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PRESSURE VESSELS FOR COAL CONVERSION SYSTEMS 

D. A.  Canonico, G .  C .  Robinson," and W. R.  Mart in  

ABSTRACT 

Pres su re  v e s s e l s  f o r  coa l  conversion systems, a s  sug- 
ges ted  i n  some commercial conceptual  des igns ,  w i l l  be  t h e  
l a r g e s t  u n i t s  ever  f a b r i c a t e d  anywhere i n  t he  world. They 
w i l l  probably be  designed t o  Sec t ion  V I I I .  Fu r the r ,  
because of t h e i r  s i z e  and complexity they w i l l  probably be 
b u i l t  t o  t h e  r u l e s  of Div is ion  2. Economics and ope ra t ing  
condi t ions  w i l l  d i c t a t e  t h a t  t h e s e  l a r g e  v e s s e l s  be f a b r i -  
ca ted  from carbon and low-alloy s t e e l  p l a t e s  and fo rg ings  
t h a t  range from 0.2 t o  0.3 m (8-12 i n . )  i n  th ickness .  
Current  ASME Code toughness requirements  need t o  be reas-  
sessed f o r  t h e i r  adequacy t o  a s s u r e  s a f e  and r e l i a b l e  
s e r v i c e  over  t h e  20 t o  30 year des ign  l i f e  of t h e s e  v e s s e l s .  
An example i s  t h e  minimum requirement of 20 J (15 f t - l b )  
f o r  s t e e l s  w i th  u l t i m a t e  t e n s i l e  s t r e n g t h  of 517 MPa (75 k s i ) .  
Moreover, t h e r e  a r e  no r u l e s  i n  t h e  Code t h a t  r e q u i r e  t h a t  
t h e  owner cons ider  t h e  in£ luence  of process  environment on 
t h e  toughness of a p re s su re  v e s s e l  dur ing  i t s  o p e r a t i o n a l  
l i f e t i m e .  

INTRODUCTION 

One of t h e  most important  f a c t o r s  t h a t  c o n t r o l  t h e  r e l i a b l e  and 

s a f e  ope ra t ion  of a complex energy-related system is  m a t e r i a l  r e l i a b i l i t y .  1 

Thi s  a s p e c t  of t h e  commercial izat ion of conversion processes  is  pa r t i cu -  

l a r l y  ev ident  i n  t h e  experience2 t o  d a t e  w i th  process  development u n i t s  

and p i l o t  p l a n t s  t h a t  a r e  c u r r e n t l y  ope ra t ing  under t h e  s o l e  sponsorship 

of ERDA o r  i n  coopera t ive  ERDA/Industry programs. The ERDA survey2 

repor ted  i n  ERDA Newslet ter  No. 4 i d e n t i f i e d  components t h a t  have f a i l e d ;  

however, very  few of t h e s e  would have a major i n f luence  on t h e  continued 

ope ra t ion  of a commercial c o a l  conversion system. The unexpected f a i l u r e  

of a major component w i l l  s i g n i f i c a n t l y  a f f e c t  p l a n t  a v a i l a b i l i t y .  For 

*Engineering Technology Divis ion .  



example, replacement of a l a r g e  p re s su re  v e s s e l  could r e q u i r e  from 

2 t o  4 yea r s .  3 

The p r o b a b i l i t y  of t h e  f a i l u r e  of one of t hese  d i f f i c u l t - t o - r e p l a c e ,  

long-lead-time components is  a f f e c t e d  by t h e  ope ra t ing  cond i t i ons  under 

which they  must func t ion .  The p o t e n t i a l l y  degrading e f f e c t s  of a harsh  

p roces s  stream environment combined wi th  t h e  temperature and p re s su re  

requi rements  of a number of t h e  coa l  conversion processes  w i l l  p l ace  

unique o p e r a t i o n a l  demands upon these  containment systems. 

Our i n t e n t  i s  t o  review a r e a s  that are considered to he of prime 

importance i n  a s s u r i n g  t h e  r e l i a b l e  o p e r a t i o n  of l a r g e  p re s su re  v e s s e l s  

i n  commercial c o a l  convers ion  systems. We have addressed,  i n  p a r t i c u l a r ,  

t h e  r o l e  of des ign  c r i t e r i a ,  m a t e r i a l  s e l e c t i o n ,  and m e t a l l u r g i c a l  

c o n s i d e r a t i o n s .  

PRESSURE VESSEL DESIGN 

Vesse l  s i z e  i s  cons t r a ined  by a number of f a c t o r s  t h a t  a r e  no t  

m a t e r i a l  dependent.  These inc lude  f a b r i c a t i o n  procedure and component 

t r a n s p o r t a t i o n .  F a b r i c a t i o n  procedure, shop v s  f i e l d  e r e c t i o n ,  is  

d i c t a t e d  by shop f a c i l i t i e s .  Curren t ly ,  shop-fabricated v e s s e l s  a r e  

l i m i t e d  t o  1 Gg (1000 tons )  I n  mass and 11 m (35 f t )  i n  d iameter .  

Larger  v e s s e l s  must be  f i e l d  f a b r i c a t e d .  The l a r g e s t  p re s su re  v e s s e l  

t h a t  can  b e  t r anspor t ed  any reasonable  d i s t a n c e  by r a i l r o a d  is  4.3 m 

(14 f t )  i n  diameter  and about  0.8 Gg (800 t o n s ) .  Vesse ls  up t o  76 m 

long  and 5.2 m i n  diameter  (250 by 17 f t )  have been shipped,  b u t  t h e s e  

a r e  s p e c i a l  s i t u a t i o n s  involv ing  s h o r t  d i s t a n c e s .  The shipment of l a r g e  

p r e s s u r e  v e s s e l s  by barge  removes t h e  s i z e  and weight c o n s t r a i n t s  imposed 

by r a i l r o a d  t r a n s p o r t a t i o n ,  b u t  i t  does r e q u i r e  t h a t  t h e  c o a l  conversion 

p l a n t s  be  s i t e d  on  o r  near  navigahle  waterways. The vessel s i z e  c spah lc  

of being shipped by water  i s  l i m i t e d  by shop c a p a b i l i t i e s .  Navigable 

waterways a r e  r e s t r i c t e d 5  t o  t h e  e a s t e r n  ha l f  of t h e  United S t a t e s .  

There are no navigable  waterways much f u r t h e r  west than  e a s t e r n  Oklahoma, 

and, t h e r e f o r e ,  t h e  Northern Great  P l a i n s  and t h e  Rocky Mountains c o a l  

r eg ions  cannot  be  se rv i ced  by barge. 



The concept of employing prestressed concrete pressure vessels  

(PCRV) has been suggested. An Oak Ridge National Laboratory engineering 

team headed by D r .  W. L. Greenstreet is considering the merits  of such 

containment. Figure 1 is a preliminary PCRV design conceived by tha t  

group f o r  containing the gas i f ica t ion  process i n  the Synthane coal 

conversion process. The PCRV concept lends i t s e l f  t o  f i e l d  erection.  

Fig. 1. Vert ical  Cross Section of Preliminary Conceptual Design 
of Synthane PCRV. To convert dimensions t o  meters, multiply f e e t  by 
0.3048 and inches by 0.0254. 

Currently, the indus t r ia l  pref erence7 for  commercial applications 

is toward la rge  vessels,  above 1 Gg (1000 tons), and hence f i e l d  

fabr icat ion procedures must be employed. Figure 2 is  an example of a 



conceptual design f o r  a g a s i f i e r  f o r  t he  HYGAS coal  conversion system. 6 

These ve s se l s  w i l l  probably be  b u i l t  t o  Section V I I I  of t he  ASME Boiler 

and Pressure Vessel Code. 
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Fig. 2. HYGAS Gas i f ie r  Vessel. [Design pressure: 9.0 MPa gage 
(1300 ps ig ) ,  design temperature: 343OC (65O0F)1. To convert t o  
meters, mult iply f e e t  by 0.3048 and inches by 0.0254. 

Section V I I I  has two Divisions, 1 and 2. The bases f o r  es tabl ishing 

t h e  s t r e s s  values f o r  each Division a r e  provided i n  Table 1. The decision 



Table 1. Basis  f o r  Es t ab l i sh ing  S t r e s s  Values f o r  P re s su re  Vesse ls  
Under ASME Sec t ion  V I I I  

F r ac t i on  of S t r e s s  Used a s  Design Limit 

S t r e s s  A t  Room Temperature Above Room Temperature 

Divis ion 1 Division 2 Divis ion 1 Division 2 

Ferrous Alloys 

Ultimate t e n s i l e  114 of min 113 of min 114 113 

Yield 518 of min 213 of min 5 1 8 ~  2 1 3 ~  

t o  dive 1 x l ~ - ~ / h r  creep r a t e  100% of av  c 

to  Rupture i n  100,000 h r  67% of av  c 
80% of min 

Uniaxial  s t ra in-cyc l ing  f a t i g u e  d d 

Nonferrous Alloys 

Ultimate t e n s i l e  114 of min 113 of min 114 113 

Yield 213 of min 213 of min 2 1 3 ~  2 1 3 ~  

t o  Give 1 x l ~ - ~ / h r  creep r a t e  100% of av c 
\ 

t o  Rupture i n  100,000 h r  67% of a v  
80% of rnin 

Uniaxial  s t ra in-cyc l ing  f a t i g u e  d 

a ~ h e s e  va lues  can be exceeded f o r  some ma te r i a l s  when the  app l i ca t i on  involves 
components where g r ea t e r  deformation i s  i n  i t s e l f  no t  ob jec tab le ,  bu t  cannot exceed 
90% of minimum yie ld  s t r e s s  a t  temperature. 

b ~ o r  some ma te r i a l s ,  i .e. ,  a u s t e n i t i c  s t a i n l e s s  s t e e l s  and c e r t a i n  nickel-base 
a l l o y s ,  t h i s  value could be 90% of y i e l d  s t r e s s  a t  temperature bu t  cannot exceed 
213 of spec i f i ed  minimum y i e ld  s t r e s s  a t  room temperature. 

C 
C r i t e r i a  not es tab l i shed .  

d ~ a t i g u e  p rope r t i e s  a r e  no t  always required;  need f o r  f a t i g u e  a n a l y s i s  is  
determined by designer  i n  accordance w i t h  paragraph AD-1602 of ASME Sec t ion  VIII, 
Division 2 ru l e s .  

of which Code t o  apply r e s t s  with t h e  Architect-Engineer (A-E) and h i s  

c l i e n t .  Some A-Es r o u t i n e l y  perform a c a p i t a l  c o s t  scoplng s tudy  of 

v e s s e l s  comparing Sec t ion  V I I I  D iv i s ion  1 a g a i n s t  D iv i s ion  2 a t  a n  e a r l y  . 

s t a g e  of conceptual  eva lua t ions .  Small, l i g h t  v e s s e l s  of s imple des ign  

a r e  economically b u i l t  t o  Div is ion  1 r u l e s ,  b u t  a  break-even p o i n t  occurs  

such t h a t  r e l a t i v e l y  l a r g e ,  heavy complex v e s s e l s  a r e  more economically 

b u i l t  t o  Div is ion  2 r u l e s .  These v e s s e l s  tend t o  b e  t h e  g a s i f i e r s ,  

hydro-gas i f ie rs ,  CO-H2 s h i f t  v e s s e l s ,  and methanators ,  and they undoubtedly 



w i l l  be  designed i n  accordance wi th  t h e  r u l e s  of D iv i s ion  2  of Sec t ion  

V I I I .  I n  a d d i t i o n ,  systems employing p re s su res  g r e a t e r  than 21 MPa 

(3000 p s i )  a r e  n o t  allowed under Sec t ion  V I I I  Div is ion  1 r u l e s  bu t  a r e  

pe rmi t t ed  under S e c t i o n  V I I I  Div is ion  2. 

To some degree  t h e  p o t e n t i a l  c o s t  sav ings  a f forded  by Div is ion  2 

through t h e  use  of t h inne r  wal led,  l i g h t e r  weight v e s s e l s  is  o f f s e t  by 

t h e  inc reased  c o s t  of us ing  more r igo rous  r u l e s  of a n a l y s i s  and 

in spec  t i o n .  

P r e s s u r e  v e s s e l s  f o r  coal. conversion s y s  tems may l o s e  t h e i r  i n t e g r 2 t y  

and f u n c t i o n , b y  f a i l u r e s  t h a t  a r e  ca tegor ized  as: (1) excess ive  e l a s t i r  

deformat ions  r e s u l t i n g  i n  unacceptable  d i s t o r t i o n s  of mating p a r t s  o r  

i n  buckl ing;  (2) f l aw  growth a s s o c i a t e d  wi th  i n i t i a l  f a b r i c a t i o n  f laws ,  

s t r e s s  concen t r a t ions ,  f a t i g u e ,  environmental e f f e c t s ,  e t c . ,  r e s u l t i n g  

i n  l eakage  o r  c a t a s t r o p h i c  b r i t t l e  f a i l u r e ;  (3) excess ive  p l a s t i c  

deformat ion  r e s u l t i n g  i n  p l a s t i c  c o l l a p s e  o r  buckl ing;  and (4 )  exces s ive  

c r e e p  deformation o r  c r eep  rup tu re .  M a t e r i a l s  s e l e c t i o n  w i l l  be  based 

upon economics and s u i t a b i l i t y  f o r  t h e  intended s e r v i c e .  S t r e s s e s  and/or  

s t r a i n s ,  inc luding  c y c l i c  s t r a i n s ,  may be c a l c u l a t e d  f o r  a n  a n a l y t i c a l  

model of  t h e  s t r u c t u r e  being assessed .  These va lues  of s t r e s s  and s t r a i n  

may be  compared w i t h  accepted va lues  publ ished i n  s tandards ,  such a s  

L l l e  ASPE Pressure Vessel  Codes. Such a procedure8 can proper ly  bc  

c a l l e d  "Design by Analysis." a procedure. t h a t  i s  t h e  b a s i s  of t h e  ASME 

Code S e c t i o n  V I I I ,  D iv i s ion  2. 

The a n a l y t i c a l  t o o l s  and degree of s o p h i s t i c a t i o n  requi red  t o  

s a t i s f y  a  p a r t i c u l a r  s e t  of des ign  r u l e s  vary  r a d i c a l l y  wi th  t h e  des ign  

code s e l e c t i o n .  The ASME Code Sec t ion  V I I I  Div is ion  1 assumes t h a t  t h e  

Kankine theory  of f a i l u r e  governs f o r  m a t e r i a l  hehavior  below creep  

limits; t h a t  is ,  t h e  maximum p r i n c i p a l  s t r e s s  c a l c u l a t e d  f o r  a  s t r u c t u r e  

may be compared t u  t h e  stress f o r  a  u n i a x i a l  t e s t  specimen a t  which 

y i e l d i n g  o r  f a i l u r e  has  occurred .  Rather than  depend upon a n a l y s i s  a s  

t h e  pr imary b a s i s  f o r  des ign ,  t h e  phi losophyg of Sec t ion  V I I I  Div is ion  1 

( a s  w e l l  a s  Sec t ion  I )  h a s  been t o  determine w a l l  t h i ckness  from a  

s imple  c a l c u l a t i o n  of hoop s t r e s s  t h a t  cannot exceed a  very  conse rva t ive  

a l lowab le  s t r e s s  l e v e l .  This  conse rva t ive  th i ckness  de te rmina t ion  



coupled wi th  r equ i r ed  f a b r i c a t i o n  d e t a i l s  r e s u l t s  i n  a  des ign  t h a t  

gene ra l ly  accommodates high l o c a l  and secondary s t r e s s e s  t h a t  e x i s t  

f o r  s t r u c t u r e s  b u i l t  according t o  Div is ion  1 r u l e s .  These des ign  pro- 

cedures  thereby avoid ex tens ive  and complex s t r e s s  a n a l y s i s  of t h e  

s t r u c t u r e .  

The procedures of Div is ion  1 of Sec t ion  V I I I  have g e n e r a l l y  been 

s a t i s f a c t o r y  f o r  v e s s e l s  employed i n  convent ional  s e r v i c e ;  however, f o r  

v e s s e l s  to be used i n  t h e s e  new conversion concepts  and t o  ensure  a 

high degree  of r e l i a b i l i t y ,  i t  would be  advantageous t o  des ign  according 
e 

t o  Div is ion  2 of Sec t ion  V I I I  ( i . e . ,  "Design by Analysis") .  Div is ion  2 

uses  t h e  Tresca c r i t e r i o n  (maximum shear  s t r e s s  t heo ry ) ,  which s t a t e s  

t h a t  y i e l d i n g  takes  p l ace  when t h e  maximum shear  s t r e s s  i s  equal  t o  

one-half t he  y i e l d  s t r e n g t h  of t h e  m a t e r i a l .  Limit  theory  i s  used by 

Div is ion  2 t o  c a t e g o r i z e  s t r e s s e s  a s  "primary , I t  "secondary, " and "peak" 

such t h a t  (1) t h e  primary s t r e s s  limits prevent  p l a s t i c  deformation and 

provide a  s a f e  des ign  margin a g a i n s t  d u c t i l e  f a i l u r e ,  (2)  t h e  primary 

p l u s  secondary s t r e s s  l i m i t s  prevent  p l a s t i c  deformation l ead ing  t o  

incremental  c o l l a p s e  and v a l i d a t e  t h e  a p p l i c a t i o n  of e l a s t i c  ana lyses  t o  

f a t i g u e  eva lua t ion ,  and (3)  t h e  peak s t r e s s  l i m i t  p revents  f a t i g u e  

f a i l u r e  a s  a  r e s u l t  of c y c l i c  loading .  S t r e s s  l i m i t s  a r e  a l s o  provided 

by Div is ion  2 t o  prevent  e l a s t i c  and i n e l a s t i c  i n s t a b i l i t y .  

Elevated-temperature des ign  i s  handled under Div is ion  1 by basing 

the  a l lowable  s t r e s s e s  on c reep  r a t e  and r u p t u r e  da ta1 '  ex t r apo la t ed  

t o  100,000 h r .  Current  Div is ion  2 r u l e s  do not provide f o r  e leva ted-  

temperature design.. 

Nei ther  Div is ion  1 nor D iv i s ion  2 ana lyzes  t h e  p o t e n t i a l  of low- 

temperature b r i t t l e  f r a c t u r e  o r  ana lyzes  t he  load ca r ry ing  c a p a b i l i t y  

of flawed v e s s e l s  f o r  any range  of s e r v i c e  temperatures .  Ma te r i a l  

s e l e c t i o n  and m a t e r i a l  toughness s p e c i f i c a t i o n s ,  determined by t h e  

Charpy-V (C ) t e s t ,  provide t h e  primary p r o t e c t i o n  a g a i n s t  b r i t t l e  v 
f r a c t u r e .  F r a c t u r e  mechanics has  experienced a  tremendous growL11 iu 

understanding and a p p l i c a t i o n  i n  t h e  l a s t  20 yea r s .  Although i n i t i a l l y  

l i m i t e d  t o  assessments  of flawed v e s s e l s  loaded under f r a n g i b l e  cond i t i ons ,  

i t s  ' a p p l i c a b i l i t y  i n t o  t h e  e l a s t i c - p l a s t i c  regime now has  been demonstrated. 



Sectkon X I  of t h e  ASME Code now uses  t h e  d i s c i p l i n e  f o r  i n - se rv i ce  

assessment  of flawed nuc lea r  components. Concise d e s c r i p t i o n s  of 

a n a l y t i c a l  f r a c t u r e  mechanics techniques t h a t  have demonstrated u t i l i t y  

f o r  ana lyz ing  flawed s t r u c t u r e s  f o r  both t h e  e l a s t i c  and e l a s t i c - p l a s t i c  

regimes a r e  a v a i l a b l e  from a  number of sources .  1 1 9 1 2  

MATERIAL SELECTION 

The ASME Code S e c t i o n  I1 P a r t  A provides  s p e c i f i c a t i o n s  f o r  p l a t e  

and f o r g i n g  s t e e l s  t h a t  can  b e  considered f o r  thick-walled m a 1  rnnvers ion  

system p res su re  v e s s e l s .  Cons ide ra t i sn  of all, p n s s i h l ~  m a t e r i a l s  would 

b e  p r o h i b i t i v e ;  however, t h e  conceptual  des igns  t h a t  have been completed 

by some engineer ing  f i r m s  do suggest  a  number of l i k e l y  m a t e r i a l s .  The 

f a b r i c a t i o n  of t h e  l a r g e  p re s su re  v e s s e l s  w i l l  probably be  l i m i t e d  t o  

p l a i n  carbon and low-alloy h igh-s t rength  s t e e l s .  Three examples of 

cand ida t e  s t e e l  s p e c i f i c a t i o n s  a r e  provided i n  Table 2. S imi la r  s t e e l s  

a r e  a v a i l a b l e  a s  f o r g i n g s .  Probably t h e  forg ing  grades  w i l l  be  favored 

f o r  extremely l a r g e  thick-walled p re s su re  v e s s e l s .  The wa l l  th icknesses  

of t h e  p re s su re  v e s s e l s  w i l l  be  l i m i t e d  t o  a  maximum of about  0.33 m 

1 3  i n . .  Two f a c t o r s  d i c t a t e  t h i s  upper l i m i t  on th ickness ,  (1) t h e  

s t e e 1  ' s a b i l i t y  t o  ach ieve  minimum t e n s i l e  requirements  and (2) t h e  

f a c r i c a r o r s '  a b i l i t y  t o  form t h i c k  s e c t i o n s .  The & i n  carbon s t e e l s  

r ep re sen ted  by SA-516 Grade 70 a r e  l i m i t e d  t o  a  maximum th i ckness  of 

0.2 m (8 i n . ) .  The a l l o y  s t e e l s '  maximum th i ckness  is  e i t h e r  (1) 

s p e c i f i e d  i n  t h e  SA s p e c i f i c a t i o n  (see  SA-5.33 Gra,d.e 8 Claso 1) o r  ( 2 )  

c o n t r o l l e d  'by t h e  s t e e l ' s  h a r d e n a b i l i t y  ( s e e  SA-387 Grade 22 Class  2 ) .  

Frequent ly ,  i n t e r e s t  i s  shown i n  higher  s t r e n g t h  s t e e l s ,  bu t  u sua l ly  

t h e s e  a r e  n o t  ASME Code approved. Table 2  con ta ins  A 543, an pxample 

of a p l a t e  s p e c i f i c a t i o n  f o r  s t e e l s  tha.t  have u l t i m a t e  t e n ~ i l e  ~ t r c n g t h s  

i n  excess  of 689 MPa (100,000 p s i ) .  This  s p e c i f i c a t i o n  i s  a  commercial 

a d a p t a t i o n  of t h e  submarine h u l l  s t e e l s  commonly r e f e r r e d  t o  a s  HY 80. 

S i m i l a r  forg ing  grades ,  A 508 Classes  4 and 5,  a l s o  e x i s t .  A c . n r l ~  case 

h a s  been proposed t h a t  would permit  t h e  u s e  of A 543 Class  1 f o r  welded 

c o n s t r u c t i o n  under t he  r u l e s  of Sec t ion  VIII. 



Table 2. Candidate P l a t e  S t e e l s  f o r  P r e s s u r e  Vesse ls  w i th  Required 
Wall ~ h i c k n e s s e s  Grea ter  than  0.1 m (4 i n . )  

S t e e 1    dent if i c a  t iona  

Grade and Class  

Max Content and Range, w t  % 

Carbon 
h 

Manganese 

Phosphorus 

Su l fu r  

S i l i c o n  

Molybdenum 

Nickel 

Chromium 

Max ~ v a i l a b l e  P l a t e  Thickness,  
m ( i n . )  

S t rength ,  MPa ( k s i )  

Ul t imate  t e n s i l e  

Max Yield P o i n t '  

Max Elongat ion ( i n  2 i n . ) ,  % 

Max Reduction o f ,Area ,  % 

a 
SA denotes  ASME Sect ion  I1 P a r t  A .  A denotes  ASTM 

s p e c i f i c a t i o n .  

bMaximum carbon con ten t  based on requirements  f o r  t h i c k e s t  
p l a t e s .  

* .  
C 
Maximum th i ckness  i s  l i m i t e d  only by t h e  capac i ty  of t h e  

chemical composition t o  meet s p e c i f i e d  minimum mechanical 
.-. 

p r o p e r t i e s .  



The advantages of employing high-strength s t e e l s  a r e  ev ident  when 

t h e  a l lowab le  s t r e s s  v a l u e s  a r e  compared. Table 3 con ta ins  t h e  a l lowable  

s t r e s s  v a l u e s  f o r  SA-516 Grade 55 [ a v a i l a b l e  a s  0.3 m-thick (12-in.) 

p l a t e ] ,  SA-387 Grade 22 C las s  2 ,  and A 543 c l a s s  1. This  t a b l e  a l s o  

compares t h e  Div is ion  1 and Divis ion  2 a l lowable  s t r e s s e s  i n  Sec t ion  V I I I .  

Table  3 .  Comparison of t h e  Sec t ion  V I I I  Maximum Allowable S t r e s s  
Values i n  D iv i s ion  1 and the  Design S t r e s s  I n t e n s i t y  Values 

i n  D iv i s ion  2 

Dcoign Limit, MPn 
Tempera t~irr 
- sa-5id brade 99 SA-387 Grade 22 Class 2 A 343 c l a s s  lb 
("C) (OF) 

Division 1  Division 2 Division 1  Division 2 Division 1  Division 2 

a~~ indicates  an ASME Code Section I1 Part A spec i f i ca t ion .  A indicates  an ASTM 
standard . 

b~ code case  has been proposed to  permit the use of A 543 under the rules  of 
Sect ion VIII for  welded construction.  

The ASME and ASTM s p e c i f i c a t i o n s  do not  have s p e c i f i c  requirements  

f o r  qua l i fy ing  m a t e r i a l s  f o r  e levated-temperature and a s soc i a t ed  process  

environmental  cond i t i ons .  A l l  t h a t  i s  r equ i r ed  i s  t h a t  t h e  m a t e r i a l  

s a t i s f y  t h e  minimum mechanical proper ty  requirements  a t  room temperature 

and t h e  o t h e r  requi rements  of t h e  s p e c i f i c a t i o n .  Allowable s t r e s s e s  

a r e  provided f o r  each Code-approved m a t e r i a l ;  however, t h e s e  v a l u e s  are 

based on t e s t s  performed on t e s t  h e a t s  of t h a t  grade  and exper ience  

w i t h  t h a t  a l l o y  grade ,  and no elevated-temperature t e s t s  a r e  r equ i r ed  

t o  a s s u r e  t h a t  a g iven  h e a t  of s t e e l  s a t i s f i e s  t h e  minimum v a l l ~ e s  upon 

which t h e  a l lowable  s t r e s s e s  a r e  based. The ASME Code r e q u i r e s  t h a t  t h e  

d e s i g n e r  cons ider  environmental e f f e c t s ,  b u t  provides no s p e c i f i c  

guidance o r  r u l e s .  Hence, t h e  i n t e g r i t y  of a  system depends on t h e  

expe r i ence  and e x p e r t i s e  a v a i l a b l e  t o  t he  des igne r .  I n  t h e  c a s e  of most 

c o a l  conversion systems the  informat ion  regard ing  s p e c i f i c  process  

c o n d i t i o n s  i s  l i m i t e d .  Most of t h e  experience upon which a  judgment of 



environmental e f f e c t s  i s  based is  being obtained i n  Process  Development 

Unit  (PDU) and P i l o t  P l a n t  (PP) ope ra t ions .  The much g r e a t e r  s i z e  of 

commercial p l a n t s  may in t roduce  e f f e c t s  t h a t  cannot be measured i n  o r  

ex t r apo la t ed  from t h e  experience wi th  a smal l  experimental  s e tup .  

METALLURGICAL CONSIDERATIONS 

The choice  of m a t e r i a l  f o r  f a b r i c a t i o n  of a component depends on 

t h e  volume of t h e  process  s t ream ( t h i s  w i l l  determine t h e  v e s s e l ' s  diameter  

and h e i g h t ) ,  i ts  chemical c h a r a c t e r i s t i c s  ( c o r r o s i v i t y  of t h e  process  

s t ream),  t he  requi red  temperature and p re s su re ,  and t h e  a c c e p t a b i l i t y  of 

t h e  m a t e r i a l  under t h e  Code. These c r i t e r i a  w i l l  d i c t a t e  whether t h e  

component w i l l  ope ra t e  i n  t h e  co ld  mode [<34O0C (650°F)] o r  h o t  mode 

(above the  temperature f o r  which c reep  must be  cons idered) .  The p re s su re  

v e s s e l s  used i n  c o a l  conversion systems w i l l  l i k e l y  ope ra t e  below t h e  

c reep  range and above the  dew po in t  of t h e  process  stream. The l imi -  

t a t i o n s  a r e  s e l e c t e d  because a t  t h e  temperatures  f o r  which time-dependent 

p r o p e r t i e s  must be considered,  t he  Code a l lowable  s t r e s s e s  dec rease  

r a p i d l y  f o r  small  i nc reases  i n  des ign  temperature'. This  i s  p a r t i c u l a r l y  

t r u e  f o r  t h e  f e r r o u s  m a t e r i a l s .  The high-al loy m a t e r i a l s  ( a u s t e n i t i c  

s t a i n l e s s  s t e e l s  and high-nickel a l l o y s )  main ta in  t h e i r  s t r e n g t h  t o  

h igher  temperatures ,  bu t  g e n e r a l l y  t h e i r  a l lowable  s t r e s s  l e v e l s  a r e  

low and t h e i r  c o s t  pe r '  f a b r i c a t e d  pound i s  comparatively h igh .  Hence, 

t h e  l a r g e  p re s su re  v e s s e l s  w i l l  be  f a b r i c a t e d  from carbon o r  low-alloy 

s t e e l s  and they w i l l  be  p ro t ec t ed  from t h e  h igh  process  temperatures  

by r e f r a c t o r y  i n s u l a t i o n  and perhaps o v e r l a i d  (o r  c l a d )  t o  p r o t e c t  them 

from t h e  process  stream. Fur the r ,  t h e  d e s i r a b i l i t y  of min imiz ing . the  

number of trains w i l l  r e q u i r e  t h a t  t h e  p re s su re  v e s s e l  be l a r g e  i n  

diameter ,  thereby n e c e s s i t a t i n g  t h i c k  w a l l s .  

Sec t ion  s i z e s  such a s  t h e s e  demand t h a t  t he  p l a t e s  (and fo rg ing  

courses)  be processed from i n g o t s  t h a t  w i l l  only permit minimal working13 

dur ing  s labbing  and r o l l i n g .  For t h i c k  s e c t i o n s  ["0.3 m (12 i n . ) ]  t h e  

amount of r educ t ion  i s  near  3 .3  t o  1 and t h e  c r o s s  r o l l i n g  r a t i o  i s  

about  1 .7 .  Af t e r  processing i t  i s  necessary t o  quench and temper t h e s e  

massive s e c t i o n s  t o  achieve  t h e  r equ i r ed  t e n s i l e  p r o p e r t i e s  a t  t h e  



114-thickness  l o c a t i o n .  This  t e s t  l o c a t i o n  i s  s p e c i f i e d  f o r  m a t e r i a l s  

t h a t  a r e  cooled i n  a medium t h a t  provides a cool ing  r a t e  f a s t e r  than  

t h a t  of s t i l l  a i r .  For example, SA-336 Class .F22 s t e e l  ( r e f e r r e d  t o  a s  

normalized and tempered),  a forg ing  grade  of 2 114 C r - 1  Mo s t e e l ,  is  

u s u a l l y  quenched and tempered i n  t h i c k  s e c t i o n s .  By quenching and 

tempering t h e  minimum t e n s i l e  requirements  of t h e  s p e c i f i c a t i o n  can  

e a s i l y  b e  achieved even i n  t h e  maximum s i z e s  a v a i l a b l e  today, about  

0.36 m (14 i n . ) .  The low c r o s s  r o l l i n g  r a t i o  c i t e d  above w i l l  r e s u l t  

i n  some an i so t ropy ,14  which is  most apparent  when toughness p r o p e r t i e s  

a r e  compared. F i g u r e  3 con ta ins  C d a t a  f o r  SA-533 Grade.B Class  1 s t e e l  v 
a s  a f u n c t i o n  of temperature f o r  d i f f e r e n t  specimen o r i e n t a t i o n s .  

Specimen o r i e n t a t i o n  h a s  l i t t l e  e f f e c t  on t h e  toughness i n  t h e  t r a n s i t i o n  

tempera ture  reg ion;  however, t h e  e f f e c t  of t h e  c r o s s  r o l l i n g  i s  r e f l e c t e d  

i n  a d i f f e r e n c e  i n  t h e  upper-shelf energy va lues .  
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Quenching and tempering of carbon and low-alloy s t e e l s  r e s u l t s  i n  

a v a r i a t i o n  i n  p r o p e r t i e s  through t h e  p l a t e  th ickness .  l 4  Such a v a r i a t i o n  

caused by quenching i s  i l l u s t r a t e d  i n  Fig.  4. A s  mentioned above, t he  

codes r e q u i r e  t h a t  t h e  minimum requirements  of t h e  s p e c i f i c a t i o n  be 

s a t i s f i e d  a t  t h e  1 /4- th ickness  l o c a t i o n ,  and, consequently,  q u i t e  o f t e n  

t h e  p r o p e r t i e s  a r e  n o t  determined a t  t h e  o t h e r  depths .  The s u r f a c e  

p r o p e r t i e s  a r e  supe r io r  t o  t hose  a t  t h e  1/4- thickness  l o c a t i o n  because 

of t h e  f a s t e r  cooi ing  r a t e  t he re .  The u l t i m a t e  t e n s i l e  s t r e n g t h  i s  much 

h igher  than what would be nominally repor ted  f o r  t h i s  h e a t  of s t e e l .  For 
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c e r t a i n  a p p l i c a t i o n s ,  t h i s  i n c r e a s e  i n  s t r e n g t h  i s  b e n e f i c i a l .  I n  t h e  

c a s e  of a c o a l  convers ion  system, t h e  increased  s t r e n g t h  i n  t h e  s u r f a c e  

could  be d e t r i m e n t a l .  A Nat iona l  Assoc ia t ion  of Corrosion Engineers  

(NACE) Committee r e p o r  t e d l  t h a t  carbon and low-alloy s t e e l  candida tes  

f o r  t h e  f a b r i c a t i o n  of v e s s e l s  f o r  c o a l  conversion systems a r e  s u s c e p t i b l e  

t o  s u l f  i d i z a t i o n  a t t a c k  when t h e i r  hardness  i s  about R 22 o r  g r e a t e r .  
C 

It i s  ev iden t  from t h e  above d i s c u s s i o n s  t h a t  t h e  requi red  t e n s i l e  

p r o p e r t i e s  can b e  achieved even i n  t h e  extremely t h i c k  s e c t i o n  s i z e s  by 

quenching and tempering. Notch toughness per se, p a r t i c u l a r l y  t h e  

requi rements  of S e c t i o n  V I I I  Div is ions  1 and 2 of t h e  ASME Code, can be 

met by t h e  cand ida t e  a l l o y s  being proposed f o r  coal  conversion p re s su re  

v e s s e l s ;  however, t h e  adequacy of t h e s e  requirements  must be  quest ioned.  

Most d i s r u p t i v e  p r e s s u r e ' v e s s e l  f a i l u r e s  r epo r t ed  i n  t h e  open 

l i t e r a t u r e  have occurred  a s  a consequence of poor i n i t i a l  toughness o r  

because of  a l o s s  of toughness a s  a r e s u l t  of s e r v i c e .  The Thompson 

v e s s e l ,  ' which f a i l e d  i n  England dur ing  h y d r o s t a t i c  t e s t i n g  i n  1966, 

i s  a c l a s s i c a l  example of t h e  e f f e c t  of poor i n i t i a l  toughness. The 

f a i l u r e  of a Japanese d e s u l f u r i z a t i o n  r eac to r "  dur ing  f i e l d  r e p a i r  work 

demonst ra tes  t h e  combined e f f e c t s  of s e rv i ce - r e l a t ed  c rack  i n i t i a t i o n ,  

c r a c k  growth r a t e ,  and a n  environment t h a t  embr i t t l ed  the  base meta l .  

The Thompson v e s s e l  r e p r e s e n t s  t h e  c a t a s t r o p h i c  end po in t  of a n  

i n c o r r e c t  postweld h e a t  t rea tment  (PWHT) . ~ v a i l a h 3 . e '  d a t a  show t h a t  

extended t ime o r  h ighe r  temperatures  dur ing  PWHT can  e m b r i t t l e  low-alloy 

h igh-s t rength  s t e e l  and welds.  Th i s  embri t t lement  man i f e s t s  i t s e l f  a s  

a n  i n c r e a s e  i n  t h e  t r a n s i t i o n  temperature and a lowering of C upper-shelf v 
energy. The Thompson v e s s e l  f o r t u n a t e l y  f a i l e d  dur ing  a ( ~ r i t i s h )  Code- 

r equ i r ed  h y d r o s t a t i c  t e s t ,  a l though a t  a h igh  c o s t  i n  both time and money. 

The process  environment t h a t  i s  inhe ren t  i n  t h e s e  f.na1. conversion 

p r e s s u r e  v e s s e l s  w i l l  r e q u i r e  t h a t  t h e  v e s s e l s  be  c l ad .  The procedure 

f o r  c l add ing  o f t e n  r e s u l t s  i n  t he  presence of mic ro f i s su re s  o r  c r acks  

i n  o r  under t h e  c ladding .  Both phenomena have duplex s t r u c t u r e s  wi th  

ready-made i n i t i a t i o n  s i t e s ,  which i n c r e a s e  t h e  po ten t i a l ,  f n r  c r a c k  

growth dur.ing s e r v i c e .  It has  been e s t a b l i s h e d  t h a t  environment w i l l  

u s u a l l y  a f f e c t  c r a c k  growth r a t e s .  



The c u r r e n t  toughness c r i t e r i a  of Sec t ion  V I I I  of t h e  ASME Code a r e  

minimal. They a r e  based on a  CV notch c r i t e r i o n  t h a t  i s  a p p r o p r i a t e  f o r  

t h i n  s e c t i o n s  of p l a i n  carbon s t e e l s .  The requirements  a r e  1 4 ,  t o  27 J 

(10-20 f t - l b )  [ o r  0.38 mm (15 mi l )  l a t e r a l  expansion] ,  depending on the  

s t r e n g t h  of t h e  s t e e l  i n  both  Div is ions  1 and 2 of Sec t ion  V I I I .  The 

Code does n o t  have a n  upper-shelf toughness requirement.  Fu r the r ,  t h e  

Code con ta ins  no r u l e s  t h a t  a r e  r e l a t e d  t o  t h e  in f luence  of environment 

on toughness. The Sec t ion  V I I I  Code c r i t e r i a  a r e  based on c rack  i n i t i a t i o n  

c r i t e r i a  t h a t  evolved from post-World-War-I1 s h i p  f a i l u r e  i n v e s t i g a t i o n s .  

Those f a i l u r e s  i n i t i a t e d  and propagated from extremely small flaws i n  

base  m a t e r i a l s  t h a t  were 38 mm (1.5 i n . )  and l e s s  i n  th ickness .  The 

p re s su re  v e s s e l s  proposed f o r  coa l  conversion systems w i l l  b e  f a b r i c a t e d  

from t h i c k  p l a t e s  and fo rg ings ,  and cracks  can  grow t o  s i z e s  t h a t  can  be  

c r i t i c a l  even f o r  m a t e r i a l s  t h a t  meet a  20-5 (15 f  t - lb )  o r  0.38 mm (15 m i l )  

l a t e r a l  expansion c r i t e r i o n .  For example, t h e  A 533 Grade B Class  1 s t e e l  

used t o  develop t h e  K curve  i n  Appendix G of Sec t ion  I11 of t h e  ASME IR 
Code exh ib i t ed  f r a c t u r e s  t h a t  s a t i s f i e d  t h e  c r i t e r i a  f o r  a  v a l i d  l i n e a r  

e l a s t i c  f a i l u r e l g  mode i n  0.1-m-thick (4 i n . )  s t e e l  a t  -18°C (O°F). This  

m a t e r i a l  meets t h e  20 J (15 f  t - lb )  CV c r i t e r i o n 1  * a t  about  -23°C (-10°F) . 
A 20 J (15 f t - l b )  c r i t e r i o n  a t  -23°C (-10°F) would no t  a s s u r e  s a f e  and 

r e l i a b l e  behavior  f o r  0.2 t o  0.3-m-thick (8-12 i n . )  p re s su re  v e s s e l s .  
I 

I n  r e a l i t y ,  a  0.3-m-thick (12 i n . )  s t e e l  s e c t i o n  f a i l e d  i n  a  f r a n g i b l e  

mode a t  more than  39°C (70°F) above t h e  temperature a t  which t h e  s t e e l  

absorbed 20 J (15 f t - l b )  i n  a CV t e s t .  The u s e  of a 20 o r  27 J (15 o r  

20 f t - l b )  C va lue  t o  determine t h e  adequacy of che tuughurss  of a 0.2 v 
t o  0.3-m-thick (18-12-in.) p re s su re  v e s s e l  s t e e l  t o  avoid. t h e  i n i t i a t i o n  

of a f r a c t u r e  needs t o  f u l l y  a s se s sed .  R e l i a b i l i t y  of new s y n t h e t i c  f u e l  

p l a n t s  i s  a must i f  they a r e  t o  s a t i s f y  t h e  f u t u r e  energy needs of t he  

1J.S. 

The p re s su re  v e s s e l s  r equ i r ed  f o r  commercial c o a l  conversion systems 

a r e  long-lead-time, d i f f i c u l t - t o - r e p l a c e  items. It  is granted t h a t  

c u r r e n t  tcchnology can  prnvide  m a t e r i a l s  t h a t  s a t i s f y  t h e  minimum proper ty  



requi rements  of today ' s  codes. However, t h e s e  codes were developed f o r  

u n i t s  t h a t  do n o t  o p e r a t e  under combinations of v a r i a b l e  process  stream 

c o n d i t i o n s  t h a t  a r e  as h a r s h  a s  those  t h a t  w i l l  be  encountered i n  

commercial coa l  convers ion  systems. Fu r the r ,  t h e  extremely thick-walled 

v e s s e l s  t h a t  a r e  proposed i n  a  number of conceptual  des igns  may no t  

provide  t h e  margins o f . s a f e t y  and r e l i a b i l i t y  t h a t  t h inne r  walled 

m a t e r i a l s  can a s s u r e ;  i n  p a r t i c u l a r ,  t h e  conserva t iveness  of a  l e a k  

b e f o r e  f r a c t u r e  c r i t e r i o n .  
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