skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effect on Performance of Composition of Li-Ion Carbon Anodes Derived from PMAN/DVB Copolymers

Conference ·
OSTI ID:7240

The effects on electrochemical performance of the nitrogen content of disordered carbons derived from polymethacryonitrile (PMAN)-divinylbenzene (DVB) copolymers were examined in galvanostatic cycling tests between 2 V and 0.01 V vs. Li/Li+ in lM LiPF6/ethylene carbonate (EC)-dimethyl carbonate (DMC). The first-cycle reversible capacities and coulombic efficiencies increased with increase in the level of nitrogen for samples prepared at 700°C. However, the degree of fade also increased. Similar tests were performed on materials that were additionally heated at 1,000° and 1,300°C for five hours. Loss of nitrogen, oxygen, and hydrogen occurred under these conditions, with none remaining at the highest temperature in all cases but one. The pyrolysis temperature dominated the electrochemical performance for these samples, with lower reversible and irreversible capacities for the first intercalation cycle as the pyrolysis temperature was increased. Fade was reduced and coulombic efficiencies also improved with increase in temperate. The large irreversible capacities and high fade of these materials makes them unsuitable for use in Li-ion cells.

Research Organization:
Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC04-94AL85000
OSTI ID:
7240
Report Number(s):
SAND99-1172C; ON: DE00007240
Resource Relation:
Conference: Spring Meeting of the Materials Research Society; San Francisco, CA; 04/05-08/1999
Country of Publication:
United States
Language:
English