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HANDBOOK OF BAYESJAN RELIABILITY ESTIMATION METHODS

by

H. Fo Martz, Jr., and R. A. Waller

ABSTRACT

Bayesian reliability estimation methods are
summarized in a handbook format for convenient
use by reliability pracv.itioners. The methods
giver, consider both attribute test data based on
a binomial sampling distribution and a beta prior,
as well as variables test data from an exponential
sampling distribution and a gamma prior. Classical,
Bayes, and empirical Baycts methods are all consid-
ered. In addition, the sample test data can arise
from either an item-censored life test, either with
or without the replacement of failed items as they
occur, or from a time-truncated life test with re-
placement. Real-data examples using nuclear reac-
tor component failure data are used to illustrate
each of the methods presented.

I. INTRODUCTION
I.A. Notation and Definitions

The results summarized in this handbook rely heavily on the
more complete development provided in Waller and Martz and Mart2

2
and Waller. However, the notetion used here may depart from
that of the preceding documents in order to provide consistency
throughout the handbook. Some general notation is presented be-
low, while special notation required will accompany the methods
to la. presented.

General Notation:
n , the number of items on test NPR



x , the observed number of survivors of a test of dura-
tion t

ti , the i failure time

r , the observed number of failures (o < r < n)

tQ ( the time of test termination

(t* <• t7 < ••• < t ) , a sample of r ordered times-to-
1 £ l failure

(n - r)t , the total test time when the

testing is terminated at the

time of the r * failure and

failed items are not replaced

(Type II/item-censored testing

without replacement)

7 « nt , the total test time when the testing is terminated

at the time of the r failure and failed items are

replaced (Type II/item-censorcd testing with re-

placement)

T = ntQ , the total test time when the testing is terminated

at time zQ and failed items are replaced (Type 1/

time-truncated testing with replacement)

v , degrees of freedom of the chi-square distribution

Vj, numerator degrees of freedom of the V distribution;

degrees of freedom of the chi-square distribution for

lower interval end points

v2> denominator degrees of freedom of the F distribution;

degrees of freedom of the chi-square distribution for

upper interval end points

X a. » 100(a)th percentile of a chi-square distribution

with v degrees of freedom (P(x < X a.v) * °-J

F . , 100(a)th percentage point of an F distribution
a»vl»v2

with v. numerator and v, denominator degrees of freedom

a>vl»V2
R , reliability; the probability that an item will operate

».piecessfully for a specified length of time when used



under specified conditions; the probability of failure-

free operation for a specified length of time

R(t) , reliability; the probability that an item will operate

successfully for a length of time t when used under spec-

ified conditions

PWR , pressurised water reactor

A , failure-rate (failures/unit-time)

nQ , beta prior distribution parameter representing

"pseudo sample size"

x , beta prior distribution parameter representing "pseudo

number of survivors"

aQ $ gamma prior distribution shape parameter

8 , gamma prior distribution scale parameter

F(x) , gamma function

1-c* , confidence that a confidence-interval estimate contains

the specified reliability parameter

1-Y * probability that a probability-interval estimate con-

tains the specified reliability parameter

TCI, two-sided confidence interval

LCI, lower one-sided confidence interval

UCI, upper one-sided confidence interval

TBPI, two-sided Bayes probability interval

LBPI, lower one-sided Bayes probability internal

UBPI, upper one-sided Bayes probability interval

TEBPI, two-sided empirical Bayes probability interval

LEBPI, lower one-sided empirical Bayes probability interval

UEBP1, upper one-sided empirical Bayes probability interval

Note: When "0" accompanies any of the Bayes probability-inter-

val abbreviations, it implies that the interval estimate

is based entirely on the prior distribution; that is, the

interval is a projected estimate before actual observed

failure data become available. In References 1 and 2,

such an estimate is referred to as a "no data estimate."

On the other hand, if a Bayes interval estimate is derived



from the posterior distribution, which includes sample

test information from a sample of size n, the letter "n"

will accompany the abbreviation. Such estimates are re-

ferred to as "data estimates." A "no data estimate" is

the result of a prior analysis, while a "data estimate" is

the result of a posterior analysis (see Definitions below),

Definitions:

Prior Information - information which exists about a relia-

bility parameter of interest before sample test data be-

come available. The information may be either subjective

or objective.

Attribute Test Data - data in which only the survival/nonsur-

vival of each item on life test is recorded.

Variables Test Data - data in which the time-to-failure of

each item failing during a life test is recorded.

Sample Test Data - objective reliability failure information

obtained from a set of items which have been placed on

life test. The data may be either attribute or variables

data.

Sampling Distribution - the statistical distribution which is

assumed for the sample test data.

Classical Estimation - those estimation techniques which uti-

lize only objective sample test data in computing the

estimates.

Bayesian Estimation - an estimation methodology which formally

permits combining two sources of information about a relia-

bility parameter of interest. The two sources are prior

information and objective sample test data.

Empirical Bayes Estimation - an estimation methodology which

is Bayesian in nature but with fewer assumptions regarding

the prior distribution.

Prior Analysis - reliability estimates derived from the prior

distribution before sample test data are available.



Posterior Analysis - reliability estimates derived from the

posterior distribution when sample test data are available

for Bayesian analysis.

Prior Distribution - a statistical distribution for the relia-

bility parameter of interest in a Bayesian analysis. This

distribution summarizes the prior information about the

reliability parameter.

Posterior Distribution - the statistical distribution obtained

by combining the prior distribution and the sampling distri

bution by means of Bayes theorem.

Confidence Interval - an interval estimator which is said to

contain a reliability parameter of interest with a speci-

fied confidence.

Probability Interval - an interval estimator which contains

the reliability parameter of interest with a specified

probability.

Point Estimate - a single number which best estimates the

reliability parameter of interest as opposed to an inter-

val estimate.

Item-Censored Life test- a life test experiment which is ter-

minated after a prespecified number of failures have been

observed.

Time-Truncated Life test- a life test experiment which is

terminated after a prespecified length of test time has

elapsed.

Probability Distributions Considered:

Exponential Probability Density Function -

f(t) = Xexp(-Xt) , t > 0 ; X > 0

Gamma Prior Probability Density Function -

g(A) = ̂  £ , X > 0 ; a o , B o > 0

°



Binomial Distribution -

P(x) = Cn.y^,;| RX (l-R)n"X , x = 0,l,...,n;0 < R

Beta Prior Probability Density Function -

rfn ) x -1 n -x -1
g(R) = 2 R ° (l-R) ° ° , 0 < R < 1;

r(xo)r(no-xo)
 n

o >
 xo > ° •

I.B. Handbook Usage
A user of this handbook will go through a process of elimi-

nation to classify his problem of interest into one of the cate-
gories contained in Sec. III. A diagram to assist in this elim-
ination process is presented in Figure 1.

For either Bayes or empirical Bayes methods, the information

in Sec. II will be helpful in selecting a prior distribution.

I.C. Scope
The scope of the variables test -lata methods presented in

this handbook covers both point and interval estimators of relia-
bility and failure rates for the following three general cate-
gories of methods: (1) Classical, (2) Bayes, and (3) Empirical
Bayes.

The classical estimation of reliability is limited to maxi-
mum likelihood estimation for point estimates and confidence
intervals based on the chi-square distribution. The only sam-
pling distribution considered is the exponential (constant
failure rate) distribution. The sample test data are assumed
to arise from either an item-censored or time-truncated life test
situation. The item-censored test can be conducted either with
or without the replacement of failed items while the time-trun-
cated test assumes that failed items will be replaced as they

occur.

The Bayes probability intervals are likevise given in terms
of percentiles of the chi-square distribution. As discussed in
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Waller and Martz , a gamma prior distribution of the failure rate

A is assumed throughout Sec. III.B.

The scope of the attribute test data methods presented in

this handbook covers both point and interval estimators of the

probability of failure-free operation for a specified length of

time (the reliability) for the following three general categories

of methods: (1) Classical, (2) Bayes, and (3) Empirical Bayes.

The classical estimation of reliability is limited to maxi-

mum likelihood estimation for point estimates and confidence in-

tervals are given in terms of percentage points of the F distri-

bution. For reasons discussed in Martz and Waller , a beta prior

distribution of reliability is assumed throughout Sec. III.A. It

is noted that all the interval estimates in Sec. III.A are given

in terms of the F distribution. The Bayes interval estimates

consider appropriate areas under a beta distribution. Since

this distribution is not widely tabulated, equivalent estimates

are expressed in terms of the F distribution, which is widely

tabulated.

II. SELECTING A PRIOR DISTRIBUTION

II.A. General Remarks

Use of the results in this handbook requires that certain

parameter values be specified. The purpose of this section is

to indicate which parameters must be specified, to motivate the

nature of those parameters, and to provide references to some

existing procedures which may be helpful in the necessary value

specifications. The discussion is divided into two parts.

First, Sec. B addresses the selection of beta parameters for

priors used in reliability estimation for attribute testing.

Second, Sec. C presents a discussion of selecting parameters

for gamma priors on failure rates in exponential time-to-failure

models.



II.B. Beta Priors for Reliability Estimation in Attribute

Testing Case

We suppose that R, the reliability of an item being investi-

gated by an attribute testing experiment, is a random variable

such that the prior density of R is given by the beta distribu-

tion

g(R) = 2 R ° (i-R) ° , 0 < R < l;n > x > 0

The experimenter must then select values for the parameters nQ

and x . For reference, it is convenient to think of nQ and xQ

as pseudo number of trials and pseudo number of successes, re-

spect ively.

Waterman, Martz, and Waller present an extensive set of

tables which assist an experimenter with the translation of

experiences, judgments, and beliefs into numerical choices

for n and x . Those tables require an experimenter to specify

values for either the 5th percentile and the mean for R, or the

mean and 95th percentiie for R.

II.C. Selection of Parameter Values for a Gairana Prior on

Failure Rate

If we assume that the time-to-failure for an item is expo-

nentially distributed with failure rate X, the conjugate prior

distribution for X is the gamma density given by

g ( A ) = _*__ 2 , X > 0;ao,3o > 0o , 3 o

To use the Bayesian methods presented in this handbook for expo-

nential failure data, an experimenter must specify values for the

parameters ao and g . We may note that the prior expected value

of X i-- E(X) = a o0 o and the prior variance of X is V(X) = a0BQ.



Thus, one method of specifying values for ot0 and 60 is to subjec-

tively (using all available experiences, beliefs, etc.) select

values for E(A) and V(A) and specify a o = E
2(A)/V(A) and &Q

= V(X)/E(X). That method is presented along with tables for

specifying values for one of the pairs of percenEiles, (5, 59),

(S, 95), or (50, 95) in Martz and Horita . If an experimenter

wants to use reliability experience in specifying values for

aQ and gQ, then Waller, Marfz, Horita, and Waterman provide

tables and graphs to assist in translating values for two re-

liability percentiles, say (5, 50), (5, 95), or (50, 95), into

values for OLQ and BQ in the gamma prior for X.

III. POINT AND INTERVAL ESTIMATION METHODS FOR RELIABILITY

AND FAILURE-RATES

III.A. Attribute Test Data

For the results in this section, we suppose that n items are

placed on life test for a specified length of time and that x

survivors are observed. The number o£ survivors follows a
2

binomial distribution (see Martz and Waller. It is

desired to estimate the probability of surviving the test (the

reliability or the probability of failure-free operation). The

interval-estimation equations are presented in terms of percent-

age points of the F distribution which are given in the table

in Appendix C.

10



III.A.I. Attribute test data: classical procedures.

a. Point estimator of R:

R = x/n . (LA-6126, Eq. 2)

b. Two-sided confidence-interval estimator:

100(l-a)%TCI: Y./.
 X

x+Cn

(LA-6126, Eq. 3)

(X+1)Fa/2;2x+2,2n-2x

c. Lower one-sided confidence-interval estimator

100(l-a)*LCI: R > x+fn X

x+(n

(LA-6126, Eq. 4)

d. Remarks:

The results in a, b, and c above assume that the n

items on test survive independently, each with the same

probability R.

e. Example:

Consider Dats Set 1 in Appendix A. For the Indian

Point 1 reactor, the estimated pump reliability for

1972 is R = 49/50 = 0.98. A 95% two-sided confidence-

interval estimate of this reliability is

49 < R < 50(59.49) or 0.89 < R < 1. 00 .

49+2(2.94) 1+50(39.49)

11



f. General references:

(i) A. H. Bowker and G. J. Lieberman, Engineering

Statistics (Prentice Hall, New York, 1972) 2nd Ed.

(ii) W. J. Dixon and F. J. Massey, Jr., Introduc-

tion to Statistical Analysis (McGraw-Hill, New York,

1969) 3rd Ed (see F tables, pp. 470-485).

12



III.A.2, Attribute test data: Bayes with known beta prior -

prior analysis.

a. Point estimator of R:

*o = xo / no (LA-6126, Eq. 7)

b. Two-sided probability-interval estimator:

100(l-v)%TBPI(0):

(LA-6126, Eq. 8)

xoF
Y /2;2x o )2n o -2x o

no"xo+xo1'Y/2;2xo,2n0-2x0

c. Lower one-sided probability-interval estimator:

x
lOOCl-Y)ILBPI(O): R > Trritn . Y \T

(LA-6126, Eq. 9)

d. Remarks:

No current test data is incorporated in the above

estimators. They depend only on the prior parameter

values n and x . For guidance in determining nQ and

x ; see Sec II.B.I.

e. Example:

Consider Data Set 1 in Appendix A. Suppose that

the PWR annual prior mean pump reliability is believed

to be 0.95 (prior to the 1972 data). Further, suppose

that it is believed that there is only a 5% chance that

the annual pump reliability is below 0.70. From Refer-

ence (ii) below, this prior belief is consistent with a

13



beta prior distribution with xQ = 2.43675 and n Q

= 2.56500. Prior to the 1972 data, the pump relia-

bility is estimated to be RQ = 2.43675/2.56500 = 0.95

and a two-sided 95% probability-interval estimate of

this reliability is

2.43675+(2.56500-2.43675) (10.01)

2.43675C921.8)
2.56500-2.43675+2.43675(921. JJ '

or
0.65 < R < 1.00 .

Note: Since 2no-2xQ = 0.2565 and 2xQ = 4t8735, we

approximate F0.025;0.2565,4.8735 ~
 F0.02S;l,5 = 1 0' 0 1

Similarly, F0.025;4.8735,0.2565 *
 F0.025;5,l = 921'8

Thus, the above interval is only an approximate 95%

probability-interval estimate.

f. General references:

(i) N. R. Mann, R. E. Schafer, and N. D.

Singpurwalla, Methods for Statistical Analysis of Relia-

bility and Life Data (John Wiley and Sons, New York,

1974).

(ii) M. S. Waterman, H. F. Martz, and R. A. Waller,

"Fitting Beta Prior Distributions in Bayesian Reliabil-

ity Analysis," Los Alamos Scientific Laboratory report

LA-6395-MS (June 1976).

14



III.A.3. Attribute test data: Beta with known beta prior -

posterior analysis.

a. Point estimator of ft:

R = ° (LA-6126, Eq. 10)
o

b. Two-sided probability-interval estimator:

x+x
100(l-Y)%TBPI(n): ̂  + ;n+- _x.x IL < R

in nQ A *Qj
r
Y/2;2n+2no-2x-2xo,2x+2xo

(LA-6126, Eq. 11)

(x+xo
}FY/2;2x+2xo,2n+2no-2x-2xo

n+no"x"xo+lx+xoJJ*Y/2;2x+2xo,2n+2no-2x-2xo

c. Lower one-sided probability-interval estimator:

lOO(l-r)ILBPICn): R >

x+V tn+no-x-VF
Y;2n*2no-2x-2xo,2x+2xo *

(LA-6126, Eq. 12)

d. Remarks:
The results in a,b, and c above assume that both

the sample data, n and x, and the prior values, nQ
and x , are available. The n test items are assumed

to survive independently with probability R.

e. Example:

Consider Data Set 1 in Appendix A. Suppose that

the PWR annual prior mean pump reliability is believed

to be 0.9S. Further, suppose that it is believed that

15



there is only a 5$ chance that the annual pump relia-

bility is below 0.70. From Reference (ii) below, this

prior belief is consistent with a beta prior distribu-

tion with x0 ~ 2.43675 and nQ = 2.56500. In 1972, six

pump failures occurred out of 400 pumps. Thus x=394

and n=400. The updated (posterior) estimated annual

pump reliability is R = (394+2.43675)/(400+2.56500)

= 0.98. A two-sided 95% probability-interval estimate

of this reliability is

< R
394+2.43675+X400+2.36500-394-2.43675)(1.95)

< (394+2.43675)(2.73)
400+2.56500-394-2.43675+(394+2.43675)(2.73) '

or

0.97 < R « 0.99 .

Note: Since (2n+2nQ-2x-2x0) = 12.2565 and (2x+2xQ)

= 792.8735, we approximate F0.025;12.2565,792.8735

* F0.025;12,« = 1' 9 5' Similarly, F0.025;792.8735,
85 Fn n7r. i9 = 2.73. Thus, the above interval

is only an approximate 95% probability-interval esti-

mate.

f. General references:

(i) N. R. Mann, R. E. Schafer, and N. D. i

Singpurwalla, Methods for Statistical Analysis of Re- \

liability and Life Data (John Wiley and Sons, New York

1974). • I

(ii) M. S. Waterman, H. F. Martz, and R. A. Waller,

"Fitting Beta Prior Distributions in Bayesian Relia-

bility Analysis," Los Alamos Scientific Laboratory

report LA-6395-MS (June, 1976).

i



III.A.4. Attribute test data: Empirical Bayes--estimated beta

parameters,

a. Point estimators of R:

= xQ/no (prior analysis),Q/n o

n+n
(posterior analysis) ,

(analogous to

LA-6126, Eq. 7)

(analogous to

LA-6126, Eq. 10)

where

= no(IR,)/N ,

and

n =
N2(ZR.-ZR2)

N(NZRj-KZRj)-(N-K)(ZR;j)

if the result is positive, otherwise

/N-I\ NrR.-(sR-)2
no =| 1 —J. J-^- -
° \ N / NERj^ZR.)"1

1 .

(LA-6126, Eq. 14)

(LA-6126, Eq. 13)

(LA-6126, Eq. 15)

b. Two-sided probability-interval estimator:

IOO(I-Y) TEBPI(O): *- < R

(prior analysis)

(analogous to

LA-6126, Eq. 8)

X°^/2;2xo,2no-2xo

no-VxoF
Y/2;2Jo,2no-2xo

17



100(l-Y)%TEBPI(n) :
x+xo+(n+no"x"xo)FY/2;2n+2n0-2x~2x0,2x+2x0

(analogous to

LA-6126, Eq. 11)

;2x+2xo,2n+2no-2x-2xo
" A ' ''"/*' ' A " •

n+no"x"xo+(x+xo)FY/2;2x+2x0,2n+2n0-2x-2x0

(posterior analysis)

c. Lower one-sided probability-interval estimators:

100(1-Y)%LEBPI(0): R > -x °
xo+(no"xo)FY;2n -2x* ,2x

(prior analysis)

(analogous to

LA-6126, Eq. 9)

100(l-Y)%LEBPI(n):R > —* * * .
v + v + f n + n —v—v I F A A — A

x y m T n 0 A *(,•' Y;2n+2no-2x-2xo,2x+2xQ

(posterior analysis)

(analogous to

LA-6126, Eq. 12)

d. Remarks:

The results in a,b, and c assume a beta prior model

with unknown parameters, nQ and xQ. These parameters

are estimated from past test data in which, for a series

of N independent past life tests on similar test units,

x- survivors have been observed in a sample of siie n-

in the j test (j = 1,2,...,N). It is noted that all



life tests must be of approximately the same duration.

In a, all summations range from j=l to j=N, R- = x./n.,

and K=E(l/n.).

e. Example:

Consider Data Set 1 in Appendix A. We consider each

of the eight PWRs listed to be an independent life test

experiment. Now ZR- = 7.88, IR- - 7.7648 (SR^) =62.0944,

K = 0.16 from which

n . 64(7. 88-7. 76.48J

° 8[8(7.7648)-0.16(7.88)]-(8-0,16)62. 0944

and

181.15(7.88)

8

Performing a prior analysis on the data in Data Set 1, the

1972 pump reliability is estimated to be R£ = 178.43/181.15

= 0.98 and a two-sided 95% probability-interval estimate is

178.43 < R < 178.43(6.02)
178.43+(181.15-178.43)(2.5 7) 181.15-178.43+178.43(6.0Z)*

or 0.96 < R < 1.00.

^ £ F0.025;5.44,3.56.86 * F0.025;5,» = 2' 5 7 a n d

F0.025;356.86,5.44 * F0.025;»,5 = 6' 0 2' T h u S t h e a b 0 V e

interval is only an approximate 95% probability-interval

estimate.

19



III.A.5. Attribute test data: empirical Bayes -- estimated

(empirical) prior

a. Point estimators of R:

N .
RE = V^R./N (prior analysis)

j l J

.(posterior analysis)

j=l (LA-6126, Eq. 18)

b. Two-sided probability-interval estimators: (see LA-

6126, Eq. 20,except that the empirical prior distribu-

tion is used instead of the empirical posterior distri-

bution) (prior analysis)

(see LA-6126, Eq. 20~) (posterior analysis)

c. Lower one-sided probability-interval estimators:

(see LA-6126, Eq. 21 except that the empirical prior

distribution is used instead of the empirical posterior

distribution) (prior analysis)

(see LA-6126, Eq. 21) (posterior analysis)

d. Remarks:

The results in a,b, and c do not require an assump-

tion regarding a type of prior model, such as a beta

distribution. The complete prior distribution is empir-

ically estimated from past test data in which, for a

series of N independent past life tests on similar

test units, x. survivors have been observed in a sample

of size n. in the i test (i=l,2,...,N). It is noted

20



that all life tests must be of approximately the same

duration.,

The interval estimates should be used with caution.

The true coverage probability is likely to be less than

that desired unless the number of past data sets

R,,...,Rj, is greater than 25.

e. Example:

Consider Data Set 1 in Appendix A. Suppose we de-

sire to estimate the 1972 pump reliability of the Indian

Point 1 PWR. For Indian Point 1, we have n=S0 and x=49.

Thus

D - 4(1.00)50(0)1 f 3(0,98)50(0.02)1 + C0.94)50(0.02)1 _ n Q 7 0
F 49 1 49 1 49 1 ~ U* y / B >

d 4 ( 1 0 0 r y ( 0 r + 3C0.98)4yC0.02)X + (0 .94) 4 y (0 .02)1

f. General references:

(i) G. H. Lemon, "An Empirical Bayes Approach to

Reliability," IEEE Trans. Rel. R-21, 155-158 (August

1972).

(ii) H. F. Martz, Jr., "Pooling Life-Test Data by

Means of the Empirical Bayes Method, "IEEE Trans. Rel.

R-24, 27-30 (April 1975).
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III.B. Variables Test Data-^Exponential Model

The results in this section assume that the time-to-failure

of an item is distributed as an exponential variable. For a

general discussion of the exponential distribution, see Sec.

II.A of Waller and Martz, or the references listed with each

subsection below. The test data are assumed to arise from

either an item-censored or time-truncated experiment. The item-

censored experiment can be conducted either with or without the

replacement of failed items as they occur. The time-truncated

experiment assumes that failed items will be replaced as they

occur. In addition, for the classical estimators, time-truncated

testing without replacement is also considered. It is noted here

that if the data arise from field use of an item, the situation

will normally be with replacement of failed items and often will

be a time-truncated experiment. For the exponential model consid-

ered here, the reliability is R(t) * exp(-Xt). Formulas are

given in this section for estimating both R(t) and the failure

rate X. As mentioned earlier, for the Bayes estimators a gamma

prior distribution of X is assumed.
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III.B.I. Variables test data: classical procedure --reliability

estimation

a. Point estimator of R(/t) :

R(t) = exp(-rt/T), (LA-6003, Eq. 8)

where T is the total test time as defined in Sec. I.A,

and r is the observed number of failures.

b. Two-sided confidence-interval estimator:

100(l-a)%TCI: exp

-•v2exp )J.tx 2
a / 2 ; 2 v /(2T)J. (LA-6003, Eq. 9)

c. Lower one-sided confidence-interval estimator:

100(l-cO%LCI: R(t) > exp [- 1.a;2v /(2T)J •

d. Remarks:

The value assigned to v^ depends upon the type of

life test experiment and is given by

v, = r (item-censored life test)

= r+1 (time-truncated life test)

while v2 = r regardless of the type of life test experi

ment. It is further noted that the confidence inter-

vals f^r the case of time-truncated life testing have

only approximately 100(l-a)% confidence associated with

them. For exact-interval estimates see Ref. (iii) be-

low. Also, for the case of time-truncated testing with

out replacement,
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e. Example:

Consider Data Set 1 in Appendix A. The test data

in Data Set 1 can be considered to have been obtained

from a time-truncated experiment with replacement in

which n = 400, r = 6, and T = 3 504 000. The pump re-

liability in PWRs for 1972 is estimated to be

R(8760) = exp[-6(8760)/3 504 000] = 0.985.

An approximate 95% two-sided confidence-interval esti-

mate of this reliability is

exp[-8760(26.119)/7 008 000] < R(8760)

< exp[-8760(4.404)/7 008 000] ,

or

0.97 < R(8760) < 0.99 .

f. General references:

(i) N. R. Mann, R. E. Schafer, and N. D.

Singpurwalla, Methods for Statistical Analysis of Relia-

bility and Life Data (John Wiley and Sons, New York,

1974).

(ii) I. Miller and J. E. Fruend, Probability and

Statistics for Engineers (Prentice-Hall, New Jersey,

1965).

(iii) B. A. Kozlov and I. A. Ushakov, Reliability

Handbook (Ed. by L. H. Koopmans and J. Rosenblatt)

(Holt, Rinehart, and Winston, New York, 1970).



III.B.2. Variables test data: classical procedure -- failure-

rate estimation

a. Point estimator of X:

X = r/T.

b. Two-sided confidence-interval estimator:

100Cl-a)%TCI: X 2
a / 2 ; 2 V 2/C2T) < X < X 2

1. o / 2 ; 2 V i

c. Upper one-sided confidence-interval estimator:

100(l-o)IUCI: X < x2! „.,„ /(2T).
± -a»ivj

d. Remarks:

The valu

experiment and is given by

The value assigned to V- depends on the type of

v, = r (item-censored life test)

= r+1 (time-truncated life test) ,

while v- = r regardless of the type of life test experi-

ment. It is further noted that the confidence intervals

for the case of time-truncated life testing have only

approximately 100(l-a)% confidence associated with them.

For exact-interval estimates see Ref. (iii) below.

Also, for the case of time-truncated testing without

replacement,
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e. Example:

Consider Data Set 1 in Appendix A. The variables

test data in Data Set 1 is considered to have been ob-

tained from a time-truncated experiment with replace-

ment in which n = 400, r = 6, and T = 3 504 000. Based

on the 1972 data for the eight PWRs, the pump failure-

rate associated with the failure to run normal mode is

estimated to be

X = 6/3 504 000 = 1.7 x 10"6 f/h.

An approximate 95% two-sided confidence-interval esti-

mate of this failure rate is

(4.404)/7 008 000 < X < (26.119)/7 008 000,

or

6.3 x 10'7 f/h < X < 3.7 x 10"6 f/h .

f. General references:

(i) N. R. Mann, R. E. Schafer, and N. D.

Singpurwalla, Methods for Statistical Analysis of Relia-

bility and Life Data (John Wiley and Sons, New York,

1974).

(ii) I. Miller and J. E. Freund, Probability and

Statistics for Engineers (Prentice-Hall, New Jersey,

1965).

(iii) B. A. Kozlov and I. A,Ushakov, Reliability

Handbook (Ed. by L. H. Koopmans and J. Rosenblatt,)

(Holt, Rinehart, and Winston, New York, 1970).
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III.B.3. Variables test data: Bayes with known gamma prior-

reliability estimation -- prior analysis

a. Point estimator of R(t):

-a
RQ(t) = (1

+Bot) °. (LA-6003, Eq. 17)

b. Two-sided probability-interval estimator:

100(l-A)%TBPI(0): exp T^tx 2^^;,. 2 a /2j < R(t)

< exp [-Botx
2
Y/2;2a /2J . CLA-6003, Eq. 18)

c. Lower one-sided probability-interval estimator:

100(1-YD*LBPI(0): R(t)

d. Remarks:

No current test data is incorporated in the above

estimators. They depend only upon the prior parameter

values, a and 8 . For guidance in determining a and

6 see Sec. II.C.o

e. Example:

Prior to obtaining the data in Data Set 1, suppose

we desire a prior analysis of the annual pump reliability

in PWRs. From past experience suppose that we subjec-

tively assign the values 0.50 and 6.0 x 10'6f/h to a ,

and 8 respectively. The prior 1972 pump reliability

is estimated to be

R (8760) = [l+6.0xl0~6(8760)]"0#50 = 0.97,

and a two-sided 95% probability-interval estimate of

this reliability is

r c. nvio"6f876O)(5.O24)/2] < R(8760)
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< exp[-6.0xl(T6(8760)(0.001)/2] ,

or

0.88 < R(8760) < 1.00 .

f. General reference:

(i) N. R. Mann, R. E. Schafer, and N. D.

Singpurwalla, Methods for Statistical Analysis of Re-

liability and Life Data (John Wiley and Sons, New York,

1974).
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III.B.4. Variables test data: Bayes with known gamna prior-

reliability estimation -• posterior analysis

a. Point estimator of R(t}:

. (LA~6005,£q. 19)

h. Two-sided probability-interval estimator:

lOOd-Y)ITBPI(r):

(Reduces to Eq. 20 of LA-6003 when r̂ n.)

c. Lower one-sided probability-interval estimator:

100(l-Y)*LBPI(r): K(tj > exp I BQtx
2
1 .y

d. Remarks:

T in the above expressions is the total test time

which is defined in Sec. I.A. The above estimators are

appropriate for item-censored life testing,either with

or without replacement,and for time-truncated testing

with replacement.

e. Example:

Consider Data Set 1 in Appendix A. Suppose we

desire a posterior analysis of the annual pump relia-

bility of the PV/Rs based on the 1972 failure data re-

ported in Data Set 1. From past experience suppose that

we assign the values 0.50 and 6.0 x 10" f/h to a and

8 , respectively. In 1972, six pump failures occurred

during a total of approximately 3 S04 000 operating
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for the eight PWRs. The testing situation is considered

to be time-truncated life testing with replacement. Thus,

r • 6 and T = 400 (8760) » 3 504 000. The posterior

estimated annual pump reliability is

L(8760) Jldl*10"6(3 504 000) • 1 I 6 + °'5

° L6-0xl0"6(3 504 000) + 6.0xl0"6(8760) + 1J

» 0.98 ,

and a two-sided 951 probability-interval estimate of

the reliability is

exp|-(6.0xl0"6)(8760)(24.736)/[(2)(6.0xl0'6)(3 504 000) + 2]>

< R(8760) < exp|-(6.0xl0"6)(8760)(5.009)/

[ (2) (6 .0x l0" 6 ) (3 504 000)+2]j ,
or '

0 . 9 7 < R(8760) < 0 . 9 9 .

f. General reference:

(i) N. R. Mann, R. E. Schafer, and N. D.

Singpurwalla, Methods for Statistical Analysis of Re-

liability and Life Data (John Wiley and Sons, New York,

1974).
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III.B.5. Variables test data: Bayes with known gamma prior -

failure-rate estimation -- prior analysis

a. Point estimator of X:

\> = ao3o '

b. Two-sided probability-interval estimator:

100(1-Y)%TBPI(0): 6 x
2 ,, - /2 < X < B v2i ~/?.?« /->

o o

c. Upper one-sided probability-interval estimator:

100(1-Y)5UBPI(0): X < B X 2 I . .? I2 •

d. Remarks:

No current test data are incorporated in the above

estimators. They depend only on the prior parameter

values a and 3 . For guidance in determining a ando o o
6Q, see Sec. II.C.

e. Example:

Prior to obtaining the data in Data Set 1 (Appendix

A ) , suppose we desire a prior analysis of the pump

failure rate in PWRs (according to the failure to run

normal mode). From past experience suppose that we

assign the values 0.50 and 6.0xl0"6f/h to a and 6 , re-

spectively. The pump failure rate is estimated to be

X = 0.50 (6.0xl0"6f/h) - 3.0 x 10"6f/h and an upper

95% probability-interval estimate of the failure rate is

A < (6.0xl0~6)(3.841)/2 - 11.5 x 10~6f/h.

f. General reference:

(i) N. R. Mann, R. E. Schafer, and N. D.

Singpurwalla,^Methods for Statistical Analysis of Re-

liability and LifesData (John Wiley and Sons, New York,

1974)
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III.B.6. Variables test data: Bayes with known gamma prior

failure - rate estimation -- posterior analysis

a. Point estimator of A:

r ô

b. Two-sided probability-interval estimator

100(l-Y)*TBPI(r): B Q X
2

c. Upper one-sided probability-interval estimator:

100(l-Y)%UBPI(r): X < BoX
2
 2 r + 2 a /(20 T+2).

' o

d. Remarks:

T in the above expressions is the total test time

which is defined in Sec. I.A. The above estimators are

appropriate for item-censored life testing either with

or without replacement and for time-truncated testing

with replacement.

e. Example:

Consider Data Set 1 in Appendix A. Suppose we desire

a posterior analysis of the pump failure rate in PWRs

(according to the failure to run normal mode) based on

the 1972 failure data reported. From past experience

suppose that we assign the values 0.50 and 6.0 x 10"6f/h

to a and 8Q, respectively. In 1972, six pump failures

occurred during a total of approximately 3 504 000 oper-

ating hours for the eight PWRs. The testing situation

is considered to be time-truncated lifetesting with re-

placement. Thus r = 6 and T = 400(8760) = 3 504 000.

The posterior estimated failure rate is
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J „ 6.0 x 10^(6*0.5) . us x 10-6 f/h
0 6.0 x 10"°(3 504 000) • 1

and an upper 95% probability-interval estimate of the

failure rate is

X < (6.0xl0"6)(22.362)/[2(6.0xl0'6}(3 504 000) + 2]
= 3.0 x 10"6f/h.

f. General reference:

(i) N. R. Mann, R. E. Schafer, and N. D.

Singpurwalla, Methods for Statistical Analysis of Re-

liability and Life Data (John Wiley and Sons, New York,

1974).
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III.B.7. Variables test data: empirical Bayes - reliability

estimation -- estimated gamma parameters

a. Point estimators of R(t):

-a
= (1 + eQt) ° (prior analysis)

0QT * 1 \
•jr K —I

8 0 T + eot • if(
(posterior analysis)

8 0 T + eot • if
where

and

(N2m2

In these expressions

l '^yT}1 N2 ^[frj - S(rj - 2)

9 *J *•

If Tj = r2 • •• = rj, = r, these expressions simplify to

become

; = ^
(r - 2)m2 - (r - 1)X'2

e - (r - 2)m2 - (r - 1)X2

0 " ' rx

b. Two-sided probability-interval estimators:

100(l-Y)%TEBPI(0): exp
L u

Y/2;2a / 2 | .CP r i o r analysis)< exp

34
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100(l-Y)*TEBPI(r): exp

< R(tJ < exp

"3 tx^ A /

-8 tX2 . * /f2
o Y/2»2r+2a

0

(posterior

1
(20QT • 2)

1
BQT + 2) .

analysis)

c. Lower one-sided probability-interval estimators:

100(1-Y)%LEBPI(0): R(t) > exp I- V X ^ Y ^ O / 2| •

(prior analysis)

)100(l-Y)tLEBPI(r): R(t) > exp |-60tX
2
1.Y;2r+2; /(26QT + 2)L

(posterior analysis)

d. Remarks:

T in the above expressions is the total test time

which is defined in Sec. I.A. The above estimators are

appropriate for item-censored life testing either with

or without replacement and for time-truncated testing

with replacement.

The results in a,b, and c assume a gamma prior model

on X but with unknown parameters a and 8 . These param-

eters are estimated from a set of independent test re-

sults on the same or similar items. It is assumed that

r. failures are observed in total test T. in the j

experiment (j = 1,2,»»»,N). Thus there exists a set of

independent failure-rate estimates X.., A~ ,*••»*« of the

item under consideration, where X. = r./T-. In a

above,all summations range from j = 1 to j = N. It is

further required that r. > 2 in each related experiment.
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e. Example:

Let us use the set of 13 pump failure-rate esti-

mates in Data Set 2 (Appendix B) for estimating a and

SQ. Unfortunately, the number of failures on which

each of the failure-rate estimates is based is unknown.

It will be arbitrarily assumed that each estimate is

based un 10 failures. Thus r. = r - 10, j = 1,2, •••,13.

Now I » IS.24 x 10'6 and m2 = 1543.23 x 10*12' Thus

; - CIO - 1H15.24 x IP"6)2 _ _ « 0 . 2 0
0 (10 - 2)(1543.23 x 10'12) - (10 - 1)(15.24 x 10"6)2

0 « (10 - 2) (1543.2.1 x IP" 1 2 ) - (10 - 1H15.24 x 10~6)2

10(15.24 x 10"6)

= 67.29 x 10"6f /h.

Suppose we now desire a posterior analysis of the annual

pump reliability of the PWRs based on the 1972 failure

data reported in Data Set 1 (Appendix A). The testing

situation is considered to be time-truncated testing

with replacement. Thus r « 6 and T = 400(8760)

» 3 504 000. The posterior estimated annual pump re-

liability is

RE(8760) »

E
* -i 6 + 0.20

(67.29 x 10'5K3 504 000) * 1 | . 0 # g g 5 #
(67.29 x 10"6)(3 504 000) + (67.29 x 10'6)(8760) + lj

A two-sided 951 probability-interval estimate of the

reliability is
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exp|-(67.29 x 10'6) (8760)(23.337)/

[(2) (67.29 x 10"6)(3 504 000) + 2]>

< R(8760) < exp{-(67.29 x I0~6)(8760)(4.404)/J-(67.

[(2)(67.29 x 10"6)(3 504 000) + 2]} ,

or
0.97 < R(8760) < 0.99.

" 2
Note: Since 2r + 2a = 12.4, we approximate x n 975-12 4
%x20.975;12 = 2 3 ' 3 3 ° - Similarly, X20>025;12.4 *
X 0 025.12

 = 4.404. Thus, the above interval esti-
mate is only an approximate 95% probability-interval
estimate.

£. General reference:

(i) N. R. Mann, R. E. Schafer, and N. D.

Singpurwalla, Methods for Statistical Analysis of Re-

liability and Life^Data (John Wiley and Sons, New York,

1974).
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III.B.8. Variables test data: empirical Bayes - reliability

estimation -- estimated (empirical) prior

a. Point estimators of R(t):

(prior analysis)

exp[-X. (t + T)]

N r
X. exp [-X.T]

j l J J

(posterior analysis]

exp [X.
J J

b. Two-sided probability-interval estimators:

(see Reference (iii) below)

c. Lower one-sided probability-interval estimators:

(see Reference (iii) below)

d. Remarks:

T in the expression in a is the total test time

which is defined in Sec. I.A. The above estimators are

appropriate for item-censored life testing either with

or without replacement and for time-truncated testing

with replacement.

The results in a above do not require an assumption

regarding a type of prior model, such as a gamma model.

Rather, the complete prior distribution is empirically

estimated from a set of independent test results on

the same or similar items. It is assumed that r.

failures are observed in total test time T. in the j

experiment (j = 1,2,***,N). Thus there exists a set
/\ A, At

of independent failure-rate estimates X \ •• • ,\ of
/\ X. it V%

the item under consideration, where X. = r./T..
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e. Example:

Let us use the set of 13 pump failure-rate esti-

mates in Data Set 2 (Appendix B) to form a posterior

estimate of the annual pump reliability in PWRs based

on the 1972 failure data reported in Data Set 1 (Appen-

dix A ) . The testing situation is considered to be time-

truncated testing with replacement. Thus r = 6 and T

* 400(8760) = 3,504,000. The posterior estimated annual

pump reliability is

, 6 r
R (8760) = (1-3 x IP"5) exp[-(1.3 x 10 *)(8760 + 3 504 OOP)]
E (1.3 x JO'5)6 exp[-(1.3 x 10"5)(3 504 000)]

, 6 fi

+(5.0 x 10~b) expr-(5.0 x 1C"°)(8760 * 5 504 000)]

+ (3.0 x 10"°) exp[-(3.0 x 10 °) (3 504 000)]

+(4.0 x 10"&)cexpr-(4.0 x 10"°) (8760 * 3 504 000)1

+ • • +(4.0 x 10"6) exp[-(4.0 x ID'6) (3 504 000)]

= 0.98 .

f. General references:

(i) G. H. Lemon, "An Empirical Bayes Approach to

Reliability," IEEE Trans. Rel. R-21, 155-188 (August

1972).

(ii) H. F. Martz, Jr., "Pooling Life-Test Data by

Means of the Empirical Bayes Method," IEEE Trans.vRel.

R-24, 27-30 (April 1975).

(iii) M. G. Lian, "Bayes and Empirical Bayes Esti-

mation of Reliability for the Weibull Model," unpub-

lished Ph.D. dissertation, Texas Tech University,

University Microfilms, Ann Arbor, Michigan (1975).

39



III.B.9. Variables test data: empirical Bayes - failure-rate

estimation -- estimated gamma parameters

a. Point estimators of X:

*F = ao6o ' (prior analysis)

(posterior analysis)

where

and

In these expressions

r- ; x =2] x./N;

m

r2 * * = rN = r» t ^ i e s e expressions simplify
to become

(r -
(r - 2)m2 - (r -

- 2)m2 - (r - 1)X2

rX
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b. Two-sided probability-interval estiraatois

1OOC1-Y)%TEBPI(O): ^ 0 X 2 V

(prior analysis)

100(l-Y)*TEBPI(r): 6oX
2
Y/2;2r+2a

 /^ZKT + 2) < X

(posterior analysis)

c. Upper one-sided probability-interval estimators:

100(l-Y)%UEBPI(0): X < 0 x? v.,* /2 . (prior analysis)
o i-y,£aQ

100(l-Y)%UEBPI(r): X < B^^.y^r+Za / ( 2 ^ o T + 2 ) *

(posterior analysis)

d. Remarks:

T in the above expressions is the total test time

which is defined in Sec. I.A. The above estimators are

appropriate for item-censored life testing either with

or without replacement and for time-truncated testing

with replacement.

The results in a,b, and c assume a gamma prior

model on X but with unknown parameters a and $ . These

parameters are estimated from a set of independent test

results on the same or similar items. It is assumed

that r. failures are observed in total test time T.

in the j*" experiment (j = 1,2,«»»,N). Thus there

exists a set of independent failure-rate estimates

X.,X«,•••,XN of the item under consideration, where X.

= r./T.. In a above, all summations range from j = 1
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to j = N. It is further required that r. > 2 in each

related experiment.

e. Example:

Let us use the set of 13 pump failure-rate esti-

mates in Data Set 2 (Appendix B) for estimating a and

6Q. Unfortunately, the number of failures used to com-

pute each failure-rate estimate is unknown. It will

be arbitrarily assumed that each estimate is based upon

10 failures. Thus r. = r = 10 , j = 1,2,•••,13. Now

X = 15.24 x 10'6 and m2 - 1543.23 x 10'12. Thus

a = UP - DC15.24 x IP'6)2

° (10 - 2)(1543.23 x 10 L£) - (10 - 1)(15.24 x 10~D)Z

R = (10 - 2)(1543.23 x 10~12) -v(10 - 1)(15.24 x 10'6)

° R '
10(15.24 xl0"b)

= 67.29 x 10"6f/h.

Suppose we new desire a posterior estimate of the pump

failure rate, for the failure to run normal mode, based

on the 1972 failure data reported in Data Set 1 (Appendix

A). The testing situation is considered to be time-

truncated testing with replacement. Thus r = 6 and

T = 400(8760) = 3 504 000. The posterior estimated

failure-rate is

L - 67.29 x 10-V * 0.20) , g x 1 Q-6 £ / h >
b 67.29 x 10"b(3 504 000) + 1

and a two-sided 951 probability-interval estimate of

the failure-rate is

(67.29 x 10"6)(4.404)/[(2)(67.29 x 10"6)(3 504 000) + 2]
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X < (67.29 x 10'6)(23.337)/[(2)(67.29 x 10"6)(3 504 000) • 2],

or

6.3 x 10'7f/h < X < 3.3 x 10'6f/h,

£. General reference:

(i) N. R. Mann, R. E. Schafer, and N. D.

Singpurwalla, Methods for Statistical Analysis of^Re-

liability and Life Data (John Wiley and Sons, New fork,

1974).
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III.B.10. Variables test data: empirical Bayes - failure-rate

estimation - estimated (empirical) prior

a. Point estimators of A:

N .
Aj/N, (prior analysis)

exp(-X.T)
4-^. J (posterior analysis)

f exp(-AjT)

b. Two-sided probability-interval estimators:

(see Reference (iii) below).

c. Upper one-sided probability-interval estimators:

(see Reference (iii) below).

d. Remarks:

T in the expression in a is the total test time

which is defined in Sec. I.A. The above estimators

are appropriate for item»censored life testing either

with or without replacement and for time-truncated

testing with replacement.

The results in a above do not require an assumption

regarding a type of prior model, such as a gamma model.

Rather, the complete prior distribution is empirically

estimated from a set of independent failure-rate esti-

mates A A •••,AM of the item under consideration, where
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e. Example:

Let us use the set of 13 pump failure-rate esti-

mates in Data Set 2 (Appendix B) to form a posterior

estimate of the pump failure rate in PWRs based on

the 1972 failure data reported in Data Set 1 (Appendix

A) . The testing situation is considered to be time-

truncated testing with replacement. Thus r = 6 and

T = 400(8760) = 3 504 000. The posterior estimated

pump failure-rate is

(1.3 x 10 b) exp[-(1.3 x 10 a H 3 504 000)1

(1.3 x 10 b) exp[-(1.3 x 10 a)(3 504 000)]

A 7 fi

+ (3.0 x 10"°) expf-n.O x 10"°) (3 504 000)1
, 6 t-

+(3.0 x 1 0 ) exp["(3.0 x 10~
D)(3 504 000)]

+ " • + (4.0 x 10"°) expf-(4.0 x 10"°) f3 504 000)]

A 6 A

+ ••• + (4.0 x 10'°) exp[-(4.0 x 10"°) (3 504 000)]

2.3 x 10'6 f/h.

f. General references:

(i) G. H. Lemon, "An Empirical Bayes Approach to Re-

liability," IEEE Trans. Rel. R-21, 155-158 (August 1972)

(ii) H. F. Martz, Jr., "Pooling Life-Test Data by

Means of the Empirical Bayes Method," IEEE Trans. Rel

R-24, 27-30 (April 1975).

(iii) M. G. Lian, "Bayes and Empirical Bayes Estima-

tion of Reliability for the Weibull Model, unpublished

Ph.D. dissertation, Texas Tech University, University

Microfilms, Ann Arbor, Michigan (1975).
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A.^ENDIX A

Example Data Set 1

The following data are taken from Appendix III (Failure-

Data) of WASH-1400 "Reactor Safety Study", U. S. Nuclear Regula-

tory Commission, October 1975, pp. Ill 35-36. The data consist

of the number of pump failures observed in 1972 in eight pressur-

ized water reactors (PWR) in commercial operation in the U. S.

The designated failure mode was failure to run normal.

i

1

2

3

4

5

6

7

8

PWR

Haddam Neck

Yankee Rowe

Indian Point 1

San Onofre 1

Ginna
Point Beach 1

Robinson 2

Palisades

Total

ni

50

50

50

50

50
50

50

50

400

ri

0

0

1

1

0

0

1

3

6

xi

50

50

49

49

50

50

49

47

394

T(h)

438 000

438 000

438 000

438 000

438 000

438 000

438 000

438,000

3 504 000

Ri

1.00

1.00

0.98

0.98

1.00

1.00

0.98

0.94

7.88

Here n. denotes the number of pumps in service and r- represents

the number of observed pump failures. Also, x. denotes the num-

ber of survivors, T is the total test time for 1972, and R^ -
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APPENDIX B

Example Data Set 2

The following data are taken from Appendix III (Failure

Data) of WASH-1400 "Reactor Safety Study", U. S. Nuclear Regula-

tory Commission, October 1972, pp. Ill 7-8. The data consist of

failure-rate estimates of pumps for a failure to run normal mode

from several published sources.

SOURCE* FAILURE-RATE(f/h)

AVCO

FARADA

LMEC

SRS

HOLMES HN-190

SHOP US-NUC

BOURNE UK

UNDERAKES (GERMAN)

DAVIL

EUROPE NUC AGENCY

PUGH

OTWAY

PROCEEDINGS

A

/ • »

1.3

3.0

1.4

1.0

3.0

1.4

2.0

1.0

3.0

1.0

3.0

6.0

4.0

- 15.24

X

X

X

X

X

X

X

X

X

X

X

X

X

X

10"5

lO"6

io-4

ID"5

lO"6

lO"7

io-6

lO"5

10"6

lO"6

io-6

io-6

io-6

10"b

,.-6

•Complete References Given in WASH-1400.

49



Here A and S are the mean and standard deviation, respectively,

of the 13 failure-rate estimates. Also, WASH-1400 gives the

median failure-rate estimate as 3.0 x 10" and lower and upper

bounds as 3 x 10 and 3 x 10 , respectively. These estimates

are based on a log-normal distribution and coincide with the

approximate 51 and 95% range end points. The interval is thus

an approximate 90S probability interval.
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APPENDIX D

2 a
Percentiles of the x -Distribution

Table of x o ; v

u \

1
2
3
4
5
6
7
8
9

10
11
i2
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
60

100
110
120

0.005

0.000
0.010
0.072
0.207
0.412
0.676
0.989
1.344
1.735
2.156
2.603
3.074

. 3.565
4.075
4.601
5.142
5.697
6.265
6.844
7.434
8.034
8.643
9.260
9.886

10.520
11.160
11.808
12.461
13.121
13.787
35.534
67.328
75.550
83.852

0.025

0.001
0.051
0.216
0.484
0.831
1.237
1.690
2.180
2.700
3.247
3.816
4.404
5.009
5.629
6.262
6.908
7.564
8.231
8.907
9.591

10.283
10.982
11.689
12.401
13.120
13.844
14.573
15.308
16.047
16.791
40.482
74.222
82.867
91.573

"Computed by Myrle Horita.

0.050

0.004
0.103
0.352
0.711
1.145
1.635
2.167
2.733
3.325
3.940
4.575
5.226
5.892
6.571
7.261
7.962
8.672
9.390

10.117
10.851
11.591
12.338
13.091
13.848
14.611
15.379
16.151
16.928
17.708
18.493
43.188
77.929
86.792
95.705

0.950

3.841
S.991
7.815
9.488

11.070
12.592
14.067
15.507
16:919
18.307
19.675
21.026
22.362
23.685
24.996
26.296
27.587
28.869
30.144
31.410
32.671
33.924
35.172
36.415
37.652
38.885
40.113
41.337
42.557
43.773
79.082

124.342
135.480
146.567

0.975

5.024
7.378
9.348

11.143
12.833
14.449

' 16.013
17.535
19.023
20.483
21.920
23.337
24.736
26.119
27.488
28.845
30.191
31.526
32.852
34.170
35.479
36.781
38.076
39.364
40.646
41.923
43.195
44.461
45.722
46.979
83.298

129.561
140.917
152.211

0.995

7.879
10.597-
12.838
14.860
16.750
18.548
20.278
21.955
23.589
25.188
26.757
28.300
29.819
31.319
32:801
34.267
35.718
37.156
38.582
39.997
41.401
42.796
44.181
45.559
46.928
48.290
49.645
50.993
52.336
53.672
91.952

140.169
151.948
163.648

Example: X 0.95;10} = P {* < 1 8' 3 0 7> - °'95
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