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PHYSICS OF REACTOR SAFETY 

Q u a r t e r l y  Report 
April-June 19 76 

I. ABSTRACT 

This  q u a r t e r l y  progress  r epo r t  summarizes work done i n  
Argonne National  Labora tory ' s  Applied Physics  D iv i s ion  f o r  t h e  
Div i s ion  of Reactor  Sa fe ty  Research of  t h e  U .S. Nuclear  Regu- 
l a t o r y  Commission du r ing  t h e  months of April-June 19 76. It in-  
c ludes  r e p o r t s  on r e a c t o r  s a f e t y  research  and t e c h n i c a l  coordina- 
t i o n  o f  t h e  RSR s a f e t y  a n a l y s i s  program by members o f  t h e  Reactor 

- S a f e t y  Appra isa l s  Group, Monte Carlo a n a l y s i s  o f  s a f  e ty - r e l a t ed  
c r i t i c a l  assembly experiments by members o  f  t h e  Theore t i ca l  F a s t  
Reactor  Physics  Group, and planning of  DEMO s a f e t y - r e l a t e d  c r i t -  
i c a l  experiments by members o f  t h e  Zero ~ o w e r ' h a c t o r  (ZPR) 
Planning and Experiments Group. 

TECHNICAL COORDINATION - FAST REACTOR 
SAFETY ANALYS IS 

(A2015) 

11. SUMMARY 

Comparisons 0.f r e a c t i v i t y  c o e f f i c i e n t s  and power d i s t r i b u t i o n s  f o r  t h e  
BOL s t a t e  of t h e  CRBR revea led  t h a t  t h e  r e s u l t s  ob ta ined  assuming LWR-grade 
plutonium gene ra l ly  d i f f e r e d  l i t t l e  from those  ob t a ined  assuming FFTF-grade 
plutonium. A major pa r t  of t h e  d i f f e r e n c e  i n  r e a c t i v i t y  worths measured i n  
d o l l a r s  a r i s e s  from' a  9% d i f f e r e n c e  i n  B e f f  c a l c u l a t e d  f o r  t h e  two cases .  

Comparison of  r e a c t i v i t y  c o e f f i c i e n t s  f o r  t h e  EOEC s t a t e  of t h e  CRBR 
us ing  ENDFIB Version 111 and Version I V  i nd ica t ed  g e n e r a l l y  minor d i f f e r e n c e s ,  
except  t h a t  t h e  p o s i t i v e  sodium void c f f c c t  over  t h e  cnre increased  by 20 t o  
25%. 

Comparison of r e a c t i v i t y  c o e f f i c i e n t s  f o r  t h e  CRBR us ing  R-Z and two- 
dimensional hexagonal mesh c a l c u l a t i o n s  i n d i c a t e d  t h a t  t h e  most s i g n i f i c a n t  
e r r o r s  i n  t h e  R-Z model were i n  t h e  sodium and s t e e l  worths .  E r ro r s  i n  t h e  
sodium,worth i n  a cons ide rab le  p a r t  of t h e  co re  were i n  t h e  range o f  20-40% 
f o r  t h e  BOEC case .  For t h e  EOEC case ,  withdrawal o f  cont ro l  rods r e s u l t e d  i n  
smaller f l u x  v a r i a t i o n s  .and t h e r e f o r e  sma l l e r  e r r o r s  i n  t h e  R-Z model.' 

It was determined t h a t  t h e  n e t  e f f e c t  o f  resonance se l f -ove r l ap  on t h e  
CRBR Doppler e f f e c t  was about 8%, s o  t h a t  u n c e r t a i n t y  i n  t rea tment  of  t h i s  
e f f e c t  should be  l e s s  than  8%. 

A new FX2-POOL computational path has been w r i t t e n  t o  c a l c u l a t e  t h e  
poLe11tia1 a u t o c a t a l y t i c  effect nf  h t ~ h h l e  c o l l a p s e  i n  a  b o i l i n g  fue l -  
s t e e l  pool .  



POOL and FX2-POOL were modif ied t o  c a l c u l a t e  t h e  work energy a v a i l a b l e  
from f u e l  and s teel  a t  any t i m e  du r ing  an HCDA. The e f f e c t  o f  f u e l  t o  s t e e l  
hea t  t r a n s f e r  has  been found t o  have. a  n e g l i g i b l e  e f f e c t  on t h e  t o t a l  energy 
r e l e a s e  i n  an HCDA, bu t  can have an  important  e f f e c t  on work energy on a  time 
s c a l e  ,o f  20 t o  30 m s .  F u e l - s t e e l  hea t  t r a n s f e r  should  reduce t h e  work energy 
a s  t h e  s t e e l  would have t o  have an  i n i t i a l  t empera ture  o f  more than 2500°K 
f o r  t h e  work energy t o  be  increased .  

Programming o f  t h e  mult inode f a i l u r e  o p t i o n  i n  t h e  EPIC fue l -coolan t  
i n t e r a c t i o n  code and of  . c a p a b i l i t y  f o r  a d e a l i n g  w i t h  a  p a r t i a l l y  voided 
channel  has  been completed. The f i r s t  v e r s i o n  of t h e  code i s  now i n  a  f i n a l  
t e s t i n g  phase t o  be  s u r e  t h a t  a l l  op t ions  o p e r a t e  s u c c e s s f u l l y .  

It is hoped t o  have a  p re l imina ry  p l a n  f o r  v a l i d a t  i o n  o f  t h e  SIMMER and 
HAARM codes by t h e  end o f  ca l enda r  yea r  1976. S t rong  a r e a s  of mutual b e n e f i t  
have been i d e n t i f i e d  between t h e  HAARM experfmental, e f f o r t  and t h e  SIMMER 
a n a l y s i s .  

111. STUDY OF BASIC PROBLEMS IN ACCIDENT ANALYSIS 

A .  I n i t  i a t i n g  Condit i o n  Variat . ions.  

1. Power and M a t e r i a l  Worth D i s t r i b u t i o n  i n  t h e .  FFTF-Grade Plutonium- 
Fueled Clinch River  Breeder Reactor  a t  t h e  Beginning of  L i f e  
(Kalimullah and H.  H.  Hummel) 

W e  have sufniriarized h e r e  t h e  r e s u l t s  o f  some ca l . cu l a t i ons  of  power, 
sodium v o i d ,  s teel  and c o r e  f u e l  worth d i s t r i b u t i o n s  f o r  t h e  FFTF-grade plu- 
tonium f u e l e d  CRBR at BOL , an,d h a m  compared fhcr;c results, wi th  t h o s e  , Iu r  
t h e  LWR-grade .plutonium f u e l  ed CRBR a t  BOL' r epo r t ed  e a r l i e r .  T h e  isotopic 
composi t ion of t h e  PFTF-grade plutonium, 381'ii/2 3 9 p u / 2 4 0 ~ u / 2 4 ! ~ ~ / 2 4  *PU, 

is 0.0/86.4/11.7/1.7/0.2 w/o compared t o  1.0/67.3/19.2/10.1/2.4 wlo o f  t h e  
LWR d i scha rge  grade plutonium. With t h e  FFTF-grade plutonium t h e  r equ i r ed  
enrichments  of t h e  i n n e r  and o u t e r  c o r e  r eg ions  a r e  17 .7  and 25.6 w/o 
Pu/(UfFu) compared t o  18.7 and 27.1 w/o Pu/(U+Pu) f o r  t h e  LWR.-grade plu- 
tonium f u e l .  The f i i l l - he igh t  h o t  f u l l  power R...Z model u s e d  i s  based on 
(U,Pu)02 masses r epo r t ed  ixi t h e  P S A R ~  (Table 4.3-32) and dimensions 
and volume f r a c t i o n s  r e p o r t e d  i n  Table  D4-1, w i th  t h e  sodium d e n s i t y  
va ry ing  a x i a l l y  a s  a  f u n c t i o n  of  i t s  s t eady  s t a t e  temperature  c a l c u l a t e d  
by t h e  SAS Con t ro l  rod  i n s e r t i o n s ,  c ro s s - sec t ions  and o t h e r  d e t a i l s  
of  t h e  c a l c u l a t i o n s  a r e  t h e  same as those I I E C ~  i n  the case of  the LWP.-grade 
plutonium. Table  I summarizes t h e  r eg iona l  t o t a l s  o f  power, sodium vo id ,  
s tee l  and core  f u e l w o r t h s  bo th  f o r  t h e  FFTF-grade and t h e  LWR-grade plu- 
tonium f u e l s ,  t h e  method of  a n a l y s i s  being a l i k e  i n  each ca se .  F igu re  1 shows 
t h e  subassembly power f a c t o r s  ob ta ined  from a 2-D t r i a n g u l a r  mesh d i f f u s i o n  
theory  c a l c u l a t i o n  wi th  t h e  c o n t r o l  rod  and t h e  6 rods a t  f l a t s  o f  row 7 
f u l l y  i n s e r t e d .  F igu re  2 shows t h e  a x i a l  d i s t r i b u t i o n  of  power i n  a l l  t h e  rows 

' '  of  t h e  c o r e  ob t a ined  from a 2-D R-Z d i f f u s i o n  theory  c a l c u l a t i o n  wi th  p a r t i a l l y  
i n s e r t e d  c o n t r o l  rods ,  and wi th  t h e  f u e l  assumed a t  a  uniform tempera ture  o f  
l l O O O ~ .  Comparison of  r eg iona l  power t o t a l s ,  subassembly power f a c t o r s , .  
subassembly peak-to-average power. d e n s i t y  r a t i o s  and a x i a l  power p r o f i l e s  
between t h e  FFTF-grade and t h e  LWR-grade plutonium f u e l s  shows t h a t  t h e  
power d i s t r i b u t i o n  remains e s s e n t i a l l y  unchanged. 



TABLE I. comparison of Power and ,Mater ia l  Worths by Region Between LWR-Pu-Fueled 
and FFTF-Pu-Fueled CRBR a t  t h e  Beginning of L i f e  

Fuel Inner Outer Lower Upper Radial  
Power o r  Worth Type Core Core Blanket .  Blanket Blanket Total  

Power, MWt  FFTF 
LWR 

Sodium void worth, FFTF 
l o 3  Aklk LWR 

Worth of h a l f  s t e e l ,  . FFTF 
l o 3  ~ k / k  LWR 

Core f u e l  worth,  FFTF 
l o 3  ~ k l k  LWR 

p~ -- ~ -- 

a ~ a d i a l  b lanket  f u e l  i n  r a d i a l  b l anke t .  

Fig.  1. Subassembly Power fac. tors  f o r  t h e  
FFTF Plutonium Fueled Clinch 
River Breeder Reactor a t  t h e  
Beginning of L i fe .  ANL,Neg. 
NO. 116-76-255. 
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HEIGHT FROM LOWER AXIAL BLANKET BOTTOM. CM 
1 =CENTRAL PORTION OF ROW 2 S U B A S  
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6 =CENTRAL PORTION OF ROW 7 S U B A S S  
7 =CENTRAL PORTION OF ROW 6 SUBASSS 
6 =CENTRAL PORTION OF ROW 0 S U B A S S  

~ i g .  7, A.xia.1.. D i s t r i b u t i o n  of Poa~er i n  t h e  
FFTF-Plutonium Fueled Cl inch  River  
Breeder Reactor  Core a t  t h e  Begin- 
n ing  o f  L i f e .  ANL Neg. 
NO. 116-76-252. 

The sodium vo id  and s t e e l  worth distributions have been computed by 
2-D R-Z d i f f u s i o n  theory  l i n e a r i z e d  leakage p e r t u r b a t  i ons  us ing  t h e  r e a l  and 
a d j o i n t  f l u x e s  generated i n  t h e  normal r e a c t o r  a t  a  uniform f u e l  temperature  
of  l l O o O ~ .  F igures  3  and 11 show comparisons of t y p i r a l  axial  d i s t r i h l l t i n n f :  i n  
core o f  sodium vo id  and s t e e l  wortha f o r  t h e  FFTF-grade and t h e  LWR-grade 
plutonium f u e l s  (ob ta ined  by p r e c i s e l y  t h e  same method o f  a n a l y s i s ) .  I n  t h e  
b l a n k e t  r eg ions  t h e  comparisons a r e  even c l o s e r  than  those  i n  t h e  c o r e  r eg ions  
bo th  f o r  t h e  sodium vo id  and t h e  s teel  worth d i s t r i b u t i o n s .  When conver ted  
i n t o  d o l l a r s ,  ( t o t a l  e f f e c t i v e  delayed neu t ron  f r a c t i o n  is  0.00335 us ing  FFTF 
f u e l  compared t o  U.00365 u s i n g  LWR f u e l  a s  r epo r t ed  i n  t h e  P S A R , ~  Table  4.3-33) 
t h e  i n n e r  c o r e  sodium vo id  worth wi th  t h e  FFTF-plutonium f u e l  i s  found about 
18% l a r g e r  than t h a t  wi th  t h e  LWR-plutonium f u e l ,  whereas t h e  corresponding 
comparison r epo r t ed  i n  t h e  P S A R , ~  Table  4.3-35 shows an i n c r e a s e  o f  about 24%. 
A s i m i l a r  comparison o f  t h e  i n n e r  core  s t e e l  worth shows an i n c r e a s e  i n  
magnitude o f  a  l i t t l e  l e s s  t h a n  11% only.  F igure  5 shows a  t y p i c a l  a x i a l  
d i s t r i b u t i o n  o f  co re  f u e l  worth i n  a l l  t h e  rows of  t h e  c o r e  computed by 2-D 
R-Z d i f f u s i o n  theo ry  l i n e a r i z e d  leakage p e r t u r b a t  i o n  u s i n g  t h e  r e a l  and 
a d j o i n t  f l u x e s  genera ted  i n  t h e  core-and-blanket-voided r e a c t o r  a t  a  uniform 
f u e l  temperature  of  llOO°K. Comparison o f  f u e l  worth d i s t r i b u t i o n s  between 
t h e  FFTF-plutonium and t h e  LWR-plutonium f u e l e d  CRBR shows t h a t  t h e s e  a r e  
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e s s e n t i a l l y  t h e  same i n  u n i t s  o f  ~ k / k  p e r  kilogram. It should be poin ted  
out  t h a t  t h e  FFTF-plutonium f u e l  i s  about 9% h ighe r  i n  s p e c i f i c  r e a c t i v i t y  
worth than  t h e  LWR-plutonium f u e l  because o f  t h e  d i f f e r e n c e  i n  t h e  t o t a l  
delayed neut ron  f r a c t i o n .  

2 .  Comparison of  K.eactivity C o e f f i c i e n t s  f o r  t h e  CKBK a t  End-of- 
Equil ibr ium Cycle (EOEC) a s  Computed wi th  ENDFIB-I11 and 
ENDFIB-IV Based Cross Sec t ions  (P. H. Kier)  

To provide informat ion  on  t h e  s e n s i t i v i t y  of c a l c u l a t e d  r e a c t i v i t y  
c o e f f i c i e n t s  t o  bas i c  neut ron  d a t a  and procedures  f o r  processing t h e s e  d a t a  
i n t o  broad group c r o s s  s e c t i o n ,  r e a c t i v i t y  c o e f f i c i e n t  computed f o r  EOEC 
c o n d i t i o n s  wi th  u s e  of  a  c r o s s  s e c t i o n  l i b r a r y  based on ENDFIB-111 da t a4  have 
been r e c a l c u l a t e d  wi th  a  new l i b r a r y  based on ENDFIB-IV d a t a .  This  new l i b r a r y  
has s e v e r a l  ref inements  n o t  u s u a l l y  made. The temperature dependence of 
s c a t t e r i n g  c ros s  s e c t i o n s  is  accounted f o r ,  t h e  c o n s t i t u e n t s  o f  s t a i n l e s s  
s t e e l  a r e  t r e a t e d  a s  resonant  m a t e r i a l s  , and i n t e g r a l  t r a n s p o r t  theory r a t h e r  
than  t h e  narrow resonance approximation is  used t o  compute resonance absorp- 
t i o n  i n  t h e  r e so lved  resonance energy range .  

Thc r c c u l t s  o f  t h i s  s tudy  w i l l  now bc summarized. The u s e  of t h e  new 
l i b r a r y  r e s u l t s  i n  n e g l i g i b l e  changes i n  core  f u e l  worth and power d i s t r i b u t i o n s .  
It d i d  r e s u l t ,  however, i n  s i g n i f i c a n t  i n c r e a s e s  i n  sodium void  worths  of about 
30% (20 t o  25% over  t h e  core)  and i n c r e a s e s  i n  s t e e l  worth o f  about 5%. There 
was a l s o  an  i n c r e a s e  i n  t h e  f u e l  Doppler c o e f f i c i e n t  of between 1 and 5%. 
S ince  t h e  c o n s t i t u e n t s  o f  s t e e l  were t r e a t e d  a s  resonant  m a t e r i a l s  i n  gener- 
a t i n g  t h e  new l i b r a r y ,  they  have temperature-dependent c r o s s  s e c t i o n s  and 



t h e i r  c o n t r i b u t i o n  t o  t h e  Doppler e f f e c t  can b e  c a l c u l a t e d .  With t h e  assump- 
t i o n  t h a t  t h e  change i n  temperature i n  t h e  s t e e l  is  t h e  same as i n  t h e  f u e l ,  
f o r  t h e  compositions i n  CRBR a t  EOEC, including.  t h e  Doppler e f f e c t  i n  t h e  
c o n s t i t u e n t s  of  s t e e l  would i n c r e a s e  t h e  o v e r a l l  ~ o ~ ~ l e r  c o e f f i c i e n t  by about 
lo%, 

3 .  Comparison o f  . R e a c t i v i t y  C o e f f i c i e n t s  f o r  CRBR a s  Computed 
wi th  t h e  R-Z Model and w i t h  t h e  Two-Dimensional Hexagonal 
Mesh Model (P. H. Kier)  

It is o f  i n t e r e s t  t o  comparison r e a c t i v i t y  c o e f f i c i e n t s  a s  
computed wi th  two-dimensional R-Z and hexagonal-mesh p e r t u r b a t i o n  
theory models t o  g a i n  i n s i g h t  i n t o  t h e  u n c e r t a i n t i e s  in t roduced  i n t o  
t h e  c a l c u l a t i o n  of t h e s e  q u a n t i t i e s  from a t tempt ing  t o  r ep re sen t  a  
three-dimensional system wi th  two-dimensional models. 

For Beginning-of-Equilibrium Cycle (BOEC) cond i t i ons  f o r  which t h e r e  a r e  
p a r t l y  i n s e r t e d  c o n t r o l  rods ,  r e a c t i v i t y  c o e f f i c i e n t s  ove r  t h e  e n t i r e  he igh t  
of t h e  co re  were compared f o r  t h e  r e a c t o r  a t  llOO°K and wi th  sodium unvoided. ,  
The r e s u l t s  of  t h i s  comparison a r e  g iven  by channel  i n  Table 11. From t h e  
t a b l e  it  is  seen  t h a t  t h e  Doppler worth and c o r e  f u e l  worth a r e  r e l a t i v e l y  
i n s e n s i t i v e  t o  t h e  two-dimensional r e p r e s e n t a t i o n  of t h e  system. For t h e  
s t e e l  worth, t h e  d i sc repanc ie s  a r e  l a r g e r  and f o r  t h e  sodium vo id  worth 
t h e  d i sc repanc ie s  a r e  s i z a b l e  f o r  s e v e r a l  channels .  For  t h e  sodium void  worth 
t h e  n e t  r e a c t i v i t y  a s  computed wi th  f i r s t  o r d e r  p e r t u r b a t i o n  theory was de- 
composed i n t o  components. Genera l ly ,  t h e  major c o n t r i b u t i o n s  t o  t h e  d i s -  
crepancy a r o s e  from d i f f e r e n c e s  i n  two components: n e t  s c a t t e r i n g  and r a d i a l  
leakage. There were l a r g e  r e l a t i v e  d i f f e r e n c e s  i n  t h e  r a d i a l  leakage com- 
ponent which i n d i c a t e s  t h a t  l o c a l  f l u x  g r a d i e n t s  a r e  n o t  w e l l  represented  i n  
two-dimensional models. Although t h e  r e l a t i v e  d i f f e r e n c e s  i n  t h e  n e t  
s c a t t e r i n g  component a r e  sma l l e r ,  t h e  magnitude of t h e  component i s  l a r g e r  
than  t h e  r a d i a l  l eakage  component and gene ra l ly  has  a  l a r g e r  c o n t r i b u t i o n  t o  
t h e  sodium worth d iscrepancy .  

TABLE.11. Comparison o f  Reac t iv i ty  C o e f f i c i e n t s  f o r  Fu l l  Core Height ,  by Channel, for  CRBR a t  
BOEC as  Obtained from 2-D Hexagonal-Mesh and R-Z Perturbation Calculat ions ,  bk/k2 x l o 3  

Sodium Void S t e e l  Removal Doppler Worth Core Fuel Worth 

Channel Subass'y. I.D. Hex R- Z Hex R- Z Hex R - Z  Hex R-Z 
- 



For  End-of-Equilib.rium Cycle (EOEC) cond i t i ons ,  f o r  which a l l  
c o n t r o l  rods  were withdrawn from t h e  core ,  r e a c t i v i t y  .coef f  ic iexi ts  were 
compared f o r  a h e i g h t  of  5.6 cm cen te red  about t h e  c o r e  midplane. This . 
comparison g ives  an i n d i c a t i o n  of  t h e  e r r o r s  introduced by azimuthal smear- 
i ng  o f  subassemblies  wi th  d i f f e r e n t  compositions.  For t h i s  ca se ,  t h e  agree- 
ment between t h e  R-Z and t h e  hexagonal-mesh c a l c u l a t i o n s  were e x c e l l e n t  f o r  
t h e  Doppler worth and t h e  c o r e  f u e l  worth and were gene ra l ly  s i g n i f i c a n t l y  
b e t t e r  f o r  t h e  sodium void worth and s t e e l  worth than  f o r  t h e  BOEC c a s e  as  
can  b e  seen  from Table 111. The s i g n i f i c a n t l y  b e t t e r  agreement f o r  t h e  EOEC 
c a s e  was t o  b e  expected because t h e  BOEC c a s e  presented  a f a r  more seve re  
t e s t  of two-dimens i o n a l  models . 

TABLE 111. Comparison of Reactivity Coefficients about the Midplane, by Channel, for CRBR with 
Normal Sodium at EOEC as Obtained from 20D Hex and R-Z Perturbation Calculations, bk/k2 x lo4 

s ~ d i w n  V ~ i d  $?.eel Remnv~l nnpp3 nr Worth Core Forrl. blorth 

Channel Subass'y. I.D. Hex R-Z Hex R-Z Hex R- Z Hex R- Z 

1 .I. , 7 2.171 2.317 5.951 6.196 -n.711& -n,??14 7 ~ ~ 7 5  2 5 , ~  

4. EfIrcL u f  Lhe Self-overlap Correc . t inn on Doppler Effect 
G a l c u l a e l s ~ l s  (Pi 11. IIPcr) 

A s  p a r t  o f  o u r  cont inuing  program t o  determine u n c e r t a i n t i e s  i n  t h e  
computation of  r e a c t i v i t y  c o e f f i c i e n t s ,  a s t udy  was made o f  t h e  e f f e c t  o f  t h e  
s e l f - o v e r l a p  c o r r e c t i o n  t o  resonance c ros s '  s e c t i o n s  i n  t h e  unresolved reso-  

, nance energfi range on computed Doppler r e a c t l v i t i e s .  changes i n  t h e  cap tu re  
c r o s s  s e c t i o n s  o f  2 3 8 ~  and i n  t h e  cap tu re ,  f i s s i o n ' a n d  nu - f i s s ion  c ros s  s e c t i o n s  
of  239F'u between 1100 and 4 4 0 0 ' ~  were obta ined  both inc lud ing  and n e g l e c t i n g  
t h e  se l f -ove r l ap  c o r r e c t i o n .  These two s e t s  o f  Doppler d i f f e r e n c e  c ros s  
s e c t i o n s  were input  a s  pe r tu rba t ions  f o r  a s i m p l i f i e d ,  one-dimensional re -  
p r e s e n t a t i o n  of  t h e  unvoided CRBR. For 3 0 ~ ,  n e g l e c t  o f  t h e  se l f -over lap  
c o r r e c t i o n  r e s u l t e d  i n  an  i n c r e a s e  i n  t h e  c o n t r i b u t i o n  from t h e  unresolved 
resonance energy range of about 25%. However, a s  on ly  about  a q u a r t e r  of 
t h e  3 8 ~  Doppler e f f e c t  comes from t h e  unresolved resonance energy range,  t h e  
n e t  e f f e c t  was about 8%. For * 3 9 ~ ~ ,  whose unresolved resonance energy range 
ex tends  down t o  a few hundred e l ec t ron -vo l t s ,  neg lec t  of  t h e  se l f -ove r l ap  
c o r r e c t i o n  r e s u l t s  i n  an  i n c r e a s e  i n  t h e  Doppler e f f e c t  o f  about 25%; 
however, t h e  c o n t r i b u t i o n  t o  t h e  o v e r a l l  Doppler e f f e c t  from 3 9 ~ ~  is  only  a 
few pe rcen t  of  2 3 8 ~  and of o p p o s i t e  a l g e b r a i c  s i g n .  Thus it appears  t h a t  any 
u n c e r t a i n t y  introduced i n t o  t h e  c a l c u l a t i o n  o f  t h e  Doppler e f f e c t  from t h e  
t r ea tmen t  of t h e  se l f -ove r l ap  e f f e c t  would b e  l e s s  t han  8%. 



B. Model Studies 

1. Rec r i t i ca l i t y  (P. B. Abramson) 

W e  a r e  continuing work on a combined compressible/incompressible 
flow algorithm i n  order t o  be ab l e  t o  follow long time ( tenths  of seconds) 
flows i n  pulsed pools. 

W e  are ,  a t  t h i s  point ,  ab l e  t o  examine the  influence of l o c a l  pressure 
pulses on pools which a r e  near k=l t o  study the  parametric impacts on energy 
deposition. A new FX2-POOL calculat ional  path w i l l  have t o  be wr i t t en  which 
allows POOL t o  c a l l  FX2 rather  than v ice  versa  a s  i n  the current FX2-POOL 
version. When t h i s  is accomplished, t h e  cost  of these proposed parametric 
s tudies  can be reduced by as much as an order of magnitude by performing the  
more expensive neutronics calculations only when they a r e  needed. W e  w i l l  
proceed with examination of such phenomena when the  new path is writ ten.  

2. Autocatalysis from Bubble Collapse i n  Pools 
(P. B. Abramson and T. A. Daly) 

Using Monte Carlo calculations of t h e  e f fec t  of bubble s i z e  and 
void f r ac t ion  on diffusion coeff ic ients  performed by R. L e l l  and E. Gelbard, 
w e  have wr i t ten  a n w  FX2-POOL path which can ca lcu la te  the  autocatalyt ic  
e f f ec t  of decreased neutronic streaming due t o  bubble collapse i n  a boi l ing 
pool undergoing rapid heating (and therefore  l iqu id  phase expansion) due t o  
a prompt c r i t i c a l  excursion. This code is now i n  the  debugging s tage,  and 
calculations should be made i n  t he  next quar ter .  

3. Heat Transfer Effects  on Work Enerpy (P. B. Abramson) 

POOL and FXZ-POOL w e r e  modified t o  ca lcu la te  the  work energy 
avai lable  (thermodynamic potent ia l  energy) from e i t h e r  f u e l  o r  s t e e l  o r  
both, a t  any point along the  time development of t he  HCDA. This was ac- 
complished by incorporating in to  these codes t h e  VENUS adiabat ic  expan- 
s ion  models used i n  t h e  assessment of work energy by VENUS. Using t h e  
1000 MW(e) Reactor calculat ion which we used t o  compare VENUS and FX2-POOL 
 result^,^ calculat ions  of t h e  importance of f u e l  t o  s t e e l  heat t r ans fe r  
both during the  prompt burs t  and i n  t h e  20 t o  30 m s  following the  prompt 
burst .  It was found tha t  t h e  f u e l  t o  s t e e l  heat t r ans fe r  has essen t ia l ly  
no r o l e  during the prompt burs t  ( fo r  these la rge  ramp r a t e  calculations of 
$50/second and up). However, during the  time i t  takes f o r  a vapor bubble 
t o  grow to  the  s i z e  of the  or ig ina l  ac t ive  core (20 o r  30 m s ) ,  w e  find 
that  f u e l  t o  steel heat t r ans fe r  can play a s ign i f ican t  role .  

I f  t h e  f u e l  t o  steel heat t r ans fe r  is represented parametrically by 

- T ' CA(Tfuel steel 1 + A ~ ~ ( T ~ ~ ~ ~ ~  
- 

s tee1 1 

then va r i a t i on  of C and A over a reasonable range of values can produce 
s ignif icane changes i n  t he  core mater ia ls  behavior. Figure 6 shows the  
core marker p a r t i c l e  d i s t r ibu t ions  a t  t h e  end of t h e  prompt burs t  (6+ms) 
and a t  the  t i m e  t h e  core mater ia ls  reach t h e  blankets (30tms). 



PARTICLE DISTRIBUTION FROM HCDA PARTICLE DISTRIBUTION FROM HCDA 

1 

rw(nccros) - ~ 2 0 x 0  

PARTICLE DISTRIBUTION FROM HCDA PARTICLE DISTRIBUTION FROM HCDA 

fil 

Fig. 6. Particle Con£ igurat Lons. 
ANL ~ e g  . NO. ii6-76.--125 



Figu re  7 shows t h e  i n f l u e n c e  o f  ' v a r i a t i o n  o f  C and A on t h e  peak f u e l  
temperature  dur ing  t h a t  pe r iod ,  w h i l e  F ig .  8 shows t h e  same e f f e c t s  on 
peak p r e s s u r e .  

F ig .  7  

Heat T rans fe r  E f f e c t s  on 
Fuel Peak Temperature. 
ANL Neg. No. 116-76-120. 
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Figu re  9 shows how f u e l  t o  s t e e l  hea t  t r a n s f e r  can s e r v e  t o  reduce 
t h e  a v a i l a b l e  system work energy even by t h e  t i m e  t h e  c o r e  bubble  reaches  
t h e  b l a n k e t .  For t h e  c a l c u l a t i o n s  shown i n  t h i s  f i g u r e ,  t h e  s t e e l  was 
i n i t i a l l y  a t  1 0 0 0 ° ~ .  No work w a s  genera ted  from t h e  s teel  i n  t h e s e  calcu-  
l a t i o n s ,  even when a l l  t h e  energy was assumed t o  go i n t o  c l a d  and w i r e  wrap 
s t e e l ,  i gno r ing  car1 w a l l  s t e e l .  Paramet r ic  v a r i a t i o n  of  i n i t i a l  s t e e l  temp- 
e r a t u r e  has  i n d i c a t e d  t h a t  when t h e  i n i t i a l  s t e e l  t empera ture  is  h i g h e r ,  
a d d i t i o n a l  work energy can be ob t a ined  from t h e  s t e e l ,  wi th  t h e  breakeven 
po in t  be ing  somewhere around 2500°~ .  f o r  an i n i t i a l  s t e e 1  temperature .  Fur ther -  
more, t h e  i n f l u e n c e  o f  can w a l l  s t e e l  a s  an energy s i n k  s e r v e s  t o  lower t h e  
work energy.  

0 
g 
0 N 

These s t u d i e s  i n d i c a t e  t h e  need f o r  f u r t h e r  examinat ion of  t h e  hea t  
t r a n s f e r  between f u e l ,  s t e e l  and c o o l a n t  fo l l owing  a  prompt b u r s t .  To d a t e ,  
damage e s t i m a t e s  made wi th  REXCO simply u s e  a  P-V r e l a t i o n s h i p  f o r  t h e  c o r e  
bubble  a s  a  sou rce  t o  d r i v e  t h e  sodium t o  impact.  Furthermore, t h a t  P-V 
r e l a t i o n s h i p  i s  ob ta ined  by examinat ion o f  t h e  a v a i l a b l e  work energy i n  f u e l  
a lone  a t  t h e  end of t h e  prompt b u r s t .  Our s t u d i e s  i n d i c a t e  t h a t  such a  P-V 
curve may be  s i g n i f i c a n t l y  i n  e r r o r ,  even when t h e  bubble i s  f a i r l y  s m a l l ,  due 
t o  energy t r a n s f e r  among t h e  c o r e  m a t e r i a l s .  The time s c a l e  f o r  bubble  growth 
appears  t o  be  long  enough f o r  f u e l  t o  s teel  and t o  coo lan t  ( i n  t h c  LOF d r i v c n  
TOP) t o  be  a b l e  t o  p lay  a  major r o l e .  A paper  on t h i s  e f f e c t  has  been accepted  
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f o r  p u b l i c a t i o n  a t  t h e  Winter ASME meet ing,  and some informat ion  w i l l  a l s o  be  
presen ted  at. t h e  October,  1976 F a s t  Reac tor  S a f e t y  meet ing i n  Chicago. 

4. Development o f  EPIC (P. A. P i z z i c a  and P. B .  Abramson) 

Much o f  t h e  p re sen t  q u a r t e r  was s p e n t  r e f i n i n g  t h e  EPIC f u e l -  
c o o l a n t  i n t e r a c t i o n  code in t roduc ing  such f e a t u r e s  a s  a  more p r e c i s e  t r a c k i n g  
of  t h e  l i q u i d  sodium s l u g  i n t e r f a c e s ,  debugging minor problems, w r i t i n g  an 
i n p u t  p roces so r ,  adding a u x i l i a r y  e d i t i n g ,  and breaking up  t h e  code i n t o  
modules t o  f a c i l i t a t e  code development and debugging. The d e t a i l s  a r e  
un impor tan t ,  b u t  t h e  e f f o r t  was neces sa ry .  

The multi-node f a i l u r e  o p t i o n  which w i l l  a l low EPIC t o  t r e a t  long c l a d  
f a i l u r e s  i s  working both  f o r  t h e  c a s e  of  a  l eng th  f i x e d  i n  t ime ( a  r i p  up t o  

, 25 cm long  was t r e a t e d )  and f o r  a  r i p  whose l e n g t h  i nc reased  w i t h  t ime (one 
case inc reased  t h e  r i p  by 10 cm a f t e r  a  couple  of  msec, and then  by ano the r  
10 cm a f t e r  a  few more msec) . 

The c a s e  o f  e j e c t i n g  f u e l  i n t o  a  p a r t i a l l y  voided c o o l a n t  channel  i s  
working and s t a b l e  (40 and 60% vo id  f r a c t i o n s  were used) .  Also, a  mu l t i p l e -  
node f a i l u r e  i n t o  t h e  p a r t i a l l y  voided channel  was s u c c e s s f u l l y  run .  Both of  
t h e s e  o p t i o n s  a r e  now undergoing checkout and comparison. When more cases  
have been  run ,  a  summary o f  t h e  r e s u l t s  w i l l  b e  p re sen t ed .  

Also,  we i n t e n d  t o  run a  s e r i e s  o f  c a s e s ,  vary ing  t h e  most s i g n i f i c a n t  
i n p u t  parameters  such a s  f a i l u r e  l o c a t i o n ,  vo id  f r a c t i o n  i n  channel ,  f u e l  
' temperature ,  e t c . ,  i n  o r d e r  t o  compare EPIC w i t h  PLUTO1. W e  w i l l  a l s o  use 
a l l  o f  EPIC'S f e a t u r e s  i n  many d i f f e r e n t  ca se s  i n  o rde r  t o  test i t  thoroughly 
b e f o r e  u s fng  i t  f o r  p roduct ion  c a l c u l a t i o n s .  

I V .  COORDINATION OF RSR SAFETY RESEARCH ' 

P. Abramson and H .  Hummel a t t ended  an RSR meeting on.  SIFIMER i n  
Germantown on A p r i l  11 and a  code v a l i d a t i o n  meeting on A p r i l  12 i n  
Germantown. A s  a  r e s u l t  of t h e  l a t t e r  meet ing ,  Abramson has now had two 
rounds o f  c o n t a c t s  w i th  NRC ARSR c o n s u l t a n t s  r ega rd ing  experimental  v a l i d a t i o n  
of SIMMER, HAARM and SSC. A t  t h f s  p o i n t  w e  have r ece ived  p re l imina ry  suggest- .  
i o n s  from each o r g a n i z a t i o n  regard ing  t h e i r  own p o t e n t i a l  c o n t r i b u t i o n s  and 
a r e  now awa i t i ng  t h e  assessment  of each r e p l y  by t h e  o t h e r  o r g a n i z a t i o n s .  We 
s h a l l  a t t empt  t o  have a  p r e l i m i n a G  p lan  on v a l i d a t i o n  of  SIMMER and HAARM 
ready  by t h e  end of ca l enda r  yea r  1976. Furthermore, a s  a  r e s u l t  ' o f  t h e  i n i t i a l  
meet ing,  a r e a s  o f  s t r o n g  mutual b e n e f i t  have been i d e n t i f i e d  between t h e  HAARM 
exper imenta l  e f f o r t  and t h e  SIMMER a n a l y s i s ,  and a  coopera t ive  e f f o r t  has  
begun. 

P. Abramson v i s i t e d  A.  I. on A p r i l  2 2  t o  meet w i th  R.  T .  Lancet and 
H .  Morewitz t o  d i s c u s s  r e c r i t i c a l i t y  and some f u e l / s t e e l  i n t e r a c t i o n  exper i -  
ments be ing  performed a t  A . I .  

P. Abramson v i s i t e d  V .  J .  Dhi r  a t  UCLA on A p r i l  23 t o  d i s c u s s  t h e  UCLA 
experiments  on c r u s t  fo rmat ion  (appl ied  t o  f u e l / s t e e l  pools )  and t o  d i s c u s s  
d e b r i s  bed experiments .  



P. Abramson v i s i t e d  LASL on A p r i l  25  t o  d i s c u s s  SIMMER v a l i d a t  i on  analy- 
sis o f  t r a n s i t i o n  phase, and coord ina t ion  with Sandia,  and v i s i t e d  Sandia on 
A p r i l  2 7 .  A s  a  r e s u l t  o f  t h e s e  meet ings,  s e v e r a l  a n a l y s t s  from LASL v i s i t e d  
Sandia t o  d i s c u s s  t h e  experimental  c a p a b i l i t i e s ,  and a  r e t u r n  v i s i t  is 
planned. 

P. Abramson a t tended  a  PAHR review group on  May 10 a s  a  consu l t an t  t o  
NRC (R. Wright) ,  and submit ted a  c r i t i q u e  of t h e  meeting. H. Hummel, P. 
Abramson and P. P i zz i ca  made p r e s e n t a t i o n s  t o  t h e  B r i t i s h  de l ega t ion  on 
June 24 a t  ANL. 

V .  EVALUATION OF PROGRESS I N  REACTOR SAFETY RESEARCH 

Papers  publ ished i n  Transac t ions  of  American Nuclear  Soc ie ty ,  - 23:  

"A Numerical Hydrodynamics Treatment o f  Fuel /  st e e l  Poo 1s wi th  Densi ty 
Var i a t ions  from Nearly Pure Vapor t o  Incompressible  Liquid." 

P. B. Abramson, p. 192. 

11 The Importance of  Fuel  t o  S t e e l  Heat Transfer  i n  Neutronic  and Work Energy 
Release i n  HCDA Ca lcu la t ions  fo  r LMFBRs . " 

P. B. Abramson, p. 327.  

"Power and R e a c t i v i t y  D i s t r i b u t i o n  in t h e  Clinch River  Breeder Reactor  a t  
t h e  Beginning-of-Life (BOL) ." 

Kalimullah and H. H. Hummel, p. 570. 

MONTE CARLO ANALYSIS AND CRITICALS PROGRAM 
PLANNING FOR SAFETY-RELATED CRITICALS 

(A20 18) 

V I .  MONTE CARLO ANLYSIS OF SAFETY-RELATED CRITICALS 

A s  prev ious ly  r epo r t ed ,  t h e  Monte Carlo e igenvalue  f o r  an R-Z model of 
t h e  r e f e r e n c e  co re  agreed w e l l  wi th  a  corresponding d i f f u s i o n  theory  e igenvalue .  
On t h e  o t h e r  hand, t h e  Monte Carlo and d i f f u s i o n  theory  eigenvalues d i sag reed  
by 1% f o r  t h e  s t e p  5 damaged co re .  Computed e igenvalues  a r e  summarized i n  
Table IV. 

It is  probably no t  s u r p r i s i n g  t h a t  Monte Carlo and d i f f u s i o n  theory  
eigenvalues d i s a g r e e  from t h e  damaged c o r e  ; i t  is  s u r p r i s i n g ,  however, t h a t  
TWOTRAN d i s a g r e e s  s o  sharp ly  wi th  Monte Carlo and d i f f u s i o n  c a l c u l a t i o n s  f o r  
t h e  r e f e r e n c e  core .  

I n  'order  t o  make s u r e  t h a t  t h e  c r o s s  s e c t i o n s  i n  TWOTRAN and D I F ~ D  were 
c o n s i s t e n t ,  i n f i n i t e  medium e igenvalues  ( i . e . ,  k ' s )  were computed f o r  both 
the. c o r e  and b lanket  m a t e r i a l s ,  u s ing  bo th  codes: w i t h  t h e  c o r e  c r o s s  s e c t i o n s  



TABLE IV 
- -- 

Computed Eigenvalues 

Reference Core Damaged Core (Step 5) 

 iff'. Theory 1 .OOO 1 .000 
V I M  0.998 + 0.002a 1.013 + 0.002a 
TWOTRAN 1.010 Not y e t  a v a i l a b l e  

"Confidence i n t e r v a l  i s  s tandard  d e v i a t i o n  

a s  i n  t h e  o r i g i n a l  'R-z c a l c u l a t i o n s .  It was found t h a t  TWOTRAN and DIF2D 
k,'s were e s s e n t i a l l y  i d e n t i c a l .  F u r t h e r ,  a f t e r  a  good d e a l  of  v i s u a l  check- 
i n g  of d a t a  s e t s ,  no c r o s s  s e c t i o n  d i sc repanc ie s  have been found. 

l h r t h c r  chcclring computations have been seen i n  s p h ~ r i  cal emmetry, 
p r e s s u r i n g  t h e  R-Z co re  volume. Computed e igenvalues  i n  t h i s  geometry 
a r e  l i s t e d  i n  Table V .  

TABLE V 

Computed Efgenvalues f o r  I-D Spl ier ical  Model. 

D i f f .  Theory 
AN I SN 
V I M  

1.0040 
1.0135 
1.013 % 0.002a (100,000 h i s t o r i e s )  

a Confidence i n t e r v a l  is s t anda rd  d e v i a t i o n  

It w i l l  be  noted t h a t  i n  t h e  s p h e r i c a l  model, one  f i n d s ,  aga in  t h a t  t h e  
mul t igroup t r a n s p o r t  (i. e . ,  ANISN) eigenvalue i s  about 12  h ighe r  than  t h e  
mul t igroup d i f £ u s i o n  e igenvalue .  This  i s  a c t u a l l y ,  p e r f e c t l y  p l a u s i b l e  i n  
view of  t h e  very high leakage  from t h e  co re ,  a  core  with .km = 1.539. Since 
TWOTRAN and ANISN r e s u l t s  show t h e  same behavior ,  t h e r e  i s  no reason  t o  suspec t  
any e r r o r  i n  t h e '  TWOTRAN computation. 

A t  t h i s  po in t  we s e e  two p o s s i b l e  explana t ions  f o r  t h e  VIM-'IWO'l'RAN d i s -  
crepancy i n  t h e  r e f e r e n c e  c o r e .  F i r s t ,  i t  is  p o s s i b l e  t h a t  t h e  VIM ca lcu la-  
t i o n ,  i n  s p i t e  o f  appearances,  has  not  y e t  converged. Secondly, i t  may 
be  t h a t  t h e r e  a r e  i n  t h e  c o m e r s  of  t h e  R-Z co re ,  spectrum e f f e c t s  which a r e  
n o t  adequa te ly  modelled i n  27 groups. Both p o s s i b i l i t i e s  a r e  be ing  i n v e s t i g a t e d .  
I n  e i t h e r  case  t h e  o r i g i n a l  VIM-DIF2D agreement would be f o r t u i t o u s .  

V I I .  PLANNING OF DEMO SAFETY RELATED EXPERIMENTS 

This  q u a r t e r l y  r e p o r t  i nc ludes  a  s t a t u s  r e p o r t  on t h e  development of 
t h e  prog'ram plan  f o r  t h e  s a f e t y  r e l a t e d  c r i t i c a l  experiments.  The i n i t i a l  
d r a f t s  of t h e  planned sequence of c r i t i c a l  assembly core  con f igu ra t ions  
and t h e  r e l a t e d  c r i t i c a l  assembly measurements a r e  included i n  Tables V I  and 
V I I .  



TABLE VI. Sequence of  C r i t i c a l  Assembly Core Conf igu ra t i ons  f o r  
safety- elated c r i t i c a l  Experiments 

Phase 

Approximate Pleasurements 
keff  of a t  C r i t i c a l  
Sys tem (See Table  11) 

I. Reference Core. A. Reference Case..  
B. Measure \.Jorth of C e n t r a l  B q C  Con t ro l  . . 

Rod. 

11. Sodium-Voided A. Sodium Voiding i n  C e n t r a l  9 Drawers 
Conf igu ra t i ons .  ( r  = 9.35 cm). . .  

a. Core Loading 1. Void Upper Axia l  Blanket .  
Adjus ted  So That 2. Void Core and Blanket  Above Midplane. 
A l l  S t e p s  Sub- 3 .  Void F u l l  Height  o f .  Core and Blanke ts .  
c r i t l c a l  Except 
A s  Noted. B. Sodium Voiding i n  C e n t r a l  21 D r a l ~ e r s  

( r  = 14.28 cm). 
Leave C e n t r a l  9 Drawers vqided.  

1. Void Upper Axia l  Blanket .  
2. Void Core and Blanket  Above Ffidplane. 
3.  Void F u l l  Height  of Core and Blankets .  

C ,  Sodium Voiding i n  Cen t r a l  37 Drawers . 

( r  = 18.96 cm) . 
Leave C e n t r a l  21 Drawers Voided. 

1. Void Upper k i a l  ~ l a n k c t .  
2. Void Core and Blanket  Above ~ i d ~ l a n c .  
3. Void F u l l  Height of Core and Blanke ts .  
4. Adjus t  Case C(3) t o  C r i t i c a l .  
5. Measure S u h c r i t i c a l i t y  of Sys t en  w i th  

Cen t r a l  BqC Cont ro l  Rod. 

S l i g h t l y  
(1.0 

S l i g h t l y  . 
<I. 0 

S l i g h t l y  
<1.0 



TABLE YI. (Contd.)  

- - -- - -  - - 

Approximate Measurements 
k f f  of st C r i t i c a l  

Phase  S t e p  System (See  T a b l e  11) 

111. Fuel-Slump-Out 
C o n f i g u r e t i o n s .  

, . 

a.  A l l  >leasurements  
Mzde \\Tich C e n t r a l  
37 Drawers 
Nc-Voidcd. 

b. Core Loading 
A d j u s t e d  SO T h a t  
A l l   step^ Sub-. 
' c r i t i c a l  Zxcep t  
A s  Noted. 

A. F u e l  3l imp O c t  i n  C e n t r a l  9 Drawers. . 
All Fuel i n  Eegion Z = 0 t o  Z = H!2 
S l m ? s  i n  Region f o r  H/2 t o  H, x h e m  H 
i s  tne 3 a l f  He igh t  o f  Core a d  Z = 0 i s  
a t  t h e  Zore Nidp lane .  

1. S lunp  Upper Ha l f  of Core.  
2. S lunp  Over F u l l  Core He igh t .  

B. F u ~ l  Slump Out i n  C e n t r a l  21 Drawets.  
Lecve C e n t r a l  9 Drawers Slunped.  

1. 5 l ~ v . p  Up?er H a l f ,  of Core. 
2. El~xnp Ovzr F u l l  Core H e i g h t ,  

. C .  F u z l  Slump Oxt i n  C e n t r a l  3'7 Drahlers. 
Leave C e n t r a l  2 1  Drawers S1-~mped . 
1. Slunp  Upper Ha l f  o f  Cor?. 
2 .  Si-mp Over F u l l  Core H e i g h t .  
3 .  a d ~ u s t  Case C(2) t o  C r i t i c a l .  
4 .  Xeasnrc  S u j c r i t i c a l i t y  ~f Systcm 

Ki th  C e n t r a l  BqC C o n t r o l  Rod. 
5 .  ' r leasure S u 3 c r i t i c a l i t y  of S y s t  ?a 

Wi-h Layer  o f  B4C on Tqp o f  Lover  
F u e l  S l ~ m p  Region. 

6 .  Me x u r e  S u b c r i t i c a l i t y  of S y s t e n  
1Ji:h Layer  of  BL,C on T q  o f  Upper 
Pael Slunp  Region. 

Yes 



TABLE VI.  (Contd. ) 

.Approximate Measurements 

ke f f  of a t  C r i t i c a l  
Pkase S tep  Sys t e m  (See Tab le  11)  

. . . . . . . .  . - .  

7.  S t a r t  From Step  C(2).  Unslump Fue l  . . 
i n  Bottom Half of -Core. . . Near 1.0. .  

8. Measure S u b c r i t i c a l i t y  of Sys t em-wi th  . 
C e n t r a l  B4C Con t ro l  Rod, . a . 0  

I V .  ~ u e l - ~ l u m ~ - ~ r :  
C o n f i g u r a t i o r s .  

a .  A l l  i d ea s~ remen t s  
1.Jith C e n t r a i  37 
Drawers ?:a-Voided. 

b . A l l  Fuel-Slump-Out 
S t e p s  Renoved. 

c.  Corc Loading Ad- 
j u s t e d  So That A l l  
S t q s  S u b c r i t i c a l  
Except A s  tioted. 

. , 

D.. Hove Fue.1 Slump. Regions i n t o .  Ax ia l  " ~ l a n k e t s .  

1. uppe; Half of Core (with Bottom Half  
Uns lmped)  . 

2. F u l l  Core Height .  
3 .  Adjus t  D(2) t o  c r i t i c a l .  
4. Measure S u b c r i t i c a l i t y  of System with.. . 

Cen t r a l  B4C Con t ro l  Rod. 

A.  Fue l  Slump I n  i n  C e n t r a l  9 Drawers. 
A l l  Fue l  i n  Region Z = H t o  Z = HI2 Slumps 
i n t o  Region Z = I-!/?.. t o  Z = 0 ,  where H is t h e  
Half .Height  of. t h e .  Core and Z = 0 i s  . a t  t h e  
Core Piidplane. 

1. Slump Upper Half of Core. . . 
2. Slunp over  F u l l  Core Height ,  

B. Fue l  Slump .In i n  Cen t r a l  21 Drawers. 
Leave C e n t r a l  9 Drawers Slunpcd. 

1. Slump i n  Upper Half of Corc. 
2,  Slump ove r  F u l l  Core Height .  

C. Fue l  Slump I n  i n  C e n t r a l  37 Drawers. 
~ e a v e  Cen t r a l  21  Drawers Slumped. 

1. Slump i n  Upper Half of Core. 
2. Slump over  F u l l  Core Height,. '-. 

Yes 



T ~ L E  V I .  (Contd.) 

Approximate Measurements 
keff  of a t  C r i t i c a l  

S te?  Phase System (See Table  11)  
.. . 

3,  Adjus t  c a s e  C(2) t o  C r i t i c a l .  1 .0  
4. Ef-sure S u b c r i t i c a l i t y  of System 

wi th  C e n t r a l  B 4 C  Con t ro l  Rod. 
5. F!eas- re S u b c r i t i c a l i t y  of  System 

wieh Layer  c f  B 4 C  on Top o f  Fue l  
Shmp Region. 

6. S t a r t  From S t e p  C(3). Unslurnp Bottom 
Ha.lf oE C o r ~ .  <1.0 

7 .  Adjus t  S t ep  C(6) t o  C r i t i c a l .  1 .0  
8. Measure s u b c r i t i c a l i t y  of System 

\lit:rl C s n t r a l  B4C Con t ro l  Rcd. 

Yes 

Yes 

V. Blanket  Co l l apse  A. S t a r t  From Step  IC' C(6). Fue l  Slumpee i n  
Conf igu ra t i ons  Top H ~ l f  of Core and Unslumped i n  B o t t ~ m  

Half c f  Core. 
a .  ' A l l  l.!ezsurements 

1'1ith C e n t r a l  37 1. C c l l a p s e  Upper Axia l  Blanke t  M a t e r i a l  
Dravers  Na-Voided Sc- That i t  Is D i r e c t l y  on l o p  of 

Slurped-In Core M a t e r i a l .  <1.0 
b .  Core Loading 

, ld;~ustcd So That 2. Slurrp 1; Fuel  i n  Bottom Half  o f  Core.  ~ 1 . 0  
A 1 1  S t cps  Sub- 3. Co l l apse  Lower Ax ia l  Blanket  on to  
c r i t L c a i  E,xcept.  . Slurped  Fue l  Region. Near 1 .0  
AS Noted. 4. Adjns t  Step  A(3) t o  Cri . t ica1.  1 .0 Yes 

5. Eeasure S u b c r i t i c a l i t y  of  System 
. . .  wi th  C.entral.BsC Con t ro l  Rod. <I. 0 



. . 
TABLE V I I .  Ou t l ine  of ~ e a s u r e m e n t s  f o r  safety-  elated C r i t i c a l  ~ x p e r i ~ e n t s  

. . 

PhaseIStep Reaction Rate M a t e r i a l  . . 
P r o f i l e s  .: Worths (See Table  I) . keff  Sp'kctrum Beff . ; .  Doppler C o e f f i c i e n t  . 

I A 
(Ref. Core) 

Ir  c ( 4 )  
( Wa-Void) 

J .  Core Center .  ' 4 Axia l  and Rad ia l  Fuel; ~ t rbc tu re . , ' :  con t ro i , '  . . Core C e n t e r . -  
coolant" -- Axia l  and. 1 . . 
~ a d i a l  P r o f i l e s  ' . " . :  

..- , . _ I  
. . 

. . 
J Core Center  4 '  Axia l  and Radia l  Axia l  ~ i o f i l e s  

111 D ( 3 )  J 
(Fuel-Slump-Out . . , 2)  

Axia l  and Radia l  A x i a l t P r o f i l e s  - . ' 

Axia l  Axia l  p r o f i l e s  . 

Core Center  

Fuel  Region 

IV C ( 3 )  J Core Center  4 Axia l  and Radia l  Axia l  and Radia l  Core Center  
(F .~e l - s  lunp-In, 1) P r o f i l e s  . , . 

IV c (7)  J 
(Fuel-Slump-In,. 2) 

Axia l  Axia l  P r o f i l e s  . .  . 

. . 
V A (4) Core Center  Axia l  and ~ a d i a l  Ax ia l  ,Prof i l c s  . Core c e n t e r  . . .  

(Blanket  ColLapse) 



The program, a s  p re sen ted  i n  Table  V I ,  i s  d iv ided  i n f o  t h e  fo l lowing  
f i v e  major  phases.  

I t  Reference Core. 
11. Sodium Voided Conf igura t ions  . 
111. Fuel-Slump-Out Conf igura t ions .  
I V .  Fuel-Slump-In Conf igura t ions .  

,- 
V .  Blanket  Co l l apse  Conf igura t ions  (wi th  Fuel-Slump-In) . 
In each phase t h e  c o r e  p e r t u r b a t i o n s  have been accomplished i n  s e v e r a l  

a x i a l  and r a d i a l  s t e p s .  I n  t h i s  manner d a t a  is  provided t o  t e s t  bo th  t h e  
magnitude of  t h e  p e r t u r b a t i o n s  and t h e  t r e n d s  o f  a  per turba t ion .  a s  a  func t ion  
o f  o t h e r  parameters .  A c e n t r a l  c o n t r o l  rod has been included i n  s e v e r a l  o f  
t h e  c o n f i g u r a t i o n s  i n  o r d e r  t o  t e s t  t h e  a b i l i t y  of  t h e  a n a l y s i s  t o  p r e d i c t  1 

t h e  pe r tu rbed  c a s e  wi th  c o n t r o l  p re sen t .  . , 

The program of c o r e s  hnd measuren~e~~Ls o u t l i n e d  i n  Tables V I  h?d V I I  i s  
e s t ima ted  t o  t a k e  from 12  t o  1 5  months. 'Subsequent t o  t h e  p repa ra t ion  o f  t h i s  
program p l a n  a  'new schedule  was d eve.l,oped $o r  ZPR-9.. which cons iderably  reduced 
t h e  a n t i c i p a t e d  l eng th  of  t h e  s a f e  t y - r e l a t  ed crf r ica l  experll~lellLs. The de 
velopment o f  a  r ev i sed  program plan  aimed a t  a program of approximately 
6 months d u r a t i o n  is now necessary .  
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