each by —2 units. We actually employ the 
bilocal choice

y_2 = Y(i)Y(-i) = YY

for our construction because it leads to the simplest and most manageable for­

mulation. In the -1-picture bilocal insertions had been previously proposed by 
Lechtenfeld and Samuel?5^ Since dzY is BRST trivial, one can say that such a 

choice is in some sense equivalent to a completely local choice. However, there is 
a short distance singularity in Y(i)Y(z) as z —► i, so there is a divergence in the 
trivial part.

We systematically searched for all local candidates for K_2. Since there is 

a 1-1 correspondence between local operators and Fock states |K-2) = Y^O) |0) 

with |0) the SL(2) invariant Fock state, we searched for a Fock state with picture 
number —2 and ghost number —5/2 (since |0) has ghost number —1/2) satisfying

a) Lorentz and scale invariance (in particular oro = 0 and Lq = 0);

b) BRST invariance (t.e. it is annihilated by Q);

c) It is not BRST trivial;

d) It is normalized so that X(z)Y-2(z) = Y(z).
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Condition a) plus ghost and picture number constraints limit the choice to 15 
candidates. Of these 10 turn out to be primary and among the primary ones 7 are 
BRST invariant. However, the space of trivial states satisfying these conditions is 

found to be 10 dimensional so the coset space of candidates is only 5 dimensional. 
Only a 1 dimensional subspace of the coset space of nontrivial states is BRST 
invariant, so finally Y-2 is unique up to BRST equivalence. Although different 
choices are equivalent on-shell, they do lead to different off-shell actions. We 
work with the simple bilocal choice YY.

3. New Gauge Invariances

For the fermionic kinetic term of the string field action, it has been pointed 
out ^16,17\hat the necessary inverse picture changing insertion gives rise to new 

gauge invariances in addition to those associated with BRST invariance. A similar 
feature applies to our new bosonic kinetic term. To understand this, notice that 
Y(z) = c(z)8'(~f(z)) is annihilated by c(z) and by 72(z). In fact, these new gauge 
invariances are needed to choose the gauge /Jq’®' = 0. Kugo and Terao achieve this 
gauge by first constructing a BRST invariant projection operator that annihilates 
the redundancies due to the new gauge invariances. They start by introducing a 
nonlocal version of X,

X0 = {Q, 0(A))}.

Then one can easily show that YX0Y = Y and X0YXq = X0, so that V = X0Y 

is a projection operator. By virtue of these properties one can first restrict ^ 
to satisfy ’F = V'f? and then use the Q gauge invariance to set = 0. The 
resulting propagator is then boX0/Lo = bo8(/3o)/F0.

It is clear that identical considerations apply to our form of the bosonic kinetic 
term, only now all of the four operators c(i),c(—z),72(i),72(—z) annihilate F_2. 
Thus we introduce two nonlocal Jf’s

*± = {<?,©(&:)},
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where

& = + e^Vi/j)-

Then V = JC+X_y(*)y(—i) is a BRST invariant projection operator which kills 
the new redundancies. One can then first restrict A to satisfy A = VA, and then 
fix the Q invariance in a convenient way.

Before turning to gauge-fixing, we note that the interaction terms are sep­
arately invariant under the new gauge invariances because each of the four op­
erators c(i),c(—i),72(i),72(—i) have negative conformal weight. Insertion of a 
negative weight local primary field at the midpoint of a Witten vertex always 
vanishes because of the curvature singularity there.

4. Gauge-Fixing

We next consider a general class of Siegel-like gauges for the fixing of the Q 
gauge invariances. For the bosonic string this class of gauges is simply v-b A = 0 
where v • b = vnbn, and the vn are any set of numbers. For general v the 
propagator following from this condition is

n„ b-v ^b- I(v) 
T^QL ■ I(v)

where /(u)_n = (—)n+1i>„. If I(v) oc v, the propagator simplifies to |^. This is 
true of the standard Siegel gauge v • b — bo, for example.

For the spinning string, it is awkward to attempt general gauges of exactly 
this form. Instead, we use v and the projection operator "P to construct a new 
projection operator

b • v
Vv = V-—QV.L • v

This construction works equally well in the fermionic and bosonic sectors, with 

V being the appropriate projector. The general class of gauges we consider then
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are specified by

A = VA = VvA,

and the corresponding propagators are just

n? =vv^-x+x-v* 
nf =vv^-xQvl

for the bosonic and fermionic components respectively, where the transpose is 
taken with respect to the string inner product. In general these propagators 
are prohibitively complicated. However, for special choices of v they become 
manageable. The fermionic propagator simplifies for v-b = b0 or 6+ = |(6i + 6_x). 
But the bosonic propagator only simplifies significantly for the latter choice, 
which is the one we studied most intensively.

5. 6+ Gauge

The gauge u • 6 = 6+ is particularly simple because b+ commutes with local 
operators located at z = ±i. In fact, the simplification is spectacular: the gauge 
choice formally causes the cubic term in the action to vanish! The reason is that 
6+ is a derivation of the * algebra. For example, applying b+ to the l.h.s. of the 

field equation for fields satisfying b+A = 0 gives

0 = L+A + b+(A *A) = L+A + (b+A) * A — A* b+A = L+A,

linearizing the field equation. Similarly the cubic term in the action can be shown 

to formally vanish. One uses the fact that b+A = 0 implies A = b+c+A to replace 

one of the A’s by b+c+A. Then one integrates by parts to throw the b+ onto the 
remaining two A’s, which then vanish. This gauge would have the same dramatic 

consequences for the bosonic string so as preparation we studied this case very 
carefully.
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Of course, we know the interactions can’t really be a gauge artifact. The 

resolution presumably lies in the fact that one can not reach this gauge for all 
field configurations. In fact, at the linearized level one can prove that for field 
configurations in the nonvanishing eigenspace of L+, such a gauge can be reached. 
But this proof breaks down for fields in the kernel of L+. This same caveat applies 
also to Siegel gauge vb = bo, but there it is less problematic because a nontrivial 

kernel of Lo exists only for special on-shell values of the space-time momentum 

p. In contrast, the kernel of L+ is nontrivial for all p. Thus one can’t regulate 
the problem by taking p slightly off-shell. Instead, we regulate our calculations 
by employing a nearby gauge v • b = b+ + iebo, letting e —> 0 at the end of the 
calculation. In this way we explicitly confirm that general tree amplitudes for 
the bosonic string and selected ones for the superstring come out correctly. The 
results of these calculations are independent of e, as they should be. Since the 
vertex function is proportional to e, this implies that there are compensating 

singularities in that amplitude.

The manner in which moduli space is covered in the limit e —► 0 is interesting. 

.In Siegel gauge, all the diagrams of a cubic field theory provide an essential 
contribution. In particular, the six string tree diagram with three internal lines 

meeting at a cubic vertex is nonzero. We find that in the limit e —► 0 this diagram 

vanishes! The multiperipheral diagrams in which every vertex has at least one 
external line suffice to cover moduli space.

6. Conclusions

Our work strongly indicates that the difficulty discovered by Wendt is absent 

in our formulation of superstring field theory. The only qualification is that we 

haven’t done a careful study of loop diagrams. But since the problem was initially 
present at tree level, it is significant that we have removed the difficulty at that 

level. Since the product of two K’s is just as singular as the product of two X’s, 

the potential for a problem is present. However, in our scheme such singularities
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axe prevented because of the nonlocal X±’s that each propagator inserts between 

each pair of potentially colliding F’s.

In our work, we were led to consider a fascinating gauge choice which formally 
linearizes the theory. This gauge is somewhat analogous to the temporal or 
axial gauge choice in Chern-Simons gauge theories in 2 -I-1 dimensions. In that 
case one also linearizes the field equations, but nonlineaxities do remain in the 

constraints due to gauge invariance. One might expect similar features in the 
case of superstring field theory. Linearization of the action does not guarantee 
linearization of constraints. The problem with checking this idea is that the 
canonical phase space of string field theory is not well understood. If one considers 
the path integral approach to Chern-Simons theories, one can see the analogy 

with our situation more clearly. In that case it is not really allowed to set A0 to 

zero for all field configurations: one can only set the nonzero frequency modes 

to zero. The zero mode of Aq then participates in the interactions, and in fact 

integration over it precisely imposes the constraints of the phase space approach. 
In the case of string field theory, the analogue of the zero frequency mode of Aq 

would be the kernel of L+.

To conclude, let us review the status of string field theory. Our work has 

provided us with a satisfactory formulation of spinning string field theory in 

the NSR formalism for open strings. Such a formulation does not implement 
space-time supersymmetry manifestly. For that one would have to employ the 

Green-Schwarz formalism, which is not yet developed sufficiently to apply to 
string field theory. There has been much recent activity in this direction along

• fl8lthe fines of seeking linearizing gauge choices. In spite of dramatic claims of
fl9lprogress, this approach is still problematic. J Another gap in our understanding 

is the absence of a satisfactory string field theory involving only closed strings. 
In this area there has been recent progress in finding at least a gauge fixed action 
which produces correct tree amplitudes!20^

With our work, we now have an action principle for all the open string the-
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ones. Since it uses string fields as dynamical variables, it is an admittedly cum­
bersome formulation. Because of this, one hopes that a simpler action principle 
might be possible based on a different choice of variables. We have suggested 

other approaches in the introduction, and it is clearly important to explore these 
and other possibilities.
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