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FOREWORD

The two principal americium isotopes of interest (**'Am and 2*°Am) are both
by-products of the nuclear industry and are expected to be available in relatively large
quantities in the future. Americium-241, which is formed by beta decay, has been in
short supply since it was first offered for sale in March 1962 at $1500 per gram by the
U. S. Atomic Energy Commission. The first material made available for sale came from
the Atomic Energy Commission’s Rocky Flats Plant. This source has been supple-
mented in recent years by the recovery of significant quantities of 4! Am at Richland
and Savannah River reprocessing facilities.

Probably no actinide isotope has more uses than 2*! Am, which is used in nuclear
gauges for numerous applications, in location sensing devices, in *4! Am—Be neutron
sources for oil well logging, etc., in static eliminators, in smoke detectors, and in many
other applications. In addition, 24! Am has been used as a target material in nuclear
reactors to produce 2*? Am, which has a number of potential uses, including its decay
to 238Pu. Americium-243 is useful as a reactor target material for the production of
249 Am, 252Cf, and other actinides.

In 1968, Richland demonstrated the recovery of americium from high-level wastes
generated from the reprocessing of the Shippingport blanket. This americium was
subsequently isolated and purified by chromatographic processes. Significant quantities
of 243 Am were produced in Savannah River production reactors as early as the late
1950s as part of special irradiations to produce transplutonium isotopes for research
uses and in the 252Cf production programs. Thus the Savannah River Laboratory has
played an important role in the americium chemistry development programs.



FOREWORD

The long-range availability of americium looks attractive since increasing
quantities of 2**Am and 243 Am could be expected from plutonium recycle either in
light-water power reactors or fast breeder reactors. As greater quantities of these
isotopes become available at reasonable prices, it can be expected that new and
expanded uses will be found for them.

F. P. Baranowski
Director, Division of Nuclear Fuel Cycle and Production
Energy Research and Development Administration



PREFACE

This book has a straightforward purpose, that is, to collect and review in one place the
essential features of the descriptive chemistry of americium as it is known in the
mid-1970s. Highlights of this material are, of course, discussed in standard texts on the
chemistry of the transuranium elements; but, because of space limitations, the
coverage given americium is far from comprehensive. Other important aspects of
americium chemistry are disclosed in widely scattered journal articles and in various
governmental reports, both foreign and domestic, not always easily available to all the
scientific community. These circumstances coupled with the great advances in our
knowledge of americium chemistry during the past decade provide more than
sufficient motivation for this review.

Americium chemistry is delineated here within the traditional “occurrence—
properties—compounds—uses” framework. No attempt is made to compare americium
chemistry with that of other actinide elements, this task being more properly in the
scope of books that discuss the chemistry of all the transuranium elements. A chapter
on the analytical chemistry of americium, provisionally included in the initial outline
of this review, was omitted—partly to reduce the length of the manuscript but mainly
because of the recent appearance of an excellent book™® that treats the subject in great
detail. Missing from this text also is any discussion of the behavior of americium in
biological and ecological systems; this is a vast and important segment of americium
chemistry which would more fittingly be reviewed by qualified life scientists.

*B. F. Myasoedov, L. I. Guseva, I. A. Lebedev, M. S. Milyukova, and M. K. Chmutova,
Analytical Chemistry of Transplutonium Elements, John Wiley & Sons, Inc., New York, 1974.



vi

PREFACE

This book could not have been written without the cooperation and counsel of a
great many talented scientists and engineers at various Energy Research and
Development Administration (ERDA) laboratories and installations. Stimulating
discussions of various facets of americium chemistry were held with R. A. Penneman
and L. B. Asprey of the Los Alamos Scientific Laboratory; with W. H. Hale of the
Savannah River Laboratory; with E.J. Wheelwright of the Battelle Pacific Northwest
Laboratories; with R. E. Leuze of the Oak Ridge National Laboratory;and with J. B,
Knighton, S. G. Proctor, and F. J. Minor at the Rocky Flats site. J. L. Ryan, Battelle
Pacific Northwest Laboratories, a recognized authority on the chemistry of the
transuranium elements, kindly reviewed the entire manuscript and made many helpful
suggestions for its improvement. | am indebted also to T.D. Chikalla and R.P.
Turc6tte of the Battelle Pacific Northwest Laboratories for an expert critique of the
chemistry of americium oxides.

The many drafts of the manuscript of the book were carefully typed (and
retyped!) by Eleanore Earhart and Judy Foley, amanuenses of exceptional ability.

My special thanks go to my dear wife, Dorothy, and to R. F. Pigeon of ERDA’s
Office of Technical Information, for their encouragement and great patience while this
book was being written.

Wallace W. Schulz
Atlantic Richfield Hanford Company



CONTENTS

Preface ii

1 Discovery; Atomic and Nuclear Properties; Collateral Reading 1
Discovery 1
Isotopes and Nuclear Properties 1
Atomic Properties 4
Collateral Reading 14

2 Production and Uses 23
Introduction 23
Production of 24* Am by Irradiation of 23°Pu 23
Production of 243 Am by Irradiation of 242 Pu 24
Availability of 2! Am and 2*3 Am from Power Reactors 27
Applications of 24! Am 29
Applications of 243 Am 33

3 Chemistry in Aqueous Solution 47
Oxidation States 47
Thermodynamic Values b5
Electrode Potentials 55
Autoreduction Effects 58
Disproportionation 60
Kinetics of Oxidation—Reduction Reactions 64

vii




viii

Solution Absorption Spectra
Complexes of Americium lons

4 Metal, Alloys, and Compounds
* Metal
Alloys and Intermetallic Compounds
Compounds

5 Recovery; Separation; Purification
Introduction
Pyrochemical Processes
Precipitation Processes
Solvent Extraction Processes
lon-Exchange Processes
Extraction Chromatographic Processes
Miscellaneous Separation Techniques

Author Index

Subject Index

72
85

122
122
126
131

184
184
185
189
195
233
255
255

281
287



DISCOVERY; ATOMIC AND NUCLEAR
PROPERTIES; COLLATERAL READING

DISCOVERY

Americium, element 95, the third element past uranium, was actually the fourth
transuranium element to be discovered—after curium. Working at the wartime
Metallurgical Laboratory of the University of Chicago, Seaborg, Ghiorso, James, and
Morgan in late 1944 and early 1945 identified 2! Am produced by the reactions

239Py(n,7)4 °Pu(n,y) 4 Pu — 8 241 Apy

14.3 years

Historical details surrounding discovery and identification of >*! Am, including the
first (Nov. 11, 1945) announcement of its discovery on a national radio program, have
been recounted by Seaborg and others.! ® By analogy with the naming of its rare-earth
homolog, europium, after Europe, element 95 was'named (in 1946) americium after
the Americas. Less than a year after it was discovered, Cunningham?®:'° isolated
americium in pure form as the compound Am(OH); and made the first measurements
of its absorption spectrum in aqueous solution.

The longest lived americium isotope, **3 Am (ti, = 7400 years), was identified in
1950 by Seaborg, Ghiorso, and Street'! as the product resulting from two successive
neutron captures by 24! Am. Now americium isotopes with all the mass numbers from
232 to 247 are known or at least have been tentatively identified.

ISOTOPES AND NUCLEAR PROPERTIES

Key data relative to the synthesis and radioactive decay properties of all the
presently known isotopes of americium are compiled in Table 1.1. (Details of the

1



Table 1.1
AMERICIUM ISOTOPES AND PROPERTIES

Mass Principal synthesis
number? Half-hfe? Decay mode® Principal radiations, MeV reactions Refs.
232 1.4 min SF 1somer 230Th(! °B,8n) 13-15
234 33+ 0.1 min [+ a 6.46 230TH(1°B,6n) 13,15
235md 237Np(*He,6n) 16
236md 237Np(*He,5n) 16
237 75 min EC 99+% a 6.02 239Pu(d,4n) 17-19
a 0 005%
237M 5 nsec ST 1somer 238 Pu(p,2n) 20
238 1 86 hr EC,a10*% vy 036,0.58,0.95,0.98, 237Np(a,3n) 21-24
1.35, others 239Pu(d,3n)
238" 60 usec SF 1somer 239 Py(p,2n) 25
239 12.1 hr EC v 0.225, 0.275, others 23%pu(d,2n) 17, 21,23
@ 0 003-0.005% 237 Np(a,2n) 25-27
239" 160 nsec SF 1somer 240Py(p,2n) 28
239Np(d,2n)
240 51.0 hr EC v 090 (23%) 249pu(d,n) 11,21, 26
al9x10% 1.00 (77%) 239 Pu(a,p2n) 29, 30
1.40 (<10%) 237 Np(a,n)
240 0.90 msec SF 1somer 240Ppy(d,2n) 31
24! Pu(p,2n)
241 432 9 years e o 549 (85%),5.44 (13%) 241 Pu—B—> 24T Am 26, 32-38

v 0.060 (36%)
Others see Fig. 1.1

241me-h 1.5 usec SF 1somer 241py(d,2n) 28
242 py(p,2n)
242 16.01 hr 8 (82.8-84%) g 067 max 24 Am(n,y) 30, 39-44

EC (17 2-16%) v Pu Xerays
e 0021, 0.0037
242m1eh 159 vears IT 99+% e 0028,0.044 24t Am(n,y) 11,26, 42,45
o 0.48% a 521

IHNIAVIY TVIALVTIOO ‘SHILIAIOUd AVATONN ANV DINOLY ‘AUTA0DSIA



247m?2 14.0 msec SF 1somer 243 Am(n,2n) 46-56
241 Am(d,p)
241 Am(n’,y)
238 U(l 1_B,Ol3ﬂ)
243¢h 7400 years « @ 528(87%),523(11.5%)  **’Pu-fhr4sam  11,30,33
Others see Fig 12 243 Am(n,y) 57,58
v 0.044 (5%), 0.075 (61%)
Others see Fig. 12
243m 6.5 usec SF isomer 243 Am(d,pn) 20
244 10.1 hr B B 0387 max 243 Am(n,y) 58,59
v 0746 (66%), 0.900 (28%)
244™1 26 min B (99+%) 8 150 max (80%), others 243 Am(n,y) 11, 59-61
EC (0.039%) v 00429, others
2442 0 9 msec SF 1somer 243 Am(d,p) 47,49, 50
245 204 hr I3 g 091 max, others 245Pu—>295Am 30, 50, 62,
v (3*%Cm) various 63-66
245™ 640 + 60 nsec SF 1somer 244py(a,p2n) 67
246 25.0 min g g 210 max (7%), others g
v (3*¢Cm) varous 246py 5246 Am 30, 65, 68
246™M1 39 min B 8 112(53%),1.25 (13%) 244Py(a,d) 58,69, 70
1 80 (14%), 2.0 (20%) 244py(3He,p)
v (**4Cm) various 244Pu(a,pn)
246M2 75 £ 10 usec SF 1somer 244 Pu(a,pn) 67
247 22 min g vy (**’Cm) 0 226, 0.285 244 Pu(a,p) 58,69, 70

SHILYIdOdd YVITONN ANV SAdOLOSI

a4k xact atomic masses are histed in Table 1 2, specific activities are given in Ref 12.

bAccepted values are listed in Nuclear Data Sheets

€EC, electron capture, a, alpha decay, SF, spontaneous fission, 8 , negative beta decay, ¢, internal conversion electron

dOnly tentatively 1dentified.

eSpin 24! Am, 5/2 (Ref. 71), 242 1Am, 1 (Ref. 71),243Am, 5/2 (Ref 71)

fTy[SF] 24'Am, 115 x 10'* years (Ref 72), 2*?™'Am, 9.50 x 10'" years (Ref 73), **>Am, 2.00 x 10'* years
(Ref. 74).

BElectric quadrupole moment, q(102*% ¢m?) 2*'Am, +4 9 (Ref. 75),%%2"1 Am, ~2.76 (Refs 75-77), >*?Am, +4.9
(Ref 78)

hNuclear dipole moment, (nuclear magnetons) 24'Am, +1.58 (Refs 75, 79), 242”1 Am, +0 381 (Ref 79),%*3Am, +1.4
(Ref. 80).
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various decay modes and associated energies of the long-lived 2*' Am and 2*3 Am are
shown in Figs. 1.1 and 1.2.) Table 1.1 is adapted from the listing recently prepared by
Hyde.®! Hyde’s article®! and the books by Hyde, Perlman, and Seaborg;®® Lederer,
Hollander, and Perlman;®? and Dzhelepov and Peker®? provide exhaustive treatment
of the nuclear properties of the various americium isotopes. Mughabghab and
Garber®* have recently (1973) tabulated thermal cross sections and resonance
properties of 24! Am, 242 Am, 242" Am, 243 Am, 2**Am, and 243" Am; cross-section
data for 2** Am were listed earlier (1959) by Howerton.®® Wapstra and Gove®® have
tabulated known nuclear systematics—masses and energetics—of the various ameri-
cium isotopes of mass numbers 234 to 248; their data are given in Table 1.2. An earlier
compilation of such data was given by Viola and Seaborg.®”

ATOMIC PROPERTIES

Electron Configuration

The generally accepted®®™®° electron configuration of gaseous americium neutral
atoms and cations, as determined from spectroscopic and atomic beam experiments,®!
is shown in Table 1.3. Americium is the sixth member of the actinide series of
elements; the electron configurations of americium in both its ground and ionized
states are completely analogous to those of its homolog, europium, the sixth member
of the lanthanide series. Recognition in 1944 of the possibility that elements 95 and
96 might be members of an actinide series led directly, as Seaborg®-®? has noted, to
the identification of >*2Cm and >** Am.

Atomic and lonic Radii

Metallic, covalent crystal, and ionic radii of americium in various oxidation states
were first calculated by Zachariasen.”® His values (Table 1.4), even though 20 years
old, are still cited.®® The radius of americium metal [coordination number (CN)12] is
1.73 A.%%%5 Peterson and Cunningham, as part of their studies of berkelium
compounds, calculated the ionic radius (CN 6) of several trivalent actinides in various
compounds. Their results for Am>* are 0.962 A in AmF; (Ref. 96), 1.006 A in AmCl,
(Ref. 97), and 0.985 A in Am, 05 (Ref. 98). On the basis of a refined crystal structure
for AmCls, Burns and Peterson®® calculated the ionic radius (CN 6) of Am®* in
AmCl; to be 0.984 + 0.003 A.

lonization Potentials

Carlson, Nestor, Wasserman, and McDowell! ®° have calculated ionization poten-
tials for americium (Table 1.5) based on a simple spherical shell model using
eigenvalues and mean radii from Hartree—Fock solutions for neutral atoms.
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Fig. 1.1 Decay scheme for 2*' Am. (From C. M. Lederer, J. M. Hollander, and I. Perlman, Table
of Isotopes, 6th ed., p. 430, John Wiley & Sons, Inc., New York, 1967.)
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Fig. 1.2 Decay scheme for 243 Am. (From C, M. Lederer, J. M. Hollander, and I. Perlman, Table
of Isotopes, 6th ed., p. 433, John Wiley & Sons, Inc., New York, 1967.)

Emission Spectra

Detailed studies of the arc and spark spectra of americium have been made by
Tomkins and Fred,”'%%1%2 Thorne,' 31 %4 and Oganov, Striganov, and Sobo-
lev.1 95 Such studies identified 1000 to 2000 Am I and Am II spectral lines. Table 1.6,
compiled by Carnall,!®® lists term assignments relative to the 5f”7s?(®S;) ground
state made by Tomkins and Fred!®? for the identified even and odd parity levels of
Am1. Carnall noted that the number of lines classified on the basis of the indicated
terms constituted only about 10% of the Am]I lines observed in the spectrum of
241 Am excited both in hollow cathode and electrodeless discharge sources. Term
assignments for even and odd parity levels of Am II are also given in Ref. 106.

Corresponding to the absolute term value (48,767 cm™) of the ground state, the
ionization potential of Am I is 6.0 eV. This value is in fair agreement with the value
5.655 eV shown in Table 1.5. The experimental isotope shift constant BCexp



ATOMIC PROPERTIES

Table 1.2
NUCLEAR SYSTEMATICS OF AMERICIUM ISOTOPES*

Atomic Mass Binding Beta-decay
A Z N mass, u excess, keVt energy, keVi energy, keV §

234 95 139 234.04770 44,430 1,770,010 —4,060
235 95 140 235.04796 44,670 1,777,840
236 95 141 236.04942 46,030 1,784,550 -1,950
237 95 142 237.05008 46,650 1,792,010 -2,530
238 95 143 238.05205 48,490 1,798,240 -930
239 95 144 239.053039 49,406 1,805,394 -1,700
240 95 145 240.05533 51,540 1,811,330 . —180
241 95 146 241.056844 52,951 1,817,992 ~772
242 95 147 242.059575 55,494 1,823,520 667
243 95 148 243.061394 57,189 1,829,897 -7.1
244 95 149 244.064302 59,898 1,835,260 1,429
245 95 150 245.066475 61,922 1,841,307 901.6
246 95 151 246.06972 64,940 1,846,360 2,300
247 95 152 247.07209 67,160 1,852,220 1,600
248 95 153 248.07570 70,520 1,856,930 3,100

*From A. H. Wapstra and N. B. Gove, The 1971 Atomic Mass Evaluation in Five Parts, Nuclear
Data Tables, 9: 265 (1971). ’

+M (in u)—A.

tTotal binding energy [ZM(* H) + NM(* n)—M(A,2)].

§M(A,Z)-M(A,Z+ 1),

Table 1.3

OUTER ELECTRON CONFIGURATION OF NEUTRAL AND
CHARGED AMERICIUM ATOMS

Ionization Electron Term
state configuration ® symbol

0 5£7 75?2 ¢Sy,
1+ 57 7s S,
2+ 5f7 ¢Sy,
3+ 5% "Fo
4+ 5fS ¢Hs,
5+ 5t 1,

*All with underlying radon core configuration.
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Table 1.4
CALCULATED RADII OF AMERICIUM ATOMS AND IONS*

Oxidation Radius, A
state Metallict, Ionic Covalent crystal
+3 1.84 0.99
+4 1.69 0.89 1.57
+5 1.58 0.86 1.47
+6 1.50 0.80 1.39

*Taken from W. H. Zachanasen, Crystal Chemistry of the
5f Elements, in The Actimide Elements, G. T. Seaborg and J. J.
Katz (Eds.), p. 776, McGraw-Hill Book Company, Inc., New
York, 1954,

+CN 12.

1 Radius expected if metal were trivalent, etc.

Table 1.5
CALCULATED IONIZATION POTENTIALS
OF AMERICIUM

Atomic Ionization

charge potential, eV

Neutral 5 655
1+ 12.15
2+ 18.82
3+ 36.15
4+ 58.14
5+ 80.12
6+ 95.31
7+ 110.4
8+ 125.5
9+ 140.6

10+ 162.5




ATOMIC PROPERTIES
Table 1.6
ENERGY LEVELS OF Am 1
Hyperfine
Isotope structure
Term, Level, shift,} width,
Configuration J* cm’! 102 cm” 107 em™
Qdd parity levels
5£77s? a®Sy, 0 (600)% 0
5f76d7s Ay, 15,135.94 302 1,062
As, 15,764.76 300 1,209
5f7 7s8s e! °S% 30,884.73 455 1,860
e® Sy, 31,795.77 450 1,424
eSs, 33,728.27 430 —-1,425
Sy, 33,981.86 370 —684
5£77s7d Ey 35,092.24 400 509
37,111.56 394 1,499
37,156.73 429
37,165.32 472
37,995.11 440
Even parity levels +
5f77s7p z‘°P% 15,608.15 364 940
z’°P% 16,511.69 398 1,456
(5/2) 17,858.18 763 -313
5/2 18,429.09 577 -586
7/2 18,504.40 447 -628
712 18,701.44 821 0
/2) 19,993.60 842 119
(5/2) 20,031.33 649 201
5/2 21,239.91 747 432
772 21,354.01 543 917
9/2 21,440.38 600 872
21,845.97 854 200
23,307.50 738 193
23,437.04 756 118
(9/22%)  27,103.20 549 988
27,217.06 523 217
27,743.57 822 150
28,009.78 527 0
9/2 28,312.92 545 1,153
28,480.85 606 0
29,009.29 849 0
7/2 29,446.55 512 1,311

*J-values in parentheses are uncertain.
T241 Am—243Am,
1 Assumed.
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Table 1.7
ANALYTICALLY USEFUL SPECTRAL LINES
OF AMERICIUM
A A I*

2832 3

29206 10
2969 4

3162 1

3510 1 >10
3569 2 10
3673 1 >10
3926 2 >10
4089 3

4575 6 >10
4662 8 10
4681 6 10
5402 7 10
6054 9 10

*Relative intensity, Ref 92

(**'Am—2%3Am) = (890 + 50) x 10°® cm !, where 8~ 1 1s the screening constant, 1s
the average of three different calculations nvolving the iomization potential and
experimentally observed shifts 1 ©7

Spectral hnes of americrum useful for analytical purposes are hsted in
Table 1 7 105,108

X-Ray Spectra

The list of K and L X-ray energies and wavelengths for americium shown 1n
Table 1 8 was compiled by Carnall’®® from data gathered by Nelson and associ-
ates' %111 (K X-rays) and from the critical literature evaluation by Bearden'!? of
the results of Merrill and DuMond' ! ® and Day ! '* The K X-ray energies, all of which
correspond to electric-dipole transitions, were measured with a Cauchois-type
bent-crystal spectrometer ''®'!'  The absorption edge of Am(Ly) 1s
668 648 + 0028 X-units based on A(MoK,)''® Atomic energy levels (binding
energies) of americium have been calculated from expennmental measurements of X-ray
emission wavelengths, a isting of these values 1s given 1n the article by Carnall ! °°

Luminescence Spectra of Am(11)

According to Carnall,)*5 “The first observation of fluorescence 1n a transuranium
element compound was made for LaCl; Am?” self-excited by the intense a-activity of
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Table 1.8
X-RAY ENERGIES OF AMERICIUM

A Energy,
Line  Transition X units A keV
o, K-Lyg 121.254  0.121506 102.041
o, K-Ligg 116.194  0.116435 106.484
8, KMy 103.749  0.103964 119.258
8, K—-Myy 102.834  0.103048 120.319
8, Li-Mp 684.98 0.68640 18.0630
8, LMy 647.58 0.64892 19.1063
Ya Li~Np 553.3 0.5544 22.363
8, Li-Mpy 656.305  0.657668 18.8523
o Lii-Npv 560.733  0.561897 22.0655
a, Li—My 846.446  0.848204 14.6174
A Lig—My 999.1 1.0012 12.383
a, Li—Mpy 858.500  0.860283 14.4122
B, L —Ni 732.67 0.73419 16.8873

the 24'Am; 34 lines were detected.'!® More complete data were taken later and
interpreted in terms of transitions in which the initial state was a component of *D,
or 5Le and the final state was a component of one of the terms of the ’F ground
multiplet.'* 7 No self-luminescence nor self-excited fluorescence was found for crystals
of Am®"-8diketone chelates.””! 1 8 *

Mosshauer Spectra
Israeli scientists!!® and various other workers'?2°712¢ have found that >*7Np,
formed by alpha decay of 2*!Am, is a convenient nucleus for recoilless absorption
(Mossbauer effect) measurements. Gal et al., using the Mossbauer effect, determined
the charge states of neptunium ions in various 24! Am sources. Their results are shown
in Table 1.9. (Additional Mossbauer-effect data for 24! Am sources are given in
Chap.4 and also in an article by Keller and Randl.!?7) The Isracli workers
summarized their results by stating that the neptunium charge states were 3+ in all
sources containing americium ions in frozen solutions and 4+ and 5+ in all oxide
sources. In most other americium salts, neptunium attained the valence of the host
lattice.

*References are those listed by Carnall but have been renumbered for purposes of this chapter.

11
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Table 1.9
MOSSBAUER STUDIES WITH ?*'Am SOURCES*

Isomer shift,

) Temperature of
mm sec ',

Am source and
charge Np charge states absorber,
states Sources 3+ 4+ 5+ °K
Solid compounds

3+ Am, O, (cubic) 18+05 277+05 77

3+ Am, O, (hexagonal) 1705 280205 77

3+ AmF, 446+ 05 42

3+ Am,(C,0,),+6H,0 -405+0S 42

4+ AmO, 11:05 252+05 77

4+ AmO, 1205 251+05 42

4+ Am(OH),-H,0

(precipitate) 40908 42

5+ K [AmO,(C0,); ], 250220 42
Frozen solutions

3+ Am(III) m HNO, 426+10 42

3+ Am(I1I) in 10M H,PO, -426+05 42

4+ Am(IV) in saturated

NH,F -455+08 42
4+ Am(IV) n 10M H,PO, -426+05 42
5+ K, [AmO,(CO;); 1,

dissolved 1in HNO, -410210 42
6+ AmOZ" in H,PO, —426+10 42
6+ AmO2* in HNO, 420+10 42

*Adapted from J Gal, Z Hadari, E Yanir, E R Bauminger, and S Ofer, Charge States of Np
Recoil Atoms Following « Decay, Journal of Inorganic Nuclear Chemustry, 32: 2509 (1970)

Beta decay of 24>Pu (ti, =498 hr) to the 83 9-keV level of 243 Am occurs
27 6% of the disintegrations ' ?® This excited nuclear state (ty, = 2 34 nsec) of 2% Am

1s suitable for Mossbauer spectroscopy

129 a5 evidenced by the resonance spectra of

243 AmF; and 243 AmO; shown in Fig 1 3 These results were obtamned at 4 2°K with
a 50-mCt 243Pu0, source The shift of the 243 AmF; resonance line relattve to the
243 AmO, lines 1s 55 mm sec !, the greatest shift so far observed for two oxidation
states differing by one unit

Critical Mass

Bierman and Clayton'3° have calculated the critical radu and mass of 2*' Am and
242 Am metals (Table 1 10) In aqueous solution'3! the mimmum critical mass of
242 Am1s 23 g at a concentration of 5 g hiter !
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INTENSITY, %

ol n I R R 11 1
-80 -60 -40 -20 0 20 40 60 80

VELOCITY, mm sec-!

Fig. 1.3 Mossbauer spectrum of (a) 2*3AmF, and (b) 24*AmO, . [From G. M, Kalvius, S, L.
Ruby, B. D. Dunlap, G.K. Shenoy, D. Cohen, and M. B. Brodsky, Mossbauer Isomer Shift in
243 Am, Physics Letters, B, 29: 489 (1969).]

Table 1.10
CALCULATED CRITICAL RADII AND MASS OF AMERICIUM METAL*,}

Isotope
241Am 242Am

Density, gcm™ 11.7 11.7
Critical radius, cm
Bare 13.23 5.55
Water-reflected 12.90 4.26
Critical mass, kg
Bare 113.5 8.4
Water-reflected 1 105.2 3.8

*From S. R. Bierman and E. D. Clayton, Criticality of Transuranium
Actinides: Unmoderated Systems, Transactions of the American Nuclear
Society, 12: 887 (1969).

tSpherical geometry.

120-cm reflector.
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COLLATERAL READING

The literature on americium chemistry is extensive and spread over many books,
articles, and reports. In addition to the coverage provided here, the following sources
should be consulted for further information on various aspects of americium
chemistry.

General Chemistry

Bibliographies

C. E. Stuber (Comp.), Transplutonium Elements, A Bibliography, USAEC Report
TID-3317, February 1968.

Ibid., Suppl. 2, October 1970.

Ibid., Suppl. 3, October 1972.

Ibid., Suppl. 4, January 1974.

Ibid., Suppl. 5, September 1975.

H. W. Miller (Comp.), Annotated Bibliography of the Chemistry and Physics of
Americium, USAEC Report RFP-770, Dow Chemical Co., 1966.

Chemistry of Transplutonium Elements, Bibliographical Series No. 19, International
Atomic Energy Agency, Vienna, 1968 (STI/PUB/21/19).

D. Demine, Bibliography Concerning Transplutonium Elements, European Atomic
Energy Community Report EUR-2508e, September 1965.

R. W. Clarke (Comp.), Bibliography of Unclassified Reports and Published Literature
on the Transplutonium Elements (1957—-1964), British Report AERE-R-4761,
1964.

E. H. Smith (Comp.), Isotopic Power Sources: A Compendium Property and Processes
Review. Parts I and II. USAEC Report MND-P-2581, Martin Co., Nuclear Division,
1961.

Books and Monographs

B. F. Myasoedov, L. I. Guseva, 1. A. Lebedev, M. S. Milyukova, and M. S. Chmutova,
Analytical Chemistry of the Transplutonium Elements (English translation), John
Wiley & Sons, Inc., New York, 1974.

A. J. Freeman and J. B. Darby, Jr. (Eds.), The Actinides: Electronic Structure and
Related Properties, Vols. I and 1. Academic Press, Inc., New York, 1974.

Gmelins Handbook of Inorganic Chemistry— Transuranium Elements, Verlag Chemie
GmbH, Weinheim, Germany: Vol. 4, Part C, Compounds, 1972; Vol. 7a, Part Al,
The Elements, 1973; Vol. 8, Part A2, The Elements, 1973.

C. Keller, Chemistry of the Transuranium Elements, Verlag Chemie GmbH, Weinheim,
Germany, 1972.

K. W. Bagnall, The Actinide Elements, Elsevier Publishing Company, New York, 1972.

J. J. Katz and G. T. Seaborg, The Chemistry of the Actinide Elements, pp. 331-385,
John Wiley & Sons, Inc., New York, 1957. (Presently being revised.)
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A. F. Trotman-Dickenson (Ed.), Comprehensive Inorganic Chemistry— Actinides,

Master Index, Vol. 5, Pergamon Press, Ltd., Oxford, 1973.

W. Bagnall (Ed.), Lanthanides and Actinides—MTP International Review of

Science, Vol. 7, University Park Press, Baltimore, Md., 1972.

I. Gol'danskii and S. M. Polikanov, The Transuranium Elements (English

translation), J. E. S. Bradley (Translator), Consultants Bureau, New York, 1969.

. M. Vdovenko (Ed.), Chemistry of Transuranium Elements, 1zdatel’stvo Nauka,

Leningrad, 1967.

T. Seaborg, Man-Made Transuranium Elements, Prentice-Hall, Inc., Englewood

Cliffs, N.J., 1963.

R. A. Penneman and T. K. Keenan, The Radiochemistry of Americium and Curium,
Monograph NAS-NS-3006, National Academy of Sciences—National Research
Council, 1960.

I. Perlman and K. Street, Jr., Chemistry of the Transplutonium Elements in The
Actinide Elements, G.T. Seaborg and J.J. Katz (Eds.), National Nuclear Energy
Series, Div. IV, Vol. 14A, McGraw-Hill Book Company, Inc., New York, 1954.

< < K

@

Review Articles

L. B. Asprey and R. A. Penneman, The Chemistry of the Actinides, Chem. Eng. News,
45(32): (July 31, 1967).

T. K. Keenan, Americium and Curium, J. Chem. Educ., 36: 27 (1959).

S. W. Rabideau, L. B. Asprey, T. K. Keenan, and T. W. Newton, Recent Advances in
the Basic Chemistry of Plutonium, Americium, and Curium, in Proceedings of the
Second International Conference on the Peaceful Uses of Atomic Energy, Geneva,
1958, Vol. 28, p. 361, United Nations, New York, 1959.

R. A. Penneman and L. B. Asprey, A Review of Americium and Curium Chemistry,
Proceedings of the First International Conference on the Peaceful Uses of Atomic
Energy, Geneva, 1955, Vol. 7, p. 355, United Nations, New York, 1956.

Special Chemistry Topics

Discovery

G. T. Seaborg, 25th Anniversary of the Discovery of Americium and Curium Elements
95 and 96: 25 Years Ago, in Proceedings of the Robert A. Welch Foundation
Conference on Chemical Research. XIII. The Transuranium Elements, Houston,
Tex., Nov. 17, 1969, W. O. Milligan (Ed.), Robert A. Welch Foundation, Houston,
Tex., 1970.

Solution Chemistry and Complexes

J. Tostain, Solution Chemistry of the Transuranides, French Report CEA-Bib-193,
May 1972.
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A. D. Gel’'man, A. I\. Moskvin, L.M. Zaitsev, and M.P Mefod’eva, Complex
Compounds of Transuranides (English translation), Chap. IV, Israel Program for
Scientific Translations, Ltd., Jerusalem, 1967.

A. D. Jones and G. R. Choppin, Complexes of Actinide Ions in Aqueous Solution,
Actinides Rev., 1: 311 (1969).

Y. Marcus, M. Givon, and M. Shiloh, The Chemistry of the Trivalent Actinides in
Aqueous Solutions and Their Recovery, in Proceedings of the Third International
Conference on the Peaceful Uses of Atomic Energy, Geneva, 1964, Vol. 10,
p. 588, United Nations, New York, 1965.

Halides

D. Brown, Halides of the Lanthanides and Actinides, John Wiley & Sons, Inc., New
York, 1968.

R. A. Penneman, R. R. Ryan, and A. Rosenzweig, Structural Systematics in Actinide
Fluoride Complexes, Struct. Bonding (Berlinj, 13: 1 (1973).

K. W. Bagnall, The Coordination Chemistry of the Actinide Halides, Coord. Chem.
Rev., 2: 145 (1967).

J. J. Katz and I. Sheft, Halides of the Actinide Elements, in Advanced Inorganic
Chemistry and Radiochemistry, Vol.2, p. 195, H.J. Emeleus and A.G. Sharpe
(Eds.), Academic Press, Inc., New York, 1960.

Recovery, Separation, and Uses

J. Ulstrup, Methods of Separating the Actinide Elements, A7 Energy Rev., 4: 3
(1966).

R. E. Leuze and M. H. Lloyd, Processing Methods for the Recovery of Transplutonium
Elements, in Progress in Nuclear Energy, Series IIl. Process Chemistry, C.E.
Stevenson, E. A. Mason, and A. T. Gresky (Eds.), Vol. 4, p. 549, Pergamon Press,
Inc., New York, 1970.

R. D. Baybarz, Recovery and Application of the Transuranium Elements 23 7Np,
241 Am, 242Cm, 24*Cm, and 2%2Cf, At. Energy Rev., 8: 327 (1970).

B. Weaver, Solvent Extraction in the Separation of Rare Earths and Trivalent
Actinides, in fon Exchange and Solvent Extraction, A Series of Advances, Vol. 6,
J. A. Marinsky and Y. Marcus (Eds.), Marcel Dekker, Inc., New York, 1974,

F. E. Levert and E. L. Helminski, Literature Review and Commercial Source
Evaluation of Americium-241, Final Report, March 1, 1972-May 31, 1973,
USAEC Report OR0-4333-1, Tuskegee Institute, June 1973.

Analytical

C. Ferradini, Americium and Its Analytic Properties, Chem. Anal (Paris), 45: 647
(1963).
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PRODUCTION AND USES

INTRODUCTION

Of the isotopes of americium, only three have half-lives greater than a few hours:
243 Am (ty,= 7400 years); 2*' Am (ty, = 433 years); and >*?>" Am (t,, = 152 years).
The latter isotope is formed by irradiation of 4 Am with thermal neutrons and can
be separated from 2*! Am only by electromagnetic means. For all practical purposes,
therefore, the chemistry and uses of americium center around the production and
availability of the isotopes with mass numbers 241 and 243. In this review the
discussion of the availability of *** Am and **? Am is limited to their production by
reactor irradiation; other sources, e.g., accelerators and nuclear explosions, do not
contribute substantial amounts of these isotopes to the world’s supply.

PRODUCTION OF 24*Am BY
IRRADIATION OF 23°Pu

Neutron irradiation of 23°Pu produces *!Pu, which beta decays with a halflife
of 14.0 years + 0.3 year to 2*' Am; a 10-g sample of 2?'! Pu will yield about 4 g of
241 Am after about 10 years (Ref. 1). The nuclear transformations involved in
the production of 24! Am by irradiation of 23°Pu are:
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Currently at the various Energy Research and Development Admunistration
(ERDA) sites 1n the United States, some 5 to 10kg of 2*! Am are recovered and
purified each year as part of normal rework of aged plutonium inventortes containing
varying amounts of the 2** Pu 1sotope The bulk of this supply derives from the Rocky
Flats site, annual availability of 2! Am from this site was estimated® at 4 to 5 kg mn
1964 and may be higher now Additional *! Am 1s recovered at the Hanford and Los
Alamos sites in conjunction with operation of plutonium scrap-recovery facilities
(Processes used to recover and punfy 2*' Am at the ERDA sites are discussed 1n
Chap 5) The punfied ?*! Am 1s stockpiled at the Oak Ridge National Laboratory
(ORNL), where 1t 1s marketed to various academic, governmental, and industrial
customers, 1 1973 alone, some 13 kg of 2*'Am were sold to 13 different
customers > The ERDA price for 24 Am 1n late 1970 was $150 per gram,* down from
$1000 per gram® 1n 1969 and $1500 per gram earlier

In addition to U S sources, various other countries also punfy and market
milligram to gram amounts of 2*! Am recovered largely from aged plutonium For
example, sealed solid ?*'Am alpha and gamma sources are available from the
Australian AEC,® the Radiochemical Centre, Amersham, England,” and the French
Commussariat a PEnergle Atomique ® Production statistics for the quantities of
241 Am recovered 1n these and other foreign countries have not been published

PRODUCTION OF 2#3Am
BY IRRADIATION OF *%2Pu

Nearly 1sotopically pure 2#3 Am results from irradiation of 242Pu with thermal
neutrons according to the reaction sequence

243
Am ————t
™ 100

(22)




PRODUCTION OF *#*Am BY IRRADIATION OF *4?Pu

Over the last 10 years or so, Eq. 2.2 has been used in ERDA reactors to produce
about 9 kg of 2*3 Am for use as target material in subsequent production of 2%2Cf and
for research purposes.” '3 For production of 2#?Pu for use in Eq. 2.2, most of the
239Py in Pu—Al alloy targets is first burned out during a preliminary irradiation in a
production reactor at the ERDA Savannah River site at an average flux of about 10'*
neutrons cm 2 sec!; the first irradiation is stopped at an exposure of 3 x 102!
neutrons cm” (Fig. 2.1). After separation and purification (Fig. 2.2), 242Pu0, targets
are irradiated either in high-flux (6 x 10"° neutrons cm™? sec™) lattices at Savannah
River'* ! ® orin the High Flux Isotope Reactor (HFIR) at the ERDA Oak Ridge site at
fluxes up to 3 x 10'° neutrons cm™ sec™ . Figure 2.3 and Table 2.1, from Baxter,!
depict the production of 243 Am and other high mass nuclides from irradiation of

90
[ ] B
|<-—End of first stage

I burnup of 239Py

70 | 230p4 ]

80

l 242p,
60 }— l —
|
o | | _
ol

30

PERCENT OF TOTAL PLUTONIUM

240py

20 —

241py

0 [ |
0 0.5 1.0 1.5 2.0
EXPOSURE, 1022 neutrons cm~2

Fig. 2.1 Yield of plutonium isotopes from irradiation of 2 2° Pu.
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Fig. 2.2 Flow sheet of Savannah River Plant transplutonium process.

242py. Chemical procedures used to recover and purify ***Am from irradiated
242py0, targets are discussed in Chap. 5, and use of 2*3 Am for production of 2#*Cm
is outlined on pages 33 to 36. Several authors'>!'?72:19:29 have reviewed construc-
tion and operation of the HFIR and overall objectives of the ERDA Transplutonium

Element Program.
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Fig. 2.3 Production of americtum and curium from uradiation of >**Pu,

AVAILABILITY OF 24 Am AND
243Am FROM POWER REACTORS

For almost 10 years now, numerous writers! ' 2° have emphasized that large
quantities of 2** Am and ?*3 Am are being and will continue to be produced 1n power
reactors throughout the world The exact composition of the mixture of americium
1sotopes available from this source varies with reactor exposure, at an exposure of
20,000 MWd ton, the mixture 1s essentially 50-50 24! Amand 243 Am 2! Table 2 2
lists projections made recently by Baxter! of the availability of 24! Am and ?**Am
from U.S commercial power reactors over the next 15 years. Of course, these
estimates as well as earher ones?!™° depend very strongly on the assumptions made
about reactor types and fuels and about the total U. S nuclear generating capacity.
Since these bases, particularly the latter quantity, are subject to constant change,
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Table 2 1

PRODUCTION OF AMERICIUM ISOTOPES BY IRRADIATION OF
PLUTONIUM AT A FLUX OF 3 x 10'% neutrons cm * sec '

lO:F:luencte, Atoms produced per atom irradiated
cl:nel: rons DayS 242Pu 24lAm 241mAm 243Am
0 0 1 00 0 0 0

2 77 0 566 05477 01068 0154

4 154 0290 0121°¢ 02378 0113
6 232 0131 0139° 0274°8 0646
8 309 0547 0124° 02433 0313
10 386 0214 09417 0185° 0135
12 463 038347 06447 01278 05492
14 540 0 330°? 04107 0809° 02192
16 617 01347 02477 0488° 08833
18 694 0572° 01447 01285° 03673
20 772 02553 0821°% 0162° 01593

* Exponents are powers of 10 by which the number 1s to be multiphed

Table 2 2
ESTIMATED U. S. ANNUAL PRODUCTION OF AMERICIUM FROM POWER REACTORS

Annual availability Annual avallabiity Annual availabihty of
of 24 Am in of 243Amn 241 Am from processing
Am mixture, kg year ! Am mixture, kg year ! Pu stockpile, kg year !
Case B Case B Case B}
Calendar Case A* (LWR-U/Pu, Case A* (LWR-U/Pu, Case A* (LWR-U/Pu,
year (LWRY) FBR§) (LWRY) FBR§) (LWRY) FBR§)
1975 38 39 50 53 118 119
1980 122 225 167 384 823 806
1985 237 568 312 913 2560 2510
1990 377 695 462 645 6290 6210

*Case A Light water reactors fueled with shightly enriched urantum without plutomum or
uranium (* 34 U) recycle Both cases assume 150 x 10? electrical watts installed by 1980

tLWR = Light water reactors

tCase B Light water reactors with 50% 23U recycle, limited plutonium recycle, and
maximum FBR additions beginming in 1980 PWR-U/Pu and FBR

§ FBR = Fast breeder reactor includes liquid metal cooled fast breeder reactors




APPLICATION OF **!' Am

projections such as those shown n Table 2 2 should be regarded only as indicative of
the amounts of 2*'Am and ?*3Am which may be available from power reactors
Hennelly?” estimates that nuchide availability, mcluding that of 24! Am and 243 Am,
from chemucal processing in the 1970s of fuels irradiated 1n power reactors outside the
United States will be at least 50% of the U S supply in the same time peniod

Some suggested methods of using the 2*! Am—243Am muxture available from
power-reactor fuels are discussed under the subheading “Applications of 23 Am ”
Because of the lack of any profit incentive, however, none of the actual or announced
industnial fuel reprocessors mn the United States has opted for recovery of americtum
isotopes (About 1kg of 2*'Am and ?*3Am was recovered during reprocessing of
Shippingport blanket fuel under ERDA aegis at the Hanford plant 3°) Certamnly of
mterest and potentially of great significance 1n this latter connection 1s the research
program®! recently under way at several ERDA laboratories to determmne if
practicable ways can be found for removing all long-ived actinides from high-level
Purex-process hquid waste to facilitate its subsequent treatment and storage >2
Eventual success in this venture mught provide the impetus for routine recovery in the
United States of the 24! Am and 2%® Am in power-reactor fuel

The high-level waste resulting from the reprocessing of 40 metric tons of 1rradiated
(20.000 MWd metric ton') UO, in the West German WFK (Wiederaufarbertung-
sanlage Karlsruhe) facility will contain an estimated®® 2 kg of >*' Am and 0 6 kg of
243 Am per year As part of their “Project Actinides,” German scientists are devising
and testing chemical flow sheets (compare Chap 5) for recovery of the americium
1sotopes and subsequent 1rradiation to 252Cf
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Uses Based on Characteristic Radiations

Because of its essentially monoenergetic alpha (5 44 and 5 49 MeV) and gamma
(59 6 keV) radiations, 24! Am 1s particularly sutted for use as an X-ray excitation
source and 1n a multitude of industral and scientific gauging, thickness, density, and
radiographic measurements Indeed, Seaborg®* states that the list of applications of
241 Am may well be the longest of any actinide 1sotope Crandall®>® points out that 1n
terms of cost, convenience, spectral purnty, and lifetime, >*' Am 1s superior to all
competing radioisotopes as a low-energy gamma source

Neutron sources of various sizes which use **! Am to furmish alpha particles for
the reaction °Be(a,n)' 2C find extensive use in many fields, including petroleum well
logging In 1970 Baybarz3® stated that most of the 24! Am recovered worldwide was
used 1n the manufacture of neutron sources, preparation of such sources 1s still (1976)
the major outlet for both U S and foreign-produced %! Am

Table 2 3 lists specific uses of 24! Am 1n vartous fields and industries along with
the particular radiation type and property on which they are based This compilation,
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Table 2.3

PRODUCTION AND USES

CATALOG OF USES FOR **'Am

Radiation Application
Type Property Field/industry Specific use Refs.
Gamma Transmission Medicine 1 Determine mineral 46-61
content of bone
2 Determine lipid 62
content of soft tissue
3 Evaluate regional 63
pulmonary ventilation
4, Determine body 64,65
composition
industrial 1. Determine thickness 66
gauging of plate glass
2 Determine thickness 67-69
of metals
3 Determine thickness 70
of Al materials
4. Determine wire 71
thickness
Soil science 1. Measure sod moisture 72-79
and density
Hydrology 1 Radiation logging of 80
ground water
2. Sediment concentration 81
gauge
Mineralogy 1. Determine ore concen- 82
tration
Miscellaneous 1. Maintain helicopter 83
flight formation
2. Dynamics of Freon fire 84
extinguishers
Gamma Backscatter* Meteorology 1 Determine atmospheric 85-86
density
Coal 1. Determine ash content 8791
of coal
Concrete 1. Determine cement 92
in concrete
Mineralogy 1 Mineral mining 93
machine
2. Measure 1ron content 94
of ores
Gamma Xray Mineralogy 1. On-stream analyses of 9598
excitation munerals and slurries
source 2. Analysis of ores 99-102




APPLICATION OF 2*'Am

Table 2.3 (Continued)

Radiation Apphcation
Type Property Field/industry Specific use Refs
Analytical 1 Equipment for produc- 103-109
chemistry tion of Xrays
2 Assay high purity gold 110
Medicine 1 Thyroid diagnosis 111
Gauging 1 Tile wear measure 112
ments
2 Measure thickness 113-117
of metal coatings on steel
3 Determine paper 118
weight density
Gamma Absorption Medicine 1 Determine surface- 119
radiography to-volume ratio of bone
Metallurgy 1 Radiography of thin 120
sheets of Al and Mg
Aerospace 1 Nondestructive testing 121
of steel tubing
Miscellaneous 1 Development of radio- 122
graphic camera
Gamma Gamma Radiation 1 Calbration of 123-125
source detectors detectors
2 Preparation of 126-129
low-level gamma sources
Medicine 1 Intracranial pres- 130
sure sensor
Alpha Tonization Gas density 1 Ionization gauge 131-134
for gas densities
2 Determuine planetary 135
atmospheric density
Gas chromatog- 1 Iomzation detector 136
raphy
Building 1 Aur conditioning 137
2 Lightning rods 138-144
3 Smoke-density detector 145-147
Watchmaking 1 Preparation of luminous 148
paints
Alpha detectors 1 Calibration of alpha 149-151
spectrometer
Gauging 1 Determine uniformity 152-155

of thin films

(Table continues on next page.)
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Table 2.3 (Continued)

Radiation Application
Type Property Field/industry Specific use Refs.
Miscellaneous 1. Measure relative 156
humidity of air
2. Spinning disk aerosol 157
generator
3. Source preparation 158-164
Alpha Neutron Petroleum 1. Well logging 165-168
source
So1l science 1. Determine soil density 169-173
and moisture content
Moisture meter 1. Moisture content 174,175
of coke
2. Moisture content 176
of concrete
Activation 1. Determine carbon 177
analysis m fly ash
2. Determine protein 178
n grain
3. Determine fluorine 179
m ores
4. Determine silicon 180
1n cast won
5. Determine phosphorus 181
1n bone
Neutron counter 1. Thermal neutron 182
counter
Neutron-source 1. Preparation of (a,n) 183-188
preparation and (v,n) sources
2 Preparation of a 189

241 Am-Be—242Cm source

*Backscatter methods depend on Compton scattering of gamma rays to return degraded source
gamma rays to a detector near the source

although not necessanly complete, includes examples of all the principal areas where
24! Am has found some actual or suggested use Applications of 24! Am (and, 1n some
cases, also of ?*3Am) have been discussed previously by Baxter,! Crandall,®
Baybarz,’® Rohrmann,®” Seaborg,! 3% Fowler,>® Eichholz,®® Muller,*® Keller,*!
Ranschoff,*? Strain and Leddicotte,*? West,** and most recently by LeVert and
Helminski.*® The review paper by LeVert and Helminski is particularly exhaustive and
provides detailed information on many of the applications mentioned in Table 2.3. In
addition to those cited in Table 2.3, references to the preparation of 2*! Am-Be
neutron sources are given in Chap. 4, Sec. 4.2.2.




APPLICATION OF %' Am
Use in Production of >4 2Cm

The use of 2*' Am as a target 1n nuclear reactors for the production of 2*2Cm 1s
potentially a very important application Alpha decay of 2*>Cm produces 23®Pu, a
radionuclide much 1in demand as an 1sotopic power source In space and medical
applications The 238Pu produced by the decay of 2*2Cm contamns mimmal amounts
(<0 02 ppm)*?° of the undesirable 23®Pu contaminant, compared to the 10 ppm or
so 1n the 2*®Pu produced by 237Np irradiation 1n a light-water-reactor spectrum,’ ®*
this 1s a distinct advantage for 23 8Pu to be used 1n cardiac pacemakers ! °2

Because of 1ts high power output (120 W g™') and minor shielding requirements,
242Cm has been projected for use in the preparation of heat sources A 900-W
SNAP-11 generator fueled with 75g of >*2Cm (as Cm,0;) was fabricated at
ORNL,'®3 whereas European'®* workers manufactured a thermoelectric battery
contaiming 400 mg of 242Cm The potential apphcation of 242Cm as an 1sotopic
power source 1s limited, as Baybarz notes,>® by 1ts relatively short half-life (163 days),
in most heat-source applications, the main criterion 1s that the generator supply a
relatively uniform heat output for an extended period of time

The thermal-neutron-capture sequence mnvolved n producing **2Cm from pure
241 Am s

T o, 6500

a, - 1500

242m Am——————
14 3 years /
\ IT | 152 years (2 3)

WIp ——— 5 217

g, = 2300
242Am

—_—
EC 16%
5 84"V \
IT - lsomeric transition

EC = Electron capture 2920, 242p,,

Hennelly?” notes that 2*2Cm product 1s lost by 242™ Am formation, by 242Am
fission, which 1s a function of neutron flux, by electron capture of 242Am to form
242py, and by 2**Cm alpha decay giving an optimum yield of about 0 65 g of 2#2Cm
per gram of 2*! Am burned

APPLICATION OF 243 Am

Its longer half-life and lower specific activity compared to those of 2*! Am make
243Am particularly useful in determining or redetermining basic aqueous and
solid state chemistry of americium, 1ts use in such studies 1s steadily increasing By far,
however, the most important application of 2*3Am 1s 1ts use as a target material for
the production of 244Cm and, when mixed with 2**Cm, as a target material for the
manufacture of 2°2Cf and other transuranium elements 1n high neutron-flux reactors
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The neutron-capture sequence involved in the production of ***Cm and 2°2Cf 1s
shown in Fig 2 4

Mixed 2#4Cm—2%> Am oxide for use in fabricating targets for wradiation in the
HFIR at Oak Ridge 1s currently prepared by calcining cation-exchange resin contaming
sorbed 2#*Cm and >*>Am '®5 Techniques for preparing target 2**Cm—2*3 Am oxide
microspheres by solgel methods have also been described ¢+ ®7 Target assemblies
contaning 2**Am and ?**Cm are prepared for wradiation 1n high-flux high-power
density cores at Savannah River by uniformly nmuixing americium-—curium oxtde
material with aluminum powder and pressing the material into compacts,'* several of
these compacts are canned together to form 6-in -long slugs

Curium-244, which has an 18-year half-life, has been proposed as an alternative to
238py for use in 1sotopic power sources Curium-244 has the advantage of a higher
thermal power than ?3®Pu but suffers from having a higher radiation level of neutrons
produced by spontaneous fission The latter failing prevents its use for biomedical
purposes Baybarz®® mentions that, whereas 23 #Pu heat sources are mainly limited to
the thermoelectric mode of generating electric power, the thermionic mode may be
envistoned for 2**Cm heat sources

Americium separated from power-reactor fuel contans, as discussed previously, a
mixture of 24'Am and 2*3Am in varying ratios Table 2 4, from Baxter,' hsts the
production of high-mass nuclides obtained by irradiating power-reactor americtrum
(50-50 muxture of 24! Am and 243 Am) ata flux of 1 75 x 10" * neutrons cm™ sec™

FISSION FISSION
/ /

249¢¢ » 250Ct > 251CF » 252Cf

NN

290 days 31hr

N\

249K —— 250Bk

N

t
/ FISSION minees
2840m — 245Cm 246Cm 247Cm 248¢Cm 249Cm
26 min 20 hr 25 min

N\

243 A —ep 244 A g 295 A — 246Am

N\ N

50 hr 11 hr 11 days

N\

242py, 243py, 244p, > 245p, —— - 246py

Fig. 2.4 Nuclear reactions for the production of ?*2Cf. [From R D. Baybarz, Recovery and
Apphcations of the Transurantum Elements 227Np, 22#Pu, 24! Am, >42Cm, ?#4Cm, and 252 (f,
Atomic Energy Review, 8 327 (1970).]




APPLICATION OF ?43Am

Table 2.4

PRODUCTION OF HIGH-MASS NUCLIDES* BY IRRADIATION OF POWER-REACTOR
AMERICIUM AT A FLUX OF 1.75 x 10'? neutrons cm™ sec™!

Fluence,
10?? neu-
tronscm™ Days 23%Pu 239p,  240py  Zalpy  zazpy 2410 242MIAL 24340

Atoms produced per single “average atom” of 2*' Am and *** Am irradiated

0 1.000 1.000
0.2 132 0.8417'+ 0.1827' 0.278% 0.6437° 0.7027' 0.356 0.685%  0.833
0.4 265 0.150 0.5407' 0.1327' 04377 0.906™' 0.124 0.245%  0.687
0.6 397 0.152 0.6937' 0.246™' 0.939"* 0.960"' 0.426™' 0.849° 0.561
0.8 529 0.122 0.6407* 0.307°' 0.127°' 0.978* 0.147°' 0.293°*  0.457
1.0 661 0870 0497* 0309 0.137°' 0.989"' 0.5147% 0.102° 0.371
1.2 794 0.575' 0348 0.2727' 0.1297' 0.9937' 0.190* 0.3777* 0.301
1.4 926 0.3627'  0.2287* 0.224"' 0.112°' 0.985' 0.784%® 0.154™* 0.244

1.6 1058 0.2217*  0.143™' 0.181"" 0.940* 0.965' 0.385* 0.741°° 0.199
1.8 1190 0.1327'  0.8727% 0.148°' 0.7817* 0.9357' 0.2297% 0435° 0.162
2.0 1323 0.7717*  0.5197% 0.125"' 0.6637* 0.897°' 0.1617* 0.300°  0.132

ll(:)iuze?“::_ Atoms produced per single “average atom” of 2*' Am and ?%? Am irradiated

tronscm™  Days  24?2Cm  24°Cm 244Cm ?%5Cm ?%*Cm ?*'Cm  %%*Cm
0
0.2 132 0.304 0.34972 0.189 0.17572 0.48873 0.196° 0.59877
04 265 0.277 0.5097 0.341 0.3057 0.1887 0.149°*  0.984°¢
0.6 397  0.191 0.43372 0459 0399 0.38872  0.440°  0.455°°
0.8 529 0.119 0.30072 0.549 0.46872 0.63172 0.902°* 0.129*
1.0 661 0.7017! 0.18972 0.616 0.51872 0.90572 0.15273 0.279°¢
1.2 794  0.4037! 0.11272 0.664 0.55472 0.120! 0.2287*  0.515™*
1.4 926  0.2297! 0.651°% 0.696 0.57872 0.1517 0316  0.849™¢
1.6 1058  0.1297! 0.371°3 0.716 0.594°2 0.182 041277 0.12972
1.8 1190 0.7292 0.21073 0.727 0.60272 0.214™ 051473 0.18573
2.0 1323 0.40972 0.11973 0.730 0.60572 0.246™* 0.6217*  0.25373
*From Ref. 3.

tExponents are powers of 10 by which the number is to be multiplied.
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One method of using power-reactor 24! Am—?*> Am muxtures 1s to preburn them
in a thermal reactor to burn up >*' Am, preferentially to 2*2Cm which would decay
to 238Pu 123 After the 24 Am-rich target mixture 1s chemically separated, 1t could be
recycled to a resonance reactor for the production of 2*2Cf An alternative, according
to Christman and Cornman,'®® 1s to wradiate the target mixture in the resonance
reactor to accelerate the production of 232Cf from ?*3 Am and, at the same time, to
produce 23®Pu from 2*'Am Figure 2 5 shows the production yields for °2Cf and
238Pu which might be realized for this latter alternative with the target management
schedules that are necessary because the 2*2Cm alpha activity limits and/or delays
chemical separation and target-fabrication operations

N I I I T l

Percent yield of 238py at 4 years Direct 40%
08— Preburn 50%

Direct

04— Preburn

02—

ACCUMULATIVE PERCENT YIELD OF 252Cf

| | |

0 10 25 40 55 70 85 100 115 130 145
YEARS SINCE AVAILABILITY OF AMERICIUM

RRy

w O

C
S
TRyx Therma! preburn C Cooling period

RRx Res reactor S Separation stage
target management

Fig. 25 Yields of 22Cf and 228 Pu from americium [From R P. Christman and W. R. Cornman,
Utihzation of Power Reactor Americium for 252Cf Production, Transactions of the American
Nuclear Society, 12 54 (1969).]
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CHEMISTRY IN AQUEOUS SOLUTION

OXIDATION STATES

Americium 1n aqueous solutions 1s well known to exist 1n the IIl, IV, V, and VI
oxidation states The hydrated 1ons Am** + ag, AmO; - aq, and AmO3” - aq occur m
the absence of complexing agents Russian workers'? have recently announced evidence
for the production of Am(VIl) by oxidation of Am(VI) mn cooled, strong alkalt
solutions Methods of producing the individual americium 1ons are summanzed mn
Table 31 Some additional comments on production and stabilization of the various
americium oxidation states in aqueous solution follow Recent polarographic evidence
for the proposed production of Am(Il) in aqueous solution 1s also reviewed Reference
1s made to the electrode-potential diagrams shown on pages 55 to 58

Am(ll)

Americium 1s the heavy homolog of europium which has a readily attamned divalent
state in aqueous solution Much effort has gone into attempts to establish the
existence of Am? " 1n aqueous solutions and to prepare compounds containing divalent
americtum The latter goal was realized m 1973, as detailed n Chap 4, by the
preparation of AmCl,, AmBr,, and Aml, Leary and Mullins!® also have obtained
evidence for the existence of divalent americium in molten salt—molten plutonium
systems However, reduction conditions® used successfully to prepare Eu®* and Sm?*

® .
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Table 3.1

CHEMISTRY IN AQUEOUS SOLUTION

AMERICIUM IONS IN AQUEOUS SOLUTION

Oxidation
state

Tonic
form

Color 1n
dilute
HCIO,

Methods of preparation

111

v

VI

Vil

Am?* . aq

AmOj - aq

AmO?* - aq

Pink red*

Yellow

Yellow
brown i

1 Am(O) + HCI
2 AmO, + HCI (heated)
3 Am(C>1II) + NH,OH, I, SO,,

ete

4 Autoreduction of Am(>III)
1 Dissolve Am(OH), n

134 NH, F

2 Electrolytic oxidation of

Am**mn 10-15M H,PO,

3 Am(OH), + alkah fluonde +

K,P,0,

1 Oxidation of Am3” in

0 03M KHCO, solutton
with 0,,S,0? or ClO

2 Dissolve Li, AmO, m

dilute HCIO,

3 FElectrolytic oxidation of

Am**n 2M L0, -0 1M
HIO, solution

1 Oxidation of Am?®*1n

dilute acid media with
S,0? and Ag(Il)

2 Electroly tic oxidation of

Am?** 1n 6M HCIO, or
i 2M H, PO,

3 Dissolve Li; AmO; 1n

dilute HCIO,

1 Oxidation of AmO2” in 3M-5M

NaOH at 0—7°C with Q, or O
10n radical

*Yellow 1n concentrated HCIO,
+Pink-red Am*”* stable only in concentrated fluoride and phosphate solutions
fLight brown 1n dilute HNO,, green 1n fluonide solutions, dark brown n

H, SO, solutions, red 1n carbonate solutions

§ Green-colored Am(VII) known only 1n alkaline solutions

will not reduce Am®*+aq to Am?®*+aq Also, recently Jove and Pages® failed in
q

attempts to reduce Am

3+

furnished by dissolution of sodium metal
Results of several polarographic expermments with tracer concentrations of
amenicium have been interpreted on the basis of the formation of divalent americium

in liquid ammonia either by electrolysis or with electrons




OXIDATION STATES

Thus Myasoedov and Myuzikas® 5 observed two waves in polarographic reduction of

trivalent americium 1n 0 1M solutions of [(C;Hs)4N]ClO, in acetonitrile These
scientists account for the two waves, the second of which 1s twice as high as the first,
by the successive reductions Am>*+e -~ Am?” and Am** + 2¢ > Am/Hg David ¢?
also observed two waves in the radiopolarograms of Am(III) 1n perchlorate medium at
pH 1 to 6 which he postulated to correspond to the reductions Am** - Am(0) and
Am3*" - Am(0)

Nugent"’b disagrees with Dawvid’s interpretation of his polarographic results and
states that the amalgamation of Am®* + aq proceeds directly to Am/Hg In support of
this reaction mechanism, Nugent cites a lmear relation developed among standard
potentials, first half-wave amalgamation potentials, and the atomic radu of the
crystalline actinide metals According to Nugent, Am?” - aq 1s so unstable, even at
tracer concentrations, as to be essentially nonexistent

Am(lll)

The stability of the higher oxidation states of the transuranium elements typically
decreases with increasing atomic number In agreement with this, the trivalent state of
americlum 1s 1ts most stable oxidation state and 1s the state resulting when americium
metal dissolves in acids Keller®€ notes that, even though americium 1s the homolog of
europtum, the characteristics of Am®* (radius = 0 99 &) are more like those of Nd®*
(radius = 0995 A) than those of Eu®* The paramagnetic susceptibiity’® of
Am*" + aq 15 700 x 10°® ¢m® mol™ In aqueous solution, Am(III) 1on 1s precipitated
by hydroxide, fluoride, phosphate, and oxalate 1ons, properties of the resulting
compounds are discussed 1n Chap 4

Friedman and Bell’® have recently discussed techniques for preparing POCl;—
Z:Cl, solutions containing Am>* and efforts to make these solutions show laser
activity Friedman and Bell ascribed failure of these efforts to the short hifetime for
the excited state of Am>”

Hydrolysis of the Am>® 1on was studied by several mvestigators Destre,
Hussonnots, and Guillaumont® and Desire®? determined the distribution of americium
between aqueous HClO4—-LiClO, solutions and a benzene solution of thenoyltn-
fluoroacetone From their measurements, they calculate for the reaction

M3*+aq+H,0->MOH*" - ag+H" 3B

K; = [MOH?**] [H'}/[M**]1 =12 x 10% atu=0 1M and 23 + 1°C
Hydrolysis of the Am®” 10n can also be represented by the reaction

M3*-aq+OH - MOH?" - aq 32

for which K, = [MOH?>']/[M3'] [OH] = [MOH?*] [H*]/[M3']Ky, where Ky =
[H'] [OH] Mann and Kikindar'® report K, =2 £ 02 x 10'! at u = 0 005M and
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15+ 1°C from electrophorests measurements, whereas, from electromugration studies
m NH,CIO, media, Shalinets and Stepanov'' report K, =5 x 10'° at u = 0 005M
and 25°C

Korotkin'? '3 states that, contrary to the sumple representations shown i
Eqs 31 and 3.2, hydrolysis of Am®* is a complicated process that commences at pHs
as low as 0.5 to 1.0 and whose mechanism 1s determined by the nature of other cations
(e.g, 11", Na*, and H") in solution Korotkin’s conclusion 1s based on his extensive
studies! 2713% of the hydrolysis of 1071°M to 107°M amercium m HCIO, —LiCIO,
HNO; —LiCl0,4, HNO;3;--LiINOj3, HNO;~KNO;, HNO3;—NaNO;, and pure HNO;,
solutions over the pH range 1 to 11 Using paper chromatographic methods,
supplemented by ion-exchange and electronigration procedures, Korotkin states that,
in HCIO4—LiClO,; (u= O IM) media, hydrolysis of <IOM® amencium proceeds
according to the mechanism

Am’* > Am(OH)** - Am(OH); - Am(OH); or [Am(OH), ] X"

IpH1)  II(pH6) 1 IV(pH > 8 5)

In HNO; —LiClO. and m HNO;-LiINO; (u= 0 1M to 1M) solutions, hydrolysis
proceeds through the forms

Am(NO;)** ~ [Am(NO; )(OH)] * - [Am(OH),NO;]
I 1(pH 6) 1

~ [Am(OH),]13" > Am(OH); or [Am(OH), ] X"

IV(pH > 8 5) v

In 0.1M solutions of KNO; and NaNOQO;, the hydrolysis sequence, according to
Korotkin, 1s

Am(NO3)*" - [Am(OH)(NO3)] "~ [Am(OHXNO5)] 3” - [Am(OH)(NO3)] » (OH)”

I II 11 v

- [Am(OH),]%" - [Am(OH), ] X" - negatively charged colloids

v VI

Hydrolysis of <107®M americium m pure HNO; 1s similar to that in NaNOj and
KNOj; solutions, according to Korotkin.

Korotkin® 3¢ recently has extended his investigations to paper chromatographic
sorption of 107*M americium from pH 1 to 9 HCIO, solutions He concludes that at
such conditions the hydrolysis mechanism may be represented by the followimng
scheme




OXIDATION STATES

Am** > Am(OH)** > [Am(OH)] (OH)" » Am[Am(OH),]** > Am[Am(OH), ] §13+n>*
I II It v A\

It 1s necessary to point out that independent experiments by other scientists to
confirm or refute Korotkin’s speculations about the vanous hydrolytic species of
amernicium either have not yet been done or have not yet been published

Am(IV)

Because of the high value (+2.4 V) of the standard potential of the Am(IV)—
Am(III) couple, tetravalent americium 1s unstable in most mineral acid solutions with
respect to disproportionation to Am(III) and Am(V) However, stable aqueous
solutions of tetravalent americium n which disproportionation does not occur even at
90°C can be prepared!® 'S5 by dissolution of Am(OH), 1n concentrated solutions of
NH,4F, KF, RbF, and CsF The solubility of Am(IV) mn 13M NH, F at 25°C 1s 0 02M.
This rose-colored solution probably contains the 1ons AmF and/or AmF2". Ozone
oxidizes Am(IV) in 13M NH4 F to Am(VI), whereas 10dide reduces 1t to Am(1II). Slow
reduction of Am(IV) to Am(III) occurs because of alpha radiation.

Stable solutions of tetravalent Am(IV) can also be prepared by anodic oxidation
(at a platmum electrode) of Am** m H;PO, solution This method of stabilizing
Am(IV) was first discovered by Yanir, Givon, and Marcus.!®!7 Subsequent
publications by Myasoedov and coworkers!?®? 180 have recently confirmed and
extended this preparation techmque. One of their papers' ®? also presents details of the
construction and operation of a suitable electrolysis cell The Russian workers
report' 8¢ that pure Am(IV) 1s obtamed in 10M to 15M H3PO, Kinetic data for the
oxidation of Am(IIl) in 12M H3;PO, (Fig. 3.1) show that complete oxidation to
Am(IV) requires about an hour under the conditions used by Myasoedov et al

In their most recent paper, Myasoedov et al.! 8% discuss the influence of
temperature and the concentrations of H3PO, and americium on the completeness of
electrochemical oxidation of Am(III) in 3M to 15M H;3PO, and the stability of the
resulting Am(IV). In 3M to 8M H;PO,, Am(IV) disproportionates according to the
scheme 3Am(IV)— 2Am(IIl) + Am(VI), whereas at H3PO, concentrations above
10M, Am(IV) reduces to Am(III). The apparent rate constant for Am(IV) dispropor-
tionation increases with decreasing HyPO,4 concentration, whereas that for reduction
of Am(IV) to Am(III) increases with temperature and with decreasing americium and
H;3;PO, concentration (15M to 10M) The activation energy for the reduction of
Am(IV) to Am(III) in 12M H,PO, 1s 15.6 1.1 kcal mol" according to results
obtained by Myasoedov et al ! 2

Myasoedov, Lebedev, and Milyukova'®¢ also report that Am(III) in H;PO,
soluttons 15 rapidly oxidized by Ag(ll) oxide and a nmuxture of AgzPO, and
(NH4),S5,05 Pure Am(IV) 1s obtamned m 9M to 12M H3PO,. In 3M to 6M H3PO,,
depending on the oxidation time, pure Am(VI) or a muxture of Am(IV) and Am(VI)
are obtained
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Fig. 3.1 Electrolytic oxidation of Am(IIl) in 124 H,PO, ([From B F Myasoedov, V M
Mikhailov,I A Lebedev, O E Kowo, and V Ya Frenkel, Preparation and Stability of Am(IV) and
Am(V) in Phosphoric Acid Solutions, Radiochemical and Radioanalytical Letters 14 17 (1973) |

A third way of stabihzing Am(IV) in aqueous solution consists of dituting a
concentrated alkali fluoride solution i which Am(OH), has been dissolved with
concentrated K4P,0, solutton Yanir, Givon, and Marcus' 7 used this approach to
prepare a 03M acid solution containing Am(IV) and about 2M K4P,0, and 3M
NH4F Amencium(IV) in this solution was very stable, being reduced only 5% n 7 hr
Direct dissolution of Am(OH), 1n acidified pyrophosphate solutions yielded mixtures
of Am(IV) and Am(VI) with NayP,0, and Am(IV) and Am(V) m K4P, 0, solutions

Am(V)

Oxidation of Am(III) yields Am(VI) in acid solution but both Am(V) and Am(VI)
in alkaline solution This behavior 1s mn accord with that expected from electrode
potentials (see pages 55 to 58) Solutions of Am(V) are conventionally prepared by
controlled oxidation of Am(III) in alkali carbonate media with ozone,'® 2%
peroxydisulfate,'® 23 24 or hypochlorite 1on '® %3 25 26 Vanous solid carbonates
containing the AmO3 1on (see pages 139 to 141) precipatate from the resulting solutions
Dilute acid solutions of AmOj contamning several percent Am>* can be prepared by
dissolution of these sohid carbonates

Americium(V) solutions free of Am(II[) can be prepared by mtermediate
preparation of Am(VI) in 2M Na, CO; solution 27 After 5% Oj; 1s bubbled through
the solutton for 1 hr at room temperature to oxidize Am(III) to Am(VI),
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NaAmO,CO; is precipitated by heating the solution for 30 to 60 min at 90°C.
Solutions obtained by dissolution of the resulting NaAmO,CO; contain only AmO3.

Hara?® prepared perchlorate, suifate, and acetate solutions containing AmO? free
of Am®" by first extracting AmOj3 from 1M acetate buffer (pH > 3) solutions of
Am(IIl) and Am(V) into 0.1M thenoyltrifluoroacetone in isobutanol. When the
organic phase containing Am(V) was shaken with an aqueous phase having a proper pH
value and composition, Am(V) was selectively stripped into the aqueous phase.

Newer methods for obtaining the AmOj 1on in aqueous solution include
dissolution of solid Li; AmO, in dilute HCIO, and electrolytic oxidation' 7 of Am(111)
in 2M Lil03—-0.7M HIO; (pH 1.47) solution. Solid Li; AmO, can be prepared by the
solid-state reaction:?°

3Li,0 + 2AmO, + 1,0, _ S 600°C 514, AmO, (33)
Am(VI)

Hexavalent americium can be prepared by oxidation of lower oxidation states in
either acid or alkaline solutions. In dilute, nonreducing acid solutions, powerful
chemical oxidants such as S,0% and Ag(Il) oxidize both Am(III) and Am(V) to
Am(VI).27392 Peroxydisulfate, however, will not oxidize Am(Ill) to Am(VI)
completely at acidities above about 0.5M. In HCIO, solution, Ce(IV) oxidizes Am(V)
to Am(VI) (Ref. 23) but only partly oxidizes Am(III) to Am(VI). Similarly ozone
readily oxidizes Am(V) to Am(VI) in heated HNO; or HCIO, solution® but will not
oxidize macroconcentrations of Am(IIl) to Am(VI) in acid media even when
heated.3°b

Electrolytic oxidation of Am(III) either in 2M H3PO,4 or in 6M HCIO,4 produces
the AmO2* ion.! 327 Keller®© also states that dissolution of Lig AmOy either in water
or in dilute HCIO, yields a solution containing AmO3". Ligc AmOg¢ can be made by the
solid-state reaction at 360°C of Li, O with AmO, in the mol ratio of 3.5 : 1 (Ref. 29).

Ozone or peroxydisulfate oxidation of either Am(III) or Am(V) in aqueous
Na, CO; or NaHCO; solution yields an intense red-brown colored solution thought to
contain a carbonate complex of Am(VI).22'27 This same complex is also obtained by
dissolution of solid sodium americyl acetate in Na,COj; or NaHCO; solutions.
[Nugent,®! in a recent review article, speculates that an Am(VII)—carbonate complex
may actually be present in such solutions and suggests that the presence of such a
species would be consistent with several experimental observations.] Americium(VI)
in 0.1M to 0.5M NaHCO; solution is stable at 90°C to reduction by H,O, Cl’,and Br~
but is readily reduced by I', N,Hy, H,0,, NO3, and NH, OH. Reduction by water
occurs at 90°C in 2M Na, CO,.

Ozone oxidation of Am(IIT) in 2M Na, CO; yields AmO3 " only if the temperature
is maintained at ~25°C or below; at 90°C oxidation does not proceed past Am(V).
Surprsingly, Am(VI) is not produced by Oj; oxidation of either Am(OH); or
KAmO,CO; in 0.03M to 0.1M KHCOj; solution.?? Similarly K, S, 04 will not oxidize
either Am(OH); or NaAmQ,CO; in 0.1M NaHCO; to Am(VI), although such
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oxidation is accomplished readily with Na, S, Og. This chemistry is explained on the
basis of the lower solubility of KAmO,CO; compared to that of NaAmO,CO;.

Alkali hydroxide solutions of Am(VI) are yellow colored?23234 and, according
to Cohen,** may be easily prepared by ozone oxidation of a slurry of Am(OH); in all
the alkali hydroxides from lithium to cesium. An alternative procedure consists of
oxidizing Am(III) in dilute NaHCO; solution to Am(VI) with ozone, acidifying with
dilute HNOQ3;, and finally, adding the desired alkali hydroxide to neutralize the HNO,
and produce an alkaline solution. Alkali hydroxide solutions of Am(VI) are not stable,
and a light-tan solid precipitates a few hours after preparation. This solid is soluble in
dilute mineral acids to yield a solution containing AmQ3 ions.

Solid NasXeOQg is reported®? to oxidize Am(III) in 12M to 15M CsF media, either
with or without added HF, to Am(V) and/or Am(V1). The exact oxidation state—(V)
or (VI)—of americium in the oxidized solution has not been determined.

Am(VIl)

In preliminary communication, Zaitseva®® indicated that a dark-violet solution
containing Am(VII) could be obtained both by disproportionation of Am(V1) in 3M
NaOH and by the action of strong oxidizing agents on an alkaline solution containing
Am(V). Subsequent work>® showed that the claim for Am(VII) was erroneous—the
dark-violet color was due to a contamination by Fe(VI). Incidentally, attempts®” to
prepare a solid compound containing Am(VII) by careful oxidation of Li,O-AmO,
mixtures at 300 to 400°C in a stream of oxygen proved unsuccessful. Nugent’s
speculations about the existence of an Am(VII)—carbonate complex were mentioned
earlier.

Krot et al.'? stated that aqueous solutions containing Am(VII) can be prepared by
oxidation at 0 to 7°C of Am(VI) in alkaline solutions with either O ion radicals or
ozone. Thus passage of air containing 20 to 50 mg liter'* O for 30 to 60 min through
a light-yellow 3M to 4M NaOQH solution containing 0.001M to 0.002M Am(VI) at 0 to
7°C yields a green-colored solution containing at least some Am(VII). A similar
green-colored solution results on irradiation (°°Co) at 0°C of a 3M NaOH solution
containing 0.001M to 0.002M Am(VI) and previously saturated with N,O. (The N,O
functions to transform hydrated electrons produced by radiolysis to O™ ion radicals by
the reaction N,O + ¢34 = Ny + 07 S, 03 may be substituted for N, O for the same
purpose.) With either oxidant the absorbance of the green-colored solution at 370 to
450 nm is about twice that of the original Am(VI) solution and slowly decreases with
time. Stability of the Am(VII) species, according to Krot et al., is greater in SM NaOH
than in 30 NaOH.

To confirm the presence of Am(VII) in the oxidized solutions, the Russian
scientists made spectrophotometric studies in 1M to 2M NaOH solutions of the
reactions Pu(VI) + Am(VII) ‘= Pu(VII) + Am(VI) and 2Np(VI) + Am(VIl)=
2Np(VII) + Am(V). Appearance of the characteristic spectrum of pure Pu(VII) under
conditions where Am(VII) is the only oxidant provides strong evidence that the
green -colored solutions prepared as described above do indeed contain some Am(VII).
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Further studies of the preparation and properties of Am(VII) in aqueous solution can
surely be anticipated

THERMODYNAMIC VALUES

The heats of solution of americium metal in aqueous HC! solutions at
298 15 + 0 05°K were redetermined i 1972 by Fuger, Spirlet, and Muller®® using
specially purified and characterized metal Earlier (1951) measurements were made by
Lohr and Cunningham®° and Westrum and Eyring *°® From their results, Fuger,
Spirlet, and Muller®® calculate the standard enthalpy of formation of Am®* - aq at
298°K to be —147 4+ 03 kcal mol™ This value, which 1s about 10% less negative
than that previously accepted,®® *° confirms the prehmmary data of Morss*? and 1s
n hine with arguments advanced by Ryan*? and by Nugent, Burnett, and Morss **

Fuger and Oettmg,"“‘b have very recently carefully examined existing knowledge of
the entropies of actinide 1ons These authors have also cntically evaluated available
extsting enthalpy and electromotive-force data and checked them for consistency with
entropy data Thermodynamic values for americium 1ons calculated by Fuger and
Oetting are histed mn Table 32 and are the most reliable data extant Some earlier
thermodynamic quantities for americium 1ons were calculated by Fuger, Spirlet, and
Mulier,' ! by Eyring, Lohr, and Cunmingham,*® by Gunn and Cunmingham,*® and by
Hinchey and Cobble *7

Table 3 2
THERMODYNAMIC QUANTITIES FOR AMERICIUM IONS

Hydration enthalpy and entropy*

—AH°f (298°K)F  AGF(298°K),#  —S° (298°K),t —AHp, —Sh,
Ion kcal mol ! kcal mol * cal mol '°K ! kcal mol™ cal mol '°K?
Am3* . aq 1474+03 1432+09 48 + 3 832 9] 8
Am** . aq 1034+26 892+24 97 +5 1635 128
AmO; - ag 1924 +11 1777+13 3+2
AmO';‘*-aq 155805 1410+08 19+2

*Calculated values from Ref 47b

tValues from Ref 44b

ELECTRODE POTENTIALS

Table 3 3 lists electrode potentials (1969 International Union of Pure and Applied
Chemistry sign convention) for americtum 1n various aqueous media The potential

diagram for americtum in 1M HCIO, reflects newly estimated values for the (II1)—(0),
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Table 3.3
ELECTRODE POTENTIALS OF AMERICIUM*{

I. 1M HCIO,
Amoz* 160

24

+1.1)¢ Am+t 24 At -2.3 Am?* (—2.0)1Am

AmO;

i |
(1.74)% J
1.69 ~2.06

1L LM OH"
0.7 : 2.
Amo0, 0H), 1L Am0,08%PE Am(ony, 25 AmcoH), 228 Am

II1. Phosphoric acid

1.75 to 1.78
10.0M to 14.5M H, PO,

1.43
Am(VD G5 1, vO,

1.32
4.34M H,PO,

Am(V)

Am{III)

Am(V)

Am(VD) Am(V)

*In volts.

1969 International Union of Pure and Applied Chemistry sign
convention,

{Values are determined by difference.

(II1)—(1I), and (IV)—(II) couples and differs slightly from those previously pub-
lished.6¢#8+4° Reference is made to Nugent’s recent paper’' on the chemical
oxidation states of lanthanides and actinides.

Potentials in 1/ HCIO,

The potential, 1.60 + 0.01 V, of the Am(VI)—Am(V) couple in 1M HCIO, has
been directly measured.® ® Potentials of all the other couples are calculated values.

Using their recently carefully determined value of —147.4 + 0.3 kcal mol™ for the
heat of formation of Am®* - aq, Fuger, Spirlet, and Miiller®® estimate the potential of
the Am(III)~Am(0) couple in 1M HCIO, to be —2.06 +0.01 V. Earlier,>®**¢ the
potential of the (III)—(0) couple was estimated at —2.36 £ 0.04 V.

Nugent et al.51#:5 1Y estimate, from various theoretical considerations, that the
best value for the Am(III)—Am(Il) couple is —2.3 V. They note that this calculated
value is in agreement with chemical evidence which indicates that the americium
potential should be appreciably greater than the corresponding californium potential of
—1.6 V. The standard potential of the Am(III)-~Am(II) couple has previously been
listed at <—1.5 V (Refs. 3, 6¢, 48, 52, 53).
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The standard potentual of the Am(IV)—Am(IlI) couple m 1M HCIO,4 was originally
estimated*® as 244 V and was later revised by Cunningham®? to 28 V Nugent
etal 5% using a variety of new calculational procedures, estimate that the standard
potential of the (IV)~(III) couple lies in the range 20 to 25V From their direct
measurements of a value of 1 78 V for the (IV)—(III) couple n 10M H3PO,, Stokely
and Baybarz’®® calculate a value of 2 34 V for the couple in 1M HCIO, An average
value of 2 4 V 1s shown mn Table 3 3 for the (IV)—(III) couple

Gunn,*® from measurements of the heat of reduction of Am(VI) to Am(III) by the
Fe?" 1on, estimated the potential of the Am(VI)—Am(III) couple at 1 70 VA value of
1 67V for this couple was estimated by Nigon®? on the basis of a study of the
oxidation of Am(IIl) to Am(VI) by the Ce(IV)1on An earlier?” estimate of 1 8 V for
the (IV)—(III) couple was 1n error due to a musinterpretation of the effect of actdity on
the oxidation of Am(III) to Am(VI) by the S,02 1on In passing 1t should be noted
that the currently accepted potentials of both the (VI)—(III) and (VI)—(V) couples are
based on results of measurements made 20 years ago when amesicium chemistry was 1n
its mfancy Repetition of these measurements with longhived 2%3Am would be
helpful

Potentials shown m Table 33 for the Am(I[)-~Am(0), Am(V)—Am(III), and
Am(V)—Am(IV) couples are calculated from those listed for the other couples The
new values assigned to the (II1)—(0) and (1II)—(I1) couples lead to a value of -1 9V
for the (I1)—(0) couple, which 1s substantially changed from the potential of <-2 7V
customanly shown 6°*® Nugent®® assigns a value of —2 0 V to the (II)—(0) couple As
a reflection of the change in the (IV)—(III) potential from 2 44 to 2 4 V, the potential
of the (VI)—(V) couple 1s calculated to be 1 1 V, only shghtly more positive than the
value of 1 04 V previously calculated®® #8 for this potential

Potentials in 14/ OH™

Standard potentials of americium in 1M OH solution (Table 3 3) were onginally
calculated mn 1952 by Latimer®®? from estimates of the solubility products of
Am(OH); and Am(OH), Subsequently, Penneman, Coleman, and Keenan®? suggested
that the standard potential of the Am(OH); —Am(OH), couple should be revised from
+04V to at least —0 5V From recent studies of the reaction of Am(VI) with Np(VI)
m 001M to 12M NaOH and with Pu(VI) in 3M to 14M NaOH Nikolaevskn, Shilov,
and Krot38P estimate that the potential of the Am(VI)—Am(V) couple in 1M NaOH 1s
~0 65 V rather than the 11V estimated by Latimer 582 Peretrukhin, Nikolaevsku,
and Shilov®®€ have investigated the polarographic behavior of Am(V) and Am(VI) in
1M to 10M NaOH From their data these authors give the following potential scheme

1M NaOH 0 68 025 <Eo <050 Eo <025
Am(VI)—Am(V) Am(IV) ——— Am(III)
10M NaOH 063 017 < Eo <050 Eo <018
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Further revision of Latumer’s calculated potentials for americium i alkaline
solutions 1s mn order, particularly so since there 1s evidence®® that the solubility
product of Am(OH), 1s of the order of 3 X 107" 8 rather than 2 7 x 1072° as estimated
by Latimer 58¢

Potentials n H,P0,

The formal potentials of the Am(IV)—Am(IIl) and Am(VI)—Am(V) couples in
H3;PO, solutions which are listed in Table 3 3 were determined by direct potent:
ometry °5 ¢°

AUTOREDUCTION EFFECTS

Species (e g, H,0, and HO; radicals) produced by alpha radiolysis of water
reduce the higher oxidation states of americium 1n aqueous solution eventually to
stable Am(IIl) Because of its lower specific actvity, the rate of autoreduction of
243 Am(>IID) 1s much less than that of 24! Am(>III) Autoreduction of Am(VI) has
been studied in HCIO, (Refs 46, 61-64), H,SO, (Refs 62-64), and HNOj (Ref 62)
solutions while autoreduction of Am(V) has been followed in HCIO, (Refs 46, 61,
63, 64), HNO3 (Ref 62), and HCl (Ref 65) media Zaitsev et al ®2 postulate the
following reactions to account for the observed kmetics of autoreduction of AmO3”
and AmOj 10ns 1n the aqueous, air saturated solutions

H,0-H+OH (3 4)

H+ 0, -~ HO, (35)

OH + OH -~ H, 0, (3 6)

AmO2%* +HO; » AmO} + 0, +H* 37
AmO;*+H,0, -~ AmO; +HO; +H* (38)
AmOj +2HO; +2H > Am®* + 20, + 2H,0 (39)
AmOj + OH > AmO2* + OH (3 10)

This reaction scheme assumes that H,O, 1s consumed only m reducing Am(VI),
whereas AmgV) 1s reduced only by HO; radicals Americium(V) may be oxidized to
Am(V]) by OH radicals, and this reaction competes with that of hydrogen formation

All mvestigators concur that autoreduction of Am(VI) 1s kinetically zero order
with respect to the AmO3* 1on and first order with respect to total americium
concentration, i1 ¢ ,




AUTOREDUCTION EFFECTS

d[Am(VD)] _d[Am(V)]
- dt Tt

=k; [Amyotal] (311)

In both HCIO, and H, SO, media, the rate constant k, falls off with increasing acid
concentration (Table 3 4) Indeed, Zaitsev and coworkers®? did not observe any
reduction of 24'AmO2Z" i 12M HCIO, over a period of 300 hr' This result 1s
explained by Zaitsev et al on the basis that in concentrated HCIO,4 the predominant
alpha radiolytic species are Cl, and ClO, which do not reduce Am(VI) or Am(V)

Table 3.4
RATE CONSTANTS FOR AUTOREDUCTION OF 24 ' Am(VI) AND **' Am(V)

HCIO, H, SO, HNO, * HCI¥
k, k,,8 k,, k,, Kk, ,

M hr! hr ' Ref. M hr' Ref. M hr! M hr !
a2 0040 0020 46 g1 0040 62 05 0069 05 00074
02 0 040 62 01 0029 63 30 0086

02 0030 0012 63 05 0025 63 60 0087

05 0054 61 10 00286 62 90 0103

10 00475 0023 61 20 00251 62 143 0058

20 0032 62 20 00242 65

40 0032 62 30 0017 63

90 0028 62 40 00236 64

90 001 63 45 0013 63
120 00 62 60 0018 62

65 0012 63
90 0012 63
100 0022 62

*All from Ref 62

tRef 65

tFor Am(VI) = Am(V),see Eq 3 11
§For Am(V)— Am(ill), see Eq 3 14

Zaitsev et al also state that the falloff in k; with increasing H, SO, concentration may
be accounted for by the occurrence of the reactions

OH + HSO; —~ OH + HSO; (312)
and/or

OH + H,S0, - H,0 + HSO; (313)

which compete with Eq 3 6 and thereby lower the yield of H, 0,
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The autoreduction rate ot Am(VI) im HNO; solutions s a factor of 1 5 to 2 higher
than the maximum rate in HClO4.and H, SO, solutions Also, in contrast to the
behavior noted m HCIO4 and H,SO, media, the reduction rate appears to increase
with 1ncreasing HNO; concentration, at least up to 9M HNOj; According to Zaitsev
the ncreased rate of reduction of Am(VI) in HNO; solutions s caused by
radiolytically generated NO, 10ns that very effectively reduce Am(VI)

As regards autoreduction of Am(V) to Am(IIl), most investigators have stated
that rate of this reaction, hke that of the analogous Am(VI)—Am(V) transition,
depends only on total americtum concentration and 1s independent of Am(V)
concentration,1 e,

_ d[Am(V)] _ d[Am(TID)]

at at =k, [Amyotall (314)

(Values of k, determimed in several solutions are listed m Table 3 4) Zaitsev et
al %2 66 disagree and state that, at least under some conditions, the rate of
autoreduction of Am(V) to Am(I1I) does depend on the concentration of Am(V) In
any event, autoreduction of 2*' AmQj proceeds more slowly in 0 5M HCI than m
0 2M HCIO,, presumably because of preferential 1eaction of the primary radiolysis
products with chloride species rather than with AmO3 ions Slow autoreduction of
AmO; 1n HNO; soluttons has also been reported,®? the maximum reduction rate of
AmO3 1s ~1% per hour in 0 SM HNO; and 0 8% per hour in 3 0M HNO,

The rate of autoreduction of 243 Am(VI) 1n 2 18M HCIO, solution at 75 7°C 1s
about six times what 1t 1s at room temperature © 7 In 4M HCIO, —2M NaClO, solution,
241 Am(VI) autoreduces about four times faster at 75°C than at 25°C (Ref 62)

In 13M NH,F, 24! Am(IV) autoreduces at a rate of about 4% per hour,'® whereas,
in 3M fluoride solution, the autoreduction rate 1s about 10% per hour '7 Self-reduc-
tion of Am(IV) to Am(III) in phosphoric acid solution follows first-orter teaction
kinetics'® with a rate constant that 1s dependent on the concentrations ot americium
and H;PO, (Fig 32) In 12M H;PO, solution containing nitially 0 008M Am(IV)
(85% %% Am), 27 hr are required for self reduction of half the americium

DISPROPORTIONATION

Am(1V)

In aqueous solution, Am(IV) 1s stable only m concentrated HyPO,, K4P,0,, and
fluoride (NH,F, KF, etc) solutions (see pages 51 and 52) In other media, Am(IV)
disproportionates to Am(III) and Am(V) mn accordance with the large positive
potential of the Am(IV)~Am(HI) couple (see Table 3 3)

In HNO; and HC1O, solutions, Am(IV) rapidly disproportionates according to the
reaction®?

2Am(IV) > Am(IIT) + Am(V) (3 15)
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Fig. 3.2 Kinetics of the self-reduction of Am({IV) in 12 H, PO, . [From B. F. Myasoedov, V. M.
Mikhailov, I. A. Lebedev, O. E. Koiro, and V. Ya. Frenkel, Preparation and Stability of Am(IV)
and Am(V) in Phosphoric Acid Solutions, Radiochemical and Radioanalytical Letters, 14: 17
(1973).]

Assuming a reaction second order in Am(IV), Penneman, Coleman, and Keenan??
estimated k, in the equation

— d[Am(IV)]/dt = k, [Am(IV)] ? (3.16)

to be >3.7 x 107* liter mol ™ hr™! in 0.05M HNO; at 0°C.

Conversely, dissolution of Am(OH), in 0.05M to 2M H, SO, solutions at either O
or 25°C or of AmO, in 1M H,SO, yields solutions®?'%® containing Am** and
AmOj}". These results are explained on the basis of the following mechanism:

Stage 1, simple disproportionation:
2Am(IV) = Am(III) + Am(V) (3.17)

Stage 2, redox reaction:
Am** + AmO3 > AmO2* + Am3* (3.18)

In support of this postulated mechanism, the proportion of AmO3”* increases with
increasing SOZ~ and HSO, concentrations at constant H" concentration. This means
that SO%™ (or HSOZ) catalyzes the redox reaction since this step is not observed in
HNO; or HCIO4 media.
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Significantly, the average oxidation number of americtum remains IV when
Am(OH), 1s dissolved i either HCIO4, HNO;, or H,SO, media *? This result 1s
somewhat surprising since Zaitsev et al *® claim that the reduction of Am*” by water
1s of increasing importance when AmOQ, 1s dissolved m >1M H,504, eg, 27%
reduction 1in 2M H, SO4 and 64% in 6M H, SO,

Am(V)

Early studies of the disproportionation of Am(V)in HCIO, (Refs 46, 63, 69, 72),
H, S0, (Ref 70a), HNO; (Ref 70a), and HCI (Ref 65) solutions were all made with
291 Am Results of these studies were greatly obscured by effects produced by alpha
decay of the 2*' Am 1sotope which, 1n most cases, led to autoreduction of Am(VI) to
Am(V) at a rate which was approximately equal to that of the disproportionation
This complicating effect resulted, as Coleman®’ has pomted out, mn general
disagreement regarding both the stoichiometry and kinetics of the disproportionation
reaction Thus Stephanou, Asprey and Penneman®® and, later, Hall and Markin%3
concluded that the reaction 2Am(V) - Am(VI) + Am(IV) 1s followed by immediate
reduction of Am(IV) by water, so that the apparent reaction 1s 2Am(V) > Am(VI) +
Am(III) Conversely, Gunn and Cunningham®® suggested that the storchiometry 1s
3Am(V)~> 2Am(VID) + Am(III), dunng which the average oxidation number of the
americium 1s conserved Zaitsev et al 7°? supported this latter contention

The most recent and definitive study of the kinetics of the disproportionation of
Am(V) has been made by Coleman®” using the 1sotope 2*® Am to ehminate radiolytic
complications Coleman 1nvestigated disproportionation of Am(V) m 3M to 8M HCIO,
at 25°C, in 1M to 2M HCIO, at 75 7°C, and m about 2M HCI, H,S0,, and HNO,
solutions at 75 7°C His data for disproportionation m 6M HCIO, at 25°C are shown
m Fig 33

In confirmation of the earhier claims of Gunn and Cunningham®® and of Zaitsev
etal ,’°? Coleman®’ finds that the stoichiometry of the disproportionation reaction
n all media but HCI corresponds to

6

3Am(V) = 2Am(VI) + Am(11I) (3 19)

In HCl no Am(V1]) 1s detected, since Am(VI) 1s rapidly reduced by Cl 1n acid media
According to Coleman,” the net disproportionation reaction 1s

3AmO; +4H" > 2AmO3" + Am®* + 2H,0 (320)

At 75 7°C m LiC10,—097 to 190M HCIO, (1= 2 OM) solutions, the second order
rate constant depends on [H']2 5 Coleman®’ and Newton’®® note that this
dependence suggests that two activated complexes are involved, one formed from two
AmO; and two H" and the other from two AmO3 and three H Assuming, as Coleman
did, these activated complexes are involved m parallel rate-determining steps, the rate
law 15 given by
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Fig. 3.3 Disproportionation of Am(V) in 6 HCIO, at 25°C [From J S Coleman, The Kinetics
of the Disproportionation of Americium(V) Inorganic Chemustry 2 53 (1963) |

d[Am(V . + . N
AT ~ 1, (AmO3 1 [H']? + K, [AmO3]? [H']? (321)
withk, =(694£101) X 10*M 3 sec’ andk; =(463£071) X 10°M " sec’!
Newton’°® states, however “Despite the fact that the rate law above 1s very
satisfactory, an ambiguity in interpretation remains If the same two activated
complexes are formed consecutively, rather than in parallel steps, the rate law 1s

-1

—d [Am(V)] _ + 1 1
S = 1m0 (e )

This equation fits the experimental results just as well as the previous one Values for
ky and k3 are (257 036)x 103M 2 sec! and (206+ 033)x 103 M * sec!,
respectively These values reproduce the data with a root mean square deviation of
3 2% and a maximum dewviation of 6 6% In order to distinguish between the two rate
laws, measurements would have to be extended at least down to 0 7M HCIO, where
the two calculated values for the apparent second-order rate constants would differ by
10%

Using, i part, temperature-dependence data obtamed by Coleman, Newton
estimated thermodynamic quantities of activation for the disproportionation of
Am(V) Results of his calculations are given in Table 3 4a

Coleman also notes that at 75 7°C the disproportionation rates in 23f HNO;, HCI,
and H,SO, are, respectively, 40, 4 6, and 24 times as great as that m 23 HCIO,,
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Table 3.4a

NET ACTIVATION PROCESSES AND THERMODYNAMIC
QUANTITIES FOR THE DISPROPORTIONATION OF Am(V)?

AG*, AH*, AS*,
Net activation process keal mol ! keal mol ! cal mol ! deg !
2AMO; + 2H" = [*]** 26 17 154+03 31+ 1
2AmO}, + 3H" - [*]5" 26 81 94+05 -50+12

2Adapted from T W Newton The Kinetics of the Oxidation—Reduction
Reactions of Uranium, Neptunium, Plutomum, and Americium 1n Aqueous
Solutions, USAEC Report TID-26506, 1974

whereas at ~25°C the reaction rate increased 450 times in gomg from 3M to 8M
HCIO,
Coleman also observed the reaction

Am** +2Am03" + 2H,0 ~> 3Am0; + 4H" (322)

the reverse of the disproportionation reaction, on addition of Am(II)-Am(VI)
mixtures to Al(ClO4); buffer at pH 4 and on neutralization of Am(III)—Am(VI)
mixtures with NaHCO; Studies of the kinetics of Eq 3 22 have not been made

KINETICS OF OXIDATION-REDUCTION REACTIONS

A long-neglected area of americtum chemistry has been the determination of the
rate laws and mechanism of the various oxidation—reduction reactions of americium
1ons in aqueous solution Several recent papers by Japanese and Russian workers
suggest, however, that this situation may be changing The following paragraphs
summarnize data for the few reactions that have been studied i detail and supplement
mnformation presented in earher review papers by Hindman,”! by Newton and
Baker,”? and by Goursse 73 An important up-to-date reference 1s the ERDA Critical
Review by Newton 7°P

Peroxydisulfate Oxidation of Am(I11) in Acid Media

Japanese workers”*7% have studied kinetics of oxidation of Am(III) to Am(VI)
by S,0% 1on, in both the presence and absence of Ag"ion, m 0 06M to 0 44 HNO,
solutions at 40 to 70°C Kinetics of this reaction, in the absence of Ag® 10n,1n 0 09M
to 0 6M HNO; at 45 6 to 69 0°C have also been 1nvestigated by Russian scientists * *
The general pattern of the oxidation reaction (Fig 3 4) involves (1) an induction




KINETICS OF OXIDATION-REDUCTION REACTIONS

I ! I [ I {
Curve HNO3,
No M
100 ¢ 1 009 -
2 014
3 019
4 024
80 - 5 028
B
= 60—
€
<
40— 4
20—
4
. | | | 1 | |
o] 40 80 120 160 200 240 280
TIME, min

Fig. 3.4 Kinetics of oxidation of Am(I) by peroxydisulfate (50.6°C, [S,Og']o = 0.40M).
[From V. A. Ermakov, A. G. Rykov, G. A. Timofeev, and G. N. Yakovlev, Investigation of the
Kinetics and Redox Reactions of the Actimide Elements. XX. Kinetics and Mechamsms of the
Interaction of Americtum(II) and (V) with Peroxydisulfate Ions in Nitric Acid Solution,
Radiokhimiya, 13: 826 (1971) through Sowiet Radiochemustry (English Translation), 13: 851
1971).]

period; (2) a linear region of constant rate; and (3) a region of gradually decreasing
rate, particularly at higher HNO; concentrations. Reaction rates are dependent on
temperature and on the concentrations of HNO3, S,0%7, and, when present, Ag’.
Newton”®P states that the stoichiometry of the oxidation reaction is

%5,0% + Am** + 2H,0 - 3502 + AmO3 + 4H" (3.23)

Both the Japanese and Russian workers concur that the oxidizing agent is not the
S,0% ion itself but secondary products (e.g., SO, OH, and HS,O3) resulting from its
thermal decomposition.

Using micromolar concentrations of 24! Am(IlI), Ohyoshi, Jyo, and Shinohara’®
found the oxidation reaction to be first order with respect to both Am*®* and S,03"
concentrations and to follow the rate expression

—d[Am(IID)]

& =Kn(k; +k; [Ag'])[S:057] [Am(IID] - 1/[H"]  (3.232)
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where Ky, 1s the dissociation constant of H,S,0% and k; and k, refer to the silver 10n
uncatalyzed and catalyzed paths, respectively (Some values for k; and k, are listed
Table 3 5) The energies of activation are 33 3 kcal mol'* for k; and 17 4 kcal mol®
for k, This activation energy for k; was recalculated by Newton’®? fromk vs T data
in the onginal Japanese paper Newton notes that the value of 28 6 kcal mol®
reported by Ohyoshi, Jyo, and Shmohara’® for the k; path s clearly mn error

Table 3.5

RATE CONSTANTS FOR PEROXYDISULFATE
OXIDATION OF Am(I1D)

{{AmID], £ =4.0 x 10°M; [NH,S,0,],% = 2.0 x 1072 M;
[HNO, ]t = 6.0 x 102 M; u = 0.50M }

k2 ai k] 7§
Temp.,’C M mm™ M* mmn?
40 162 0013
50 420 0093
60 915 036
70 1820 145

FSubscript zero means mitial concentration
fSiver-catalyzed path kq 3 23
§ Uncatalyzed path Eq 323

Conversely, Ermakov et al ,”7 on the basis of studies with millimolar amounts of

243 Am(111), claim that the rate of oxidation of Am(III) (in the absence of Ag®) i the
linear portion of the kinetic curves does not depend on the Am(III) concentration and
1s given by

—d[Am(ID] _

m bIHT) (5,0 [Am(IID]°
2 (k- S 92080 =k (324)

At 506°C,a=49 x 10° mm! andb=09 x 107* M 'mun! InEq 324, [S,0%],
1s the mitial concentration of the peroxydsulfate 1on, x = ks/ke [H20], and ky,
k4 —kg are rate constants for the following reactions

$,0%" 51, 2507 (3 25)

$,03 + H' X+, HSO; +S0; (3 26)
k

SO, —» S0, +0 327

SO; + H,0 —% H,0, + SO, (3 28)
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Peroxydisulfate Oxidation of Am(V) in HNOQ,

Ermakov et al 77 have also investigated the kinetics of the oxidation of Am(V) by
S,0Z% 10n 1 009 to 0 6M HNO; media at 45 6 to 60°C According to Newton,”°®
the storchiometry of this reaction 1s

%S,02 + AmO3; - SO + AmO3* (329)

Ermakov and his coworkers account for their results on the basis of the rate law

—AAO - @ (1) (5208 ] [Am(V))?
=2 (kl < EH;]) [S:08]0 = ky (330)

where x, k;, kg, and [S,0% ], are defined as for Eq 324 At506°Ca’ =15 x 107°
mn!andb' =27 x 10*M ! mun?

From Eqs 324 and 3 30, 1t follows that the ratio ky/kjy; should equal 3 for
stmilar conditions of acidity and temperature This has been confirmed by Ermakov
etal 7’

Peroxydisulfate Oxidation of Am(111} in K,C0O; Media

Just as 1n acid media, the rate of oxidation of Am(III) by peroxydisulfate in
K,CO; solutions 1s determined by the rate of thermal decomposition of the S0z
ion In contrast to behavior in acid media, however, peroxydisulfate oxidation of
Am(IIT) in carbonate solutions proceeds through the intermediate formation of Am(V)
These conclusions were established by Ermakov et al 7® who studied oxidation of
0 001M to 0003M Am(III) in 1 3M to 2 46M K, CO; solutions by 0 025M to 0 1M
S,07 at temperatures in the range 58 to 83°C Under such conditions the rate of
oxidation of Am(III) to Am(V) 1s independent of the total Am and K,CO;
concentrations and equals the rate of decomposition of S,03 1ons The rate of
oxidation of Am(V) to Am(VI) 1s directly proportional to both the total americium
concentration and the S,03  concentration and 1s inversely proportional to the
K,CO3; concentration

The effective activation energy of S,03 oxidation of Am(III) to Am(V) n
K,COj; solutions 1s about 33 9 kcal moI'! which 1s close to the activation energy (33 5
kcal mol'') of the thermal decomposition of S,03” 1ons according to the reaction
S,0% > 280,

Reduction of Am{VI) in Acid Peroxydisulfate Solutions

In high acd (>1M HNO;) solutions at 50 to 70°C, thermal decomposition
products of the S$,03” 1on reduce Am(VI) to Am(V) For this reduction, Rykov
et al 7°2 propose the rate law
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—d[Am(VID)] _

I kv1[520§_]o=2<MH—] *kl) (3.31)

1+x

where [S,0%7], is the initial concentration of the peroxydisulfate ion, x =
ks/ke [H, O] and k,, kg, ks, and ke are the rate constants for Eqs. 3.25,3.26,3.27,
and 3.28, respectively.

The results of Rykov et al.”?2 thus indicate that the mechanism of reduction of
Am(VI) in the presence of S,03% ions is identical with that proposed (see page 67)
for oxidation of Am(V). The direction of the process—oxidation of Am(V) or
reduction of Am(VI)—is determined by the ratio of the contributions of the primary
processes of thermal decomposition of S,03 ions. At low acidities where Eq. 3.25
predominates, oxidation of Am(V) predominates. At high acidities, where the catalytic
pathway of decomposition (Eq. 3.26) dominates, Am(VI) is reduced. The hydrogen-
ion concentrations where the reaction paths change are temperature dependent.

Reduction of Am(VI) by Hydrogen Peroxide

Using 243Am in LiClO,-HCIO, media, Woods, Cain, and Sullivan”®® studied
kinetics of the reaction

2AmO2* + H,0, » 2AmO3; + 2H" + 0, (332)

These workers report that the empirical form of the rate law for Eq. 3.32 at 25°C and
u=1.00M is

—d[AmO3"]

at =k[AmO3"] [H,0,] [H'} °-'? (3:33)

Over the range of hydrogen-ion concentrations from 098M to 0.1M, log
k=4.952+0.007 — 0.12 £ 0.01 log [H'].

Reduction of Am(VI) by Other Reductants*

Shilov, Nikolaevskii, and Krot”?¢ have reported results of qualitative spectro-
photometric studies of the reaction of 2 X 107*M to 10°M 2*' Am(VI) in dilute
HNOj solutions with various reducing agents. According to their data (Table 3.5a),

*Woods and Sullivan [Inorganic Chemistry, 13: 2774 (1974)] studied the reaction between
AmO}* and NpO}, in 1M (H,Li)ClO, . The rate law is:
:‘[Ag:ﬂ =k[Am(VI)] [Np(V)]

At 25°C, k is (2.45 + 0.4) x 10* M sec’!; for this reaction, AH* = 6.66 + 0.08 kcal mol'! and
AS* = _16.2* 0.3 cal mol'! deg’.
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Table 3.5a

REDUCTION OF Am(VI) BY SEVERAL REDUCING AGENTS*
{{Am(VD], =2 x 10 -10*; 25°C}

Reductant Final solution
Reagent Concentration, M Medium Reaction rate Am(V), % Am(I), %

Oxahc acid 0022 0 5M HNO, Very fast 56 44

015 0 5M HNO, Very fast 57 43

015 pH=60 Very fast 57 43
Tartaric acid 00025 0 5M HNO, ty, =3 mm 64 36

00025 pH=40 ty, = 10 sec 63 37
Citric acid 00025 0 5M HNO, ty, =1 min 76 24
HCt 009 0 5M HNO, ty, =18 mun 100 0
HCOOH 00025 pH=40 ty, = 10 mm 100 0
HCHO 00024 0 1M HNO, ti, =2 mm 100 0
Li, SO, 001 0 1M HNO, Very fast 100 0
NH, OH 0 0025 0 1M HNO, Very fast 100 0
H,0, 00025 0 IM HNO, Very fast 100 0
N, H, 0 0025 0 1M HNO, Very fast 100 0

*From V P Shilov, V B Nikolaevskn, and N N Krot, Some Characteristics of the Reaction of
Amertcium(VI) with Reducing Agents in Aqueous Solutions, Radiokhimiya, 15: 871 (1973) through
Soviet Radiochenustry (English Translation), 15: 881 (1973)

oxalic acid and other organic compounds commonly regarded as complexing agents
reduce Am(VI) rapidly to approxmmately equal muxtures of Am(III) and Am(V),
whereas other reagents (H,0,, etc) reduce Am(VI) initially only to Am(V).
Mechamisms and rate laws mnvolved 1n reduction of Am(VI) and Am(V) by H,0, are
discussed on pages 68 and 69--70, respectively. Detailed studies of the kinetics of
reduction of Am(VI) by other reducing agents hsted in Table 3 5a have not been
reported

Reduction of Am(V) by Hydrogen Peroxide

From their studies of the reduction of AmO3 to Am>* by H,0, 1 0.1M HCIO,,
Zaitsev et al % deduced the rate law

—d[AmO}]
dt

where k = 14.8 £ 1.5,21.6 + 2.2, and 30.3 £ 3.0 liters moI"' hr'! at 25, 30, and 35°C,
respectively. The activation energy for the reduction reaction 1s thus 13.2 kcal mol™.

The only other reported studies of the Am(III)—~Am(V)—H,0,—-HCIO, system
have been made by Damen and Pages.®''®2? They report that the rate at which

= k[AmO‘;] [H,0,] (334)
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AmO3 1s reduced 1s inversely proportional to the HCIO,4 concentration and also 1s
strongly dependent on the mtial [Am>]o/[AmO3], and [H,0,]/[AmO3],
concentration ratios In 028 HCIO, at 26°C, the rate data could be described
satisfactorily by the relation®!

—d{AmO3] _  k[AmO3],[H,0,]
& TR (A To/[AmO T (335

where k = 3 3 liters mol' hr' and k' =0 13 (iter mol™* hr'')? Damien and Pages®??
suggested that a more general rate law for this system 1s

—d[AmO3 ]

1t = k[AmO3] + k'[AmO3 ] ? (3 36)

where k' and k are a function, respectively, of acidity and H,O, concentration
Damien and Pages did not attempt to determine these constants

Reduction of Am(V) by Np(I1V) in HCIO , Media

Blokhin, Ermakov, and Rykov®?¢ used a spectrophotometric procedure to study
the kinetics of the Np(IV)—Am(V) reaction 1n 0 23M to 1 97M HCIO, at temperatures
in the range 350 to 54 6°C Depending on the mitial concentrations of Np(IV) and
Am(V), the reaction products are either Np(V) and Am(IIT) or Np(VI) and Am(III)
The reaction rate falls rapidly with increasing acidity Under the assumption of
constant Am(IV) concentration, the kinetic data follow the rate law

d[Am3®"]

5 = ki [Np* "] [AmO2] +k; [NpO3] [AmO3} (337)

where k| and k), are, respectively, rate constants for Eqs 3 38 and 3 39

Np** + AmO}, _“t, NpO} + Am** (3 38)
NpO; + AmO} 54, NpO2* + Am** (3 39)

Values of k} and k3 are given m Ref 82c The authors of this reference also calculate
the following standard thermodynamic activation parameters for Eq 337 AH* =
30 % 1 keal mol™*, AG* =20 7 +1 0 kcal mol™!, and AS* =31 % 3 cal mol ! deg™’

Reduction of Am(V) by Np(V) in HCIO, Media

Rykov, Timofeev, and Chistyakov® 2d have determined spectrophotometrically the
rate of the reaction

2NpO} + AmO} +4H' - 2Np0O2* + Am*®* + 2H,0 (3 40)
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Kinetic data were collected in perchlorate media (u =2 OM) at temperatures in the
range 24 7 to 44 1°C According to these workers, reduction of Am(V) by Np(V) 1s an
irreversible second-order reaction with a rate law given by

—d[AmO3]_  1d[NpO;]
dt 2 dt

The rate of the reduction of Am(V) by Np(V) mncreases with acidity, at 24 7°C and
[H) =053M,k =071 mol™! mun whereas at 29 8°C and [H'] = 1 89M,k" =610
mol™ min' Standard thermodynamic activation parameters calculated by Rykov,
Timofeev, and Chistyakov® 29 for Eq 3 40are AH* =152 kcal mol™", AG* =200
kcal mol™" , and AS* = —16 cal mol™" deg™’

= k[NpO3] [AmO; ] (341)

Reduction of Am{(V) by Np(V) in Na,C0; Media

Kinetics of the reduction of Am(V) by Np(V) in Na,CO; solutions have been
investigated spectrophotometrically by Chistyakov, Ermakov, and Rykov®2¢ The
stoichiometry of the reduction reaction corresponds to the equation

4H" + AmO3 + 2NpO; > Am>* + 2Np0O3* + 2H, 0 (3 42)

Kinetics of this reaction were studied at 50 5 to 69 7°C 1 045M to 1 71M Na, CO;
solution contaming 0 0013M Np(V) and 0 0006550 *%> Am Under these conditions,
kinetics of the Am(V)—Np(V) reaction in Na, CO; media follow the same rate law
(Eq 341) as that followed m HCIO, media In 1 71M Na,CO; at 64°C, the rate
constant, k , 1s 150 + 15 The effective activation energy of Eq 3 42 1s independent of
Na, CO; concentration and 1s 14 5 + 1 0 kcal mol™!

Reduction of Am(V) by U(1V) in HCIO, Media

At 112 to 36 0°C m 0 SIM to 2 S50M HCIO,, the reaction between Am(V) and
U(IV) proceeds according to the reaction

AmO; + U** > Am?* + UO3* (3 43)

82f

Spectrophotometric measurements of Blokhin, Ermakov, and Rykov® “* show that the

rate law for this reduction reaction 1s given by

d[Am*"]

5 = K[AmO3"] [U*] (3 44)

In 20M HCIO; at 195°C, k=725+30 Standard thermodynamic activation
parameters for Eq 343 are AH* = 18 + 1 kcal mol™, AG* = 152+ 0 2 kcal mol™!,
and AS* =9 * 3 cal mol™* deg’’
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Self-Reduction of Am(V!) and Am(V) in Acid Peroxydisulfate Solution

Self-reduction of Am(VI) and Am(V) 4n varnious acid solutions 1s discussed on
pages xxx to xxx Ermakov et al ®> have now studied self-reduction of Am(VI) and
Am(V) at 18°C in 0 1M to 02M HNO; solutions contaming O 10M to 04IM
(NH,4),S,0s Alpha radiation doses ranged from 095 x 10%! to 9 64 x 10%! eV
liter! min™' Under such conditions the rate of reduction of Am(VI) is independent of
its concentration but 1s a function of dose rate and the concentration of S, 03 1ons
No Am(III) 1s observed until all the Am(VI) 1s reduced to Am(V) In the presence of
S, 0% 10ns, radiolytic reduction of Am(V) proceeds more slowly than that of Am(VI)

SOLUTION ABSORPTION SPECTRA

Am(lll)

A representative list of the vanious solutions 1n which the absorption spectra of the
Am®" 1on have been measured 1s compiled in Table 36 Table 37 lists molar
absorptivities at maximum absorption wavelengths for Am(III) in various media These
data as well as simular results presented later for Am(IV), (V), and (VI) should be used
with some caution, taking into account that the accuracy of the resolution of the
narrower absorption peaks may depend on the resolving power of the instrument with

Table 3.6
ABSORPTION SPECTRUM OF AM(III)

Typical
Media References spectrum
0 2M -10 4M HNO, 26, 64, 84 Fig 3 5a
0 2M-10M HC1 64, 65, 85 Fig 35b
02M-10 OM H, SO, 64, 86
0 1M-0 5M HCl1O0, DClO, 2,27,48, 64, Fig 3 5c
65,8791
4M 13 7M LiCl 92
11 4M LiBr 84 Fig 3 6a
6 0M K,CO, 84 Fig 3 6a
40wt % K,CO, 26
7 37M Mgl, 84
10M H, PO, 18 Fig 3 6b
Saturated KF 93 Fig 37a
Ethanolic HCl 88,94,95 Fig 37b

Fused LINO, -KNO, 96 Fig 37c




SOLUTION ABSORPTION SPECTRA

Table 3.7

PROMINENT ABSORPTION BANDS OF
AMERICIUM(II) IN VARIOUS SOLUTIONS

Absorption Molar
maximum, absorptivity,
nm liters mol™* cm ' Media Ref.
1302 02 0 5M DCIO, 89
1050 717 0 5M DC1O, 89
874 11 0 5M DClO, 89
818 440 40wt % K,CO, 26
815 619 10M H, SO, 64
813 66 3 0 SM DCIO, 89
811 644 0 IM HCIO, 64
811 430 10M HNO, 64
811 410 1M HNO, 26
510 1050 LINO, —KNO, 96
eutectic
508 270 0 40wt % K,CO, 26
5055 2600 11 44M LiBr 84
505 700 13 7M LiCl 92
505 168 0 10M HNO, 64
503 3780 0 IM HCIO, 64
503 3790 12M H, PO, 18
5012 170 0 Saturated KF 93
377 186 0 1M HClO, 64
360 155 0 1M HCIO, 88
335 129 0 1M HCIO, 88
235 2790 0 13 7M LiCl 92

which they were measured. In perchlorate media, major peaks m the absorption
spectrum of Am>* occur at 503 and 811 nm. Shifts in the position of these peaks
and/or changes 1n molar absorptivity which occur 1n other media are evidence for
formation of various americtum complexes.

Theoretical calculations of the electronic energy bands in the Am®” 10n have been
performed by several mvestigators ®' ®77'°° Such calculations revealed®”**® an
unexpected "Fq © le transition at about 17,500 cm™! which had not been observed
previously Subsequently a weak band near the calculated energy level was observed 1n
a concentrated americium solution.!®® The observed intensity of this band 1s
consistent with a weak electric dipole mechanism.’® The theoretical calculations also
predict transitions between the ground ’F, state and even J-levels to be more mtense
than those to excited odd J-levels ®' ®® The observed spectrum of Am** n
LiNO; —KNOj eutectic 1s in good agreement with the latter prediction
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Fig. 3.5a Absorption spectrum of Am(III) in HNO,. (Itom G. N. Yakovlev and V N. Kosyakov,
Spectrophotometric Studies of the Behavior of Amerncium lons i Solution, m Proceedings of the
International Conference on the Peaceful Uses of Atomic Energy, Geneva, 1955, Vol. 7, p. 363,
United Nations, New York, 1956 )
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Fig. 3.5b Absorption spectrum of Am(iIl) in HCl [From G R Hall and P D Herniman, The
Separation and Purification of Americium-241 and the Absorption Spectra of Trivalent and
Quinquevalent Americtum Solutions, Journal of the Chemical Society (London), p 2214 (1954) )
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Fig. 3.5¢ Absorption spectrum of Am(II) in diluted HCIO,. [From T H Keenan, Americium
and Curnium, Journal of Chemical Education, 36: 27 (1959).]

Am(1V)

The solution spectrum'® ' of Am(IV) has been measured 1n 10M to 12M NH,F
(Refs. 14, 15) (Fig 3.8a) and m 12M KF (Ref. 101) (Fig 3 8b), n the two solutions,
resemblance of the spectrum in band energy and intensity (Table 3 8) 1s evident The
spectrum m 13M NH,F and 12M KF also resembles very closely that of solild AmF,
(see pages 145 and 146).

Varga et al'®! have recently published an account of the first attempts at
nterpretation of the absorption spectrum of Am** in aqueous 12M KF and solid
AmF,, including term assignments Agreement between experimental and calculated
levels was generally excellent Correspondence between the calculated results obtamed
for Am*" 1n KF and AmF, was very close. Identical interpretations for the low energy
levels were obtamed, but some differences were found among the higher energy terms

Am(V)

The solution spectrum of Am(V) has been determined in 0.1 H,S0, (Ref 26)
(Fig 3 9a), 0 5M to 5 OM HCI (Ref 65) (Fig 3.9b) and in dilute HCIO, (Refs. 27, 48,

88) (Fig. 3 9¢) Molar absorptivities at maximum absorption peaks are listed 1n Table
38.
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Fig. 3.6a The 503-nm band 1n the Am(Ill) spectrum —, 1M HCIO,, ---, 11 4M LiBr, s
6 OM K, CO, solutions [From M Shiloh, M Givon, and Y Marcus, A Spectrophotometric Study
of Trivalent Actinide Complexes in Solutions III Americium with Bromide, Iodide, Nitrate, and
Carbonate Ligands, Journal of Inorganic and Nuclear Chenustry, 31: 1807 (1969) |
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Fig. 3.6b Absorption spectrum of Am(III) in 10M H, PO,,---, Am(IV)in 10M H,PO,,—,and
Am(VD) m SM H,PO,, — — — ([From E Yanmrr and M Givon, Higher Oxidation States of

Americium 1 Phosphate Solutions, Tnorganic and Nuclear Chenustry Letters, Supplement to
Journal of Inorganic and Nuclear Chenustry, 5: 369 (1969) |
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Fig.3.7a Absorption spectrum of Am(III) n saturated KF solution. (From C. E Thalmayer and
D. Cohen, Actinide Chemistry in Saturated Potasstum Fluonde Solution, in Lanthanide/Actinide
Chemustry, R. F. Gould (Ed.), Advances in Chemistry Series, p 256, 1971)
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Fig. 3.7b  Absorption spectrum of Am(III) in ethanolic HCI (for curves 1, 2, and 3 n=1, 10/3,
and 10, respectively). [From Yu. A. Barbanel, A. G. Gorskn, and V. P. Kothin, Absorption Spectra
of Am(III) in Standard Solutions of HCl, Radiokhimuya, 13: 305 (1971) through Sowviet
Radiochemustry (English Translation), 13: 314 (1971).]

To mterpret the spectra of the 5f* AmOj3 1on, Varga etal '°* made ab mitio
relativistic calculations of various spectroscopic parameters These calculated param-
eters were used to immitiate least-squares fits to 15 electromec energy levels of aqueous
AmO; mn 1M DCIO,-D,0. Correlation with 35 lower levels of the f* intermediate
spin—orbit coupling diagram allowed term assignments to be made to the experimental
aquo-ion levels.
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Fig. 3.7¢ Absorption spectrum of Am(III) LiINO,-KNO, eutectic at 170°C. (From D. M. Gruen,
S. Fried, P. Graf, and R. L. McBeth, The Chemistry of Fused Salts, in Proceedings of the Second
International Conference on the Peaceful Uses of Atomic Energy, Geneva, 1958, Vol. 28, p. 112,
United Nations, Geneva, 1958 )
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Fig. 3.8a Absorption spectrum of Am(@V) i 13M NH,F (From L.B. Asprey and R.A.
Penneman, Preparation and Properties of Aqueous Tetravalent Americium, /norganic Chemustry, 1:
134 (1962).]
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Fig. 3.8b Absorption spectrum of Am** m 12M XF, room temperature, 1-cm cells The observed
peak at 500 nm for Am(III) indicates mcomplete oxidation of the sample. [From L. P. Varga,
R. D. Baybarz, M. J. Reisfeld, and L. B. Asprey, Electronic Spectra of the 5f% and 5f° Actinides
Am'*, Pa’*, BK**, Cf**, and Es** Journal of Inorgamc and Nuclear Chemistry 35. 2775 (1973) |

Am(VI)

Table 3 9 hsts various aqueous media 1n which the spectrum of Am(VI) has been
measured Molar absorptivity values are shown in Table 3 8 The spectrum of Am(VI)
n acid media 1s not strongly affected by changes in 1onic environment Only small
shifts 1n band energies and/or ntensities occur mn different acids or at different
acidities '8 ©2 194 The spectrum of Am(VI) in carbonate solutions (Fig 3 12a),n 1M
CsOH (Fig 3 12b), and in acid solutions differs markedly

Varga, Reisfeld, and Asprey' °® calculated the spectrum of the AmO; " 1on from
the f> intermediate spin—orbit coupling diagrams Except for the lower energy levels,
agreement between calculated and observed (in 0 1M HCIO,) spectra was poor,
however The electron delocalization associated with the covalent character of the
Am—0 bond 1s believed'®? responsible for the deviation between calculated and
observed spectroscopic parameters
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Table 3.8

PROMINENT ABSORPTION BANDS OF AMERICIUM(1V)
V), (VD), AND (VII) IONS IN VARIOUS SOLUTIONS

Absorption Molar
maximum, absorptivity,

Ion nm Iiters mol * cm * Media Ref.
Am{(IV)* 920 260 12M H, PO, 18a
742 180 12M H, PO, 18a

456 300 13M NH, F 15

Am(V) 900 60 0 1M HCIO, 64

720 660 0 1M H, SO, 26

715 590 0 1M HCl10, 88

646 95 0 1M HCl0, 88

515 480 0 1M H, SO, 26

514 44 4 0 5M HCl 65

514 357 SM HCQl 65

513 450 0 1M HCIO, 88

415 120 0 1M HCIO, 88

Am(VI) 996 194 0 12M H,PO, 18a

996 1200 SM H,PO, 17

995 86 4 2M HCIO, 102

757 104 0 1M HCl10, 88

713 114 0 1M HCIO0, 88

663 305 0 1M HCIO, 88

619 126 0 1M HCIO, 88

548 128 0 1M HCl10, 88
400 5000 3 SM NaOH la
Am(VIID) 740 3300 3 5M NaOH ia
400 1600 0 3 5M NaOH 1a

*Molar absorptivities of Am(IV) in 12M H,PO, at 333, 357, 384,416,
and 454 nm are, respectively, 1363 + 19, 1029 + 11, 701 + 10, 365 + 12,
and 13819 !3b
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Fig.3.9a Absorption spectrum of Am(V) in 0 1M H,SO, [From L B Werner and I Perlman,
The Pentavalent State of Americium, Journal of the American Chemical Society, 73: 495 (1951) ]
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Fig. 3.9b Absorption spectrum of Am(V) in HCI [From G R Hall and P D Herniman, The
Separation and Purification of Americtum-241 and the Absorption Spectra of Tervalent and
Quinquevalent Americium Solutions, Journal of the Chemucal Society (London), p 2214 (1954) |
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Fig. 3.9c Absorption spectrum of Am(V) in 1M HCIO, (From R A Penneman and L B Asprey,
A Review of Amernicium and Curium Chemistry, in Proceedings of the International Conference on
the Peaceful Uses of Atomic Energy Geneva, 1955, Vol 7, p 355, United Nations, New York,

1956 )
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Bell' °7 has compared band positions of the transuranium actinyl spectra mcluding
those of AmO3 and AmO3* with the spacings between positions of the UO2* bonds
His results indicate that a single molecular orbital model can represent any of the
actinyl 1ons when the urany! 10n 1s assumed to have the bonding orbitals exactly filled,
and the transuranium actinyl i1ons are represented with the uranyl core and a

Table 3.9

SOLUTION ABSORPTION SPECTRUM OF Am(VI)

Typical
Media References spectrum
0 2M-14 3M HNO, 30, 104 Fig 3 10a
0 1M-6 OM H, SO, 63 Fig 310b
0 1M-2 OM HCl0, 27,48, 64, 88 Fig 3 11a
50M—-12 OM H, PO, 17,18a Fig 3 6b
M HF 105
0 1M Na, P, 0, 22 Fig 3 11b
0 LM Na, CO, 22 Fig 312a
1 OM CsOH 33 Fig 312b
75_llrrllllllll
1 30M HNOg
. 2 60M HNO,
A 3 91M HND;,

4, 14 34 HNO,

MOLAR ABSORPTIVITY

WAVELENGTH nm

Fig. 3.10a Absorption spectrum of Am(VI) m HNO, (From G N Yakovlev and V N Kosyakov,
An Investigation of the Chemistry of Americium, in Proceedings of the Second International
Conference on the Peaceful Uses of Atomic Energy, Geneva, 1955, Vol 28, p 373, United

Nations, Geneva, 1956 )
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Fig. 3.10b Absorption spectrum of Am(VI) in H,S0, [From G R Hall and T L Markin, The
Self-Reduction of Amencium(V) and (VI) and the Disproportionation of Americium(V) 1n
Aqueous Solutions, Journal of Inorganic and Nuclear Chenustry, 4: 296 (1957) |
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Fig. 3.11a Absorption spectrum of Am(VD) m 1M HCIO, (From R A Penneman and L B
Asprey, A Review of Amencium and Cunum Chemustry, in Proceedings of the International
Conference on the Peaceful Uses of Atomic Energy, Geneva, 1955, Vol 7,p 355, United Nations,
New York, 1956 )
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Fig. 3.11b Absorption spectrum of Am(VI) in 1M Na,P,0, [FromJ S Coleman, T K Keenan,
L H Jones, W T Carnall, and R A Penneman, Preparation and Properties of Americrum(VI) 1n
Aqueous Carbonate Solutions, /norganic Chemustry 1+ 58 (1963) |

progressive increase of electrons mn the first two orbitals lying above the bonding
orbitals

Am(ViI)

Green-colored solutions believed to contain some Am(VII) are prepared (see pages
54 and 55) by oxidation of Am(VI) in 3M to SM NaOH at 0 to 7°C with either O3 or
the O 1on radical The absorption spectra of Am(VI) and Am(VII) in 3 5M NaOH as
measured by Krot et al ! are shown 1n Fig 3 12¢
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Fig. 3.12a Absorption spectrum of Am(VI) m 0 1M Na,CO, {[From J S Coleman, T K
Keenan, L H Jones, W T Carnall, and R A Penneman, Preparation and Properties of
Amernicium(VI) in Aqueous Carbonate Solutions, Inorganic Chemustry, 1: 58 (1963) ]

COMPLEXES OF AMERICIUM IONS

Tabulated Formation Constants

Formation constants and pertinent experimental conditions under which they
were determined are collected in Tables 3 10 and 3 11 for complexes of Am** with
mnorganic and organic ligands, respectively (A few complexes for which formation
constants have not yet been measured are also cited ) Thus hsting 1s believed complete

(Text continues on page 99 )
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Fig. 3.12b Absorption spectrum of Am(VI) in 1M CsOH [From D Cohen, Americum(VI) in
Basic Solution, /norganic and Nuclear Chemustry Letters Supplement to Journal of Inorganic and
Nuclear Chemustry, 8: 533 (1972) ]
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Fig. 3.12¢ Absorption spectra of Am(VI) and Am(VII) m 3 5M NaOH 1, 0 0194M Am(V]), 2,
00194M Am-50% Am(VI) and 50% Am(VI) [From N N Krot, V P Shilov, V B Nikolaevskn,
A.K Nikaev, A D Gel'man, and V [ Spitsyn, Preparation of Americium in Heptavalent State,
Doklady Akademu Nauk SSSR (USSR ), 217: 589 (1974) through USAEC Report ORNL-tr-
2828, Oak Ridge National Laboratory, 1974 ]



Table 3.10

COMPLEXES OF AMERICIUM WITH INORGANIC LIGANDS

Temp., stll-:::th Log of formation constants
Ref. Method °C (), M Medium 8, 8, Other
Bromude (Br ), Refs 84, 108
84 Spec 25 8 74-114M LiBr -33+01 (AmBr*®)
Carbonate (CO,), Refs 64, 84
84 Soly 25 01-06MK,CO, [Am(OH)CO,), }*
Chloride (CI), Refs 92,95,108-119
92 Spec 25(7) 137M LiCl ~221+008 (AmCI®") 470 + 0 08 (AmCl})
109 SX 30£.01 10 LiC10, - L1iCl —025+0015
HC10, —HCl 014 + 0024 -053 0044
NaClO, NaCt 0027+001 -055+013
NH, ClO, —NH, Cl 0117+0017 0033+0020
110 IX 261 1o HCIO, —HCl —0057+0098 -0 82
NaClO, —-NaCl,pH 3 0 015003
111 SX 22+ 1 10 HCIOQ, —HC1 —0046 0010
112,113 sX 28 40 4M NaClQ, ~-015+007 -069+010
114 IX 0s 0 SM HCIO, -024
115 Relax 003 10
116 IX 20 4.0 HC10, —HCl -016:002 075014
118 Spec 25(7) * Kt 150 £ 20
T K.+ 60«20
Fluoride (F ), Refs 1204, 120b
120a SX PA) 05 NaClQ, —NaF 3391001 (AmF?") 611003 (AmF,) B, =90 (AmF,)
120b SX 25 10 NaClO, 249:002
Hydroxide (OH'), Refs 9a-11
11 EM 25 0005 HCIO,-NH,CIO, 107+ 01 (AmOH?") 2098 (Am(OH); |

(Table continues on next page )
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Table 3.10 (Continued)

fon:~ Log of formation constants
Temp., stre N
Ref. Method °C W), M Medium 8, 8, Other

10 PEP 15+ 1 0005 HCI-KCl 1132+002
9 SX 23+ 1 01 HCI0, -LiCIO, 83

Nitrate (NO,), Refs 84,109-111,121-126
84 Spec 25 8 0M LINO, 13+01(AmNO2Y)
122 IX 20-25 10 1 0M NH,ClIO,,pH 15 060
123 SX 25¢002 10 HCIO, —HNO, 025+002
109 SX 30.601 10 NH, ClO, -HNO, 023 013 [Am(NO,)} ]
110 IX 26+ 1 NaClO, —NaNO,,pH 30 020:003

HCIO, HNO,,pH10 015+003 -0 40

111 SX 22+ 1 10 HCIO, —HNO, 025+007
121 X 201 80 8 OM HCIO, -0 33 -077 By =~14 [Am(NO,), |
124 §X 10 1 0M NaClO,,pH 3 0 -026
126 sX 25 20t NH,NO, —-HNO, 020+:003

Perchlorate (ClO, ), Ref 127
127 SX 25 20 HBF, —HCIO, ~007 + 003 (AmCIO?")

Phosphate (H, PO, ), Refs 128,129
128 IX 20+ 1 10 1 0M NH, Cl 148 {Am(H,PO,)*"] 210 (Am(H,PO,);) B85 =285 [Am(H,PO,),]

B, =34 [Am(H,PO,),]

129 IX 25+01 02 0 2M NH, C10, 169+078

Sulfate (SO27), Refs 110, 112,122, 124, 130-135
110 IX 26+ 1 1 13 NaClO,,pH30 1 49 (AmSO}) 247 [Am(S0,),]
124 SX 1-13 NaClO,,pH30 147 259
122 IX 20-25 075 0 75M NaClO,,pH 3 5 178
130 X 15 1 SM NH,C1O,,pH 35 176 211
112,131 SX 25 10 1 0M NaClO, 157+009 266+008
132 SX 25+01 20 2 0M NaClO, 143+ 006 183:012

88
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133

134

109

112,136

126
137

138
139
140
141a
141b

142

Thiocyanate (SCN'), Refs 109, 112, 126, 136-141a, 141b

IX 27 10
SX 24-25 05
IX 25 05
SX 30¢01 10
SX 25 50
SX 25 20
IX (V)

50
X 25 10
SX 50
SX 25+01 10
Spec 22+ 1 10
SX 25 50

HCIO, —H, SO,

NaClO, —Na, SO, , pH 3 0

0 $M NaClO,
0 5M NaClO,

LiC10, + LiISCN
NaClO, —NaSCN
NH, Cl0, —-NH, SCN
5 0M NaClO,

NH,NO, —-NH, SCN

0 5M NH, ClO,

5 0M NH, ClO,

NaClO, ~NaSCN

5 0M NaClO,

NaClO, + NaSCN, pH 2 0
1 OM NaClO,

NaClO, + NaSCN

Trimetaphosphate (P,0)7), Ref 142

X

25+01

02

NH,CIO, ,pH2 4

122:001

148001 235+001
185001 279+001
186001 273+001

' =054+003 [Am(HSO,)} ]

006 + 0 04 (AmSCN?*") 024 + 003 [Am(SCN); |

017+005 051+003
012006 056+002
085+005

055+015 074+003
066+ 003 (p=0)

024

050x001 084+007
060+006

036:003 -001+020
076 +003 083+007
059005

248 + 004 (AmP,0,)

B, =055+ 015 [Am(SCN), ]
6, =00+015 [Am(SCN), ]
g, =087+003

‘33 =004

8,=022:026

B, =221+021 (AmHP,0;)

*85 vol % succinonitrile —15 vol % acetonitrile
+Equibibrium constant for reaction AmCl; +Cl - AmCl}
iPropylene carbonate

§ Estimated value
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TABLE 3.11
COMPLEXES OF AMERICIUM WITH ORGANIC LIGANDS
Tonic L £ 1 " t
Temp., strength - - og of formation constants
Ref. Method °C )M Medium g, 8, Other

Acetic aad (HAc), Refs 28, 143-147
143 IX 20 05 90MHAC 228 (AmMALY) 3 84 (AmAc; B; =478 (AmAc,)
8, =57 (AmAc,)
Bs — 666 (AmAL?)
B, =762 (AmAc})
144 PotT 20 10 10MNH,CQO, 181 320 B,=457,8,=51
B, =673,8,-773

145 SX 25-01 20 20MNH, (O, 195+011
146 IX 20 05 05M NaClO, 199 +001 327+007 B, =39
147 IX 25(M) 02 i 215 383
25(7) 05s ? 2 30 381
25(7) 10 i 208 362
28 SX ~25 01 10M Ac 140 (AmO, A¢) 251 (AmO, Ac,)
a Alanine (ALAN), Ref 148
148 SX 25 20 20M NaCiO, 079 (AmALAN®")
Anthraml N N-diacetic aad (H, ADA), Refs 149,150
149 150 1X 25 01 01MNH,CIO, 892 (AmADA) 14 5 (Am(ADA)® )
Arsenazo (I (AZ), Refs {51a, 151D
1514 Spec HAc, HNO, AmAz AmAZ, AmAZ,
151b Spec pH3 6 AmO,AZ
N Benzoylphenylhydroxylamime (NBPHA), Ret 152
152 SX g=" lAm(NBPHA)3]
Benzoyltrifluoroacetone (HBTA), Ref 153
153 SX 25 01 NH,CO, B, - 14 84 [Am(BTA), |
Citric aad (H,Cit), Refs 154-160
154,155 Spec 25 10 10MNaClO, 696 (AmCit) 10 3 [Am(C1t)] ] 8, =4 53 (AmHC1t")

B(7) ~ 5 61 (AmCitOH)
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155

156

157
158

161

162
163
164

165

155

166

167

150
169
170
171
172
173
174
175
176

179

IX 25 01 0 LM NaClO, 916+003

05 05MNaClO, 873+ 0066

10 1 0M NaClO, 672+005
IX 25 01 01M NaH,Cut 674 1155
IX [ OM NH,C1 711 140
PLP 0 04M 9 66
Decanohydroxamic acid (HDHA), Ref 161
SX 20 01 0 1M NaClO,

1,2 Diaminocyclohexanetetraacetic acd (H, DCTA), Refs 162 165

EM 2005 01 KCI+HC 18 34 (AmDCTA )
IX 25 £ 1 01 O01IMNH,CIO, 1879
IX 80 0 00IM H,DCTA 18794

+0 02M ammonium
a hydroxyisobutyrate
SX 20 01 OLIMNH,CI 18 21

1,2 Diaminopropanetetraacetic aud (H, DTPrA), Ref 155

X 25 01 01M NaClO, 17 69 (AmDTPrA )
Dibutyl-(PP')-ethane-(1,2)-diphosphonic aud (H, B, EDP), Ref 166

SX 25 10 10M NaCO,

§,7-Dichloro 8-Hydroxyquinoline (HDCO), Refs 167, 168

SX 25+05 01 01M (NH, H)O0,
Diethylenetriaminepentaacetic aud (H, DTPA), Refs 150,169 178

IX 25 01 O01MNH,CO, 2307 (AmDTPA? )
IX 25 01 O IMNH,CIO, 2292

EM 25+02 01 O01IMKNO, 2274

SX 01 232

Spec 25 01 232

Spec 25 01 OIMNH,CIO, 24 03

Spec 20:01 05 HCIO,, HNO, 2209

IX 25 01 O0IMNH,CO, 2332

IX 25 10 10MNH,CIO, 213

Diethyiphosphinylproprionic aad (HDEPP), Ref 179

1X 25 05 NH,ClO, HCIO, 1 76 (AmDEPP?*)

316 [Am(DEPP)’ |

g, ~ 700
8, =629
g, =424
g, =531

g, = 823 [Am(HCit), |
g5 =829 [Am(H,Cat), |

8(") = [Am(DHA), + 2H, (DHA), |

g, =287 (AmHDCTA)

8, =979 (AmHDTPrA)

g, =14 52 (Am(HB, LDP),)

8, =21 93 (Am(DCO),)

g, =14 06 (AmHDTPA )

g =143

g, =1546

(Table continues on next page )
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Table 3.11 (Continued)

Temp., stlrz:::th Log of formation constants
Ref. Method °C W), M Medtum B8, 8, Other
Diglycolic acid (H, DGA), Ref 180
180 Spec 252 01 O01MNH,CIO, 647 (AmDGA") 10 96 [Am(DGA), ] 8; =13 83[Am(DGA)} ]
Dioctyl-(PP")-ethane-(1,2)-diphosphonic acid (H, O, EDP), Ref 166
166 SX 25 10 10M NaClO, 8, =19 53 [Am(HO, EDP), |
Diphosphine dioxides,* Ref 181
181 SX 25 20 20M NaNoO, 143 {Am(NO,), - (1,1-DiPO)]
656 [Am(NO,), - 2(1,4-D1PO)]
592 {Am(NO,), * 2(1,5-D1PO)}
Ethylenediamine-bis41sopropylphosphonic acid (H, EDIP), Ref 182
182 EM 25 01 O0IMKNO, 18 00 (AmEDIP) g, =626 (AmH,EDIP?*")
g = 894 (AmH, EDIP")
8" = 1395 (AmHEDIP)
Ethylenediamine-bis-methylphosphomc acd (H, EDMP), Refs 183, 184
183 EM 25 01 01IMKNO, 16 57 (AmEDMP ) B, =615 (AmH,EDMP?")
8Y = 7 90 (AmH, EDMP*)
8y’ =12 23 (AmHEDMP)
184 IX 25 05 05MNH,CIO, g, =612 (AmH, LDMP*)
Ethylenediamnetetraacetsc acid (H,EDTA), Refs 155, 160, 165,173,185 190
155 IX 25 01 0IMNaClO, 18 15 (AmEDTA )
05 05M NaClO, 16 36 8, =9 68 (AmHEDTA)
10 10OM NaClO, 15 72
155 Spec 25+02 10 NaClO,, HCIO, 1533 2210 [AM(EDTA)S | g, =894 (AmHEDTA)
165 SX 20 01 OIMNH,Cl 1691+ 004
173 Spec 25 01 O0I1IMNH,CIO, 18 06
185 IX 25+00201 O IMNH,CIO, 1816+ 010
186 X 10 10MNH,CIO, 1803+013 g, =10 29 (AmHEDTA)
187 EM 25¢05 01 HCI+KCl 170 g, =921 (AmHEDTA)
188 IX 80 01 O0O00IMH,EDTA 17 14
+0 2M a-

hydroxyisobutyrate

26
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190

191

155

150

192

146
193
155
185

155

194

155

150, 195
156
173
196a

196b

EM 25+01 01 OIMKNO, 17 00 £0 09

Ethylenediaminetetramethylphosphonic aad (H, EDTMP), Ref 191
EM 25+01 01 O IMKNO, 2247 + 0 08 (AmEDTMP® )

Ethylenediammetetraproprioruc acid (H, EDTP), Ref 155
Spec 25+02 10 NaClQ,,HCIO, 18 84 + 0 02 (AmLEDTP)

I thylenegly col bis 2 aminoethyltetraacetic aad (H, EGTA), Ret 150
1X 25 01 0 1M NH,ClO, 18 22 (AmEGTA)

Glycne (HGLYCN), Ref 192

SX 25 20 20M NaClO, 069+ 002 (AmGLYCN?")
Glycolic actd (HGLYC), Rets 146 155,193

IX 20 05 05M NaClO, 2 82 (AmGLYC?")

SX 25 20 20M NaClO, 259

Spec 25+02 10 NaClO,, HCIO, 244 +002

9.4 28 05 05MNaClO, 257+002

Hydrazine-¥ Ndiacetic aad (H, HyDA), Ret 155

IX 25 01 0 1M NaClO, 10 74 (AmHyDA")
Hydrazinetmimodiacetic aud (H, HyIDA), Ret 194

EM 25 01 01MKNO, 10 98 (AmHyIDA"

2-hydroxycyclohevylethylenedaminetriacetic aud (H,HCEDTA), Ref 155
IX 25 01 01MNaClO, 16 09 (AmHCEDTA)

485 [AMGLYOY |

429:02
401+01

20 20 [Am(llyDA), |

1997 [Am(HyIDA), |

N'(2 hydroxyethylethylene-N, N, N' —tracetic aad (H,NHEDTA), Rets 150, 155 173,195, 1964

IX 25 01 HCO,,NH,ClO, 15 72 (AmNHEDTA)
Spec 25+02 10 HClO,,NH,CIO, 14 84

Spec 25 01 O I1IMNH,ClO, 16 18

IX 22 015 HCILKCl 15 34
Hydroxyethylidenediphosphonic acid (HEDPA), Ref 196b

SX 25 01 HNO,-NaNO,

2247 [AM(NHEDTA)? |

2218

8, =921 (AMHEDTA)
Bg=1998 (AmOHI DTA? )

g, =48+06 (AmH,LDTMP)

g'=1733+009 (AmH, EDTMP)

g =1117+ 007 (AmH,LDTMP)
g/ =14 90 + 0 06 (AmH, EDTMP)
g =18 45 + 0 08 (AmHLDTMP)

g, =12 31 (AmHEDTP)

8.~ 630 [AMGLYC), |

g, ~520

g - 413 (AmHHyIDA®")

8, - 744 (AmHHCI DTA")

8, = {Am(H,LDPA)} )|

(Table continues on next page )
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Table 3.11 (Continued)

fome Log of format tant
Temp., strength og of formation constants
Ref. Method °C W), M Medium 8, 8, Other
N'(2-hydroxyetliylimmodiacetic acd (H, NHIDA), Refs 149,150, 173, 197, 198
149,150 IX 25 01 OIMNH,CIO, 9 14 (AmMNHIDA") 17 04 [Am(NHIDA), |
173 Spec 25 01 O0IMNH,CO, 9 80 17 01
197 SX 01 93:01
198 EM 25 01 OIMKNO, 93+013 165+02
a Hydroayisobutyric acid (HIBA), Refs 155, 199-201
155 Spec 25+02 10 HCIO,,NaClO, 2 68 (AmIBA®") 4 38 [Am(IBA); ]
155 IX 25+02 05 OSMNH,CIO, 288+001 403+002
199 X 0S5 NH,CIO, + NH,IBA 238 467 8, =512 [Am(IBA), |
200 IX 272 469 8, =564
201 SX 05 g, =61
bis Hydroxymethylphosphinic aaid (HMPA), Ref 202
202 IX 25 02 176+ 006 (AmMMPA?") 248 +0 02 [Am(MPA); |
Hydroxymethylphosphonic acid (HMP'A), Ref 202
203 IX 25 02 O02MNH,CIO, 155 (AmMP’' A?") 318 {AmMP'A); |
o Hydroxyphenyliminodiacetic aad (H, HPIDA), Ref 204
204 SX 25+01 01 0IMNH,CIO, 6 80 [Am(HPIDA)?") 119 [Am(HPIDAY |
2 Hydroxypropane-1-3-diaminetetraacetic aud (H, PDTA), Ref 173
173 Spec 25 01 O0IMNH,CIO, AmPDTA Am,PDTA?*
8 Hydroxyqumoiine (HOX), Refs 152,167, 168
152 SX AM(0X),
167 SX 25+05 01 01M (NH, H)IO, Am(OH)(0X),
8 Hydroxyquinoline—5-sulfonic aad (H, OXSA) Ret 205
205 IX 25+02 01 O IMNH,CO, 8 64 + 0 09 (AmOXSA®)
Iminodiacetic acid (H,IDA), Refs 150,155,173, 180, 206
150 1X 25 01 01MNH,CIO, 7 37 (AmIDA") 12 39 (Am(IDA), )
155 Spec 25+02 10 HClO,,NaClO, 614
173 Spec 25 01 01IM NH,CIO, 694 8, ~ 3 34[Am(IDA)] |
206 Spec 25 0005M H,IDA AmtIDA)3

v6
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205

153

148
207
208a
208a
208b

150

205

150

203

209
210

153

211,212

211,212

211,212

7-lodo-8 hydrozyqumnoline S-sultonic aud (H,10XSA), Ret 205

X 25+02 01 0OIMNH,ClO, 6 92 (AmIOXSA")
8 Isopropyltropolone (HIPT), Ref 153

SX 25 01 NH,CIO,

Lactic acid (HLACT), Refs 148, 207-208

SX 25 20 20MNH,CIO, 252 (AmLACT?")
IX 05 O0SMNH,CIO, 277

SX 20 0S5 OSMNH,CIO,

IX 20 05 O0SMNH,CIO,

PEP 10 1S KCl+HLACT 257

N Methyliminodiacetic acd (H,MIDA), Ref 150

IX 25 01 0IMNH,ClO, 7 01 (AmMIDA")
6 Methyl-2-picoline actd (HMAPS), Ref 205

IX 25+02 01 0 IMNH,CIO, 4 26 (AMMAPS?")
6-Methy! 2-prcolyliminodiacetic acid (H, MPIDA), Ret 150

1X 25 01 01MNH,ClO, 8 38 (AmMPIDA")
Methylolethylphosphoric aad (HMEPA), Ref 203

IX 25 02 02M NH,CIO, 179+ 012 (AmMEPA*")
(Methylphenylphosphiny!l)-methylphenylphosphinic aad (HMPPA), Ret 209
SX 2§ 02 02M NH,CIO, 3 35 (AmMPPA?")
Methylphosphinic acid (HMPA), Ref 210

X 25+02 05 NH,ClO, 2791 (AmMPA®")
Napthoyltrifluoroacetone (HNTA), Ret 153

SX 25 01 NH,CIO,

Nitriloduceticmonobutyric aaid (H, NDMBA), Refs 211, 212

IX 25 01 NH,CIO,

Nitrilodtaceticmonoproprionic acid (H, NDAPA), Refs 211, 212

1X 25 01 NH,CO, 10 54 (AmMNDAPA)
Nitnilodiaceticmonovalenic acid (H; NDAVA), Refs 211, 212

IX 25 01 NH,CIO,

g, =21 37 [Am(IPT), |

477 [AM(LACT)} ] 8, =598 [Am(LACT), |
464
§,=571£003
8,=573
421

12 51 {Am(MIDA), |

8, 18 31 (Am(NTA),)
8, =353 (AmMHNDMBA)

17 83 [Am(NDAPA);] | B, 402 (AmHNDAPA)

=

" =347 (AmHNDAVA)

(Table continues on next page )
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Table 3.11 (Continued)
Tonic
Temp., strength Log of formation constants
Ref. Method °C W), M Medium 8, 8, Other

155

165
176
180
211
212
214
215b

152

165
186
215a
160
216
217
170
217b

218

218

218

218

Nitrilotriacetic acid (HyNTA), Refs 155,165,176, 180, 211-215b

IX

SX
IX
IX
IX
X
Spec

Nitrosophenylhydroaylamine (cupferron), Ref 152

SX

25+02 01

0Ss
20 01
20 10
256 01
25 01
25 01
246 01
20 01

0 1M NaClo,

0 SM NaClo,

0 1M NH, ClO,

1 0M NH, CIO,

0 1M NH, CIO,
NH,ClO, HCIO,
0 IM (NH, HCIO, )
0 1M NH, CIO,

1172+ 002 (AmNTA)
1084 + 006

10 70

10 87

1191

1152

11 68

1199

11 65

Oxahic aud (H,0x), Refs 160,165,170,186 189, 215-217b

SX
IX
Soly
1X
EM
SX
1X
Spec

20 01

10
25 00
20 25 02
25 01
25 10
25 (U]
25+01 025

0 1M NH, Cl

1 OM NH, (1
HCIO, —H,Ox

0 2M NH,CI0,
NH, CI-HCl

1 OM NaClQ,

0 5M NaClO,
Oxalate, pH 1 -5

710 (AmOx*)
599

645

463

38+002

327 (AmO,0x )

1 Phenyl-3-methyl<4-acetyl pyrazolone-5 (HPMAP), Ref 218

SX

25 01

0 1M NH,CIO,

1 Phenyl-3 methyl-4-benzoyl pyrazolone-5 (HPMBP), Ref 218

SX

25 01

0 1M NH,CI0,

1-Pheny! 3-methyl-4-trichloroacetyl-pyrazolone-5 (HPMTCP), Ref 218

SX

25 01

0 1M NH, ClO,

1 Phenyl-3-methyl4 triflucroacetyl-pyrazolone-5 (HPMTFP), Ref 218

SX

25 01

0 1M NH, ClO,

19 71 {Am(NTA); |

2018
2024
2047
211

1952

Am(Cupf),

83 [Am(OX),]
995

112

101

105

835
861001

209 [AmO, (Ox)? ]

B,

B;

Bs

fs

B,

=13 56 |AMNTA(HNTA)? |

118 [Am(On)? |
= 11 0 [Am(HOX), |
123 -

=112

=12 23 [AmM(PMAP), |

= 16 49 [Am(PMBP), |

=747 [Am(®PMTCP), |

=970 [Am(PMTI P), |
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219

205

205

149,150

154, 155

205

205

205

148

220

220

157
165
222

Phosphonoacetic acid (H,PAA), Ref 219
IX 25 02 NH,CIO,

Pyridine-2-carbonic aaid (HAPS) Ref 205

1X 25«02 01 0 1M NH,ClO, 428 + 0 05 (AmAPS*")
a-Picolinic acid-V oxide (HAPSNQ), Ret 205

1X 25+02 01 OI1MNH,CIO, 309 + 007 (AMAPSNO?")
2-Prcolylimmodiacetic aud (H, PIDA) Rets 149 150

IX 25 01 01MNH,CIO, 8 96 (Am(PIDA"))

Propanetricarboxyhc acid (H, PTA), Ret 154,155

Spec 25 10 10M NaClO, 561+ 007 (AmPTA)
a-Pyndylacetic aud (HAPAA) Ret 205
IX 25+02 01 OIMNH,CO, 363+ 007 (AmAPPA?Y)

Pyridine 3-carbozylic aad [Nicotinie aud] (HNIC), Ref 205
IX 25:02 01 O01MNH,QO, 318+ 007 (AmNIC*")

Pynidine 2 6-dicarboxylic aud (H, PDA), Ref 205

X 25+02 01 0I1MNH,CIO, 933:009 (AmPDA")

Pyruvic acsd (HPRUV), Ret 148
SX 25 20 20M NaClO,

bis 3-Methoxy-salicylidenealdehydeethylenedumine (B-3 MoxSLDI), Ref 220
SX 25(7) 03 03MKNO,

bis-Salicylidenealdehydeethylenediimine (BSLDI), Ref 220

203 (AmPRUV?*")

SX 25(7) 03 03MKNO,

Squaric acid (H, Sq), tRef 221

IX 25 10 HCIO, -NH,ClO, 217 (AmSq*)
Tartaric acd (H, TART), Refs 157,165,222

1X 1 0M NH, Cl

$X 20 01 O0IMNH,CI 39 (AmTART")
PLP ) ™ )

@' =275 [Am(H,PAA)*"|
£ =515 (AmHPAA")
@' = 85 [Am(HPAA);)]

799 £ 0 03 [Am(APS), | §,= 10 51 + 0 05 [Am(APS), |
549 + 007 [AM(APSNO)} |

17 71 (Am(PIDA) )

8, =496 + 002 (AmHPTA")

SNOI NADDIYIARY 40 SIXTATINOD

16 51 « 0 09 [Am(PDA) |
3 34 (Am(PRUV), | 8, = 3 87 (AM(PPRUV) )

g =659 [AmH(B 3MoxSLDI) |
g, ~ 494 [AmII(BSTDL), |

310 (Am(Sq),)

107 [AM(TART),]
68
788

(Table continues on next page )
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Table 3.11 (Continued)

fonic .
Temp., strength Log of formation constants
Ref. Method °C w,M Medium B8, 8, Other

Taurine-V,N-diacetic acid (H, TDA), Ref 150

150 IX 25 01 OIMNH,CIO, 8 08 (AmTDA) 8, =229 (AmHTDA")
Tetraethylenepentaammeheptaacetic acid (H, TPHA), Ret 173

173 Spec 20«01 01 OIMNH,CIO, (" YAmMTPHA® ) (M) [AM(TPHA). ' |
Thenoyltrifluoroacetone (HTTA); Refs 153,223

153 SX 25 01 NH,CIO, 34(AmTTA") 85 [AmM(TTA);] 6, =133 [Am(ITA), ]
Thiodiglycolic acid (H, TDGA), Ref 180

180 Spec 256 01 OIMNH,CO, 352+ 008 (AmMTDGA") 566+ 007 (Am(TDGA),) £, =206+ 008 (AmHIDGA®*")
Thioglycolic acid (HTGLYC), Ref. 146

146 IX 20 05 O0SMNH,CIO, 1 55(AmGLYC?") 260 [Am(IGLYC(); | (7)) |[AM(TGLYO), |
p-Toluenesulfonic acid(pTSAH), Ref 127

127 SX 25 20 HCIO, —pTSAH —0028 + 0 028 (AmpTSA?™)

127 SX 25 20 HBI,-pTSAH 0075+ 0018
Triethylenetetraaminehexaacetic aaid (H, TTHA); Refs 150, 173

150 X 25 01 OIMNH,CO, g, =18 13 (AMHTTHA? )

g7=1185 (AmH, TTHA )
173 Spec 25 01 O0IMNH,CIO, 27 61 (AmTTHA® ) 8=3097 (Am, TTHA)

5=915 [Am, U (TTHA® |

*1,1-D1PO = (C,H, ,), P(O)CH, (O)P(C,H, ,),, 14 DIPO=(C,H,,),P(OXCH,), (O)P(C,H,,),; 1,5 DIPO=(C H, ), PIOXCH;) (O)P(C H, ),
At u=0

1 Diketocyclobutenediol

§Calculated value at 25°Cand u = 0 IM

86
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COMPLLXES OF AMERICIUM IONS

for all data reported prior to 1974 * Earlier compilations of formation constants of
americium complexes are those of Jones and Choppmn,*”® Martell and Sillen,22*
Marcus, Givon, and Shiloh,22%2 Keller,* € and Gel’man et al 225?

The following abbreviations are used mn Tables 310 and 311 Spec, spec-
trophotometry, Soly, solubility, SX, solvent extraction, IX, 1on exchange, Relax,
relaxation, EM, electromigration, Pot T, potentiometric titration, and PEP, paper
electrophoresis

The constants k, and 8, shown in Tables 3 10 and 3 11 are defined for the reaction
of a cation M with a ligand L as follows

ML), _ ML , . [ML]

ke=b= v e T Mo 0 © T ML o o

_ ML, ] _ ML}
T Rl O R

and

B2 =kiky, B3 =k kaks, etc

Complexes with Inorganic Ligands

All the formation constants histed m Table 3 10 are for complexes formed by
Am(IIT) Keller®“ observes that the complex formation of trivalent americium is
probably better known than that of any other trivalent actinide element but that very
little work has been done on complexes of Am(>III) Color changes (Table 3 1)
indicate existence of Am(VI) nitrate, sulfate, and fluonde complexes There 1s also
spectrophotometric evidence?*® for the existence in 1M NaOH solution of a peroxide
complex of Am(V) Quantitative data are lacking for the 1dentity of these latter
complexes and their formation constants

Attempts to seek correlations within the data on formation constants of actinide
complexes are largely frustrated, as pointed out by Jones and Choppm,"7b by the
wide range of 1onic strengths and supporting electrolytes used However, at an 1onic
strength of 1 0OM to 2 0M, the stability sequence for complexes of Am(III) with
monovalent morganic ligands appears to be

F >H,P0; >SCN >NO; = Cl > Cl0,

*A recent paper by E M Rogozina, L F Konkina, and D K Popov published 1n
Radiwokhimiya 16 383 (1974) [Soviet Radiochenustry (English Translation) 16. 382 (1974)] hists
formation constants for complexes formed by Am(III) with various amino acids
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CHI MISTRY IN AQULOUS SOLUTION

(The formation constant for AmSCN?* recently determmed by Chiamuzia, et al ' 26 1s
notably out of line with values measured by other mnvestigators ) Americium(I11) forms
relatively strong complexes with SOZ™ and P,0J™ 10ns

The complexing behavior ot Am’* + aq indicates 1t, like other actimde and
lanthanide 1ons, 1s a Chatt—Ahrland 227 type “A” or Pearson?2%¢ “hard”
cation with a charactenstic coordination number''® of 8 or 9 1n aqueous solution
Association of Am’®* with inorganic ligands proceeds imtially through elec-
trostatic interactions to form outer-sphere complexes In some cases (eg, F,
SO3Z ), however, there 1s thermodynamic evidence (see pages 75 and 77) that the
higand displaces the water of hydration, at least to some extent, to torm inner-sphere
complexes Spectrophotometric results of Marcus and Shiloh®2 18 also provide
evidence for inner-sphere complexation of chloride and nitrate to Am®*
concentrated LiCl and LINO; solutions, respectively Preparation of the solid
compound [(C¢Hs)3PH] 3 and AmClg, containing the octahedral hexahalide complex
AmCIY", has been described by Ryan ''? Spectra of solutions of [(CgHs);PH]5
AmClg 1 propylene carbonate and 11 15 vol % acetonitrile —85% vol % succinonitrile
were measured by Marcus and Bomse ' 18

The stability of Am® " complexes in many cases 1s similar to that of complexes of
lanthanides of equal 10onic radius In some cases, however, where bonding presumably
involves f electrons, the stability of the Am®" complex 1s slightly greater than that of
the corresponding lanthanide complex 222® Advantage can be taken of this difference
1n stability to effect a separation of Am®" from lanthanide elements The properties of
Am?®*—chloride and thiocyanato complexes are particularly useful (Chap 5) for this
latter purpose. lon-exchange studies?25°227232 with both anion resins and long-chain
amme hydrohalides show that Am** in concentrated LiCl and HCI solutions 1s
complexed with the probable formation of the species AmCl, and LiA; AmClg in the
organic resin and amine phases, respectively (In the LiA, AmClg species, A" 15 the
result of the dissociation of one chloride 1on from an amine hydrochlonde
aggregate 2>3) The predommant aqueous-phase species in the concentrated LiCl and
HCI solutions 1s AmCl;

Complexes with Organic Ligands

Other than those for acetate, diethylenetriaminepentaacetic acid (DTPA), ethyl-
enediamunetetraacetic acid (EDTA), and oxalate complexes of Am(V), all the data in
Table 3 11 are for complexes of Am(ITI). The higher oxidation states of americtum are
relatively strong oxidizing agents and are not stable in the presence of most organic
complexants

For three-quarters of the approximately 80 different organic hgands listed in
Table 3.11, formation constants of complexes with Am(III) have been measured only
once by a single group of mvestigators. The accuracy of these formation constants
cannot be fully determuned in the absence of comparative data. In contrast, formation
constants for complexes of Am(III) with hydroxycarboxylic (e. g., citric, glycolic,



COMPLEXES OF AMERICIUM IONS

lactic, and tartaric) and aminopolycarboxyhc (HsDTPA, H;EDTA, H3NTA, etc)
acids so useful 1n separative work have been determmed by many nvestigators using a
variety of experimental conditions and techniques. For these latter complexants, with
some obvious exceptions (e.g., data for citnic and tartanic acids), formation
constants determuned by the several investigators for a particular complex at a given
tonic strength are 1n fairly good agreement

Examination of the results in Table 3.11 reveals that aminopolycarboxylic acids
complex Am(IIl) more strongly than do either hydroxycarboxylic or aminoalkylpoly-
phosphoric acids (e.g., ethylenediamine-bis-methylenephosphonic acid) Keller®®
observes that m the series of a-hydroxycarboxylic acids (e g., glycohc and lactic) the
stability of the americium complex decreases with increasing number of carbon atoms
The stability of the complexes of Am®* with aminopolycarboxyhc acids increases
linearly (Fig 3 13) with the number of bound donor atoms of the ligand Reference
has already been made to the changes mn the absorption spectrum of Am® " as the result

3°l|11||[r

N
o

STABILITY CONSTANTS LOG 8,
=]

[ RN BT R R B

o 2 4 6 8 10
AVAILABLE LIGAND COORDINATION SITES

Fig. 3.13 Correlation of stability constants with number of available coordmation sites 1,
mminodiacetic acid, 2, N-hydroxyethylimmodiacetic acid, 3, nitnilotriacetic acid, 4, N-hydroxy-
ethylethylenediaminetnacetic acid, 5, ethylenediaminetetraacetic acid, 6, diethylenetriamine-
pentaacetic aad, 7, triethylenetetraammehexaacetic acid, 8, diaminocyclohexanetetraacetic acid
[From C Keller, The Chemistry of the Transuranium Elements, Verlag Chemie GmbH, Weimnheim,
1971 ]

101



102

CHEMISTRY IN AQUEOUS SOLUTION

of complex formation; illustrative of such changes is the spectrum of Am>” in 0.1M
NaClO,—0.005M H3NTA solutions at different pHs (Fig. 3.14).

Various Russian scientists?3%723#® are' currently seeking ways to estimate and
correlate the strengths of complexes of Am>* and other trivalent actinides and
lanthanides with various organic ligands. Shalinets,?** in particular, suggests a “rule of
additivity of the strength of rings’’ according to which, under similar steric conditions,
the logarithm of the thermodynamic formation constant of the complex is
proportional to the sum of the strengths of the individual rings

_~° _
eqg, N ¢ C\O N ¢ P\O , etc.
\M e \M e
contained in it; i.e.,
log 89 =L Ni¢; (3.45)
i

where N; and ¢; are, respectively, the number and strength of the rings in the complex
and B9 is the thermodynamic formation constant calculated by means of the Davies
equation from the formation constant determined at a particular ionic strength.
Shalinets®®* has estimated e values for various rings as well as discussed the influence
of various factors such as the basicity of the donor atoms, the presence of substituents
in the ring, and the number and size of the rings. The general utility and validity of
Shalinet’s approach has not been completely established, but, in a few test cases at
least, formation constants of americium chelates calculated by Eq.3.45 are in good
agreement with experimental data.

Americium(IIT) also forms many neutral organic-phase soluble salts and chelate
adducts [e. g., Am(NO;); * 3(R0O);PO] with various organophosphorus compounds
and also with thenoyltrifluoroacetone. Formulas and formation constants for some of
these entities are listed in Chap. 5; more complete listings are given in Refs. 6¢, 147,
and 201.

Thermodynamics and Kinetics

Thermodynamic functions have been determined for only a few complexes of
Am®*. These data, which are collected in Table 3.12, provide evidence for the
structures of these complexes in aqueous solution. The thermodynamic changes on
complexation of Am>” are the result of two contributions: exothermic enthalpy and
negative entropy due to the association of the cation with the ligand and endothermic
enthalpy and positive entropy due to the dehydration of the cation and anion. A high
positive net change of the entropy indicates inner-sphere complexing. Thus, from the
magnitude of the AH and AS terms for AmSO}, Carvalho and Choppin®*? conclude
that the degree of inner-sphere complexation present is at least comparable to, and
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Table 3.12

THERMODYNAMIC FUNCTIONS FOR COMPLEXES OF Am(III)

AG, AH, AS,
Method* Conditions Reaction kcal mol ! kcal mol ! cal mol ' deg ' Ref.

Acetic aad (HAc)

Tdm(SX) 2 0M NH,CIO, Am3* + Ac - AmAc?* -268+x003 43+03 234+ 1 239

Diglycolic acid (H, DGA)

Tdm(Spec) 0 1M NH,ClO, Am** + DGA? - AmDGA* -875+003 06071 31+2 180
AmDGA" + DGA? — Am(DGA), -620+007 16+08 26+ 3 180
Am(DGA), + DGA? — Am(DGA)} -393+008 08x02 16 1 180

Ethylenediaminetetraacetic acid (H, EDTA)

Cal 0 1M KCl, 25°C Am**" + EDTA* - AmEDTA 24 78 -467+025 675 +2 240

Fluoride (F )

Tdm(SX) 1 OM NaClO, Am3**+F - AmF?* 4102080 7 64 393 241

Tdm(Sol) 0 iM HCIO, Am**+F - AmF?** -558 523 318 242

Glycine (HGLYCN)

Tdm(SX) 2 0M NaClO, Am*®* + GLYCN - AmGLYCN?** -093+002 29:04 13+2 192

Iminodiacetic acid (H, IDA)

Tdm(Spec) 0 1M NH,ClO, Am®* + HIDA - AmHIDA?* -179+015 -1499+152 -443+57 180
Am3* + IDA? —> AmIDA* -964 001 -119+032 284+11 180
AmIDA" + IDA? — Am(IDA), 759+004 -314+168 149+56 180
Am(IDA), - aq > Am(IDA), (OH)? 1070+ 009 108212 180

Tdm(Spec) 0 005M H,IDA, 15-90°C Am + IDA? — AmIDA* -3to -2 69+12 13137 206

Nitrilotriacetic acid (H,NTA)

Tdm(Spec) 0 1M NH,ClO, Am*” + NTA®” > AmNTA 16 31 + 0 04 067+046 561046 180, 214
AmNTA +NTA® — Am(NTA);~ 1232+009 ~-57+08 223+28 180, 214

oL
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Sulfate (SOZ )

Tdm(SX) 2 OM NaClO, Am** +S0? — AmSO;}, -20

Thiocyanate (SCN)

Tdm(SX) 10M NaClO, Am3* + SCN - AmSCN?* ~069+002
Am3* + SCN" > AmSCN?*" -081+007

Tdm(SX) 1 0M NaClO, Am3®* + SCN — AmSCN?** ~047+002
Am** + 3SCN"— Am(SCN), -019=:015
AmSCN?* + 2SCN — Am(SCN), 028+016

Tdm(SX) 5 0M(ClO, + SCN)10-55°C  Am?®* + 3SCN” - Am(SCN)?* -0813+0074

Thiodiglycolic aaad (H, TDGA)
Tdm(Spec) 0 1M NH,ClO, Am** + HTDGA — AmHTDGA?" -275+019
Am** + TDGA? — AmTDGA" -488+009

AmTDGA" + TDGA? — Am(TDGA); -285+012

44

-4 36+030
253+029
1607
-64
-85
281+049

~-708+098
676112
8 88066

21

—-123+10
112
7+2
20+ 15
27+ 16
120+16

~145+39
39142
394+24

243

138
139
140
140
140
141b

180
180
180

*Tdm, temperature dependence measurements, Spec, spectrophotometry, cal, calorimetry, SX, solvent extraction, Sol, solubility
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probably exceeds, that of the outer-sphere complexation By the same criteria,
monodentate complexes of Am®" with fluonide, glycine, and ethylenediamine-
tetracetic, nitrilotniacetic and diglycolic acids are all also inner sphere complexes
Jones and Choppin®’® emphasize the importance of the disruption of the hydration
sphere of Am®" and other actimde 1ons in complexing thermodynamics Their
estimates of the entropy and enthalpy of hydration of Am®* and Am*" are listed 1n
Table 3 2

On the basis of the limited data available, Moskvin®** has presented some
generalizations of the thermodynamics of the formation of actinide 10ns in aqueous
solutions His analysis includes discussion of the heat capacities of triply charged
actinide 1ons and the changes n thewr heat capacities on hydration and when
transferred from a crystal lattice to solution Moskvin concludes that further
accumulation of thermochemucal data for actinide 10ns, including those of americium,
1s one of the most urgent contemporary problems in actimde chemistry

Kinetics of the exchange reaction
EuEDTA +Am>®"— Eu®" + AmEDTA (3 46)

were studied 1n an aqueous acetate buffer solution of u =0 1M 2457247 In the pH
range 55 to 65, Choppin and Williams®>#® find that the exchange obeys the overall
rate law

Rate = {ki‘ [E“E[E:Iﬁ]] [Am>T] _ . [AmEDTA ]} [H']

+ {k} [EuEDTAT] [Am**] — k[, [Eu®'] [AmEDTA |} (3 47)

Equation 3 47 correlates with a reaction that proceeds via two pathways, the first set
of braces can be associated with an acid-catalyzed mechanism, and the second set
represents an acid independent reaction path The two paths have approximately equal
probability at pH 6 4 Activation parameters*®? for the exchange reaction are AH* =
10 7 kecal mol™! and AS* = —12 2 cal mol™ deg™’

El-Raw1,2*® 1n a recently published thesis, reported results of studies of the
kinetics of complexing of americium by the aminopolycarboxylic acids, HsDTPA,
H,EDTA, N-hydroxyethylethylenediaminetriacetic acid (H; NHEDTA), and diamino-
cyclohexanetetraacetic acid (HyDCTA) Rates of hgand exchange between Am’* and
LaX were studied According to El Raw1,>*® hgand exchange proceeds as a first-order
reaction in the presence of excess LaX Respective rate constants for the ligand
exchange increase n the order H;NHEDTA > H,EDTA > H,DTPA > H,DCTA,
H,DCTA reacts especially slowly, probably because of steric hindrance to chelate
formation Two different reaction mechanisms appear operative n this system (1)
direct reaction of Am(IIl) and LaX and (2) a hydrogen 1on catalyzed dissociative
reaction LaX-(H") » HX (Am) > AmX
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METAL

Preparation

Americium metal is usually prepared by one of the following four methods:
1. Vapor phase reduction of AmF; with barium (or lithium) metal

2AmF; + 3Ba 1100-1250°C 5 A, 4+ 3BaF, @.1)

vacuum

2. Reduction of AmO, with lanthanum metal
AmO, + ¥,1a 1500-1600°C Ary 4 % 14,0, (4.2)
vacuum
3. Bomb reduction of AmF, with calcium metal
AmF,; + 1, + 3Ca—> Am + 2CaF, + Cal, 4.3)
4. Thermal decomposition of Pt Am

Pts Am_1550°C  Am + 5Pt (4.4)
1075 torr
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Westrum and Eynng' and later Graf et al.> made use of Eq. 4.1 to prepare the first
microgram amounts of amencium metal. Subsequently McWhan et al.> and McWhan,
Cunningham, and Wallmann? prepared milligrams of americium metal by reduction of
AmF; with bartum. These workers stress that the AmF; be completely dehydrated, if
it 18 not, the resulting metal will be contaminated with AmO. Also, according to
McWhan, Cunningham, and Wallmann,* well-agglomerated metal 1s obtained only when
Eq. 4.1 1s performed at temperatures above 1200°C.

Lanthanum reduction of AmO, (Eq.4.2) and subsequent distillation of the
americium metal from tantalum equipment yield amencium of very high (99.9+%)
purity. This scheme has been used by various workers® ¢ to prepare milligram to gram
quantities of americium metal Equipment used by Wade and Wolf® to produce 200 g
of metal 1s shown 1n Fig.4 1 Successful production of amencium by Eq.4.2 15
enhanced by the 10*-fold difference in americum—lanthanum volatihties.

The bomb method (Eq. 4.3) was apphed by Conner’ to prepare americium metal
on a gram scale, AmF, for use in Eq 4 3 was prepared by fluorination of AmO; with
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Fig. 4.1 Apparatus for preparation of americium metal by EQ 42 [From W Z Wade and
T Wolf, Preparation and Some Properties of Amernicium Metal, Journal of Inorganic and
Nuclear Chemistry, 29: 2577 (1967) |
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F, Reductions were performed 1n etther tantalum or MgO crucibles 1n steel pressure
vessels. Reduction yields of 34 to 64% of impure amencium metal were obtained (The
exothermic reaction between calcium and I, was used to supply the heat required for
good metal coalescence ) Conner believes that with further development the thermite
bomb method will offer an imexpensive means for producing americium metal in good

yield and of high purity
Preparation of americtum metal by thermal decomposition of the intermetallic
compound Pts Am (see page 129) 1s a very recent development ® '° In the tests of

Muller, Reul, and Spiriet,® 4 g of Pt; Am were decomposed at 1550°C and 10 é torr,
the resulting amencium metal, after further distilation in tantalum equipment, was as
pure as that obtamed by Eq 4 2

Properties

Amencium metal 18 silvery, ductile, nonmagnetic, and very malleable Selected
physical properties are listed in Table 4 1 Of the two definitely established crystalline
forms of americium metal, the double hexagonal close-packed (dhcp) phase is the
stable one at room temperature and 1s generally the one obtained by reduction of
AmF; or by thermal dissociation of Pts Am The reaction between AmO, and
lanthanum (Eq 4 2) has been reported varnously to yield pure dhcp phase,''? pure
face-centered cubic (fcc) phase,* and a mixture of dhcp and fcc phases 3°¢ Workers at
the European Institute for Transuranium Elements’ of recently prepared the fcc form
by condensation of americium vapor on thin tungsten wires spot-welded behind a
I-mm shit in a tantalum disk The americium metal condensed on the tantalum disk
showed the dhcp structure After storage at hquid-nitrogen temperatures for 3 weeks,
the fcc phase started to transform into the dhcp modification McWhan et al ® also
observed the fcc phase to transform to the dhcp on cooling the metal at dry-ice
temperature

McWhan, Cunningham, and Wallmann® originally reported that the melting point
of americium metal 18 994+ 7°C and that the dhcp — fcc phase transition occurs
between 600 and 700°C Later work demonstrates that the melting pomnt 1s about
1170°C and that there 1s a solid—solid transition at about 1070°C Sari, Muller, and
Benedict,!%® m recent metallographic and differential thermal-analysis studies with
high-purity amertctum metal, conclude that there 1s no phase transition between 600
and 700°C Stephens, Stromberg, and Lilley'? suggest that amernictum metal may
undergo a dhcp - fcc phase transformation at 600 to 700°C and an fcc - bec
(body-centered cubic) transformation at 994 to 1070°C Confirmatory evidence for
this hypothesis 1s lacking

In addition to the properties histed 1n Table 4 1, Stephens, Stromberg, and Lilley' 2
have determuned the phase diagram, compressibility, and electrical resistance of
americtum at room temperature over the range 35 to 120 kbars. Hall et al ' ¢® used an
adiabatic techmique to measure the specific heat, C, of vapor-deposited 241 Am metal
from 15 to 300°K According to Hall et al ,!® the temperature dependence of the
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Table 4.1

SELECTED PROPERTIES OF AMERICIUM METAL

Property Value(s)* Refs.
Crystallographic data
Symmetry (<~1070°C) dhep 2 4
(>~1070°C) fcc 34
Space group P6, /mmc 2-4
Lattice parameters dhcp a=34681A,c=11241 A 3,4
fcc a=4894 A 3,4
Density 13671 g cm 2 (calculated) 4
13671 gem 3 (observed)t 5
Metallic radius (CN 12) 173A 3,4
Melting point 1176°C, 1173°C 12
Boiling point} 2284°K 1la
Coefficient of thermal @ =75+02x10°°C 4
expansion @.=62+02x10°¢°C! 4
Compressibility at 1 atm 000277 kbar ! at 23°C 12
Vapor pressure log p (atm) =6 578 + 0 046 11b, 13, 14
(14,315 + 55)T(990 1358°K)
Magnetic susceptibility X20°C = (881 +46) x 10 * cm? mol ! 4,153, 15b
Magnetic moment 1 36 Bohr magnetons 15a
Microhardness (Vickers) at 25°C 800 MN m ? 16a
Electrical resistivity 68 uf2 cm (300°K), 71 u£2 cm (298°K) 16b, 16¢
Crystal entropy (S3,,) 13 2,13 06 cal mol ' °K ! 11b, 164, 16¢
Heat of vaporization at 55021 kcal mol ! 11b
boiling point}
Entropy of vaporization at 24 08 cal mol '°K ! 11b
boiling point#
Transformation temperature (600-700°C?), 1079°C, 1072°C, 4,5,12,16a
1074 1175°C
Heat of transformation 1 40 kcal mol ! S
Heat of fusion 3 44 kcal mol * 5
Heat of solution in aqueous HCI
1M HC1 147 3 kcal mol * 11a
1.5M HC1 147 1 kcal mol ! 11a
6M HCI1 147 7 kcal mol ! 11a

*For the double hexagonal close-packed form unless otherwise indicated
1By immersion in monobromobenzene

tCalculated value

measured specific heat with mmmum self-damage does not fit a ssmple Debye model
However, a reasonable assumption of the electronic contribution gives a strongly
temperature-dependent Debye temperature Schenkel, Schrmdt, and Spirlet ¢€ used a
potentiometric method to measure the electrical resistivity of a 1 89-um-thick layer of
americium metal between 300 and 3 6°K, up to 20°K the electrical resistivity varies

with temperature as T?> ® Ward, Muller, and Kramer!'?
and melting measured by Stephens et al !

2

americium hiquid log p (atm) =5 185 ~ 13,191/T

used the heats of transition
to arnve at the following equation for
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Self-irradiation studies of 2*' Am metal at 4 S apd 78°K were performed by
Schenkel, Schmudt, and Spirlet ' ®¢ From the equation Ap = 17 43 uQ-cm (1 — e*Y),
the time constant, a, for the rate of self-damage was 0 0204 hr ' Hall et al ! ¢© found
that, for samples of 2*'Am self-damaged below 10°K for times up to 112 hr,
annealing takes place over the temperature range 50 to 250°K with three marn stages
clearly visible

Hexagonal americium meta
tures as low as 1 7°K

When heated, amenicium metal reacts with halogens, H,, O, N,, carbon, boron,
antimony, etc , and with HgBr, and Hgl, These reactions are considered on pages 131
to 171 Amencwum also forms alloys with a number of metals (e g, beryllium and
platinum) These are discussed on pages 127 and 129 Americium dissolves'»'!'?2
readily n aqueous HCI but 1s msoluble’ ' ® in liquid NH,

From considerations of 1ts atomic radius, Zachariasen assigns a valency
of four to americium metal—the so-called “thoride” hypothesis Hill,222-22% Juljen,
Galleam1 D’Aghano, and Coqblm,22C and others, however, believe there 1s abundant
evidence to adopt the viewpomnt that americium metal 1s trivalent with an f® electronic
configuration and 1s the first rare-earth-like metal in the transactinium series

{'7 shows no magnetic hyperfine couphng at tempera

20,2123,21b

ALLOYS AND INTERMETALLIC COMPOUNDS

Preparation and properties of alloys and intermetallic compounds formed by
amernicium with the metals Al, Be, Bi, Hg, Ir, La, Np, N1, Os, Pd, Pt, Pu, Rh, and Th are
reviewed here * (For convenience, binary compounds of americium with the elements
Sb, As, Se, and Te are discussed on pages 131 and 132 and 164 to 166 ) A complete
phase diagram 1s known only for the plutonlum—americium system

Alumimum—Amencium System

Runnals®?® patented a method for making americtum—alummum alloys 1n which a
mixture of aluminum metal and an americium halide 1s heated 1n a vacuum of 10°?
torr at 700 to 1200°C until the americtum 1s reduced and alloyed

Homogeneous amencium—alummnum alloys containing 2 to 53 wt % americium
can be prepared by reaction of alumunum, AmO,, and Naj AlF¢ (cryolite) at 1100 to
1200°C (Refs 24a and 24b) This techmque 1s being used by German scientists at

*Preparation of the binary compounds Al, Am, Fe, Am, Co, Am, and Ru, Am has now been
reported 2% The first three ot these compounds have the cubic Cu, Mg type of structure, whereas
Ru, Am 1s isostructural with Os, Am, which has the MgZn, type of structure All these
compounds, except te, Am, exhibit almost temperature independent paramagnetism, Fe, Am 1s
ferromagnetic with an estimated cure temperature of ~400°K
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Karlsruhe, as part of their Actinide Project, to prepare gram quantities of aluminum--5
to 10 wt% americium alloys for irradiation n various European reactors.?®:28
Equipment used for preparation of such aluminum-—amernicrum alloys 1s described 1n
Refs. 25 and 26.

Beryllium—Americium System
Runnals and coworkers®3:27-28 used Eq.4.5 to prepare milligram amounts of
241 Am—beryllium alloys for use as neutron sources

2AmF; +xBe 100-1200°C 5 Am « (x — 3)Be + 3BeF, (4.5)

10 3 torr
The BeF, readily distlls leaving a fluoride-free alloy. Runnals and Boucher?® prepared
alloys with beryllium/amencium atomic ratios of 263 1 and 14 1. The intermetallic
compound, AmBe, 3, 1s present in the 14 1 alloy, AmBe, 3 1s fcc with a = 10.283 A,
Recently, Brachet and Vasseur?® developed a method for making aluminum-—
beryllium neutron sources by reduction of AmO, with beryllium according to Eq 4.6

AmO, + 15Be 1200-1300°C »Be(y + AmBe, 5 (4.6)

Using Eq.4.6, Brachet and Vasseur’® obtained an alloy that emtted 3.75 x 108
neutrons g sec’ The yield of such a source was 2 X 10° neutrons sec® Ci?' of
emitter

Bismuth—Americium System

Reaction®® of metallic bismuth vapor with either americium metal or americium
hydride in a sealed, evacuated quartz tube for 48 hr at 975°C produces AmB1. This
metallide has the NaCl structure with a = 6.338 £ 0 0012 A, after annealing 14 days at
800°C,a =6 335+ 00019 A.

Mercury—Americium System

Bouwssiéres and Legoux®'? first prepared an amalgam of amercium by equili-
brating a sodium citrate solution of AmCl; (10™ 2M to 107°M amenicium) for 90 min
mn an H, atmosphere with a 0027 wt % hithium amalgam. The yield of americium
amalgam decreased steadily as the pH of the mitial citrate solution increased from 2 to
8, reaching zero at the latter pH. In this latter respect the mercury—americium system
resembles the mercury—lanthanum system.>'® David and Bousssieres®' ¢ now find
that amalgamation of americium by electrolytic reduction of 10°®M Am®* 1n a lithium
citrate solution at a mercury cathode 1s a first-order reaction. The time required to
form the americium amalgam increases with increased lithium citrate concentration.
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Reaction of Am®" 1n 04M to 0 8M acetic acid with sodium amalgam results n
rapid and almost complete (>>98%) amalgamation of the amerncium 32

Iridium—Americium System

Reduction of AmO, with highly punfied H, in the presence of indium
metal—the so-called coupled reduction332°—yields at 1550°C the mtermetallic
compound Ir, Am (Eq. 4.7)

2H, + AmO, + 2Ir 1‘;‘;5“-6 Ir, Am + 2H,0 47

The Ir, Am phase has the cubic Cu, Mg type of structure wath a = 7 55 A.

Lanthanum—Americium System

Lanthanum—americium alloys containing 0 92 to 2 37 at % amernicium dissolved 1n
fcc Blanthanum have been produced by arc-melting the constituent metals >* The
lattice parameters for these alloys deviate only shghtly from the Vegard line, an
indication that the effective size of amencium in lanthanum 1s very close to that of
elemental amencium (1 73 A radius) Small amounts of americum (<1 5 at %)
dissolved 1n B-lanthanum produce an unusually weak depression of the supercon-
ducting transition temperature T, of flanthanum.>s To account for this latter
observation, Hill et al 3% suggest that americrum atoms 1n lanthanum are likely to be
trivalent and to possess the f® electron configuration, which has no first-order
magnetic moment

Neptunium—Americium System

Through alpha decay, 2*'Am metal automatically becomes a neptunum—
americium alloy. The magnetic behavior of such an alloy (=0.5 wt.% neptunium) was
studied recently by Dunlap et al.>®? using the Mossbauer effect of the 59 6-keV X-ray
n 237 Np. A small local moment on neptunium 1n americium was found

Nickel—Americium System

Lam and Mitchel®®® prepared Ni,Am by arc-melting the requisite amount of
the pure elements 1n an argon—helium atmosphere for several hours at 800 to 1000°C.
Cubic N1, Am.has the Cu, Mg type of structure (space group Fd3m) with a=699 A,




ALLOYS AND INTERMETALLIC COMPOUNDS

Osmium—Americium System

Hexagonal Os, Am (space group Pb;/mmc) was prepared by Lam and Mitchelt®¢P
by the same method used to make Ni; Am. Lattice constants of Os, Am are
a=5320Aandc=8849 A

Palladium—Americium System

Coupled reduction of Am,Oj; with palladium, according to the conditions of
Eq. 4 8, yields the compound Pd3 Am, which has the ordered Cu; Au structure

Am, 05 + 6Pd + 3H, 1300 1400°C 314 0 + 2Pd, Am (4.8)
40--60 hr

The lattice constant of Pd;Ami1s4 158 A

Platinum—Americium System

Pt,Am. When performed at 1400°C, Eq.4.7, with platinum substituted for
mndium, yields pure Pt; Am.3® This alloy phase has the cubic Cu, Mg structure with
a=7.615A.

Pts Am. Intermetallic Pty Am, which 1s obtamed33#33® by Eq 4.9,
Am, O3 + 10Pt + 3H, 40hr-1200°C_ 5py Am + 3H,0 4.9)

has the orthorhombic PtsSm type of structure with a= 5319 A, b= 909 A, and
¢ =26.42 A Mention has already been made (see pages 122 to 124) of the preparation
of amernicium metal by thermal decomposition of Pt; Am in a vacuum Interestingly,
for the noble metals indium, palladium, platinum, and rhodium, the Ms Am compound
1s known only for platinum.

Plutonium—Americium System

The plutonium—amencium phase diagram 1s shown 1n Fig. 4.2. This diagram was
constructed by Ellinger, Johnson, and Struebing®”? from X-ray diffraction studies
of plutontum—amernicrum alloys containing 1.48 to 95+ 1 at.% amencium. The
principal feature of the plutonium—americium system 1s the continuous series of solid
solutions between &-plutonium and S-americium which are stable at room temperature
in the composition range from about 6 to 80 at.% americtum. In contrast to the
extensive solid solubility of americium 1n §-plutonium, the solubility of americium 1n
bee e-plutonium 15 about 8 at.% at 665 * 15°C. The maximum solubility of plutonium
1n americium appears to be less than 5 at.%.
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Fig. 4.2 The plutomum-—americium phase diagram Unlabeled Greek letters refer to plutonium
phases o, one-phase alloy, ®, two-phase alloy, 4, liquid present, &, X-ray parametric [From F H
Ellinger, K A Johnson, and V O Struebing, The Plutonium-Americium System, Journal of
Nuclear Materials, 20: 83 (1966) |

Rhodium—Americium System

Rh; Am. This intermetallic phase 1s prepared33b by the same coupled reduction
technique (see Eq. 4.7) used to make Ir, Am and Pt; Am. Also, like Ir, Am and Pt; Am,
the cubic Rh, Am phase has the Cu, Mg structure with a=7 548 A

Rh;Am. This ntermetalic compound has the ordered CuzAu type of structure
with a = 4.098 A. It 1s made by coupled reduction of AmQO, with rhodrum for 60 hr at
1550°C 1n a H, atmosphere.

Thorium—Americium System

For use as Mossbauer sources, Adair*® prepared thorrum—0354 to 5.0 wt.%

americium alloys by both levitation and arc melting of prepressed muxtures of
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americtum and thorium metals. The high vapor pressure of americium metal at the
melting point of thorium dictates that the levitation process be carried out 1 an mert
atmosphere rather than in vacuum to avoid loss of americium

COMPOUNDS

Inorganic Compounds of Americium

The known (January 1976) inorganic compounds of americium, for which compo-
sitions are established, are listed in Table 4 2 along with some of their properties
{Compounds of americium with organic higands including acetate and oxalate are
discussed on pages 166 to 171) Other properties and methods of preparing these
compounds are discussed 1n the accompanying text A few additional inorganic
compounds whose compositions have not been definitely established are also
mentioned

Generally, the compounds listed in Table 4.2 have been arranged 1n alphabetical
order of the morganic higand. Oxyhahdes are included with the corresponding binary
halides, as are the ternary halides Following the practice established by Keller,*!
ternary and polynary oxides of americium containing one or more of the elements Na,
K, Ba, Sr, Cm, Zr, Hf, Th, Ta, Nb, and Pa are included with the binary oxides Certain
other ternary oxides (AmAsO,, AmBO;, AmVOQ,, etc), however, are discussed
separately

Some of the compounds bsted in Table 4.2 (e.g , oxides and binary halides) are
well-characterized, gram amounts having been prepared by many mvestigators tn
several countries using both 24! Am and 2%3Am. Conversely, only microgram or
mulligram quantities of many of these compounds have been synthesized and these by
a single scientist using ?*' Am. Venfication of the procedures used to prepare these
latter compounds and their properties should be provided by programs currently under
way both abroad and in U.S. Energy Research and Development Admunistration
laboratories.

Aluminate. AmAIO; Hexagonal AmAIO; crystals*'**? are produced when
coprecipitated Am(OH); and AI(OH); (1 1) are heated in H, for 2 to 8 hr at
1250°C. The crystals have the distorted perovskite structure of LaAlO;

Antimonide. AmSb. Mitchell and Lam®*> prepared AmSb by heating equimolar
amounts of >*' Am metal and high-punty anttmony under vacuum for 1 hr at 630°C
The temperature was gradually raised to 850°C, and the AmSb was held at this
temperature for 7 hr before cooling to room temperature Subsequently the AmSb was
heat-treated at 100°C for 24 hr, furnace cooled, and then heated at 400°C for 10 days
Roddy3° also prepared AmSb by reacting 2*3 Am metal with antimony metal for
24 hr at 775 to 900°C 1n an evacuated quartz bulb. The lattice parameter measured by
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Roddy (a=6.240A) was in excellent agreement with that (a=6.238 A) reported
by Mitchell and Lam.*?

Magnetic susceptibility measurements*® on AmSb give a temperature-independent
value of (1250 + 100) x 107 emu mol™ for the range 4.2°K < T < 320°K.

Ay Shs. Charvillat et al.*4P prepared Amy §b3 by heating 2*' AmHj; in a Pyrex
tube at 550°C with a quantity of elemental antimony corresponding to the
stoichiometry 4 : 3. The resulting product contained two phases, AmSb and a second
phase with the bce structure of anti-Th3 P, type. The lattice parameter of Am,Sb; is
a=9.2392 + 0.0005 A.

Arsenate. AmAsO,. Light-pink AmAsO, is produced by heating at 1000°C the
residue obtained from evaporation®*!**% of a 1:1 solution of Am(NO;3); and
(NH4 )2 HASO4 .

Arsenide. AmAs. Vapor-phase reaction of excess metallic arsenic with 2*! AmH;
for a week at 330°C yields AmAs.*® The resulting product contains two phases—
metallic arsenic and a cubic NaCl-type phase that Charvillat and Damien®® label AmAs
by analogy with the corresponding plutonium and neptunium monoarsenides. A single
AmAs phase is obtained by heating the mixture AmAs + arsenic at 330°C in a high
vacuum,

The lattice parameter (a= 5.880  0.0012 A) of AmAs prepared by Roddy®° by
heating >#® Am metal and arsenic metal for 24 hr at 675°C and then 7 days at 400°C
was somewhat larger than the value of 5.8753 A measured by Charvillat and Damien.
Roddy found that heating samples of AmAs for 10 hr at 1000°C produced a slight
decrease in the lattice parameters. Weak lines corresponding to AmO were observed in
the X-ray pattern of the resulting material. According to Roddy, the reduction in size
of the unit cell suggests the possibility of the existence of solid solution between
AmAs and AmO; this phenomenon may have occurred in the preparation of Charvillat
and Damien, or the slight difference in lattice parameters may be the result of isotope
effects.

Kenellakopulos et al.!*? measured the magnetic susceptibility of AmAs between
liquid helium and rocm temperature. The effective magnetic moment of AmAs is 1.14
Bohr magnetons; AmAs exhibits an antiferromagnetic transition at 13°K.

Borate. AmBO;. Orthorhombic AmBOj; results from the solid-state reac-
tion*! 42 of stoichiometric amounts of AmO, and B, 03 or H3BO; for 12 hr in air
at 900°C. The light-pink borate is soluble in concentrated mineral acids. It has the
aragonite structure of the low-temperature modification of LaBO; and NdBO;.

Borides. AmB,. Tetragonal AmB, forms when a mixture of americium metal and
boron in the atomic ratio 33 : 67 is heated in a vacuum at 800 to 2100°C in a ZrB,
crucible.*” Uranjum, neptunium, and plutonium all form diborides, but americium
does not. Eick and Mulford®” attribute this to the large metallic radius of americium.

(Text continues on page 138.)




Table 4.2 INORGANIC COMPOUNDS OF AMERICIUM
Crystal structure
Space Lattice constants
group or
Density, structure a(p),
Type Formula Color gem? Symmetry type a, A b, A ¢ A deg
Alummate AmAIO, Pink 940 Hexagonal R3m 5336 1291
Antimomde AmSb fec Fm3m 6 239
Arsenate AmAsO, Pink 813 Monochnic P2, /n 689 706 662 1055
Arsenide AmAs fece Fm3m 5880
Beryllide AmBe, , 438 fcc Fm3c 10 283
Bismuthide AmBi1 fee Fm3c 6 338
Borate AmBO, Pink 848 Orthorhombic Pnam 5053 8092 5.738
Borides AmB, Tetragonal P4/mbm 7105 4 006
AmB, Simple cubic Pm3m 4115
Bromudes AmBr, Black Tetragonal Pa/n 11 59 7121
AmBr, White 6.79 Orthorhombic Cemm 1266  4.064 9.144
AmBr,; * 6H,0 Light brown 3.51 Monoclinic P2/n 9955 6783 8166 92.75
[(C¢H;); PH] ; AmBr,
Carbide Am,C, Black bee 143d 8 276
Carbonates Am,(CO,), * 2H,0 Pink
Am,(CO;), - 4H,0 Pink
NH,AmO,CO, Hexagonal C6/mmc
CsAm0, CO, Tan Hexagonal C6/mmc 5123 11538
KAmO,CO, Light (7) Hexagonal C6/mme 5112 9 740
K, AmO0,(CO,), Tan
K;AmO,(CO,), Orthorhombic
RbAmMO, CO, 6 06 Hexagonal C6/mmc 512 1046
Chlorndes AmCl, Black Orthorhombic Pbnm 8963 7573 4532
AmCl, Pink 578 Hexagonal P6,/m 7382 4214
AmCl; » 6H,0 Yellow rose Monoclinic P2/n 9702 6567 8009 9362
AmOCl Pink 895 Tetragonal P4/nmm 400 678

(Table continues on next page )
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Table 4.2 (Continued)

veElL

Crystal structure

Space Lattice constants
group or
Density, structure a(p),
Type Formula Color g/em® Symmetry type a, A b, A c, A deg
Chloride complexes CsAmCl, Yellow
CsAmCl, - 4H,0 Yellow
Cs; AmCly Yellow
Cs, NaAmCl, Yellow fce Fm3m 10 86
AmCl, -2(C,H,),NC]
[(CsH,),PH]} ,AmCl
Cs,AmO, Cl, Green
Cs,AmO,Cl, Dark red Cubic* 151
Fluorides AmF, Pink 9 56 Hexagonal P3cl 7 004 7225
AmF, Rose tan 7 34 Monoclinic C2le 1256 1058 825 1259
AmO,F, Brown 6 50 Hexagonalf R3m 4136 15 85
Fluoride complexes NaAmF, Pink 7 02 Hexagonal P6 6109 3731 =
KAmF, =
KAm,F, Pink Cubic 5857 >
(NH,),AmF, Red ?
LiAmF, Pink 619 Tetragonal 14, ja 14 63 6 449 g
K,Am.F,, 6 09 Hexagonalt R?Z 14 938 10 293 8
Na,AmgF,, 6 23  Hexagonalt R3 14 48 9665 ~<
Rb, AmF Pink 552 Orthorhombic Cmem 6962 12001 7579 &
KAmO,F, Tan 597 Rhombohedral R3m 678 3625 &
RbAmO,F, Yellow 6 90 Rhombohedral R3m 6789 36 25 o
Germanate AmGeO, Dark brown 8 95 Tetragonal 14, /a 504 11 03 §
Hydrides AmH, Black 1055 fcc Fm3m 5348 8
AmH, 932 Hexagonal P3cl 668 675 %
Hydroxide Am(OH), Pink 7 24 Hexagonal Pb,/m 6426 3745 &
Todides Aml, Black Monochnic 7677 8311 7925 9846
aAml, Orthorhombic Coemm 431 1403 992




Irridium

Molybdates

Nickel
Nitride
Osmum

Oxides, binary

Oxades, ternary

Lithium and sodium

Barium and
strontium

B Aml,
AmOI

Yellow

Ir,Am

aAm,(McO,),
BAm,(Mo0O,),
LiAm(MoO,),
NaAm(MoO,),
Na; Am(MoO,),
K,Am,(Mo0O,),
K, ,Am,(Mo0,),
N1, Am

AmN

Os,Am

AmO Black
A-Am,0, Tan
B-Am, 0,
C-Am,0,
AmO,

Black

Red brown
Dark brown

LIAmO,

Li,AmO,
Li, AmO,
Li,AmO,
L1, AmO,
L1, AmO,
Li;AmO,
Na, AmO,
Na;AmO,
Na, AmO;
Nag AmOy
BaAm, O,

BaAmO,
Ba,AmOg

Brown
Brown
Black brown

Black brown

Black brown
Dark brown

604

1353

136
1168
11 89
1049
11 66

652
462
591
663

527

8 51
728

Hexagonal
Tetragonal

Cubic

Tetragonal
Orthorhombic
Tetragonal
Tetragonal

Cubic
fee
Hexagonal

fee
Hexagonal
Monocdlinic
Cubic

fce

Hexagonal
Tetragonal
Hexagonal
Tetragonal
Hexagonal
Monoclinic
fce

fee

Hexagonal

Cubic
Cubic

R3

Fd3m
14, /a

14,/a
14, /fa

Fd3m
Fm3m
P6, /mmc

Fm3m
P3mi
C2/m
Ia3
Fm3m

L1y PbO
1100,
R3

14/m
LigReO,
C2e
Fm3m
Fm3m
Li ReOg

Perovskite
Fd3m

742
4011

755

524
9 095
520
525
11 515

699
5000
5320

5045
3817
14 38
1103
5377

562
4 459
554
6 666
5174
592
4757
470
476

4356
8 81

10 527

352

10 26

2055
9204

1152
10 820
1139
115§
11429

8 849

5971
892

1596
8355
1565
4415
14 59
1123

16 10

1004

10012

(Table continues on next page )
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Table 4.2 (Continued)

Crystal structure

Space Lattice constants
group or -
Density, structure a(B),
Type Formula Color g/em?® Symmetry type a, A b, A c, A deg
SrAm, 0,
SrAmO, Cubic Perovskite 4 23
Sr;AmO, Cubic Ba, WO,
Cunum See Table 4 3
Zirconium, hafnum,
and thorlum See Figs 4 10and 4 11
Niobium, tantalum, « AmNbO, Light brown 843 Monoclinic 12 5444 1125 5141 9495
and protactinmmum 8 AmNbO, (660°C) Light brown 8 30 Tetragonal 14, /a 530 11 34
Am, ,;NbO, Yellow brown 6 19 Pseudo tetragonal P4/mmm 3 819 7 835
Ba, AmNbO, Brown 757 Cubic F43m 8520
AmNbT104 Yellow brown 718 Orthorhombic Pnam 534 1100 753
AmTa0, 103 Monoclinic 12 5489 1121 5115 9537
Am, ;,Ta0, 869 Tetragonal 14, /a 3889 7 820
Ba, AmTaO, 854 Cubic F43m 8518
AmTaT10, 8 54 Orthorhombic Prnam 533 1095 749
AmPaO, Pink 1095 fcc Fm3m 5458
Ba, AmPaO, 823 Cubic F43m 8 793
Palladium Pd;Am Metalhc Simple cubic Pm3m 4158
Phosphates AmPO, Pink 791  Monochnic P2, /n 673 693 641 1035
AmPO, - 0 5H,0 Pink 670 Hexagonal C6,2 699 639
Platinum Pt,Am Metallic Cubic Fd3m 7 66
Pt; Am Metallic Pt .Sm 5319 9090 2642
Rhodium Rh,Am Metallic Cubic Fd3m 7 548
Rh, Am Metathc Simple cubic Pm3m 4098
Scandate AmScO, Pink Orthorhombic Pénm 5540 5785 8005

9el
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‘ Selenides AmSe, , Black Tetragonal B 4 096 8.347 l
Am, Se, bee I43d 8728
Silicate AmSi10, Dark brown 7 56 Tetragonal 14, Jamd 687 620 a
Sulfates Am,(S0,), » 8H,0 Yellow pink Monochnic Clle 13619 6837 18405 1027 g
Am, (S0,), White 3
KAm(S0,), =)
NaAm(S0,), « 2H,0 A

KAm(S0,), * H,0
RbAmM(SO,), * 3H,0
CsAm(S0,), * 4H,0
TIAm(SO,), * 4H,0
K,Am(S0,), + H,0

K;Am,(S0,),
Cs; Am,(SO,),
Tly Am, (SO,),
{[Co(NH,)4] HSO,}, -
{Am0,(S0,),} - nH,0  Orange Cubic
Sulfides Am§S fcc Fm3m 5592
AmS, , Black Tetragonal 3938 7981
a-Am, S, Black Orthorhombic Pnma 398 739 1536
v-Am, S, 850 bec 143d 8434
Am,,S,,0,% Tetragonal 14, /acd 14 87 1973
Tellunides AmTe, Tetragonal 4 366 8 969
AmTe, Orthorhombic Bmmb 4399 4339 25.57
Am,Te, Orthorhombic Pbnm 1193 1212 433
Am,Te, bce 143d 9394
Tungstate Am,(WO,), Tetragonal 14, /a
Vanadates AmVO, Ochre 957 Orthorhombic Pbnm 545 558 776
AmVO, Red brown 6 89 Tetragonal 14 Jamd 731 642
Xenates Am,(XeO;), » 40H,0 Orange

*Monochnic form also known
tHexagonal—rhombohedral
tAlso referred to as g-Am, S,

LEL
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Eick and Mulford*” point out that the AmB, phase exhibits a wide range of
storchiometry.
When heated, AmB,; decomposes according to the reaction

3AmB,(s) > 2AmBg(s) + 2Am(g) (4 10)

AmBg Arc-melting a mixture of the elements in the americium/boron atomic ratio
10 90 in an argon atmosphere produces simple cubic AmBg (Ref. 47) This
compound evaporates congruently

Bromides. The only reported solid compounds of americium with bromine are
AmBr, , AmBr3, AmBr; « 6H,0, and [(C4Hs )3 PH] 3 AmBrg

AmBr, Synthesis of AmBr, can be accomplished®®+*? on a multimilligram scale
by oxidation of amencium metal with HgBr, 1n accordance with Eq 4 11

Am + HgBr, 399°C AmBr, + Hg (411)
vacuum
Stoichtometric amounts of americium metal and HgBr, are placed in a quartz tube,
sealed 1 vacuum, and heated at 300°C for 4 days Subsequently the mercury 1s
distilled to the opposite end of the tube and sealed off The AmBr; 1s then annealed
10 days at 400°C Black AmBr; 1s 1sostructural with EuBr; and, at room temperature,
1s stable 1 an argon atmosphere for at least 4 weeks

AmBr; Amencrum(IIl) bromtde 1s a high-melting sohd that can be punfied by
vacuum sublimation at temperatures above 850°C It can be prepared

1 By reaction®®>*' of AmO, with AlBr; at 500°C according to kq. 4 12

3Am02 + 4A1BI'3 - 3AmBI"; + 2A12 03 + :}(ZBTQ (4.12)
2. By the metathetical reaction®?

AmCl; + 3NH, Br 400-500°C_ ApBr. + 3NH, Cl (4 13)

H, atmos

3 By controlled vacuum thermal decomposition®® of AmBr; - 6H, 0

AmBr; - 6H,0 _60-170°C_ AmBr. + 6H,0 (4 14)

104~10 3 torr

Zachanasen®? and Asprey, Keenan, and Kruse®? have determined that orthorhom-
bic AmBr; has the PuBr; type of structure Visible and near infrared spectra®' have
been recorded for solid AmBr; Liquid bromine does not oxidize AmBry in
nonaqueous solvents 5%

AmBr; « 6H,0. Anhydrous AmBr; 1s hygroscopic and, when exposed to
oxygen-free water vapor, takes up water corresponding to the formation of
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AmBrj; « 6H, 0 (Ref 53) Vacuum evaporation of aqueous HBr solutions containing
trivalent americium yields a product of composition close to AmBr; * H,O

[{CeHs 3 PH] 3AmBrs The triphenylphosphonum salt of the AmBri 1on was
prepared on a mucroscale by precipitation from a nearly anhydrous ethanol solution of
AmBr; and (CgHs )3 PH which was almost saturated with HBr (Ref 56) Properties of
the precipitated salt have not been determined

Carbide. Am,C; Amencrum sesquicarbide forms when americium metal 1s arc
melted with hugh-purity graphite in an argon—helium atmosphere 57 The bec crystal
contains eight molecules per unit cell and 1s 1sostructural with Pu, C,

Nuclear gamma resonance spectra obtained using a source of Am, C; show a pure
quadrapole spectrum down to 1 8°K No magnetic ordering 1s seen *

Carbonates. Am,(CO, /5 + xH,O Weigel and ter Meer®® report that hydrolysis
of an aqueous solution of Am(III) trichloroacetate yields Am,(COj3); - 2H,O
(Eq 4.15)

2Am(CCl; - CO0); + SH, 0 > Am,(CO3)5 + 2H, 0 + 3CO, + 6CHCl, (4 15)

Conversely, Fang®® finds that addition of a CO,saturated solution of NaHCO, to a
solution of AmCl; and washing the filtered precipitate with a CO, saturated aqueous
solution produce Am,(C0O;3); * 4H, 0

According to Wergel and ter Meer,®® thermal decomposition of
Am;,(CO;3); + 2H, 0 1n a vacuum proceeds as follows

Am,(COs)s * 2H,0 20 Am,(c0o5), ~2%%% Am,0,c0, ~“%: Am,0,

Keller and Fang®' observed the following sequence for thermal decomposition of
Am,(CO3); * 4H,01n arir

Am,(CO3)3 » 4H,0 ~#:0 Am, (€05)s 2% Am,0(CO5),
Fh0 Am,00€045), 20 2AmO,
NH,AmO,C0O;3 Crystals of NHgAmO,CO; precipitate when a dilute solution of

Am(IIT) 1n 1M (NH, ), CO; 15 oxidized to Am(V) with ozone or peroxydisulfate 2

CsAm0,CO; Keenan®? reports that CsAmO, CO; precipitates when a slurry of
pink Am(OH); 1n 0 SM CsHCO; 1s treated with 5% O4 1n O, for 1 hr at 92°C

Ky x+1AmO,(CO4 )1 +x Several different potasssum Am(V) double carbonates
can apparently be prepared depending on precipitation conditions of pH and K, CO;
concentration Thus KAmO, CO; s precipitated®® ¢35 from 0 03M to 0 1M KHCO; at
pH 7 Ths compound®® can be prepared most easily by O oxidation of Am(OH); 1n
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0.03M KHCO;. In an altemative synthesis, an Am(V) solution 1s first prepared by
addition of a stoichiometric amount of KI to an AmO,(NO;3), solution After
benzene extraction of the hiberated I, , KHCO; 1s added to neutralize acid and to make
the final solution 0.1M KHCO; The light-colored precipitate that forms is digested 3
to 4 hr at 90°C and 1s then washed with 0.1M KHCO3, absolute ethyl alcohol, and
acetone.

Tan, finely divided K3 AmO,(CO3), precipitates®® when a solution of Am(III) n
35M K,CO; 18 oxidized with O3, K;S,08, or KCIO,. The solubility of
K3 Am0,(CO3), mm 3.5M K, CO; at 23°C corresponds to 10 to 40 mg Am liter !

According to Yakoviev and Gorbenko-Germanov,°” the compound
K5 AmO, (CO3); precipitates when Am(III) in concentrated >5M) K, CO5 18 oxidized
with ozone, K, S, Oz, or HCIO.

Nigon et al.®? also obtaned a potasslum Am(V) double carbonate by heating a
K,CO;3 solution containing Am(III) and KOCI to 80°C. Neither the K,CO;
concentration nor the composition of the resulting orthorhombic bisphenoids was
stated.

RbAmMO,CO;3 Crystals of RbAmO,CO; precipitate when a dilute solution of
Am(ITI) 1n 10M Rb, CO; 15 oxidized to Am(V) with ozone or peroxydisulfate 6268

Nay g +1.AmO,(CO3 )1 +x. Werner and Perlman®® obtained a sodrum Am(V) double
carbonate of unknown composition by oxidizing Am(III) in K, CO; solution with
NaClO. Later, 1n a shghtly modified procedure, Nigon et al 2 also prepared a sodium
Am(V) double carbonate of unknown composition by adding NaClO to a solution of
Am(IIT) 1n Na, CO; and digesting the resulting solution at 80°C. The refractive index
of the resulting crystals (probably belonging to the monochinic system) was between
1.58 and 1.60. More recently, Coleman et al.®® state that, when Am(VI) in 2M
Na, CO; (previously prepared at a lower temperature) 1s heated to 90°C even with O
present, 1t 1s largely reduced to Am(V) within 1 hr, and sodium Am(V) carbonate
precipitates. These workers did not establish the composition of the double carbonate
but noted that 1t 1s readily oxidized to Am(VI) by Oj at room temperature or by
0.001M Na, S, Os at 90°C 1n NaHCOj; solutions <1M.

Banum Am(VI) Carbonate. Addition of Ba(NO;), to Am(VI) carbonate solution
precipitates a red-brown barium amerncium carbonate of undetermmed composi-
tion.®®

Calctum Am(VI) Carbonate. This salt precipitates when Ca(NO;3), 1s added to
Am(VI) carbonate solution,®® 1ts composition has not been determined

Sodwm Am(VI) Carbonate. A crystalline Am(VI) carbonate forms when 1 ml of
saturated Na, CO3 ¢« NaHCOj; solution 1s added to 0.2 mmol of sohd sodium Am(VT)
acetate.®® The same compound can be prepared by adding methanol to a solution of
Am(VI) in 0.1M NaHCO;. Other syntheses of sodium Am(VI) carbonates were
performed by O; oxidation of Am(OH); slurries in the presence of about 1 to 8 mols
of NaHCOj; per mol of Am(IIT). Sohd sodium Am(VI) carbonates were obtained®® by
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evaporation of the resulting solutions in a stream of O3 The nfrared spectra of solid
sodium Am(VT) carbonate establishes the presence of the oxygen—americium—oxygen
group tn the carbonate complex

Chlorides. Am(Cl, Oxidation of amencium metal with HgCl, mn a vacuum at
300°C produces AmCl, (Eq 4 16) *#:4°

Am + HgCl, 390°C AmCl, + Hg (4 16)

vacuum

AmCl; Four methods of prepanng anhydrous AmCl; are known
1 Reaction of AmO, with CCl; at 800 to 900°C (Refs 50, 51, and 70),

AmQ, + 2CCl, 800 900°C_ Am(l, + 2COCl, + ¥%,Cl, 4 17)

2 Reaction of AmO, with HCt (Refs 71 and 72),
AmO, + 4HC) 590 600°C  Amct, + %Cl, +2H,0 (418)

3 Evaporation to dryness of an HCl solution of Am®" containing NH,Cl and
subliming NH, Cl from the residue *2

4 Dehydration”® of AmCl; * 6H,0 by heating in a stream of HCI followed by
vacuum sublimation of AmCl;

The enthalpy of formation??:7% of AmCl; at 209°C was ongmally reported at

249 + 3 kcal mol! A more accurate value'' for the enthalpy of formation 1s
~2337 + 04 kcal mol ' The anhydrous trichloride sublimes at about 800°C

Zachanasen®* and subsequently Asprey, Keenan, and Kruse®? and Fuger’®
determuned the lattice constants and crystal symmetry of AmCly; using powder
methods A refined crystal structure for AmCl; has recently been worked out by
Burns and Peterson’? using single-crystal data Their lattice constants are histed 1n
Table 4 2 Bums and Peterson’? calculate from their data the 10nic radius of Am®” to
be 0984 £+ 0003 A

The coefficients of the thermal expansion of the lattice constants’® of AmCl,
between 20°C and 608°C are o= (240+01)x10°°C' and o=
(138+x01)x 10%°C"?

Gruber and Conway’® have measured the absorption spectrum and Zeeman effect
of Am3” 1n LaCl; The absorption spectrum of AmCl; at hquid N, temperatures has
been determined by Pappalardo, Carnall, and Fields 5!

The solubility””? of AmCl;, at either 25 or 40°C, decreases from about 0 11M in
9M LiCl to about 0 04M 1n 13M LiCl

AmCl3 - 6H,0 For use in single-crystal Xray diffraction studies, Burns and
Peterson’® prepared AmCl; + 6H,0 crystals by dissolving about 100 mg of AmO, n
excess 6M HCl and allowing the solution to evaporate Stover and Conway’’®
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published part of the absorption spectrum of AmCl; + 6H, O at room temperature and
at hquid N, temperature

AmOC! Templeton and Dauben®® state that americtum oxychloride was first
prepared by L B Asprey by accidental contamination m an experiment designed to
yield Am, O3 by H, reduction of AmO, . Normally AmOCI 1s prepared by vapor-phase
hydrolysis® ' of AmCl; according to Eq. 4 19

AmCl5(s) + H, O(g) » AmOCI(s) + 2HCI(g) (4 19)

Koch 1s also reported®'¢ to have prepared AmOCI by heating Am, O3 at 500°C n a
muxture of HCl and H, O vapors

Equilibnium constants for Eq 4.19 at various temperatures between 682 and
800°K were imtially measured m 1953 by Koch and Cunningham.®'?® From ther
results, Koch and Cunningham denved the expression AG® (kcal) = 22.38 + 6.4 X
103T log T+ 1.8 x 1077T? — 22/T — 52.31 x 10T for the freeenergy function of
Eq.4.19. Weigel, Wishnevsky, and Hauske®'® (in 1975) redetermined equilibrium
constants for Eq.4.19 using both >*' Am and 2%? Am Weigel and coworkers report
the heat of formation of AmOCI at 298°K 1s 225.7 kcal mol ' This value 1s
excellent agreement with the value 226.0 * 0.2 kcal mol™ calculated by Fuger, Spirlet,
and Muller' '? from the earlier data of B. B. Cunningham, A. Broido, and C. W. Koch.

Chloride Complexes. Solid chloride complexes of Am(III), (V), and (VI) were
synthesized by Bagnall, Laidler, and Stewart,®?-®3? by Ryan,*® and by Marcus and
Shiloh.84

CsAmCly - 4H,O0 Hydrated cestum tetrachloroamernicate(II) precipitates from
concentrated solutions of Am(IIT) i HCI saturated with gaseous HCl on addition of
CsC1.232 The amencium—chlorine stretching frequencies occur at 235 and 197 cm™ .
X-ray powder results for CsAmCl, + 4H, O are listed in Ref. 83a but have not been
interpreted.

CsAmCl,. Bagnall, Laidler, and Stewart®®? prepared CsAmCl, by heating
CsAmCl, + 4H,0 1n a stream of HCl at approximately 320°C for 1hr. The
americium—chlorine stretching frequency of the anhydrous compound occurs at 218
ecm Marcus and Shiloh®* also prepared CsAmCl, by evaporating together aqueous
3M HCl solutions of CsCland AmCl; ata 1l 1 mol ratio.

Cs3AmCls. A compound of this composition was obtained by evaporating aqueous
3M HCI solutions of CsCl and AmCl; at a 3 1 mol rati0.24 Conversely, Bagnall,
Laidler, and Stewart®3? also prepared Cs; AmClg by adding the stoichiometric amount
of CsCl in 6M HCI to an ethanolic solution of hydrated AmCl; saturated with gaseous
HCI. The americtum—chlorine stretching frequency of Cs3 AmClg occurs at 214 cm™ .
X-ray powder results for Cs3 AmClg have not been interpreted.

Cs,NaAmClg. Face-centered cubic Cs; NaAmClg 1s obtained®3? when an HCI
solution of Am(1Il) and a2 1 mol muxture of CsCl and NaCl 1s evaporated to dryness
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According to Bagnall, Laidler, and Stewart,®>? this mixed cation complex 1s unique i
that no other combinations of alkali metal cations yield analogous products From 15
to 70°K, Cs;NaAmCls has temperature-independent paramagnetism with Xm =
5400 x 10™ emu mol™ . Below 15°K the susceptibility increases shghtly, presumably
due to the presence of some additional paramagnetic impunty 2°

AmCly « 3CsCl » yLiCl (y ~20) Marcus and Shiloh®? prepared this solid by
evaporating aqueous 3M HCI solutions of AmCl; and CsCl (mol ratio= 3 1)
containing excess LiCl.

AmCly * X{CaHg)aNCI » yLiCl (x = 17, y =~ 260) Marcus and Shiloh®? find that
two lhquid phases are produced from ethanol solutions of hydrated AmCl; and
(C4Hg)aNCl which contain a large excess of LiCl A yellow sohd of the above-
mentioned composition 1s formed from the upper liquid phase upon evaporation of
the ethanol

AmCly » 2(CyHg )aNCl- yLICl(y ~ 0, 1, and y) Yellow solds precipitate®* when
acetone 15 added to ethanol solutions of hydrated AmCl; and (C,Hs)4NCl In the
absence of LiCl, AmCl; - 2(C,H;);NCl precipitates, whereas AmCl; -
2(C,Hg)NCI + LiCl precipitates in the presence of stoichiometrically equal amounts
of LiCl When excess LiCl 1s present, the yellow precipitate 1s AmCl; + 2(C,Hg )4 NCI -
yLiCl

AmCls * x(Cy,Hy5)3 NHCl (x ~25) From a saturated solution of hydrated
AmCl; 1n trilaurylammonium hydrochlornide n toluene, Marcus and Shiloh®? obtained
AmCl; - x(C,,H;5)3;NHCI as a yellow waxlike solid upon evaporation of the toluene
This matenal can be recovered unchanged after dissolution 1n benzene.

[(CeHs )3PH] 3AmClg  Analogous to the corresponding bromide compound (see
page 139), the triphenyl phosphonum salt of AmCI}™ can be prepared®®-®° by
precipitation from nearly anhydrous ethanol solutions of AmCl; and (C¢Hs);PH
which are almost saturated with HCl Quantities of [(CgHs)3PH] 3 AmClg that contain
3 to 4 mg of americium are stable to radiation damage for about 2 days and then tum
dark yellow and char 8%

Cs3AmO,Cly * Green cesium dioxotetrachloroamericate(V), 1sostructural with
Cs3NpO, Cla, 1s precipitated by ethanol from a solution of Am(V) hydroxide and CsCl
i 6M HCI and also by treating CsAmQO, CO; with concentrated HCI saturated with
CsC1.232 Previously, Cs; AmO, Cly was erroneously formulated as the tnmeric cluster
Css(AmO0;)3Cly; (Ref 82) The amencium-—chlonne stretching frequency for
Cs3 AmO, Cl, occurs at 290 cm !

Cs, AmO,Cl,y. A dark-red solid, Cs; AmO, Cly, 1s obtamned when Cs; AmO,Cly 18
treated with concentrated HCI 32 Brown®® states that this unusual oxidation 1s

*Additional studies of the preparation and properties of Cs, AmO,Cl, have been reported
recently by Vodovatov and his Russian colleagues,2®®
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probably due to the high-attice-energy stabilization of Cs, AmO, Cly The cubic form
of Cs; AmO, Cly, when washed repeatedly with small volumes of concentrated HCI, 1s
reported®32 to transform to a monoclinic form

Fluorides. Amf, Stable AmF, is unknown Formation of divalent amerncium in
single crystals of CaF, has been reported, however 7 8% Single crystals of CaF,
grown with 01 to 02 wt % Am are mtially hght pink, but they darken to a brown
color on standing Visible and electron paramagnetic resonance spectroscopic
examination of the resulting crystals indicates the presence of Am?* m an f’
configuration Americium(III) incorporated in the CaF, lattice may also be reduced
with calcium metal or electrolytically

AmF'y The anhydrous trifluoride can be prepared by

1 Hydrofluorination at 600 to 700°C for 1 hr of either Am(OH); or AmO, (Refs
1, 50, and 86)

2 Drying of hydrated AmF; precipitated from aqueous solution (Refs 4, 52, and
90)

3 Heating hydrated AmF; precipitated from aqueous solution®
NH,4F + HF at 700°C

4 Metathesis of AmCl; with NH4F according to Eq 4 20

! with an excess of

AmCl; + 3NH, F 400 450°C AmF, + 3NH,Cl (4 20)

2

Hydrated AmF; can be satisfactorily dried and dehydrated by washing with
ethanol or ether and heating 1n air at 85°C under an infrared lamp °° Alternatively,
dehydration can also be effected successfully by flowing HF or a mixture of H, and
HF at 400 to 500°C over the hydrated fluoride *2

The melting point®! of AmF; 1s 1393 = 20°C Amencium(IIl) fluonde has the
LaF; structure, its crystal structure has been determined by Templeton and Dauben®®
and most recently by Asprey, Keenan, and Kruse 2 Magnetic susceptibilities for
AmF; at 295, 199, and 77°K are®? 1040 x 10 ¢,1290 x 10 %, and 1740 x 10 ¢ ¢cm?
mol™, respectively The solid state spectrum of AmF;, as determimed by Asprey and
Keenan,®® 1s given m Fig 4 3(a) The Mossbauer spectrum for AmF; has also been
reported °4-9%

Vapor-pressure data for AmF;°¢78

are represented reliably®” by the equation
log Porr = — (34628/T) + 34 007 — 7 048 log T (1126—1469°K)

The free energy of sublimation (kcal mol ') 1s given by AG =112 65 + 32 34T log
T —155.5T Ryan®® estimates the heat of formation of solid AmF, as —380 kcal
mol™.

Reduction of AmF; to amerncium metal 1s discussed on page 122 Amernicrum(I11)
trfluoride®? 1s stable 1n H, at 500°C
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AmF, Reaction of either AmF; or AmO, with F, at 400 to 500°C yields AmF,
(Refs 90, 93, and 100) Conner'®! recently used this approach to prepare multigram
quantities of AmF,; Fried®® showed that AmF, cannot be prepared by heating AmF;
n O, —HF mixtures

Lattice constants of AmF,; have been measured by Asprey,90 by Keenan and
Asprey,'®22 and most recently by Asprey and Haire,' Y AmF, 1s 1somorphous with
UF,;, NpF4, and PuF, Gas evolves when water 13 added to AmF,, and the
tetrafluoride 1s converted nto birefringent aggregates that give the characteristic
spectrum of Am(IIT) The solid state spectrum®? of AmF, 1s shown 1n Fig 4 3(b)

The vapor pressure of AmF, 1n the range 729 to 900°C can be represented! 2°+193
by the equation log Piorr = —(119115/T)+9 337 AmF,4 15 thermodynamucally
unstable above 635°C The estimated®® heat of formation of AmF, 15 —399 kcal
mol !

AmF¢ All attempts' ©%>'%5 to prepare AmF¢ have been unsuccessful
p

AmO,F, Keenan'®® prepared americyl fluoride by the reaction (at —196°C) of
solid sodium americy! acetate with anhydrous HF containing a small amount of F,
The hexagonal AmQO, F; 1s 1sostructural with other actinyl(VI) difluorides

Fluoride Complexes Various fluonde complexes of Am(HI) (NaAmF,, KAmF,,
and K2 AmF7) and Am(IV) [(NH4 )4 AmFg s K7 Am6 F3 1, and Na7 Am6 F3 1 ] are
known Two complexes of Am(V) (KAmO, F, and RbAmO, F, ) are also known

NaAmF, Keller and Schmutz report!®7-1%® that NaAmF, can be synthesized by
heating AmO, with either NaF or Na, CO; 1n an HF—~H, muxture at 450 to 650°C
(According to these workers, NaAmF, 1s the first fluoride complex of amerncium to be
prepared by a high-temperature solid state reaction ) Keenan’®? showed later that
exposure of Na;AmgF3;; to H, for 16 hr at 300°C converts 1t to NaAmF, Lattice
constants of hexagonal NaAmF, have been measured,'®® but other details of the
chemustry of this compound are lacking

KAmF, Sohd-state reaction of equimolar amounts of KF and AmF; at 350 to
650°C 1n an HF—H, atmosphere produces'®® KAmF, X-ray diffraction and other
properties of this compound have not been reported

KAm,F; Pink, cubic KAm, F; 15 reported to result from reaction of 2 mols of
KF with 1 mol of AmF; at 350 to 650°C in an HF—H, atmosphere '°8

(NH, )3 AmF g Freshly prepared Am{OH), dissolves in 13M NH,4 F solution up to
an Am(IV) concentration of Sg liter ' When this solubility 1s exceeded at room
temperature, red crystals precipitate ''® These crystals, by analogy with the
1sostructural tetravalent uranium compound, are formulated as (NHs)s AmFg The
solubiity of (NHz)s AmFg i 13M NH4 F 1s about 0 02M No further studies of this
compound have been made
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LiAmFs This compound results' '! when the residue from evaporation of an HCl
solution containing stoichiometric (1 1) amounts of lithium and americium 1s treated
with F, at 350°C for =16 hr Lattice constants of tetragonal LiAmFs have been
measured by Keenan,''!' LiXFs-type compounds are known for X = Th, Pu, U, Np,
Pu, and Cm also ' !?

K,;AmgF5, Preparation of K;AmgF;, 15 by evaporation of a 7 1 muxture of
potassium/americtum from HF solution, subsequently the dried residue 1s treated' '3
with F, for 16 hr at 350°C. (At the time of its onginal preparation,”® K, AmgF3,
was formulated as “KAmF;s ) Trends in the 7 6 potassium/actinide(IV) series for
actinides from thorium to curtum inclusive are discussed by Keenan.'!3

Na;AmeF3; This compound 1s completely analogous to the K;Amg¢Fj,
described above and 1s prepared in a similar manner.!®® A 7 6 sodium/actinide(IV)
series analogous to the 7 6 potassium/actimide(IV) sertes 1s also known !°%-113
Reduction of Na; AmgF3; with H; , as noted earlier, produces NaAmF, .

RbyAmF The procedure recommended by Keenan''* for preparation of
Rb, AmFg 1involves equilibration of freshly prepared Am(OH), with aqueous RbF and
HF at 0°C. The precipitate so formed 1s heated for about 70 hr at 150°C in F,.
Synthesis of Rb, AmFs from RbAmO,CO; has also been accomplished ! Optical
properties and the solid absorption spectrum of Rby; AmF¢ were determimed by Kruse
and Asprey ''® The lattice parameters of orthorhombic Rb, AmF¢ have been
measured by Keenan ''*

Keenan pomts out that, although Rb,;AmgF;, 1s not known, the 7 6 rubidium
compounds are known from thorium to plutonium. Conversely, the 2 1 Rb,MF4
series includes americium and curtum but not Th(IV) and Pu(IV).

KAmO,F, Addition of a saturated solution''® of KF to an acid solution of
AmO; (prepared by dissolution of KAmO,CO; in dilute HNOs) precipitates tan
KAmO,F, The rthombohedral crystal (CaUQO, type) contains AmOj; 1ons and 1s built
up of layers contamning AmO, F; tons held together by potassium 1ons

RbAmMO,F, Keenan''’ made RbAmQ, F, by addition of saturated RbF solution
to AmO3 m 0 01M HCI. On standing overnight 1n contact with an acidic RbF solution,
RbAmMO; F, 1s reduced to Rb, AmFg (Ref. 115).

Germanate. AmGeO,; Both thermal and hydrothermal methods*!:''® can be
used to prepare AmGeO, Pure, dark-brown AmGeQ,4 1s produced when Am(OH),
and excess GeO, 1 a 1M NaHCO; solution are heated 7 days at 230°C. Bright-brown
AmGeOQ,, contaminated with AmO, and Am,Oj;, results when AmO, and GeO, are
heated 8 hr 1n O, at 1000°C.

The thermal decomposition of AmGeQ, starts at about 1050°C. Keller' '8
suggests formation and decompositton of AmGeQO, can be represented by the reaction
sequence

147



148

METAL ALLOYS AND COMPOUNDS

AmO, + GeO,

a-AmGeO, __, $ AmGeO, __, AmO, + GeO,
I, T,1,0) T, T,
where T, €T, <T3>T;> T, Alpha AmGeO, has the scheelite structure, and
8 AmGeO, has the zircon structure

Hydrides. That americium metal reacts with H, to form hydrides has been known
almost since the discovery of amertcium ' % Only recently, however, has a detailed
study!2%:121 of the americtum—hydrogen system shown the existence of two hydrnide
phases fcc AmH; 4y (0 <<x <07) and hexagonal AmH; Pressure 1sotherms for the
composition AmH, to AmH; are shown in Fig 4 4 Conversion of AmH, ; to AmH;
1s sluggish At hydrogen to americium <2, a two-phase region consisting of AmH, and
americium metal exists

According to Olson and Mulford,'?° the partial pressure of H, above AmH,
between 773 and 1073°K follows the relation log p (atm) =7 190 — 8812/T For the
reaction

Am(s) + Ha (g) > AmH, (s) 4z
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Olson and Mulford'*®reported AH= -403 kcal mol ' and AS= -300 cal mol '
deg™. Recent work'?' at Oak Ridge National Laboratory puts these values at AH =
—45.5 keal mol™ and AS =37 3 cal mol™ deg™

Utiizing the Solution Theory, Messer and Park!22 have calculated the excess heat
and entropies of mixing in the americtum—hydrogen system.

Hydroperoxide. Slow neutrahzation with NH,OH of a 0 IV acid solution of
Am(IIT), which 1s also 0.2V H, O,, leads to a yellow-brown color at a pH of about 5
Further addition of NH4OH yields a yellow-brown precipitate, which, according to
Buys and Louwner,'?? 1s quite distinct from Am(OH); and 1s probably a
hydroperoxide of Am(IIT) The hydroperoxide 1s insoluble in saturated NH4F but
converts to Am(OH), when treated at 90°C with 10NV KOH for 1 day

Hydroxides. Am{OHJ; An amorphous hydrous gel precipitates when ammona
or alkah 1s added to a solution of an Am(III) salt *2%™ 26 This precipitate conststs of
particles about 15 to 20 A in diameter *25 Aging of this gel in water for 1 hr at 80°C
yields rod-like or scroll-like particles of crystalline Am(OH); which are isostructural
with hexagonal Nd(OH), (Refs 124, 126). After several months of aging in water, the
Am(OH); structures disintegrate to give small amorphous particles In the sohd state,
Am(OH); converts to crystalline AmQ, The rate of conversion to the dioxide 1s
dependent on storage conditions.

Weaver and Shoun'2?’ find that Am®’ can be completely precipitated from
chlonde or nitrate media at an NaOH/americium ratio of 2.4. For this stoichiometry,
they calculate, at NaOH/amencwum ratios of 10 to 15, that Kgp 1s
[AM**][OH]?%= (34+03)x 10"® and that the solubility 1 water 1s
(Kgp/24> '3 4 =39 x 10°M

Figure 4 5 15 a thermogram of a sample of Am(OH); heated i oxygen, the
Am(OH); contaned small amounts of mitrate and carbonate ! 2 Although the DTA
(differential thermal analysis) peaks and TGA (thermogravimetric analysis) changes are
only tentatively assigned, the change at 1000°C 1s believed to be due to the
decomposition of carbonate, whereas the change at about 300°C 1s thought to result
from a loss of mitrate Changes below 300°C are assigned to loss of water The final
product obtamned after cooling to room temperature was confirmed by X-ray analysis
to be AmO,

Am(OH), A brown-black precipitate forms when a slurry of Am(OH); 1s oxadized
etther with hypochlorite in weak base or with peroxydisulfate in strong (7M)
base '28:129 This precipitate 1s referred to as Am(OH), by Penneman, Coleman, and
Keenan'?? but 1s perhaps better termed hydrous AmO, Treatment!?® of amencium
“hydroperoxide” (this page) with strong KOH also yields Am(OH),. The estimated
solubility' 29 product (Kgp) of Am(OH), 1s about 10756,

When tetravalent americium 1s precipitated with hydroxide, the resulting crystal-
line matenal gives election diffraction patterns identical'>® to those obtained for
AmO, When a mixture of Am(III) and (IV) hydroxides 1s precipitated, the crystalline
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Fig. 4.5 Thermogram of Am(OH),.

products consist of mixtures of rod-ike Am(OH); particles and symmetrical particles
of hydrous dioxide

lodides. Aml,. Combining americium metal with Hgl, according to Eq.4.22
(Refs. 48 and 130) gives Ami,

Am + Hgl, 2%°C Aml, + Hg (4.22)
vacuum

Reaction conditions are 1dentical to those used to prepare AmBr, (see page 138)
except that the black granular Aml, s annealed 3 days at 550°C rather than for 10
days at 400°C. The americtum—1odine distance in Aml, 1s 1n the range 3 28 to 340 A.
The only notable feature of the absorption spectrum of Aml, 1s a weak, very broad
band peaking at 837 nm. Amerncium(Il) 10dide melts with decomposition at about
700°C. Its effective magnetic moment 18 tegr = 6.7 + 0.7 Bohr magnetons.!?!

Aml;. What 15 termed o-Aml; 1s prepared®’ by heating AmO, at 500°C with
etther All; or a muxture®® of aluminum metal and 1, and separating the reaction
products by fractional sublimation Zachanasen®? found the resulting Amls to have

an orthorhombic structure
Amencium(IIT) triiodide can also be made by Eq. 4.23 (Refs. 52 and 131)

AmCl; + 3NH, 1 a Aml, + 3NH,Cl (4.23)
400-900°C

where a flow system 1s used to sweep volatile NH;Cl from the reaction zone. The
truodide (8-Amly) made by Eq.4 23 has a hexagonal structure and cannot be
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converted to an orthorhombic form even on annealing at various temperatures.!>!
Treatment of 3-Aml; with H, at 900°Cdoes not yield Aml,

Pappalardo, Carnall, and Fields®' have measured the visible and near infrared
spectra of Aml; at low temperatures. Maslov and Maslov' ®2 estimate that the heat of
formation for Aml; from americium and I 15 =146+ 5 to 10 kcal mol™. (From
recent thermochemical data, Ryan®? calculates a value of —139 * 3 to S kcal mol™* )

AmOI Pure AmOI can be obtamed by heating Aml, in moist air at 400°C
(Ref. 130). Its properties have not yet been determmed.

Molybdates. Am,(MoQ, ;. Sohd-state reaction’®3>'3% between MoO; and
AmO, at 700 to 900°C yields a ternary oxide of the empirical composition
Am,Mo30,,. X-ray diffraction data show that the low-temperature (<850°C) a-form
of this compound has the vacancy scheelite structure whereas the stable high-tempera-
ture S-form has an orthorhombic form.

LiAm(MoO, ), The compound LiAm(MoOys ), results when an equimolar mixture
of Li,MoO, and Am,(MoQ4); 1s heated!®* at 550°C This compound has the
scheelite structure and 1s 1sostructural with LiGd(MoQ,), .

NaAm{MoO, ), Two phases result from solid-state reaction’ 34 of Na,MoO, and
Am,(MoQy); at 550°C. One of these 1s NaAm(MoO, ), which, hke LIAm(MoQ,),,
has the scheelite structure.

NasAm(Mo0O, ), This compound,'3? which also forms when Na,MoO, and
Am,(Mo0O;); are heated 24 hr at 550°C, melts congruently at 654°C The crystal
structure of Nas Am(MoQ,) 1s the same as that of Nas La(WO,), .

Ky Am,(MoOy4 )y and K,oAmy(MoO,)s. Two homogeneous phases of the
empincal composition K; Am, (MoOy4); and K g Ama(MoOy )s apparently form when
K;MoQO, and Am,(MoQ,); are heated? 3% at 600°C. X-ray diffraction data indicate
that these compounds are not 1sostructural with those of sodium and lithium.

Nitrate. Am(NO3); < xH,O Several reports, e.g., Ref 70, cite use of solid
Am(NO3); + xH, O [made by thermal evaporation of a punfied Am(NO;);—HNO,
solution] as an intermediate in preparation of other americum compounds But,
surprisingly, the chemucal and physical properties of solid Am(NO;); - xH, O,
including 1ts crystal structure, have apparently not been determined.

Nitride. AmN Akimoto'3°™'372 prepared micrograms of AmN by reacting
AmH; for 30 mun at 800°C and also by direct reaction of americium metal and N, at
750°C. Potter and Tennery!? 75 disclosed a cyclic process for the preparation of finely
diided AmN which involves incrementally dehydriding AmH; and nitnding the metal.

Milligram amounts of AmN have been recently synthesized by Charvillat et al.! 37
by heating AmH; under a high-purity N, atmosphere in a sealed tube. The AmN thus
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produced”has the cubic NaCl structure. Its effective magnetic moment is 136 Bohr
magnetons.'®

Tagawa!3® has recently reviewed the phase behavior and crystal structure of the
actinide nitrides.

Binary Oxides. AmO. Zachariasen'>® in a 1949 article reported the lattice

constant of impure cubic AmO but did not give any details of how the compound is
made. Akimoto!357372 (laims to have prepared microgram amounts of AmO by
reacting metallic americium at 850°C with the stoichiometric amount of oxygen gas
generated by thermal decomposition of Ag,O. He reports AmO is a brittle material
with a grayish metallic luster. Attempts to prepare milligram to gram amounts of AmO
have apparently not been made.

In connection with studies of the vaporization behavior of substoichiometric
PuO,, Ackermann, Faircloth, and Rand**® found the vapor pressure of AmO between
1600 and 2200°K to obey the retation

log p (atm) = (8.19 £ 0.41) — (25,650 + 760)/T

Amy05. Americium sesquioxide is obtained by reduction of AmO, with H, at
600 to 1000°C. The crystal structure of the resulting Am,Q; depends on the
reduction temperature. Cubic (Mn, O;-type structure), red-brown C-type Am,Qj; is
produced at 600°C (Refs. 80 and 141), and hexagonal (La, O3-type structure), tan
A-type Am,0j; is obtained®® at 800°C. The melting point of hexagonal Am,0; is
2205 % 15°C (Ref. 142); the cubic-to-hexagonal transition occurs at about 800°C
(Ref. 143). Chikalla and Eyring'** state that cubic Am, 05 is capable of dissolving
excess oxygen and exists, at room temperature, over a wide range of stoichiometry.
The upper boundary is at about AmO,; 4.

It is not yet clear whether or not monoclinic sesquioxide (B-type Am,03) can be
prepared. Chikalla and Eyring!4* interpreted some of their X-ray data to indicate that
B-type Am, O; forms when oxide samples with oxygen/americium ratios between 1.51
and 1.54 are quenched from 800°C or above. In subsequent work, Berndt et al.' 452
and Maier'#5° were unable to confirm the earlier observations of Chikalla and
Eyring.'** Their results show that only A-type Am,0j; exists in the range 900 to
1500°C. Berndt et al. note, however, that in the americium--samarium—oxygen
system, pure B-type Am,03;—Sm,0; exists at 1250 to 1550°C at 8 to 10 mol %
Sm, O03. They suggest, therefore, that the diffraction lines observed by Chikalla and
Eyring** might have originated from a small amount of samarium impurity in their
americium oxide sample.

On the basis of their recent studies with carefully purified %! Am, Keller and
Berndt!4? state that B-type monoclinic sesquioxide with the exact stoichiometry
Am, O3 does not exist. These workers report that hexagonal Am, O is the only stable
modification for <700°C <T <1550°C. Keller and Bemdt,'*®? in agreement with
the observations of Maier et al., note that a monoclinic form of Am,0; can be
stabilized by incorporation of small amounts of lanthanum oxides.
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Chikalla et al.'*? have drawn up a stability diagram for actizide sesquioxides
(Fig. 4.6). Their diagram mcludes transformation temperature data obtained by Foex
and Traverse'*¢® and Warshaw and Roy'4%¢ for lanthanides Baybarz'*¢9 has also
given a stability diagram for several of the actinide sesquioxides including Am, O;.
Chikalla and Turcotte!*¢® note that the resin-bead technique used by Baybarz to
obtain data for berkelium and californium can result 1n large amounts of residual
mmpurities and, for that reason, question the validity of Baybarz’s diagram.

AmO,. Thermal decomposition n air or oxygen at 700 to 900°C of such
americtum compounds as Am(NO;); (Refs. 70 and 147), Am(OH); (Ref. 123),
Am;(CO;3)3 * 4H, 0 (Ref 61), or Am,(C204); (Ref 141) produces dark-brown
AmO,. Cubic AmO, crystallizes with a fluorite structure. The lattice constant of
241 AmO, has been determined by Zachanasen et al.,'>°'%#%2 Dauben and
Templeton,®® and most recently by Keller *! Keller and also Chikalla and Eyring!4*
note that, because of the high alpha activity of 2*! Am, a continuous destruction of
the lattice of >*' AmO, takes place with the formation of Frenkel defects According
to Keller,' the lowest value of the lattice constant of *?'AmO,, obtamed
immediately after preparation, 1s a = 5377 A. After 3 months’ storage, the lattice
constant 15 5.395 A. The lattice constant of 2%3AmO, at 25°C 1s 5.3743 A&
(Ref. 148a). [Thermal expansion of AmQ, can be calculated from the expression
2, =53733 + 434 x 107 t + 14.3 x 107 t?, where a; 1s the lattice constant (A) at
any temperature t (°C) 148°]

Mchmry149 observed that the melting pont of a composition near AmQO,, when
heated in helium, increased with increasing rate of heating Melting points of 1750 and
2120°C, respectively, were noted at heating rates of 0.3 and 1.50°C mun™". According
to Chkalla and Turcotte,'*®® McHenry’s results must certainly refer to a grossly
substoichiometric oxide since the oxygen dissoctation pressure over AmQO; ¢ 15 1 atm
at about 1000°C (Ref 150). However, on the basis of an extrapolation of other
actimide dioxide data, Chikalla and Turcotte! #6® state that the expected melting point
of AmO, 15 2175°C

The vapor pressure of AmO, between 1600 and 2200°K 1s given by the
relation’4°

log p (atm) = (7 28 £0.19) — (28260 + 360)/T

The dioxide dissolves readily in aqueous HCI solutions with evolution of chlorine
and 1in agueous HNQO; and H,S0, solutions with evolution of oxygen, particularly
when heated Using data obtained oniginally by Eyring, Lohr, and Cunningham'*' for
the heat of solution of AmO, 1in 6 02 HNO;—-0.1M HBF,, Fuger, Spirlet, and
Muller!!? calculate the enthalpy of formation of AmO, at 298°K as AHf = -224 3 &
0.6 kcal mol™

Chikalla and Eyning!*° used a thermogravimetric 1sopiestic technique to measure
the oxygen dissociation pressures over stoichiometric americium dioxide Their results
(Fig 4.7) show that the partial pressure of oxygen above AmO, , increases sharply
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Fig. 4.6 Stability diagram of polymorphic forms of lanthanide and actinide sesquioxides ® and v
are results of Foex and Traverse! **® and Warshaw and Roy,'*5€ respectively o, g, and 4 are
transformation temperatures in Cm,0,, Pm,0,, and Sm, 0, found by Chikalla et al '*? (from
T D Chikallay C E McNeilly, J L Bates, and J J Rasmussen, High Temperature Phase
Transformations 1n Some Lanthamde and Actimide Oxides, 1n Proceedings of the International
Colliquium on High Temperature Phase Transformation, Centre National de la Recherche
Scientifique, Publication No 205, 1973 )
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Fig. 4.7 Dissociation-pressure 1sotherms for AmOy [From T D Chikalla and L Eynng
Dissociation Pressures and Partial Thermodynamic Quantities for Amencium Oxides, Journal of
Inorganic and Nuclear Chenustry, 29: 2281 (1967)]

both with the temperature and with the oxygen/americium ratio. Asprey and
Cunningham'®! also studied the thermal decomposition of AmO, The relative partial
molar enthalpy and entropy of solution of O, 1n AmO,_, calculated from the results
of both sets of investigators are in reasonable agreement.

Figure 4.8 1s the phase diagram for the amernicium—oxygen system denived by San
and Zamoram'*?? and Sari, Tebaldi, and Pretra’ 32® using DTA and ceramographic
procedures. According to this diagram an oxygeun-deficient fce single-phase AmQ,
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Fig. 4.8 Low-temperature amercium—oxygen phase diagram A =hexagonal Am,0,,
C = low-temperature bcc Am,0,, C' = high-temperature becc Am,0,,v, v, , 7,, = fcc AmO, , o=
results of DTA measurements All other points represent results of mucrographic analysis [From
C Sart and E Zamorani, An Investigation in the Americium Oxide System, Journal of Nuclear
Materials, 37° 324 (1970) ]

exists at temperatures above 1020°C and for 1 7 < oxygen/americium <2 0 At room
temperature the compound AmO,; g5 15 1n equihbrium with a bec phase of the
approximate composition AmQ, 59 The low-temperature bcc phase takes up
additional oxygen at temperatures higher than 350°C and extends nto a region of
composition 1 63 < oxygen/americium < 1 68. For higher oxygen/amencium ratios,
this phase 15 m equilibrium with AmO, , up to 1020°C, whereas, for lower
oxygen/americium rat1os, 1t 1s i equilibrium with a hexagonal Am, O,

Chikalla and Eynng'** analyzed (X-ray diffraction) quenched samples taken
across the entire compositional width 1 50 <oxygen/amencium <2 00, their results
show the formation of bec phase (@) 1n the range 1 50 < oxygen/americium < 1 67
Samples annealed in the higher oxygen/americium region could not be quenched but
always gave a two-phase muxture of AmO, ¢ and a phase of estimated composition
AmO; g By implication 1t 1s suggested that another diphasic region must exist 1n the
interval 1 67 < oxygen/amencium <1 8

Chikalla and Turcotte' *32 have suggested that there 1s a greater complexity in the
1 67 to 1 80 region of the americium—oxygen system than indicated in Fig 4 8 More
recently. on further consideration of the San—Zamoram phase diagram for AmO,,
Clikalla and Turcotte!®®® state, “The partial pressure data in Fig 47 and the
phase diagram suggested by Sart and Zamoran: are mn direct conflict The thermo-
dynamic data suggest that the region AmO,; ¢5—AmO,; 55 15 single-phased to
temperatures below 900°C, whereas the diphasic dome reported by Sart and Zamoran:
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extends to well above 1000°C. In the other fluorite-related systems exammned 1n this
region, including plutonium, berkelium (Turcotte, unpublished), cerrum, and praseo-
dymium, there 1s indeed evidence of a diphasic regton but only at temperatures near or
below 600°C.

“With the exception of the diphasic dome at high temperatures, which 1s a dome
that we believe 1s disproved by the equilibrium thermodynamic studies, there are no
real data presented which justify construction of any detailed phase diagram. That
given by San and Zamorani relies entirely on the hope that AmO; 1s much like PuO, ”

Karraker' *3® studied the magnetic properties of AmO,, over the temperature
ranges 15 to 50°K and 50 to 100°K, uerr = 1 3 and 1.53 Bohr magnetons, respectively.
Karraker also notes that AmO, 1s antiferromagnetic at temperatures below about
8.5+05°K.

Ternary Oxides with Lithium and Sodium. Lithium. Solid-state reaction of Li, O
and AmO, 1n various proportions at temperatures in the range 350 to 1000°C leads to
a variety of brown-colored ternary oxides.*!**$4:155 The following compounds are
known

Am(VI) LigAmOg4 and Lig AmOs

Am(V) Li; AmOg4 and L1 AmO,
Am(IV) Lig AmOg¢ and Li; AmO,
Am(II) LiAmO,

Figure 4 9, due to Keller,*! summarizes the thermal stability of these compounds and
the conditions for their preparation.

Sodwum. The following hsted ternary oxides of amerncium with sodium can be
prepared by solid-state reaction of Na, O or Na, O, with AmQ, 41-134,155

Am(VI) NagAmOg and Nas AmO;,
Am(V) Na; AmO,
Am(IV) Na, AmO;,

Conditions for preparation of these compounds and their thermal stability were
reported by Keller*! and are shown in Fig 4 10

Termary Oxides with Barium and Strontium. Barum. The following ternary
oxtdes are known 1n the bartum—americlum-oxygen system 4!+156

Am(VI) Ba3 Am06
Am(IV) BaAmO;
Am(III) BaAmz 04 (BaO . Am2 03)

Medium-brown Baz; AmOg 1s obtamned by heating a finely pulverized mixture of
BaO and AmO, (3.05 1) 1n O, for 8 hr at 800 to 1000°C (Refs 41, 156) This
compound dissolves in dilute acids
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Fig. 4.9 Preparation conditions and thermal stability of compounds in the system
lithium—americium-—-oxygen. [From C. Keller, The Solid State Chemistry of Americium Oxides, in
Lanthanide/Actinide Chemistry, R. F. Gould (Ed.), Advances in Chemistry Series, American
Chemical Society, Washington, 1967.]

Na,O AmO,
2 1 <300°C . (a-NayAmOg)
0,
350°C
35 1 300 to 500°C Nag AmQOg
0,
600 to 700°C
2 1 600 to 700°C Na3AmO,
0,
700 to 800°C
Y
15 1 700 to 800°C NayAmO;
N2
900°C
4

AmOz

Fig. 4.10 Preparative conditions and thermal stability of compounds 1in the system
sodium—americium—oxygen. [From C. Keller, The Solid State Chemistry of Americtum Oxides, in
Lanthanide/Actinide Chemistry. R.F. Gould (Ed.), Advances in Chemistry Series, American
Chemical Society, Washington, 1967.]
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Dark brown BaAmO; forms when a muxture®' of BaO (or BaCO3) and AmO,
(109 1) 1s heated m arr at 1250°C for 30 hr Synthesis of BaAmO, can also be
effected by thermal decomposition of BazAmOg at temperatures above 1100°C
BaAmO; dissolves in dilute acids with disproportionation of Am(IV)

Reduction®! of BaAmO; with H, at 1250°C produces BaAm,0,4
(BaO - Am,0,), which has the structure of CaFe, 04

Stronfium In the strontium—americium—oxygen system, the following com-
pounds exist 4! 136

Am(VI)  Sr3;AmO,
Am(IV) SrAmO;
AIT](IH) SrAm; 04 (STO N Am2 03)

These compounds are completely analogous to those in the barlum—americium—
oxygen system and are prepared by simular solid-state reactions

Ternary Oxides with Curium. Curtum(IV) 1s stabilized'*” by formation of solid
solutions of CmO, in AmQ, Table 4 3 lists the phases known 1n the amencium—
curlum—oxygen system for oxygen/americtum + curtum > 1 5

Ternary Oxides with Zirconium, Hafnium, and Thorium Zircomum A one-phase
solid solution with the fluortte structure exists above 18 mol % AmO, 1n the
AmO; -ZrO, system at 1200 to 1400°C (Fig 4 11)

Figure 4 12 shows the phases present in the AmO; s—ZrQ, system at 1200°C
(Refs 41, 158) Besides the pure starting components, two one-phase regions exist a
tetragonal sohd solution of 0 to 6 mol % AmO; ;5 and a cubic solid solution of about
32 to 55 mol % AmQ, 5 According to Keller,*' “In the cubic solid solution, in whose
region exists AmyZr; O, with the pyrochlore-type structure, a contimuous transition
from the fluorite phase to the pyrochlore phase can be observed ”

Hafrmuum. The amencium-—hafnium—oxygen system has not been studied as
intensively as the corresponding americium—zircontum--oxygen system Qualita-
tively,**-'5® a one phase solid solution with the fluorite structure exists in the
AmO, —HfO, system, but the extent of the solid-solution region 1s unknown Keller*®
reports that the AmO, ¢—HfO, system 1s considerably more simple than the
AmO,; 5—7r0O, system According to Keller,a I 1 compound Am,Hf, O, with the
pyrochlore structure exists in the AmO; s —HfO, system

Thorium. Thoria and AmO, form a complete series of solid solutions 4'>!58

Keller*! states, “The solubthity of AmO, 5 in ThO, at 1300°C 1s about 50 mol % In
this case the pure fluonte structure remains, the lack of oxygen ts balanced by the
formation of statistically distributed oxygen holes An exact determination of the
solubility of AmO, 5 in ThO; 1s possible in practice only by quoting a large margin of
error because the lattice constants of ThO, (a= 5599 A) and those of the cubic
AmO, 5 (a/2 = 5515 A) are relatively close to each other, and, moreover, the quality
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Table 4.3
PHASES IN THE SYSTEM AMERICIUM-CURIUM-OXYGEN

Phase

Lattice constants, A

Composition* Cations present Formula Symmetry a b c B Conditions
2000 M<198 Am**, Cm** (Am, ,,,Cm, ,4)0, ,, fcc 5368 350°Cn O,
193<0 M<1.80 Am**,Cm**,Cm®* (Am,,,,Cm, ,,)0, ,, fcc 5433 550°Cmn 0,
180<0 M<168 Am**,Cm**, Cm®* (Am, ,,,Cm, ,,)O, ,,; Rhombohedral 6 687 99 47° 760°C in He
172<0 M<152 Am**,Am*"* (Amyg 54, Cmy )0y bee 10935 990°C 1n He

Cm**, Cm?* 11 004 915°Cin 4% H, /He
0O M=150 Am®*,Cm3"* (Am, 4,,Cm, 4,4)0, | Monochnic 14 321 3665 8926 10017° 1100°C1n4% H,/He
O M=150 Am**, Cm** (Am, 4,,Cm, ,4)0, | Hexagonal 3980 5980 1500°C n 4% H, /[He

*M = americium + curium
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Fig. 4.11 The AmO,-ZrO, system. [From C. Keller, The Solid State Chemistry of Americium
Oxides, in Lanthanide/Actimide Chemistry, R.F. Gould (Ed.), Advances in Chemistry Series,
American Chemical Society, Washington, 1967.)

ST l | l l |

F = fluorite structure
T = tetragonal structure
P = pyrochiore structure

H = hexagonal
structure
ss = solid solution

10 700 |— ~— 5350
h
2 phases 1 phase L_ 2 phases

O 300
Qo — 5300
o~
&

-—5 250

—15 200

FS?* PSS Pss + HexSS
| | I | | 1 | 1
Z2r0, 10 20 30 40 50 60 70 80 90 AmO,;g
mol %

Fig. 4.12 The AmO, -Zr0, system—lattice constants and solid solutions at 1200°C {From
C. Keller, The Solid State Chemistry of Americium Oxides, in Lanthanide/Actinide Chemistry,
R. F. Gould (Ed.), Advances in Chemistry Series, American Chemical Society, Washington, 1967.]
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of X-ray powder patterns of samples above 50 mol % AmO,; s leaves much to be
desired

Oxides with Niobium, Tantalum, and Protactinium Nwbwm AmNbO, Mono-
clinic « AmNbO,; 1s produced by the solid-state reaction of AmO, and Nb,O;
(2AmO; Nb,0O;s) for 24 hr at 1200°C (Refs 41, 45) When heated, @ AmNbO,
transforms to 8 AmNbO, at 600 +20°C (Ref 45), 8 AmNbO,, which has the
tetragonal scheelite structure, 1s unstable below 660°C and cannot be stabilized even
by fast quenching

Amg 33NbO; When mixed in the proportions 2AmO, 3Nb, 05, AmO; and
Nb,Os react at 1200°C 1n H,, air, or a vacuum to produce pale-rose Amg 33NbO;
(Refs 41 and 42) This compound 1s 1sostructural with tetragonal Lag 33TaO5

Ba, AMNbO¢ At 1300°C, a-AmNbQ, reacts with BaO to form Ba, AmNbOq
(Refs 41 and 45) This latter compound has the “ordered™ perovskite structure This
compound can also be synthesized by direct solid-state reaction of AmO,, Nb,Os,
and BaO (Ref 45)

AmNDTIO¢ Yellow-brown orthorhombic AmNbTIO, 15 easily prepared by
reaction of a-AmNbO, with Ti0, at 1150°C for 24 hr in air *'»*5

Tantalum. Solid-state reactions between Ta,Os and AmO, yield a-AmTaO,,
B-AmTa0,, and Amg 33Ta0; (Refs 41, 42, and 45), these compounds and the
conditions for their preparation are completely analogous to those already described
for the americium—niobium—oxygen system The compounds Ba, AmTaO, and
AmTaTi0¢ are also known®'**® and are prepared like the corresponding niobium
compounds

Protactvuum. AmPaO, The solid-state reaction*® between AmO, and Pa, O;
(2AmO, Pa0O,) for 8 hr at 1100°C results m a double oxide
[Amq s(II1),Pag (V)] O, (= AmPa0,) that, according to Keller,*! has a fluorite-type
structure with a statistical distribution of metal 1ons The double oxide*® 1s insoluble
in acids but can be solubilized by fusion with K, S, O,

Ba, AmPaOs At 1350 to 1400°C (Amy 5 ,Pag )0, reacts with BaO or BaCOj; to
form Ba; AmPaOg (Refs 41, 45, 159) The latter compound has an ordered
perovskite type of structure ¢!

Phosphate AmPO, + xH,0 Light pink Am(IIl) phosphate precipitates when a
dilute solution of either HiPO4, Na, HPO,4, or (NH4), HPO, 1s added to a weakly
aadic ([H'] <0 1M)Am** solution *° Hexagonal AmPO, + 0 5H, O is obtained when
the precipitate 1s dried at 200°C or lower temperature Anhydrous AmPO, 1s obtained
at higher drying temperatures The anhydrous compound*® 1s stable up to 1000°C and
can also be obtained by direct reaction of stoichiometric amounts of AmO, and
(NH4),HPO; at 600 to 1000°C Dilute acid solutions readily dissolve
AmPO, - 0 5H, 0, but monoclinic AmPO, dissolves only 1n boiting acid solution
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Phosphide AmP Charvillat et al #*®137¢ synthesized AmP by reaction at 580°C
of red phosphorus on AmH; 1n a sealed quartz tube The monophosphide has the
cubic NaCl structure with a =5 7114 + 0 0003 A

Scandate AmScO; Pink AmScO; forms when stoichiometric proportions of
AmO, and Sc, 03 are heated 1n highly punfied H, at 1100 to 1700°C (Ref 160) A
convenient starting material for the sohd state reaction 1s obtamned by coprecipitation
of the hydroxides of americium and scandium

According to Keller and Berndt!*® oxidation of AmScO; or the sohd-state
reaction of AmO; —Sc, O3 muxtures results in the formation of a fluorite phase Keller
and Berndt also find that AmO, takes up small amounts of Sc, Q3 into solid solution,
05 mol % at 1100°C to 4 7 mol % at 1550°C But even 1n this system there 1s some
loss of oxygen of AmO, at high temperatures leading to an increased solubility of
Sc, 03 1n AmO,

Selenides AmSe Charvillat et al !37¢ prepared AmSe by reacting AmH; with a
stoichiometric amount of selemum at 800°C 1n a vacuum The resulting product after
pelletizing and further heating at 1100 to 1200°C contamed two phases—Am;Se,
(Th3Pu, structures) and a second phase (NaCl structure) that Charvillat et al
dentified as cubic AmSe

AmSe, x Nonstoichiometric black AmSe, x 1s prepared by heating an excess of
selentum metal with AmHj; for 1 week at 400°C under high vacuum '¢! X ray
diffraction analyses indicate the resulting product 1s a nonstoichiometric compound
with a composition near AmSe; g Roddy®° has also prepared what appears to be
tetragonal AmSe, by heating 243 Am metal or hydnde with selentum metal for 24 hr
at 950°C His results also suggest that a range of homogeneity may exist in the
americium—selenium system

AmsSe, Body-centered cubic Ams;Se,; results when a muxture of 50 wt %
americtum metal and 50 wt % selenium metal 1s heated for 1 hr at 217°C and then 7 hr
at 850°C before furnace cooling to room temperature 43> Roddy3° also prepared
Am;Se, by heating 243 Am metal with metallic selenum 24 hr at 950°C X-ray
diffraction measurements show that the products of such preparations contain at least
two phases that persist even after heat-treating for 10 to 14 days at 750 to 800°C The
major phase** m the final product 1s Am;Se,, which 1s 1sostructural with Th3 P, and
1s without magnetic ordering down to 4 2°K

Silicate AmSi0, Hydrothermal reaction of Am(OH); with excess S10, 1n 1M
NaHCO; solution for 1 week at 230°C yields brown AmSiO, that has the zircon
structure ''® On heating, AmS10, decomposes to AmO, and $i10, without forming
intermediate siicates A process for manufacturing alpha sources has been
patented' ®? which consists of fixing onto a metallic or ceramic support a layer of an
enamel contaming >*' AmS10, This layer 1s obtamed by melting an enamel powder
contarming ** ! Am on the surface of the support
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Sulfates. Am,(SO4); « xH, 0. Evaporation of a neutral solution of Am(III)
sulfate yields thick, tabular, pale yellow-pink crystals of Am;(SO4)3; * 8H,0 of
lengths up to 0 5 mm.'®3 Crystals of the octahydrate, after being dried 1n air, are
stable for several days.

On the basis of analyses for americium, sulfate, and water, Yakovlev et a
assign the formula Am,(SO4); * SH2 O to the precipitate obtained by adding ethanol
to a solution of Am(III) 1in 0 5M H, SO,

Hall and Markin’® prepared white anhydrous Am,(SO4); by heating hydrated
americium sulfate to a temperature of 550 to 650°C 1n air Thermogravimetric data
obtained by these workers are shown in Fig 4.13. Anhydrous Am;(SO,)s does not
take up water when cooled to room temperature 1n air

Am(Ill) Double Sulfates The following double sulfates'®®:164-165 can pe
prepared by addition of an alkali metal sulfate solution to a solution of Am(IIl) 1n
0 5M H, 80,

1164

KAm(SO4 )2 TlAm(SO4 )2 ° 4H2 0
NaAm(504 )2 ¢ H’zo K3 Am(SO4)3 ¢ H2O
KAm(SO4 )2 * 2H20 Kg Am2 (SO4 )7

RbAm(SO4 )2 ¢ 4H2 (0] CSg Amg (SO4 )7
CSAm(SO4)2 - 4H20 Tig Am, (804)7

280 T T l l T

200

Hydrates

Am,(S0,4); - Hy0
/‘Amz(SOA):; g

PERCENTAGE OF FINAL WEIGHT

150 —
AmO,
100 | I [ L l
200 300 400 500 600 700 800 900

TEMPERATURE °C

Fig. 4.13 Thermogravimetric analysts of Am,(80,); « xH,O (FromG R Halland T. L Markin,
The Alpha Half-Life of Amenicrum-241, Journal of Inorganic and Nuclear Chemustry, 4: 137
(1975) }
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Ratios of [M'}/[Am®*] (M =Na, K, Rb, Cs, or TI) at which the various double
sulfates precipitate are given in Ref 164 The absorption spectra of certain of the
crystalline double salts between 400 and 800 nm at 80, 200, and 300°K have also been
reported,' ©* but, apparently, X ray diffraction data for the double sulfates have not
been obtained Coprecipitation of trace amounts of Am®* with K, SO4 and La; (S04 )5
has also been studied "¢ '6®

{[Co(NH 3 )s | HSO4}2{ AmO, (S04 )5} * nH,0 Hexammune cobalt(1II)
americyl(VI)—sulfate 1s prepared by addition of hexammne cobalt(IIT) 10ns to an
aqueous sulfate solution contaning AmO3* (Ref 169) The orange cubic crystals
(diamond type structure) are 1sostructural with the corresponding UO3" and NpO3”*
compounds No precipitate forms, however, in an ammonwum sulfate solution
containing Am(II) and hexammine cobalt(ITT) 1ons ' 7°

Sulfides Am,S; The alpha form of americium sesquisulfide 15 obtained! ’! by
vapor phase reaction for 4 days of a stoichiometric amount of sulfur with AmH; in a
quartz and Pyrex tube sealed under high vacuum The quartz end of the tube 1s kept at
500°C, and the Pyrex part 1s maintained at 300°C to prevent sulfur from condensing

When heated 1n a vacuum® ?! at 1300°C, @ Am, S5 changes to pure y-Am, S; Pure
7-Am,S3 can also be prepared®® by passing a mixture of H,S and CS, gases over
heated (1400 to 1500°C) AmO, for 5 min The crystal structure of ¥ Am, S; has been
determined by Zachariasen ! 72

AmS Thermal decomposition!”! of @-Am;S; 1n vacuum at 650°C yields AmS as

well as y-Am, S; The amencium—sulfur distance 1n cubic AmS s 2 796 A

AmS, « Americium disulfide?®! 1s prepared by the same procedure used to make

AmSe, ,—namely, by heating under vacuum an excess of sulfur with AmH; for 1
week at 400°C Analogous to AmSe, ., the coarse black disulfide 1s a nonstoichio-
metric compound with a composition near AmS; o The americtum—sulfur distance 1s
293 A 1n good agreement with an ionic binding between Am*®” and S*

Amy6S140(8 Am,S5) When heated!”® at 1100°C 1n a high vacuum, a-Am, S;
transforms into 8§ Am,S; The formula of the -Am, S3, according to Damien, Marcon,
and Jove,!'”3 15 more properly wntten Am;¢S;40 The tetragonal oxysulfide 1s
isostructural with the rare earth and plutomum § sesquisulfides

Tellundes AmTe To prepare americium monotellunide, Charvillat et al '37¢
heated mulligram amounts of AmH; with a stoichiometrnic quantity of elemental
tellurtum at 800°C 1n a vacuum The resulting product after pelletizing and further
heating at 1100 to 1200°C contamed two phases—AmsTe, (Th;Pug structure) and a
second phase (NaCl structure) that Charvillat et al 1dentified as cubic AmTe

AmTe; Amencium tritelluride’ 7% 1s prepared by vapor-phase reaction (120 hr at

350°C 1n a sealed tube) of excess tellunum (americium/tellurium = 3 5) on AmH,
Orthorhombic AmTes 1s 1sostructural with the corresponding rare-earth tritellunides
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AmTe, Thermal dissociation of AmTe; at 400°C 1n a high vacuum (<10 ® torr)
yields tetragonal AmTe, The ditelluride 1s 1sostructural with the rare-earth ditellurides
and likely has the Fe, As type of structure Damien' 74 states that AmTe, prepared as
described above 1s a tellunum-deficient compound, AmTe, ,, with a rather large
homogeneity range between 400 and 600°C

Am,Te; At temperatures! 75 above 600°C, AmTe, dissociates into Am, Te; By
analogy with isostructural rare earth sesquitellurides, Damien and Charvillat! 7% label
Am,Te; as an i form

AmsTe, The n-Am,Tey phase 1s stable up to around 850°C, at 900°C, Am;Te,
1s formed ! 7° The latter compound was first prepared by Mitchell and Lam*? using
experimental procedures completely 1dentical to those already described (see page
161) for preparation of Am;Se; Body-centered cubic Amj;Te, 1s 1sostructural with

Th3P, and 1s without magnetic ordening** down to 4 2°K

Oxytelluride? In the pattern of Am;Te,, Damien and Charvillat! 7* assign four

diffraction hnes, which cannot be indexed in the bcc system, to an americtum
oxytelluride

Tungstate Analogous to the reaction with MoQOj; (see page 151), solid-state
reaction of WO; and AmO, at 700 to 900°C yields a ternary oxide of the empirical
composition Am,W;0;, (Ref 133) This compound has the scheelite structure
corresponding to the formula Am,(WO4)3

Vanadates. Red-brown AmVO, forms when AmO, 1s heated (10 hr at 600°C
followed by 10 hr at 1000°C) with V, 05 1n air,*'»#?+45 AmVO, has the tetragonal
zircon structure Reduction with H, at 1200°C converts AmVOQ, to ochre-colored
AmVO; with the GdFeO; structure

Xenate. Addition of solid sodium perxenate to K, CO3 and Na, COj3 solutions of
Am(III) precipitates Am(III) perxenate, Ams(XeOg); - 40H, O (Ref 176). The color
of the precipitate 1s orange when wet and orange tan when dried under vacuum at
room temperature The compound can be water washed without decomposition or loss
by solubilization. Its solubility 1n distilled water at ~23°C 154 6 X 10 °M Americium
perxenate dissolves 1 acids with evolution of gas to form Am(V) and Am(VI) Marcus
and Cohen'”® report that Am(III) perxenate shows the charactenstic absorption
bands of Am(III) 1n the visible and near-infrared regions, as well as the characteristic
mfrared absorption at 650 to 680 cm ! for the xenon—oxygen vibration in perxenate

Compounds of Americium with Organic Ligands

Relatively few solhid compounds of americium with organic ligands have yet been
prepared, those known as of January 1976 are listed 1in Table 4 4 As revealed 1n the
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Table 4.4
COMPOUNDS OF AMERICIUM WITH ORGANIC LIGANDS
Compound
Organic

No. reagent hgand Formula Color

1 Acetate NaAmO, (OOCCH,), Lemon yellow

2 Acetylacetone Am(C,H,0,), - H,0 Pale rose

3 Benzoyltrifluoroacetone Am(C, ,H,1,0,), - 3H,0 Pale rose

4 Cyclooctatetraene KAm(C H,), » 2THF* Yellow

5 Cyclopentadiene Am(C H,), I lesh

6 Dipivaloylmethane Am(C, , H,,0,),

7 Formate Am(HCOQ), - 0 2H,0 Pink

8 Hexafluoroacetylacetone CsAm(C,HF(O,), - H,0 Yellow

9 8-Hydroxyquinoline Am(C,H NO), Yellow green
10 S-chloro-8-hydroxyquinoline Am(C,H;CINO), Dark green
11 5,7-dichloro-8-hydroxyqumolhne Am(C,H,Cl,NO), Green
12 Oxalate Am,(C,0,), « 10H,0 Pink
13 Phthalocyanine Am(C,,H,(N,), Dark violet
14 Pyridine-2-carboxylic acid AmO,(C;H,NCOO0), Red brown
15 Pynidine 2-carboxylic acid HAmO,(C,H,NCOO), Red brown
16 Pynidine N oxide carboxylic acid AmO, [C,H,N(0)COO],
17 Thenoyltrifluoroacetone Am(C,H,F,0,8), - 3H,0 Pale rose

*THF = tetrahydrofuran

ensuing discussion, aside from Am,(C,04); which 1s well charactenized, very httle 1s
known about either the preparation or properties of compounds of americium with
organic ligands This situation will surely change in the future as %3 Am becomes
more available and as interest in the bonding parameters of americium m compounds
with cyclopentadiene and similar higands continues to build

Acetate. Sodium Am(VI) acetate [NaAmO,(OOCCH;)3;] precipitates when
sodium acetate 1s added to an aad solution of Am(VI) (Refs 177-179) The lattice
constant of the lemon-yellow cubic crystals (space group = P2,/3)1s 10 653 = 0 0024,
and their refractive index 1s 1 528 + 0002 (Ref 178) From infrared measurements,
Jones'®® has determined the force constant of the americium-oxygen bond in
NaAmO, (0O0CCH3); to be 6 12 megadynes A™!

Acetylacetone Dropwise addition of ammonia to an aqueous Am>” solution
containing a small excess of acetylacetone precipitates at pH 6 to 6 3 pale-rose
Am(CsH,0,); - H,O (Ref 181a) The crystalline precipitate obtained after stirring
for 24 hr 1s recrystallized from ethanol and dried in air over silica gel or P,Os It
decomposes to AmO, when heated 1n air at 200 to 400°C
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Benzoyltrifluoroacetone. To prepare Am(C,,H¢F30;); * 3H,0, an aqueous
Am(IIT) solution adjusted to pH 4 5 1s added dropwise, with warming, to shghtly less
than the stoichiometric amount of NH4€,oHgF30, (Ref 181a) The pale-rose
precipitate 1s recrystalized from ethanol and dried in air When heated 1n air at 200 to
400°C, Am(C, ¢HgF30,); * 3H, 0 decomposes directly to AmO,

Cyclooctatetraene. Karraker!®'® has recently announced preparation of potas-
sium bis(cyclooctatetraenyl)Am(III) by the reaction of K,CgHg 1n tetrahydrofuran
(THF) solution with 2*"Aml; Metal analysis of the solid 1s consistent with the
formula KAm(COT), * 2THF, whereas X-ray powder-diffraction patterns show 1t to
be sostructural with KPu(COT), - 2THF The compound KAm(COT), - 2THF
decomposes 1n water and burns when exposed to air The absorption spectrum of
KAm(COT), - 2THF in THF solution shows the characteristic spectrum of Am>*

Cyclopentadiene. Tn(cyclopentadiemde)Am(III), Am(CsHs);, 1s prepared by
reacting either AmCl; (Refs 182, 183a, and 183b) or AmF; (Ref 183¢) with molten
Be(CsHs ), according to Eqs 4 24 and 4 25

2AmCl; +3Be(Cs Hs )2 85°C, 2Am(Cs Hs ) + 3BeCl, (4 24)
2AmF; + 3Be(CsHs )2 7%°S, 2Am(CsHs); + 3BeF, (425)

Baumgartner et al '®? state that pure Am(CsHs); can be obtained by fractional
sublimation at 10 ® torr and 160 to 205°C The flesh-colored compound does not melt
below 330°C when heated in argon but darkens at higher temperatures. Unlike
Pu(CsHs)s, Am(CsHs)s 1s not pyrophoric, 1t decomposes only slowly mn air ' 22 In
water or dilute acids, the compound decomposes, with evolution of gas and deposition
of whute flocks, to give a rose-colored Am(III) solution

The infrared spectrum of Am(CsHs); shows charactenstic absorpticn bands at
768/795 cm™, 841 cm™, 1007 cm™*, 1448 cm™, and 3078 cm™' (Ref 184) The
room-temperature absorption spectrum of Am(CsHs); between 4455 cm™ and
40,000 cm™ has been measured '3 On the basis of the published absorption
spectrum, Nugent et al 186 ostimate that the organometallic bonding n Am(CsHs); 18
highly 1onic with a covalency only about 2 8 +0 2% relative to the corresponding
bands of Am}q For this reason they state that Am(CsHs); should be designated as a
tncyclopentadienide rather than as a tricyclopentadienyl

The magnetic moment of Am(CsHs); 1s reported'®” to be 1 74 Bohr magnetons

Dipivaloylmethane. Danford et al '3 at Oak Ridge National Laboratory precipi-
tate Am(C;;H;902); by adding aqueous Am(III) sulfate to a solution of dipivaloyl-
methane (dpm) (2,2,6,6-tetramethyl-3,5-heptanedione) and NaOH in 70% aqueous
ethanol Following the precipitation step, two-thirds of the mother liquor 1s removed
by vacuum evaporation The precipitate 1s extracted with ethanol, one-quarter volume
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of water 1s added to the alcohol extracts, and the ethanol 1s evaporated 1n a stream of
nitrogen to reprecipitate the complex The precipitate, after drying in vacuo at room
temperature, 1s purified by sublimation at 124 to 135°C at 10 ° torr for 1 5 hr It
melts at 215 to 218°C after softeming at 205°C (Ref 183c) Monochnic unit-cell
dimensions are '83¢a=122(2) A, b=283(3) A, c=224(3) A, =106 4(9)°

Sakanoue and Amano'®® have recently determmned the volatiity of
Am(C,,H;90,);s [Am(dpm);] and vanous lanthanide dipivaloylmethanato com-
plexes at 180°C and 107 torr Therr results yield the following order for the
volatilities

Pr(dpm); _ Eu(dpm)s

<
La(dpm)s Am(dpm); ~ Gd(dpm);

< Sc(dpm);

Sakanoue and Amano!®? also determined that Am(dpm); was less volatile than

Th(dpm)s, Pu(dpm);, or Cf(dpm)s

Formate Hydrated Am(III) formate [Am(HCOO); - 0 2H,0] crystals form
when Am(OH); 1s dissolved in concentrated formuc acid at 50°C and the excess acid 1s
evaporated 58 The lattice constants of the hexagonal pink crystals are a = 10 55 A and
c=407A

Weigel and ter Meer report that thermal decomposition of Am(HCOO),
proceeds according to the following reaction sequence

60

Am(HCO0), 300-350°C AmO(HCOO) + H, + CO + CO, (4 26)
2AmO(HCO0) 400-500°C Ay, 0,C0O, + H, + CO 427
AITQ 02 C03 “95200(: Am2 03 + CO2 (4 28)

Hexafluoroacetylacetone. Yellow CsAm(CsHF¢0,), *+ H, O precipitates when an
excess of CsCsHF4O, 1n 50 vol % ethanol 1s added to an AmCl; solution and the
solution 1s evaporated to half its volume *88:'°% A product melting at 189 to 191°C
results when the yellow crystals are washed with water and dried  air The melting
point increases to 193 to 194°C after vacuum subhmation at 130 to 140°C at 10 ¢
torr (Ref 188) According to Ref 191, “It is not clear whether this increase n melting
point 1s due to dehydration, for the pale-rose, anhydrous compound 1s obtained when
the monohyadrate s recrystallized from 1 butanol ”

Hydroxyquinoline 8 Hydroxyquinoline Keller, Eberle, and Mosdzelewski'®?
report that yellow-green Am(CoHgNO); precipitates when an Am(III) solution 1s
added dropwise to a pH 5 § to 6 5 solution of 8-hydroxyquinoline in 0 1M ammonum
acetate At 25°C, Am(CyHgNO); 15 soluble in ether, acetone, methanol, dioxane, and
chloroform to the extent of only 25 x 10 5 to 7 x 10 ¥ mols liter™
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5-Chioro-8-Hydroxyquinoline. Dark-green Am(CgoHs CINO); precipitates on addi-
tion of an Am(III) solution to a pH 5.1 to 59, 30 vol.% dioxane solution of
S<hloro-8-hydroxyquinoline in 0.1 ammonium acetate.®?

5, 7-Dichloro-8-Hydroxyquinoline. Addition of an Am(III) solution to a 65 vol.%
dioxane solution of 5,7-dichloro-8-hydroxyquinoline in 0.1 ammonium acetate at
pH 5.7 to 6.0 precipitates green Am(CoH,4Cl,NO); (Ref. 192). This compound and
also Am(CyH;5CINO); are about 1000-fold more soluble in ether, acetone, methanol,
dioxane, and chloroform than is Am(CyHgNO);. The absorption spectrum of
Am(CyHg Cl; NO); in CHCl; exhibits a band at 3900 A characteristic of ¢7is chelates.

Oxalate. Pink, monoclinic Am;(C,04)3 * 10H,O precipitates from a slightly
acidic or neutral solution of Am3* on addition of oxalic acid or suitable alkali oxalate
solution (Refs. 100, 141, 150, 193, and 194). Lattice constants of the crystalline
hydrate are a=11.19 A, b=9.63 A, and ¢=10.24 A with 3=114.4°. The space
group®® is P2/b. The solubility product'®S of Am(lIl) oxalate in 0.2M to 0.3M
HCIQ, is 2.2x 10!, Attempts to measure the solubility product in water were
unsuccessful. The solubility of Am(III) oxalate in nitri¢ acid—oxalic acid solutions has
been measured by Burney and Porter.!°¢

From their recent X-ray diffraction studies, Weigel and ter Meer®® conclude that
the value of x in Am,(C,04); * xH,O is 10. [Previously the number of water
molecules in hydrated Am(III) oxalate was thought to vary with the conditions of
precipitation and drying; values of x =7 (Ref. 197), 9 (Ref. 100), and 11 (Ref. 193)
were reported.] Weigel and ter Meer® ® note that Nd®>* and Am3* have nearly the same
jonic radius. Ollendorff'®® has shown that Nd(III) oxalate is Nd,(C,04)3 = 10H,O.
Plutonium(IIT) and Cm(IIT) are also decahydrates.'®?

Weigel and ter Meer®® studied the thermal decomposition of
Am,(C,04) * 10H,0 in air using mass spectrometric identification of gaseous
decomposition products and X-ray identification of solid residues. Their results, listed
in Table 4.5, extend and modify those reported earlier by Markin'® 7 for decomposi-

8

tion of the “heptahydrate.” Radiolytic decomposition of 2** Am(III) oxalate to yield

first anhydrous Am(IIT) carbonate (15 to 20 days) and then its pentahydrate (50 to 60
days) is a first-order reaction with a rate constant of 0.22 d”! (Ref. 200).

Phthalocyanine. Weighable amounts of Am(C;,H; ¢Ng), have been prepared by
reaction of Aml; at 200°C with phthalodinitride in 1-chloronapthene.?®! According
to Lux,2%% Am(C;3,H, ¢Ng), is the first Am(IV) compound with organic ligands to be
prepared. Dartk-violet Am(C3,H;6Ns), sublimes without decomposition at 550°C at
1075 torr and is stable in air.2®? Spectroscopic evidence also indicates?®? that
americium also forms a mono(phthalocyaninato) compound which sublimes at 450 to
500°C at 107 torr.

Pyridine Carboxylates. Pyridine-2-Carboxylates. Addition of pyridine-2-car-
boxylic acid (C4Hs NCOOH) to a solution of AmO3 " precipitates either americyl(VI)
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Table 4.5

THFRMAL DECOMPOSITION OF
Am,(C,0,), - 10H,0

Temperature
Inttial phase interval Final phase

Am,(C,0,), - 10H,0 25 50°C Am,(C,0,), - 6H,0
Am,(C,0,), - 6H,0 50 340°C  Am,(C,0,),

(over 4

hydrate

forms)
Am,(C,0,), 390-430°C Am,(CO,),
Am,(CO,), 430 470°C  Am,0(CO,),
Am,0(CO,), 470-520°C Am,0,CO,
Am,0,CO, 520 610°C Am,O,

pyridine-2-carboxylate [AmO,(C¢HsNCOO),] or a complex acid of the compdsition
H[AmO,(CsHsNCOO);] (Refs 203, 204) The particular compound precipitated
depends, as discussed 1n Ref 203, upon solution pH and the concentration of the
pyridine carboxylic acid Both compounds are crystalline red-brown powders soluble
in pyridine The H{AmO, (C¢Hs NCOO);3]| compound decomposes to AmO, at about
340°C

Pyndine-N-Oxide-2-Carboxylate  Americyl(VI) pyndine-/V-oxide-2-carboxylate,
AmO, [C4HsN(O)COO} ,, precipitates when pyndine-N-oxide-2-carboxylic acid 1s
added to an aqueous AmO3" solution 2°* The precipitate 15 soluble 1n pyndine and
dimethyl sulfoxide and, when heated, dehydrates at 100°C and decomposes at
temperatures above 200°C

Thenoyltrifluoroacetone Preparation of Am(IIl) thenoyltrifluoroacetone
[Am(CsH4F30,8)3 - 3H, 0] is accomplished in exactly the same way (see pages Xxx
to xxx) as the benzoyltnfluoroacetone complex '®! The pale-rose precipitate
decomposes directly to AmO, when heated 1n air at 200 to 400°C
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RECOVERY; SEPARATION;
PURIFICATION

INTRODUCTION

Present-day technology for recovery and purification of americium involves principally
aqueous ion exchange and solvent extraction methods supplemented, in some cases, by
precipitation processes. Using the chemistry discussed in Chaps. 3 and 4, these
procedures are applied not only to recover and separate americium from a variety of
aqueous feedstocks, including high-level Purex-process waste, but also to purify it from
curium and lanthanides. Although methods used primarily for analytical purposes or
tested only on a laboratory-scale are cited, emphasis in this review is on those aqueous
procedures used either currently or previously to recover and purify gram to kilogram
amounts of americium.

Only little use has thus far been made of nonaqueous methods for separating and
purifying americium—a notable exception is the pyrochemical process used at the
Energy Research and Development Administration (ERDA) Rocky Flats Plant to
remove >*' Am from molten plutonium metal. The pyrochemical process, as well as
significant features of americium chemistry in other nonaqueous processes, is
described in the first part of this chapter.
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PYROCHEMICAL PROCESSES

Rocky Flats Americium Extraction Processes

Currently at the ERDA Rocky Flats Plant, a countercurrent molten-salt extraction
process is used to purify multikilogram amounts of plutonium metal from 24! Am
which grows in by beta decay of 2*'Pu (Refs.1 to 4). This two-stage batch
purification scheme, which is based partly on earlier molten salt—molten metal studies
at Los Alamos Scientific Laboratory (LASL)® and Argonne National Laboratory
(ANL),® removes about 90% of the americium from plutonium metal typically
contaminated with 200 to 2000 ppm 2*! Am.

The charge to the first stage of this Rocky Flats process (Fig. 5.1) consists of
plutonium metal contaminated with **' Am and gram quantities of PuO, and a salt
initially composed of KC1-47.1 mol % NaCl—5.8 mol % MgCl, which has previously
been contacted in Stage 2 with plutonium metal partially depleted in americium.* This
charge, contained in a tantalum crucible, is heated under an argon atmosphere in a
resistance furnace at 750°C; the molten phases are stirred 1 hour at 750°C with a
flat-bladed tantalum stirrer and then cooled to room temperature. [A specially
designed tilt-pour furnace is being tested for use in the molten-salt extraction

Fresh salt”
KCl  325¢g
NaCl 255 ¢
MgCl, 509
Y
Impure Pu metal > Punified Pu metal
Pu 10009 |y Staeel Sae2l ey 9709
Am 159 750°C | 750°C Am 015g
Pu0, Vaniable ~
Y
Spent saft
KCl 3259
NaCl 255 gl T aqueous processing
MaCl, 509 (see pages 183 to 194)
P 30¢ see pages 169 1o 154).
Am 135¢g

*Salt/metal ratio variable, depending on 241 Am content of Pu metal

Fig. 5.1 Rocky Flats molten-salt americium extraction process.

*According to Knighton et al.,**? the MgCl, content of the salt has been increased from 8 to
30 mol %, whereas the salt/metal ratio has been decreased from 0.56 to 0.056.
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process.”} Plutonium metal resulting from Stage 1 is contacted in Stage 2 with fresh
KCI-NaCl—MgCl, salt under the same conditions as in Stage 1. The particular
salt/metal ratio used depends on the 2*' Am content of the feed plutonium and is
chosen to ensure removal of about 90% of the americium; a typical salt/metal ratio is”
0.56.* Salt from Stage 1, which has had two contacts with plutonium metal, is
currently processed by aqueous methods (see pages 190 to 194) for recovery of
americium and plutonium values. Originally®** the process was operated in a
cross-current mode with a salt composed of KCi—49.1 mol % NaCl—1.8 mol % MgCl,.
Countercurrent operation with a salt phase containing 5.8 mol % MgCl, reduces the
amount of americium-bearing salt which must be subsequently processed.

In the Rocky Flats process, americium is oxidized by MgCl, and PuCl; by the
following reactions:

Am® + %MgCl, > AmCl; + %Mg° (5.1)
Am® + PuCl; > AmCl; +Py° (5.2)

Knighton® notes that distribution of americium between metal and salt phases
correlates with the ¥ power of the MgCl, mole fraction. This indicates that americium
in the salt phase is present in the trivalent state (Eq. 5.1) rather than as Am? ", which
might be expected from the work of Mullins, Beaumont, and Leary.”’gb Plutonium
oxide has also been shown to extract americium from plutonium metal;’¢ the side
reaction between PuO, and americium in Stage 1 (Fig. 5.1) enhances removal of
americium from the metal phase.

Current research effort by personnel at the Rocky Flats Plant on the americium
extraction process is centered on reducing still further the salt/metal ratio and in
developing nonaqueous methods of recovering americium and plutonium values from
spent salt.* With respect to the former objective, recent tests® (Table 5.1) show that, at
corresponding MgCl, contents, the value of the americium distribution coefficient is
much higher with an NaCl—CaCl,~MgCl, salt than with the NaCl-KCl-MgCl,
mixture. In verification of these distribution data, countercurrent, two-stage produc-
tion-scale tests with a 45 mol % NaCl—50 mol % CaCl,—5 mol % MgCl, salt
demonstrated satisfactory (>90%) removal of americium from plutonium metal
containing about 1500 ppm 2*! Am at a salt/metal ratio of 0.2.

A potential disadvantage of substituting CaCl, for KCI is that the aqueous
methods (see pages 190 to 194 and 233 to 243) currently used to process spent
extraction salt will not easily separate americium from large amounts of calcium. A
pyrochemical procedure involving reduction with calcium metal appears suitable,
however, for recovery of americium and plutonium values from both spent
NaCl—CaCl, —MgCl, and NaCl-KCl-MgCl, salts.® In addition to a metal button
containing plutonium and americium contaminated with magnesium and calcium, the

*See footnote on page 185.
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Table 5.1

AMERICIUM PARTITION BETWEEN MOLTEN PLUTONIUM AND
NaCl—CaCl, ~KCl-MgCl, SALTS

Americium distribution coefficient (Kgq)*

Mgdi,,
mol % NaCl-KCl-MgCt, Na(Cl-CaCl, —MgCl,
5 3.1 13
10 8.7 20
15 15.9 29
20 24.5 39
30 45.0 60
40 69.2 85
50 97.0 112

*Kq = wt.% Am 1n salt/wt.% Am n metal.

products of the reduction reaction are a white salt (four parts) and a black salt (one
part) with some metallic modular inclusions. Preliminary indications are that the white
salt contains sufficiently small amounts of americium and plutonium (typically
1074 —1073 g Pu/g salt and 1075 g Am/g salt) that 1t can be discarded without further
processing or, possibly, reused. Hydroxide precipitation methods (pages 190 to 194)
can be used to recover and purify americium and plutonium from acid solutions of the
metal button and black salt.

Also under development for removing plutonium and americium from chloride
melts is a pyrochemical process that involves scrubbing the molten salt with an Mg—90
wt.% Zn alloy. The resulting scrub alloy buttons can be satisfactorily dissolved in 4M
HNO; —0.2M HF solution to prepare feedstock for further aqueous processing.

Americium Chemistry in Other Pyrochemical Systems

Mullins and Leary’® patented a method of separating americium from plutonium
which involves bubbling a mixture of oxygen and argon gas into a molten salt
containing both elements. Plutonium precipitates as PuO,, whereas americium stays in
solution.'!

In connection with their studies of salt transport processes,’?> ANL investigators® 3
determined distribution coefficients of americium and other actinides between molten
MgCl, and liquid zinc—magnesium alloys at 800°C. On the basis of these and other
data, pyrochemical processes for separating americium from curium have been
patented.'*''S These processes involve contacting a molten halide salt containing
americium, curium, and at least 50 wt.% MgCl, with either magnesium—zinc or a
magnesium—cadmium alloy; curium is taken up by the alloy, whereas americium
remains in the salt phase.
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Studies 1n support of the development of a Molten Salt Breeder Reactor (MSBR)
are currently undér way mn the United States ' !® One method considered for the
processing of MSBR fuel involves selective reduction of protactinium and rare earths
from the molten fluoride salt into liquid bismuth, followed by the preferential transfer
of the rare earths into an acceptor salt, such as LiCl or LiBr Fernis and his
coworkers!® 22 1n therr studies of this process have determined the equilibrium
distribution of amernicium (and other transurantum elements) between liquid bismuth
and molten LiCl, LiBr, and several LiF—BeF, —ThF, solutions at temperatures in the
range 600 to 750°C At each temperature the distribution coefficients (mole fraction
mn the bismuth phase divided by mole fraction 1n the salt phase) for most of the solutes
obeyed the relatton Dy =(N§,)(Kym), i which the superscript n 1s the oxidation
number of solute M™* 1n the salt phase and Ny | 1s the mole fraction of lithium 1 the
bismuth phase For Ny, ranging from 107 to 0 3, the oxidation number of americium
in the salt varied between 3+ and 2+, depending on temperature and salt-phase
composition In molten LiCl and in 66 7 mol % LiF—33 3 mol % BeF, at 600°C,
however, a significant fraction of the americium appears to be present in the divalent
state. This evidence for existence of Am?’ parallels the observations of Mulhns,
Beaumont, and Leary®? for the Am—PuCl; system

The distribution coefficient, D =(g Am/g metal phase) (g Am/g salt phase), of
amertcium between molten aluminum metal and molten AICI;—KCl 15?23 196 *
McKenzie, Fletcher, and Bruce?? measured the distribution of plutonium, americium,
and certan fission products between neutron-irradiated aluminum—plutonium alloys
and molten bismuth An equal volume of bismuth extracts 75% of the plutontum and
93% of the amernicium

Foos, Guillaumont, and Mesplede have measured the partition of americium at 150
to 160°C between molten LINO;—KNO; phases and solutions of erther tri-n-butyl
phosphate (TBP),25™27 tnphenyl phosphonate (TPPO),2°*™27 tri-n-octylphosphine
oxide (TOPO0),2® or a series of diphenyldiphosphme dioxides®® 2°
[(C¢Hs), PO(CH, ), PO(C4H;s), = n-DPO, where n =2, 3, 4, and 6] 1n a eutectic of
polyphenyls (The spectrum of Am®* in molten LINO3;—KNO; 1s shown i Chap 3,
Fig 37¢) From loganthmic plots of distnbution ratio vs organophosphorus ex-
tractant concentration, the following organic species were 1dentified
Am(NO3); « 2TBP, Am(NO;); * 2TPPO, Am(NO3); * TOPO, Am(NO3); * 2-DPO,
Am(NO3); * 2(3-DPO), and Am(NO;); * 2(4-DPO) For the diphenyldiphosphine
dioxides, the following order of extractant strength was observed

6 DPO <€ 4-DPO < 3-DPO < 2-DPO
In this system, 6 DPO does not extract amencium Foos, Guillaumont, and

Mesplede?® 2° note that TOPO extracts lanthanides very well from fused
LINO3; —KNO; but Am®* only poorly, suggesting an effective separation scheme

*At 275°C and an AIC!, KCl mole ratio of 1 14
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Polish workers investigated the distribution at 180°C of uranjum, plutonium, and
americium between a KCI—CuCl eutectic melt and solutions of TBP, dibutylphos-
phoric acid (HDBP), and tri-n-octylamine in biphenyl.>® Absorption spectra of
Am(II1) in molten pyridinium and some alkali metal chlorides indicate americium is
present as the octahedral complex AmCI3™ (compare Chap. 3, pages 99 and 100) in
such systems.*!
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For the first 15 years or so after its discovery, many different precipitation
processes were used extensively to recover and purify microgram to gram amounts of
americium. Highlights of these processes, which are now primarily only of historical
interest, are presented here; amplified discussion of several early precipitation schemes
is given in articles by Penneman and Keenan®? and by Thompson et al.3? Nowadays,

of course, ion exchange and solvent extraction technology have largely supplanted
precipitation processes for recovering americium. Even so, for special purposes,

precipitation processes still find applications, and these are discussed on pages 190 to
194. Attention is also directed to the discussion in Chap. 4 of the properties of AmF;,
Am,(C,04)3, K3AmO,(CO;3),, and other insoluble compounds of Am(lIl) and
Am(V),

Precipitation Processes: Historical

Important contributions in the very early days of americium chemistry were made
by Cunningham,®* Wallman,?® Werner,3¢38 and Thompson.®® Cunningham isolated
the first pure americium by precipitation of AmF; and Am(OH);, and Werner and
Thompson devised various schemes for isolation of trace quantities of americium
including its precipitation as an insoluble Am(V) carbonate and by carrying on
Ta, 05 * xH,0 precipitated by heating a carbonate solution containing Ta(V) and
Am(V).

Subsequently workers in several countries used precipitation methods to purify
milligram and even gram amounts of **' Am from plutonium and other contaminants.
For example, Milsted, Herniman, and Hall*°™*? in England devised methods for the
separation of 10 to 25 mg **! Am from aged plutonium stocks; their isolation scheme
included steps in which americium was concentrated and purified by precipitation of
AmF; and Am,(C,04); * 10H,0. Later, in 1956, Butler and Merritt*3 in Canada
combined precipitation [Am(OH); and AmF;] and ion-exchange techniques to
separate and purify 0.8 g of 24 Am from 2 kg of aged plutonium; as in the earlier
British work, a gross separation from plutonium was first made by precipitating
plutonium peroxide from acid solution. Yakovlev and Kosyakov** reported on the
separation of a gram of 2*! Am from plutonium and other impurities by precipitation
of KzgAm;(S04),; and K3AmO0,(C0O5),. American scientists*>™7 in the 1950s also




190

RECOVERY, SEPARATION, PURIFICATION

devised and tested several precipitation schemes for isolation and punfication of macro
amounts of amencium The precipitation process developed by LASL workers to con-
centrate americium from impure feedstocks 1s shown in Fig 5 2

Also 1n this early period, results obtained durning the development of analytical
procedures for and the fundamental chemistry of americium established that micro
concentrations of Am(IIl) coprecipitate quantitatively with LaF; (Refs 48 to 51),
CeF; (Refs 32 and 51 to 53), La,(C,04); (Refs 54 to 57), CaC,0,4 (Ref 46),
K,80,; (Ref 58), KLa(C,04), (Refs 59 and 60), and BiPO4 (Refs 32, 61, and 62)
Yakovlev and Gorbenko-Germanov®® also showed that Am(V) n alkaline medium 1s
quantitatively coprecipitated with K,UO,(C0O;); and K4PuO,(CO3); Hermann®®
also reported that a partial separation of americium from lanthanum could be obtained
by fractional precipitation of La,(C,04); from homogeneous solutions involving the
slow hydrolysis of dimethyl oxalate to generate the precipitant, amencium s enriched
in the precipitate

Pressly®# devised an nteresting precipitation process for separating Am(III) from
Pm(II) In this scheme Am®* and Pm3” are coprecipatated as fluorides, which are then
dissolved 1in a mixture of boric and nitric actds The resulting solution 1s made 3M
H,SiF¢, on heating, H,SiF¢ partially decomposes into volatile HF and SiF,, whereby
PmF; precipitates while Am®* stays in solution Earher, Werner*® and Thompson®?®
also used to advantage the soluble complex formed by Am®* with fluosihicate 10ns to
1solate micrograms of americium from rare earths

Kuznetsov and Akimova®® found that microgram amounts of Am(IIl) coprecipi-
tate with the black sohds precipitated by the addition of the dyes methyl violet,
crystal violet, or methylene blue to solutions containing americium and one of the
compounds benzene-2 arsonic acid<l1-azo-7>1,8-dihydroxynaphthalene-3,6-disulfonic
acid (Arsenazo), 2-hydroxy-S-nitro-naphthalene-4-sulfonic acid-<l-azo-2>-1-hydroxy-
naphthalene (Eriochrome black T), or benzene-2-carboxyl-<l-azo-7>-1,8-dihydroxy-
naphthalene-3, 6-disulfonic acid The extent of coprecipitation of Am*” varies with pH
but 1s essentially 100%at pH’s 26 0 Amencium(IIl) is also carried by the precipitate
formed by addition of 1,8-diaminonaphthalene chlonide to a solution contamning
ammonium oxalate and oxalic acid ¢°

Present-Day Precipitation Processes

Flow sheets currently used®® at the Transuranium Processing Plant at Oak Ridge
National Laboratory (ORNL) to punfy the 243 Am—2%#Cm fraction recovered from
both High Flux Isotope Reactor (HFIR) and Savannah Ruver reactor PuO, and/or
AmO,—-CmO, targets include two cycles of oxalate precipitation to remove
muscellaneous metallic impunties European workers®” 2 have also used an oxalate
precipitation process to purify amencium and cunium separated from irraciated
243 Am targets

A precipitation process for separating gram to kilogram amounts of curtum from
amencium 1s still used occasionally 68 ¢® 7% In this process (Fig 5 3), Am(III) in
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Feed adyustment
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Fig. 5.3 Amencium-—curium separation by precipitation of Kg AmO,(CO3)3. [From R. E. Leuze
and M. H. Lloyd,”¢ Processing Methods for the Recovery of Transplutonium Elements, in Progress
wn Nuclear Energy, Process Chemistry, Sernes 111, C. E. Stevenson, E. A. Mason, and A. T. Gresky
(Eds.), Vol. 4, page 549, Pergamon Press, Inc., New York, 1970.]

concentrated (23M) K,CO; solution is oxidized to Am(V) at 80°C with ozone,
NaQCl, or K,S,03 and subsequently precipitated as Ks AmO,(C0O3 )3 ; Cm(1I) is not
oxidized and remains as a soluble complex in the carbonate solution. [As early as
1952, Stephanou and Penneman®® found that Cm(III) could be separated from
americium by oxidizing the latter to Am(VI) with K,S, 05 and precipitating CmF3;.]
Equipment used at the Savannah River Plant for large-scale precipitation separation of
americium and curium has been described by Kishbaugh et al.”?

A process based on precipitation of the double sulfate Am,(SO,4); - Na, SO, -
H,0 (compare pages 164 and 165) with lanthanum as carrier was successfully
used?®'7¢ at the Savannah River Plant to recover 200 g of americium and curium from
the aqueous raffinate remaining after solvent extraction recovery of plutonium from
highly irradiated plutonium—aluminum alloy (see Chap. 2, Fig. 2.2). Solutions of
NaHSO,, NaOH, and La(NO3); were added to the nitrate-based raffinate to adjust its
composition to approximately 5.5M Na®, 0.5M AI®*, 1M SO3", 5M NO3, 0.5 g La*"
liter!, <25 mg Am®” liter’ ', and <25 mg Cm®" liter’ ' at pH 0.5. Best results for
recovering americium and curium were obtained by adding La(NO; ), carrier and then
adjusting the sulfate concentration to 1.0M to 1.5M by addition of NaHSO,.
Subsequently the solution was adjusted to pH 0.5 to 1.0 by adding 50 wt.% NaOH and
digested 6 hr at 70°C to form the double sulfates. After centrifugation, the sulfate
precipitate was washed with dilute Na,SO,4 solution and then metathesized to
hydroxides by treatment with NaOH solution. The resulting hydroxides were washed
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and dissolved in HNOj; to provide a concentrated americium-curium fraction for
further purification at the Oak Ridge Transuranium Processing Plant.

Variables affecting carrier precipitation of americium and curium double sulfates
were studied by Burney; his results, including data for solubility of carrier-free
americium and curium double sulfates, have been summarized by Leuze and Lloyd.”®
On the basis of experience at the Savannah River Plant, the double sulfate
precipitation process provides an adequate way of concentrating americium and
purifying it from gross amounts of such impurities as iron and aluminum. Its principal
disadvantage, as noted by Leuze and Lloyd”® is that the americium—curium product is
contaminated with gross amounts of lanthanum which must be removed in further
purification steps.

Until very recently when it was replaced by a cation-exchange process, a hydroxide
precipitation process was routinely used at the Rocky Flats Plant to recover americium
and plutonium values from the spent NaCl-KCl-MgCl, mixture obtained from
pyrochemical extraction of 24! Am from aged plutonium metal (pages 185-187).77
The chloride salt residue was dissolved in hot 1M HCI, and the plutonium and
americium precipitated as hydroxides with 31 KOH. After the precipitate was washed
with 0.5M KOH, it was filtered and then dissolved in 3 HNO; in preparation for
separating americium and plutonium by an ion-exchange process. This precipitation
process had several deficiencies: (1) slow filtration because of the gelatinous nature of
the precipitate, (2) carry-over of magnesium that caused inefficiency in subsequent
processing, and (3) a high carry-over of chloride ion that caused equipment corrosion.
To circumvent these difficulties, Miner and Hogan’® developed a new selective,
hydroxide precipitation process based on the slow decomposition of urea; the
precipitate formed from the slow release of hydroxyl ions is fairly crystalline, easily
filtered, and substantially free of magnesium and chloride. This latter homogeneous
precipitation process has not been operated under plant-scale conditions.

Proctor et al.”® 8! at the Rocky Flats Plant use precipitation processes to purify
gram quantities of production-grade AmO, from cerium and other rare earths. In one
process, adopted from the work of Zaozerskii and Patkin,®? an americium solution of
30 g liter ! is prepared by dissolving the impure AmO, in 6M HCl. After the addition
of 20 vol.% NH4OH to adjust the solution pH to 5, Ce(1V) peroxide is precipitated by
adding 2M H,0,. Subsequently Am,(C,0,);, precipitated from the peroxide filtrate,
is digested 16 hr at 60°C, washed, dried, and calcined to AmO,. Two cycles of
peroxide precipitation and supplemental oxalate precipitation reduce the cerium
content of the AmO, from as much as 50,000 ppm to <500 ppm. A more general
precipitation process patented by Proctor®! for preparing high-purity AmO, is
depicted in Fig. 5.4. This scheme makes use of the fact that Am(VI) is soluble in the
hydroftuoric acid solution used to precipitate rare earths. Coupling of the fluoride
precipitation step with tail-end precipitation of Am,(C,04); to remove lead and silver
impurities yields AmO, containing only 500 to 600 ppm total impurities. The scheme
shown in Fig. 5.4 was used by Proctor®® recently to purify 57 g of americium from
200 g of a composite of aluminum metal; in this case aluminum was first separated by
dissolution in an NaOH—NaNO; solution.
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Fig. 5.4 Precipitation process used at Rocky Flats Plant to make high-punity AmO, .

Precipitation processes still figure prominently in new analytical methods for the
determination of trace amounts of americium in process and environmental samples.
Iyer and Kamath®* have developed a novel method of analyzing for americium in
urine which 1nvolves coprecipitation of Am3* with BiOCL. Sill and Williams®® carry
Am®" and other actinides on BaSQ, to analyze for trace amounts of these elements in
various matrices; recent physicochemical studies of coprecipitation of americium with
BaSO, and with BaC,0, have been reported by Ginzburg, Karantsevich, and
Maksimov®® and by Bykhovskii and Petrova,®” respectively.
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SOLVENT EXTRACTION PROCESSES

Introduction

Solvent extraction technology is widely used for the recovery, separation,
decontamination, and analysis of both trace and macro amounts of americium. In
particular, solvent extraction processes and systems using amine and organophos-
phorus extractants are extensively used for the initial recovery and separation of gram
amounts of americium from a wide variety of aqueous solutions; the discussion here is
restricted primarily to their technology. Weaver®® has recently published an excellent
up-to-date general review of the solvent extraction chemistry of trivalent americium;
Weaver’s paper includes much information previously reviewed earlier by other
authors.®°®% Solvent extraction systems for the analysis of americium have been
discussed by Myasoedov et al.?5

Organophosphorus Extractants

Tri-n-Butyl Phosphate. Extraction of Am®* from nitrate media by tri-n-butyl
phosphate (TBP) conforms to the reaction:®8:967100

Am}; ) + 3NO 4y + 3TBP 0y = Am(NO3); * 3TBP(,y) (5.3)
The value of the equilibrium constant, K., = [Am(NO;); - 3TBP]/{Am*®"] [NO3]?
[TBP] 3, for Eq. 5.3 at zero ionic strength is'®® 0.4. [Russian investigators' ®! have
compiled a list of equilibrium constants for the extraction of americium by several
neutral organophosphorus compounds; Table 5.2 is abstracted from their compila-
tion.]

Tri-n-butylphosphate, even undiluted, extracts americium only weakly from strong
HNO; solutions (Fig. 5.5). [Throughout this book the americium distribution ratio,
Dam = concentration of americium in organic phase/concentration of americium in
aqueous phase.] However, TBP extracts americium quite strongly from neutral (or
low-acid), highly salted nitrate solutions as shown by results listed in Table 5.3 and the
more extensive data tabulated in Refs. 102 and 103. Highly hydrated ions such as A13*
and Li" are particularly effective as salting agents. Reflecting its low TBP extractability
from HNO; solutions, Am®" in Purex-type extraction processes reports to the
high-level aqueous waste stream; this latter solution then constitutes a valuable and
important feedstock for recovering americium by the various solvent extraction
processes described here and elsewhere in this chapter.

Batch TBP solvent extraction procedures have been successfully used recently at
both the Hanford and Savannah River plants to recover hundreds of grams of 24! Am
and 243Am from fuel-reprocessing waste solutions. The Savannah River application
involved isolating ~10 kg of 243 Am and 2#*Cm from the aqueous solution remaining
after dissolving an irradiated plutonium—aluminum alloy (see Chap. 2, Fig. 2.2) in
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Table 5.2

EQUILIBRIUM CONSTANTS FOR THE EXTRACTION OF Am{II)
BY SOME NEUTRAL ORGANOPHOSPHORUS COMPOUNDS*

Reagent Kext
(C,H,0),PO 0.4%
(C,H,0),(C,H,)PO 74
(C,H,0)(C,H,),PO 1800.
(C,H, ) CH NC,H,0)PO 45
(C4H,,0),PO 0.3
e C.H,,0),PO 02
(C;H,,0),(C;H, PO 42
(C4H, ,0)(C¢H, ,),PO 580.
(C4H, ), PO 3000
@CyH,,),PO 100.

*{Irom F. S Gureev, V. B Dedov, S. M. Karpacheva, 1. K.
Shvetsov, M N Ryhzov, P S Trukchlayev, G. N Yakovlev, and . A.
Lebedev,' °! Methods of Recovery and Some Chemical Properties of
the Transplutonium Elements, in Progress in Nuclear Energy, Process
Chenustry, Senes 111, C. E. Stevenson, F A Mason, and A. T. Gresky
(Eds.), Vol. 4, p. 631, Pergamon Press, Inc., New York, 1970 )

TKex = [AmM(NOy), - 30]org/[Am“]aq[NOa];q[olg)rgs where
O 15 the organophosphorus extractant, vatues listed are for zero 1onic
strength.

tValue from Ref. 100

HNOj; and recovering the plutonium by TBP extraction. The solution was adjusted to
6 5M to 6.8M inextractable nitrate [~0.67M AIl(NOj3); —4.5M NaNO;] and 0.10M to
0 35M HNOj; before extracting the amernicium and cunum with two successive equal
volume portions of 50vol.% TBP in a hydrocarbon diluent. Subsequently the
amencium and cunium were stripped tnto 0.2M HNO; . Recovery was greater than 95%
with 5680-liter batches on a plant scale, essentially no aluminum or fisston products
other than lanthanides, ®3Zr, and '°®Ru were extracted. Details of the Savannah
Ruver expertence have been recounted by Henry”* and others 10471050

At Hanford, batch TBP extraction was used to recover about 1100 g of amencium,
60 g of curium, and 200 g of promethium from the aqueous waste produced when
Shippingport reactor fuel was processed mn the Redox plant.!®¢7%% This waste
solution, after concentration, contained, typically, 1 6M AI(NO3);—1.5M NaNOQO; —
0 2M Na, Cr,0, and 0 6M NaF. Feed (16,500 hiters) for the batch TBP extraction step
was prepared by reducing Cr(VI) to Cr(1Il) by adding NaNO, and adjusting the pH to
the range 00 to 0.5. The solvent, 50 vol.% TBP in n-paraffin hydrocarbon (NPH)
diluent, was contacted with successive equal-volume amounts (~2650 to 3800 liters)
of feed until excessive aqueous raffinate waste losses indicated the need to reduce the
product loading. The loaded organic phase was then contacted with one-half of 1ts
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Fig. 5.5 Extraction of Am(IID) by undiuted TBP [From V 1 Zemlyanukhin and G P
Savoskina,®® I xtraction of Americium by Tributyl Phosphate, Radiokhimiya 3 411 (1961)
through Radiocherustry (USSR) (Enghsh Translation) 3(4) 182 (1961), and G I Best,
E Hesford, and H A C McKay,’® Trin Butyl Phosphate as an Extracting Agent for Inorganic
Nitrates VII, The Trivalent Actimde Nitrates Journal of Inorganic and Nuclear Chemustry, 12
136 (1959) ]

volume of 1M HNO; to stnp the americium and curtum The resulting aqueous
product solution (Table 5 4) was scrubbed with NPH diluent to remove entramed TBP,
recovery and punfication of americtum and curnium from this crude concentrate by
extraction with bis(2-ethylhexyl)phosphoric acid 1s described on pages 208 to 220
The TBP process recovered about 92% of the amencium and curtum in the
Shippingport waste Excessively long phase disengagement times encountered i some
extraction contacts were attributed to the high solids content of the Shippingport
waste solution These solids were believed to be ZrQ, fines left in the dissolver vessel
after the decladding step and those formed during evaporation of the waste to a high
salt concentration

Batch TBP extraction procedures have also been developed and applied 1n
France”! and Japan''® to recover small amounts of americtum and curtum from
nuclear fuel-processing waste solutions A continuous counter current TBP extraction
process for the recovery of grams of americium from Hanford slag and crucible waste
was developed by Ramney ''! Followmg the dissolution of the slag and crucible 1n
HNO; -HF media, Pu(IV) was first recovered by extraction with 30% TBP In
Ramey’s process, excess (5M) HNO; 1n the aqueous waste from the plutonium
extraction step was neutralized to 001M with gaseous NH; The resulting feed
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Table 5.3

DISTRIBUTION OF Am(i1l) BETWEEN 30 VOL.% TBP-n-PARAFFIN
AND AQUEOUS AI(NO, ), ~LiNO, ~NaNO, SOLUTIONS*

AINO,),, LiNO,, NaNoO,, HNO,, M

M M M Aqueous Organic DAm
0.73 3.15 0 0.055 0.355  21.0
0.73 3.15 0 0.135 0.565  7.57
0.73 3.15 0 0.285 0710  3.05
0.73 3.15 0 0.345 0.745  2.26
1.05 0 3.23 0.050 0360 10.1
1.05 0 3.23 0.145 0.555  4.07
1.05 0 3.23 0.320 0.675  1.69
1.05 0 3.23 0.375 0715 1.21
0 3.09 2.99 0.040 0370 849
0 3.09 2.99 0.160 0.540  4.14
0 3.09 2.99 0.345 0.650 176
0 3.09 2.99 0.431 0659 138
0.75 2.07 1.93 0.025 0.385  24.8
0.75 2.07 1.93 0.125 0.575  6.55
0.75 2.07 1.93 0.280 0.685  2.66
0.75 2.07 1.93 0.372 0718  1.95

*I'rom Ref, 103.

solution, which contained large amounts of Ca%*, Mg®* and AI**, was contacted with
a 30% TBP solution to extract the americium. Subsequently the organic extract was
scrubbed with 3M NH,;NO; solution to remove any extracted calcium and magnesium,
and the americium was then stripped into water, This process was satisfactorily tested
in pulse column runs with actual slag and crucible waste solution but was never used at
Hanford (compare pages 202 to 205).

Reflecting their chemical similarity, Am(IIl) and trivalent lanthanides extract
about equally well from HNOj; solutions into TBP solvents.! '2'* '3 Thus considerable
effort has been expended to devise TBP extraction processes for purifying americium
from lanthanum and other rare-earth elements. One such process (Fig. 5.6) developed
by Lewis''* takes advantage of the fact that, in 17M HNO;, Dp 1, is 10-fold higher
than Dy, (Fig. 5.7). In the flow sheet of Lewis, undiluted TBP is used to extract the
americium from the 17M HNO; feed. Small amounts of coextracted lanthanum and
cerium are scrubbed with a small volume of 13.5M HNOj, and the americium is then
stripped into 6M HNO;. In pilot-plant-scale tests of this flow sheet, americium
recoveries were 99.5%, and the recovered americium contained less than 1% of the
lanthanum and cerium in the feed. Satisfactory 17M HNQO; feedstock containing only
americium and rare earths can be prepared by preliminary TBP extraction from an
AI(NQO;);-salted low-acid feed. A TBP extraction process similar to that shown in
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Table 5.4

PRODUCT FROM TBP BATCH EXTRACTION
OF AMERICIUM AND CURIUM FROM
SHIPPINGPORT REACTOR FUEL-PROCESSING WASTE

(Estimated Volume 1040 hiters)

Component Concentration
HNO, 22M
AI(NO,), 03M
NaNO, 02M
Cr(NO,), 0 1M
[e(NO,), 0 08M
F 0 06M
U0, (NO,), 0 06M
Total rare earths* 34 6 g Iiter !
241 Am 0 87 g liter *
243Am 025 g liter !
242Cm 0 00045 g liter *
244Cm 0061 gliter !
Np 0024 g liter !
Pu 0016 g lter™!
147Pm 238 C1 lter™!
144Ce 144pr 235 Cihiter !
1841y 12 Cilater™?
106Ru—!%5Rh 55Ciliter !
137Cs 2 1Ciliter !

*As oxides

Fig 56 was proposed by Leuze''® for the recovery and punfication (from rare
earths) of americtum and curium from irradiated plutonium—alummum alloy fuel
Neither this process nor that of Lewis has been used in routine plant-scale operation

Both French!!'® and American workers' ' 7 have studied the effects of ammopoly
carboxylic acids on TBP extraction of americtum from low-acid LINO3 and AI(NO3),
solutions Formation constants of complexes formed by Am(IIl) with aminopoly-
carboxylic acids (compare Table 3 11) are higher than those of complexes of the light
lantharudes (Z =57 to 61) with these ligands Thus, addition of an aminopoly-
carboxylic acid to an LiNO; [or AI(NOj3);]-—-Am(IlI)-rare earth (RE) solution
enhances TBP extraction of the lanthanides relative to that of americium Separation
factors (DRy./Dam) measured by Koehly and coworkers''® for some typical
aminopolycarboxylic acids are histed in Table 55 McKibben et al '!7 at the Savannah
Ruver Plant devised a TBP extraction process (Fig 5 8) for separating americium and
curtum from large amounts of hght lanthanides Feedstock for this process 1s prepared
by adding LiNOj; and diethylenetriaminepentaacetic acid (DTPA) to the product
solution obtained, as described earlier, by batch TBP extraction of americium and
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IAS | 025 vol I1CX 125 vol
HNO3 13M HNO3 60
Scrub Strip
6 stages ¥ 3 stages v
IAF 1 vol IAP 125 vol n] 125 vol
HNO; 17 0M HND3 53 HNO3 33
Ls La TBP  100%
Ce} 15 g liter-! Ce} 0024 g hter-1 v
Am 0024 g liter-1 Am 0019 g liter ! To
TeP  100% solvent
recovery
— To on
A column C column exchange
t |
Extraction Evaporation
IAX 125 vol 6 stages A
HNO3 53 >
TBP  100% L

1AW 125 vol ICU 125 vol
HNO3 163M HNO3 8OM

'6:} 15 g hter ! (L::} 0024 g liter-?
Am <0 024 mghiter ! Am 0019 g hiter?

Fig. 5.6 TBP extraction flow sheet for the separation of americium from lanthanum and cerium
(From W H Lews,''* Amencium and Neptunium Recovery Processes, in Proceedings of the
Second United Nations International Conference on the Peaceful Uses of Atomic Energy Geneva,
1958, Vol 17, page 236, United Nations, New York, 1958 )

curium from the waste solution resulting from the processing of irradiated 23 °Pu fuel
Maleic acid 1s added to the extraction column via a scrub stream to buffer the aqueous
phase and thereby decrease the sensitivity of the process to changes in aqueous acidity
The aqueous raffinate contamning the actinides and residual lanthanides can be further
processed by extraction with 30% TBP solvent to remove interfering salts (LINO; and
DTPA) prior to final separation and purnficatton of 2*3Am and 2%%Cm by
high-pressure 1on-exchange procedures (compare pages 245 to 252) The lanthamde
rejection process (Fig 5 8) has been satisfactorily demonstrated in miniature mixer—
settler runs, but so far no production-scale use has been made of 1t

An intensive effort was mounted at the Oak Ridge site 1n the 1960s to develop and
demonstrate processes for separating and purifying transplutonium elements from
highly wradiated HFIR (compare Chap 2) fuel elements Various methods of
separating americium and cunum from lanthanides were nvestigated as part of this
actiity One such scheme which provided reasonably good separation of the two
actinides from europium and other rare earths involved preferential extraction of
americium and curium from a 10M LiCI—0 1M HCl solution into 30% TBP solvent ! '8
Subsequent tests led, as described on pages 220 to 222, to the development of a more
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Fig. 5.7 TBP extraction of americium and lanthanum from concentrated HNO, solutions (From

W H Lews,''* Americium and Neptunum Recovery Processes, 1n Proceedings of the Second
United Nanions International Conference on the Peaceful Uses of Atomic Energy, Geneva, 1958,

Vol 17, page 236, United Nations, New York, 1958)

efficient amme extraction process (Tramex process) for punfymg americium and
curium from rare earths

Penneman and Keenan®? report that Am(III) can be separated from rare earths by
TBP extraction from 1M NH,SCN solutions The mechanism of extraction of Am(IIT)
and Eu(IIl) from 1M NH,SCN media by TBP both in the presence and in the absence
of a quaternary ammonwum thiocyanate was recently mvestigated by Indian
scientists ! '® Thiocyanate—TBP systems have not been used mn production-scale
recovery or punfication of americium, thiocyanate solutions have been much used,
however, n large-scale 1on-exchange purification of americium from lanthamdes and
other contaminants (compare pages 234 to 237)

Chemistry mvolved 1n TBP extraction of Am(1Il) from molten (120°C) KNO;—
LINO; mixtures has been studied by Foos and Guillaumont,?5 27 Isaak, Fields, and
Gruen,'2® and Borkowska, Mielcarski, and Taube!?!, some of their results are
discussed on pages 187 to 189 No large-scale application of this separation technology
has been made

Conflicting evidence has been obtained for TBP extraction of Am(VI) from HNO,
solutions Zangen'?? found that TBP—CCl, solutions extract Am(VI) much more

2
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Table 5.5
EFFECT OF COMPLEXANTS ON TBP EXTRACTION OF AMERICIUM AND RARE EARTHS*

(Aqueous Phase: 4M LiNO, —0.1M AI(NO, ), —0.1M Complexant,
pH 2.5 to 3.0; Organic Phase: 40% TBP in Dodecane)

Separation factor DRE/DAm

In absence of With complexant} present

Lanthanide complexant EDTA DTPA TTHA DACTA HPDTA
La 20.5 1200 52 45
Ce 0.9 10.3 51 26 15
Pr 1.07 3.81 12.5 7.8 3.5
Pm 1.15 3.1 5.8 6.4 2.3
tu 1.35 2.9 1.96 3.1 1.44
Tb 1.55 0.62 1.03 1.5 0.80
Er 1.03 0.04 1.00 0.62 0.55
Tm 0.93 0.037 1.01 0.36 0.41
Yb 0.73 0.006 1.07 0.23 0.32

*{l rom G. Koehly and t. Hoffert,''® Separation of the Actimde Group from That of the
Lanthanides in Nitric Medum, 1n Semiannual Report of the Chemistry Department, Center for
Nuclear Studies at ! ontenay-Aux-Roses, December 1966 --May 1967, | rench Report CEA-N-856,
through USAL C Report ANL-Trans-628, Argonne National Laboratory, 1967.]

+LDTA = ethylenediaminetetraacetic acid

DTPA = diethylenetriaminepentaacetic acid

TTHA = triethylenetetraminehexacetic acid.
DACTA = 1,2-diaminocyclohexanetetraacetic acid.
HPDTA = 2-hydroxypropanediaminetetraacetic acid.

strongly than Am(11T) from 0.05M HNO;. Conversely, other workers*'*! 23 report
that TBP rapidly reduces Am(VI) to inextractable Am(III).

Dibutyl butylphosphonate. Dibutyl butylphosphonate [DBBP =(C4H,0),
(C4Hy)PO] extracts Am(IIT) from nitrate media according to the reaction:

Am?’

%) + 3NO3 (aq) + 3DBBP 4 ) = Am(NO3)s * 3DBBP(, ) (5.4)

This reaction stoichiometry 1s similar to that followed by TBP (compare Eq. 5.3) and
other monofunctional neutral organophosphorus extractants.

Distribution data plotted in Fig. 5.9 show that DBBP extracts Am(IIl) more
strongly than TBP from nitrate solutions (compare also Table 5.2); DBBP is a powerful
extractant for Am(III) from low-acid highly salted nitrate solutions. Distribution ratio
data for DBBP extraction of Am(III) from HNO; —metal nitrate solutions are listed in
Refs. 100, 102, 125, and 126.

A production-scale countercurrent DBBP solvent extraction process (Fig. 5.10) is
currently operated at Hanford to recover plutonium and americium values from the
acid aqueous waste (CAW) solution produced in the operation of the Hanford
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Plutonium Reclamation Facility (PRF). [The PRF uses a reflux-type 20% TBP--CCl,
solvent extraction process to recover and purify plutonium from HNOj; and
HNO, —HF solutions of a wide variety of metallurgical scrap.!>7°'28] The present
Hanford DBBP americium—plutonium recovery process evolved from an earlier batch
extraction process devised by Kingsley.'??'!3° Important contributions to the
development of the flow sheet shown in Fig. 5.10 were made by Lorenzen and
Speakman,! 3! Taylor,!®? and Richardson.!33

Feed for the Hanford DBBP americium extraction process is prepared by adding
NaOH to the PRF aqueous waste to adjust its acidity from ~2M to 0.1M HNO;.
Americium(III) and Pu(IV) in the adjusted feed are coextracted into the 30%
DBBP—CCl, solvent. Subsequently the americium is preferentially stripped into dilute
0.1M HNOj ; Pu(IV) and residual americium are stripped with an HNO; —HF solution.
The latter solution is recycled to the mainline TBP process in the PRF, whereas the
americium is concentrated and purified by the ion-exchange process described on
pages 245 to 252.

The Hanford DBBP americium extraction process is performed in three packed
pulse columns; for the conditions shown in Fig. 5.10, the extraction column is

1aX] Extractant] [1AN]Acid stream| [IAF[  Nitrate feed 1As]  Scrub
30vol % TBP 54M LiNO3 5 4M LINO3
n 01674 HNO3 | | § o511 DTPA 0.054 DTPA
n-dodecane 1 Lanthanides (5 to 10 g iter=%| | 0 40 maleic acid
Actimdes (05 to 1gliter™") pH 1.4
pH 11 |
1
O
225 ’
A l
[Gels[__To] ]|
1A bank
1AW] Raffinate EAE]
oG 18] Serub 18] strp
0.07M maleic acid 30 vol.% TBP H,0
Actinides (0 3 to 0.6 g hter-1} n @
Heavy lanthanides (0.3 g liter1) n-dodecane
pH~2 L
Gl _Ts1 1l |

18P Product ! 16 3

Light lanthanides 18 bank 1

{10 10 20 ghiter-1)

pH~1.4 IBWI Spent solvent

30 vol.% TBP
n

O = Relative flows . n-doidecane

Fig. 5.8 Lanthanide rejection flow sheet—TBP extraction process for separating americium and
curium from light rare earths.’ ' 7
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DAm

001 | ! |
0 5 10 15

HNO3 M

Fig. 5.9 Extraction of Am(ID) from HNO, by TBP and DBBP [Adapted from V.I.
Zemlyanukhin, G P Savoskina, and M 1 Pushlenkov,'?* Complex Formation of Nitrates of
Transuranium klements with Neutral Organophosphorus Compounds, Radiokhimiya, 6: 714
(1964), through Soviet Radiochermustry (English Translation), 6: 690 (1964).]

calculated to operate with one to two extraction stages and one scrub stage, and the
partition and plutonium strip columns each operate with three stages Overall,
americium recovery n typical plant-scale operation with the DBBP extraction process
ranges from 60 to 80%, the relatively poor americium recovery 1s attributed primarily
to improper n-hne neutralization of HNQj 1n the unbuffered CAW solution and to
inadequate extraction-column equipment. The DBBP extraction process recovers
essentially all the soluble plutonium 1n the feed to the process, however, any insoluble
plutonum (e g, finely divided PuO,) 1s not recovered. The Hanford americium
extraction process is operated with a small mmventory of 30% DBBP—CCl, solvent
which 1s replaced frequently, for this reason the process operates satisfactorily without

routine washing of the solvent with Na, CO; or NaOH solutions
Aside from the Hanford application, no other plant-scale use has been made of

DBBP (or any other neutral phosphonate) for the recovery of amernicium. From time
to time, however, workers m several countries have proposed conceptual phosphonate
solvent extraction processes for the recovery and/or purnfication of americium. For
example, Schulz and Richardson'®* suggested a DBBP solvent extraction process for
the recovery of americtum and other actinide elements from the high-level aqueous
waste stream resulting from the processing of 1rradiated UO, —PuQ, fuel in the Liquid
Metal-Cooled Fast Breeder Reactor. The application of DBBP and other phosphonates
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E1X EIW S1P j S2p P— Recycle to
30% DBBP-CCl, Am  20-40% Am  50-65% Am  10-15% T8P Pu
HNO4 007M Pu 10-20% Pu  10-25%| Tocanon-  fpy  35-50% orocass
Flow 125 HND; 0 024 HNO; 035M | exchange HNO; 0 1M P
Flow 210 Flow 30 treatment HE © 0w
I 1‘ Flow 10
J
CAW
HNO;  20M /
AI(NO3)3 06-08H] EIP SIW SaW
Fluonde 0 3M El HNO; 013% s1 HNOy 007M s2 30% DBBP-CCly
NaNQ3  05# calumn Pu  80-90% column Pu 55-80%| |column HNO4 00Mm
Pu* Ig% extraction Am 60-80% partition Am 10-15% strip Pu 20~-30%
Am* 1
Fi 125 125 Fi 12
Otherst  100% ow Hlow 2 o 5
Fow 180 4
NaOH _" Recycle to
€1 column
EIF
HNO;  0M 1 f
Al(NO3); 054-072
NaNO; ~ 045M E1s S2X
Py 100% KNO3 0 1M $1x HNO; 01
Am 100% NaNQ; 4 0¥ HNO; 0 1M HE ~ 0w
Flow 200 Flow 10 Flow 30 Flow 10

*CAW solution contains, typically, 0005 to 001 g liter"! each of amencrum and plutonium
tincludes small concentrations of calcum, magnesium, iron, chromium, mickel, etc

Fig. 5.10 Hanford DBBP americium extraction process flow sheet.

for extracting americium and curium from LiCl-HCI solutions was studied at Qak
Ridge National Laboratory.!'® Russian scientists! ®!*13% have studied the extraction
of Am(II) from HNO; and LiCl solutions by diisoamyl methylphosphonate, and
Koehly and Hoffert' '¢ have investigated the extraction of Am(III) from HNO; media
by methyldibutylphosphonate.

Neutral Bifunctional Organophosphorus Compounds. Siddall'3¢'37 in two
papers published in the early 1960s reported that certain neutral bifunctional
organophosphorus compounds effectively extract trivalent lanthanides and actinides
from strong HNO; solutions. [This behavior contrasts sharply (Fig. 5.11) with that of
such neutral monofunctional organophosphorus reagents as TBP and DBBP, which, as
already noted, extract Am(III) only weakly from strong HNO; media.] In particular,
Siddall synthesized various methylenediphosphonates

o
I

0
1l

[(RO-),P—CH, —P(-OR), |
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carbamyl phosphonates

00
I
[(RO-),P-C—N(-R), ]

and carbamyl methylenephosphonates

0 0
I i
[(RO),P—CH,—~C-N(-R) ]

and determined their ability to extract Am3*, Ce®”, and Pm3®* from 0 1M to 12M
HNO; solutions On the basis of the favorable results of his exploratory studies,
Siddall suggested such bidentate extractants could be used to remove trivalent
lanthanides and actinides from high-level Purex process waste, this 1dea was eventually
patented 138

| T l '
100 -
= =
— 4——30% DBDECMP—CCly
V0= =
¢ L -
<
9 o1k ~———30% DBBP—-CCly —
001 =
0001 | | | ! |
0 20 40 60

AQUEOUS PHASE HNO3; M

Fig. 5.11 Extraction of Am(IIl) by typical neutral monodentate and bidentate extractants
DBBP = dibutyl butylphosphonate, DBDECMP = dibutyl-V NV diethylcarbamyl methylenephos-
phonate
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Schulz!3? and Mclsaac!*? at the Hanford and Idaho Falls sites, respectively, have
recently revived interest in plant-scale application of neutral bidentate organo-
phosphorus extractants, particularly dihexyl-V,N-diethylcarbamy! methylene-
phosphonate (DHDECMP) and dibutyl-V,N-diethylcarbamyl methylenephosphonate
(DBDECMP). Mclsaac and coworkers are concerned with developing a bidentate
solvent extraction scheme to remove small amounts of neptunium, plutonium,
americium, and other actinides from the high-level waste resulting from processing of
irradiated **° U-enriched fuels at the Idaho Chemical Processing Plant.

At Hanford, work is in progress to develop a solvent extraction process to replace
the DBBP process (pages 202 to 205) presently used to recover americium and
plutonium from neutralized (pH 1) aqueous waste (CAW solution) produced in
operation of the Hanford Plutonium Reclamation Facility. A conceptual flow sheet
for DBDECMP (or DHDECMP) extraction of Am(III) and Pu(IV) directly from the
acid (~2M HNO;) CAW stream is presented in Fig. 5.12; this flow sheet has been
successfully demonstrated in miniature mixer—settler runs with an actual CAW
solution.

Major deterrents to large-scale applications of carbamyl methylenephosphonate
extractants include their current limited availability and high cost (§50 to $100 per
liter) and the need to purify them before use. As prepared by the Arbuzov or Michaelis
reactions,’ 36137 both commercially available DHDECMP and DBDECMP contain an

EIW s1P S2p
HNO3 15M ‘ HNO t 2aM ‘ HNO, 03M ‘

Am ~ 5-10% To Am ~ 75-80% To Am HF 01 Ta PRF for
Pu 05% underground Py 5-10% concentration Pu 90-95% Pu recovery
Flow 100 storage Flow 33 and punihicanon | A 10-16%
Flow 25
] W t
E1X ] -
15% DBDECMP~CClg*t o o
HND, 00
FI 1
ad o0 3] $1 52
column E1P column SIW column
extraction HNO3 05M partition HNO; 009M strip
__EIF (CAW) Am  90-95% Am  10-15% Decycle to
HNO; 20 Pu 995% Pu  90-95% calumo
AI(NO4); 06-08 Flow 100 Flow 100
Fluonde 03V A A
NaNO;  G5M 1
Pu 100% __ sw
Am 100%  fmapped 1 15% DBOECMP—CC)
Others () 100% NG, ooisM
Flow 100 t Flow 100
S1X $2X
HNO; 0.1M HNO; 0.1M
Flow 33 HE ~ 01M
FI
* Punified DHDECMP can be substituted for DBDECMP ow_25

t Trchloroh can be sub d for CCly.
% Includes smalt concentrations of calcium, magnesium, iron, chromium, nickel, etc.

Fig. 5.12 A conceptual bidentate organophosphorus extraction process for the recovery and
separation of americium and plutonium from Hanford CAW solution.'*®
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unidentified impurify with a very strong affinity for Am®" at low aqueous-phase
HNO; concentrations (Fig. 5.13); this impurity must be removed to permit the use of
dilute aqueous acid solutions to strip americium and partition it from coextracted
Pu(IV). Pure DBDECMP (Fig. 5.13) can be prepared by vacuum distillation of the
technical-grade material at ~180°C and 0.1 torr. Schulz' *® claims that a satisfactorily
pure DHDECMP extractant can be prepared from the commercially available material
by contacting DHDECMP—CCl, solutions for 24 hr at 60°C with 6M HCI and
subsequent washing of the organic solvent with NaOH and HNO; solutions.

Butler and Hall'*! recommend the bidentate extractant, dibutyl-V,V-diethyl-
carbamyl phosphonate for use in determination of americium and other actinides in
biological samples.

Bis(2-ethylhexyl)phosphoric Acid. Chemistry involved in the extraction of Am3*
by bis(2-ethylhexyl)phosphoric acid

0]

I
(RO-),P—OH [= HDEHP]

has been intensively studied by scientists in many countries. This extractant is
commercially available in large quantities, can be readily purified, and has been much
used for both analytical and plant-scale recovery and purification of americium.

Ferraro, Mason, and Peppard'®?:'*3 at ANL have established that HDEHP, like
other organophosphorus acids, exists as a dimer in nonpolar solvents and predomi-
nantly as the monomer in polar diluents. Extraction of small concentrations of
trivalent americium by monomeric and dimeric HDEHP, respectively, conforms to the
following equations: ' %4145

Am;qy + 3HDEHP ) = Am(DEHP); (org) + 3H(, q) (5.6)
Am(}qy + 3(HDEHP), (org) = Am[H(DEHP), ] 3 (org) + 3H{aq) (5.7)

Mason, Lewey, and Peppard#® state that monomeric HDEHP may also extract Am>*
in the form of the species [Am(DEHP);(HDEHP);] (o;g). Letting HX stand for
HDEHP, the equilibrium constants for Eqs. 5.6 and 5.7 can be written as

_[AmX,] - [H]?
[Am"] - [HX]?

[Am(HX;),] - [H]?
 [Am®"] - [(HX),]?

Kex and K

respectively. For Eq. 5.6, Kex = 0.27 (Ref. 144), whereas for Eq. 5.7, Kex = 0.033
(Ref. 112).

Data in Table 5.6 illustrate the profound effect of the nature of the carrier solvent
on HDEHP extraction of Am(lI). Corresponding to the inverse third-power
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Fig. 5.13 Extraction of Am(IIl) by purified and unpurified DBDECMP *4°

Table 5.6
EFFECT OF DILUENT TYPE ON HDEHP EXTRACTION OF Am(IID)*
(Organic Phase: 0.5M HDEHP; Aqueous Phase: 0.5M HNO, )

Diluent DAm
Isooctane 21.1
Decane 17.7
Cyclohexane 4.5
ca, 0.49
Toluene 0.15
Benzene 0.092
Chloroform 0.0167

*[From E. S. Gureev, V. N. Kosyakov, and G N Yakovlev,'**
Extraction of Actimde FElements of Dialkylphosphoric Acids,
Radiokhimiya, 6: 655 (1964), through Soviet Radiochemistry (English
Translation), 6: 639 (1964).]
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dependency on hydrogen concentration (Egs. 5.6 and 5.7), relatively dilute (1M to
2M) HNOj; solutions readily strip Am*®* from HDEHP extractants (Fig. 5.14).

Kinetics of extraction of Am®" from HCIO, solutions by HEDHP-n-decane
solutions follow the rate law:

+ 3+ . 1.5
d[AIn3 ] - k [Am ](aq)+ 2[I‘IDEI‘IP] (Ol'g) (58)
dt [H 1{aq)

At 25°C and p = 0.2M, k = 0.137 + 0.02 (mol)®* sec™. According to Karpacheva and
lozheva,'*7 the limiting step in the extraction process is

AmDEHP} + HDEHP -~ Am(DEHP), + H' (5.9)

which most likely takes place in the aqueous phase.

A countercurrent HDEHP extraction process was used at Hanford in the late 1960s
as part of the processing sequence for recovering and purifying some 1000 g of Am
and 50 g of Cu from irradiated Shippingport reactor fuel.!967109:148 This is by far
the largest plant-scale application of HDEHP extraction technology for americium
recovery and purification yet reported. Feed for the HDEHP extraction process used
at Hanford was the crude concentrate (Table 5.4) obtained in prior TBP batch
extractions. The crude concentrate was adjusted to pH 4 by the addition of NaOH.
Hydroxyacetic acid and sodium nitrilotriacetate were added to complex aluminum,
iron, and various other metallic impurities and to provide buffering capacity.
Americium, curium, and lanthanides were extracted into a 0.4 HDEHP-0.2M
TBP—-NPH (Normal Paraffin Hydrocarbon, a mixture of C,¢—C;4 normal paraffins)
solvent using countercurrent equipment (pulse columns installed in the Hanford
Semiworks). The actinide—lanthanide mixture was stripped into 2M HNOj; the strip
product was adjusted to 0.5M H* by destruction of HNO; by reaction with sugar and
thermally concentrated to a volume of about 570 liters. [Follow-on chromatographic
ion-exchange procedures used to separate the americium from lanthanides and curium
are described on pages 245 to 252.] This HDEHP extraction process proceeded
extremely well; americium and curium recoveries exceeded 95%. A chemical flow
sheet for the recovery—purification scheme is given in Fig. 5.15.

A simple HDEHP extraction-strip process (Dapex process) was also devised and
used in the Curium Recovery Facility at Oak Ridge.”*'*#° This process was used to
convert nitrate solutions containing americium, curium, and lanthanides to chloride
media for subsequent amine extraction separations; it was also used with chloride
feeds to separate americium and curium from aluminum. A flow sheet for the latter
purpose is shown in Fig. 5.16; this flow sheet features coextraction of the americium,
curium, and lanthanides into an 0.7 HDEHP solvent, scrubbing out of impurities
with dilute HCL, and stripping of the actinides and lanthanides with 2M HCI. Leuze
and Lloyd’® state, “Plant operation of this process was satisfactory at a feed power
density of 20 W/1; extraction losses were low, and decontamination factors of 540 and
24 were obtained for ' °®Ru and % Zr—°5Nb, respectively.”
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Fig. 5.14 Extraction of Am(III) by 05M HDEHP in 1sooctane [From E S Gureev, V N
Kosyakov, and G N Yakovlev,'** Extraction of Actinilde Elements by Dialkylphosphoric Acids,
Radiokhumiya, 6: 655 (1964), through Sowiet Radiochemustry (English Translation), 6: 639
(1964) |

Another simple HDEHP batch extraction-strip process (Cleanex process) 1s
routinely used in the Transuramum Processing Plant at the Oak Ridge National
Laboratory to reclaim americtum, curium, and other transplutonium elements from
rework solutions and/or to convert from nitrate to chlonde media '*® The Cleanex
process 1s so named because 1t will clean up transplutonium elements from a great
vanety of corrosion products, floor sweepings, and other assorted contaminants. It
mvolves extraction of the transplutontum elements from a dilute acid (<0 1M) feed
nto a 1M HDEHP—Amsco 125-82 solvent, the metallic impunties are left in the
aqueous phase, which 1s discarded Subsequently a 6V HCl solution 1s used to strip the
actinides from the HDEHP phase Advantages of the batch Cleanex process have been
cated by Bigelow, Chattin, and Vaughen ' 5°

Various HDEHP extraction processes have been proposed and, in some instances,
used to separate gram amounts of americium (and, usually, associated curium) from
large quantities of lanthamdes These processes' 517 56 take advantage of the results
of Weaver and Kappelmann, who were the first to show that HDEHP extracts
lanthanides much more strongly than actinides from aqueous carboxylic acid solutions
containing an aminopolycarboxylic acid chelating agent. [Weaver and Kappelmann
comed the acronym Talspeak (Trivalent Actimde Lanthanide Separation by Phos-
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Fig. 5.15 Sunphfied HDEHP extraction process used at Hanford in recovering americium and

curium from Shippingport reactor fuel.' ®¢

phorus Reagent Extraction from Aqueous Komplexes) for this type of separation
scheme.] Data in Table 5.7 and Fig. 5.17 are illustrative of the actinide—lanthanide
separations that can be achieved by Talspeak-type processes. The actinides are so much
more strongly complexed by diethylenetriaminepentaacetic acid (DTPA), the pre-
ferred complexing agent, that even the most extractable heavy actinides are only about
one-tenth as extractable as the least extractable lanthanides.

Lactic acid is preferred for use in the Talspeak process over the other carboxylic
acids listed in Table 5.7 because, of the hydroxyacids, it alone has a high enough
solubility of its lanthanide salts to be useful in the separation of actinides from high
concentrations of lanthanides. Lunichkina and Renard'®? have recently studied
HDEHP extraction of lanthanum and neodymium from 1.0M lactic acid—0.5M NaNO,
solutions containing 10 g liter” La or Nd. Their results confirm earlier observations of
Weaver and Kappelmann!5?! that the HDEHP phase resulting from contact with such
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Fig. 5.16 Dapex process used at Oak Ridge to separate americium and curiumfromalummum *#°

aqueous solutions contains both metal and lactate species. Lunichkina and Renard
suggest that HDEHP extraction of lanthanides (Ln) from lactate (L) media probably
proceeds by the reaction:

LnL?" + (HDEHP), = Ln(DEHP), L + 2H" (5.10)

Fardy and Pearson'®® found that the purity of HDEHP markedly influences the
separation of cerium from americium in a lactic acid—~DTPA solution but does not
significantly affect separation of americium from europium or promethium. No
explanation for this different behavior has been advanced.

No plant-scale application of the Talspeak process in the form originally devised by
Weaver and Kappelmann has yet been made. The Tramex process (compare pages 224
to 230) is currently used at Oak Ridge in the processing of HFIR targets for the
separation of americium and curium from fission-product lanthanides. In this respect,
Weaver®® believes that the Talspeak process, although it gives a smaller intergroup
separation factor than the Tramex process, has a distinct advantage in that its aqueous
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Table 5.7

HDEHP EXTRACTION OF AMERICIUM AND LANTHANIDES
FROM MIXTURES OF DTPA AND CARBOXYLIC ACIDS*

(Organic Phase: 0.2 HDEHP 1n Dusopropylbenzene;
Aqueous Phase: 1M Carboxylic Acid—0.05M DTPA, pH 3.0)

2‘;;'3:21?:‘ Separation factor
Acad for americium La/Am Ce/Am Eu/Am
Formic 00102 270 147 19
Acetic 0.0086 430 163 24
Propionic 0.0052 770 190 29
Butyric 0.0009 190 10
Glycolic 0.0124 145 97 84
Lactic 00085 380 140 91
Citric 00102 73 84 105
Malonic 0.0087 290 184 57
a-Hydroxyisobutyric 00132 370 144 62
Glycine—~HNO, 00111 270 144 16

*[From B, Weaver and F A Kappelmann,' $! Preferential Extraction
of Lanthanides over Trivalent Actinides by Monoacidic Organophosphates
from Carboxylic Acids and from Mixtures of Carboxylic and
Aminopolyacetic Auds, Journal of Inorganic and Nuclear Chenustry, 30:
263 (1968) |

medium 1s sufficiently noncorrosive that 1t does not require special construction
materals.

Berger etal,'®? and other French investigators have applied a Talspeak-like
process as part of a scheme for recovering milhgrams of americium and curium from
highly 1rradiated Al—10 wt.% Pu alloys. Following dissolution of the irradiated targets,
two trilaurylamine extraction cycles were used to recover plutonium from an HNO,
solution The plutonium-free raffinate was adjusted to 1 SM AI(NO3); and 1M to 2M
HNO; and batch contacted with 0 25M DHEHP-n-dodecane to extract fission-product
zirconium and ruthemum. Finally, two HDEHP extraction cycles (Fig 5 18) were used
to recover the amencium and curum and to punfy them from fission-product
lanthanides. A distinguishing feature of the French flow sheet 1s the use of a
concentrated LiINO; solution contaming DTPA to selectively stnip americium and
curtum from the HDEHP extract. Weaver®® points out that 3/ LiNO; —0 05M DTPA
solutions are less effective than carboxylic acid—DTPA solutions i separating
transplutomum elements from rare earths Anion-exchange procedures used for the
final punfication and separation of americium from cunum are described on pages 239
to 243
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Fig. §.17 Separation of actinides and lanthanides in the Talspeak process Organic phase, 0 3M
HDEHP 1n dusopropylbenzene, aqueous phase, 1M lactic acid—-0 005M DTPA at pH2 0 [From
B Weaver and F A Kappelmann,'®' Preferential Extraction of Lanthanides over Trivilent
Actinides by Monoacidic Organophosphates from Carboxylic Acids and from Mixtures of
Carboxylic and Ammopolyacetic Acids, Journal of Inorganic and Nuclear Chemistry, 30: 263
(1968) ]

Koch, Kolarik, and coworkers 1n West Germany have been developing for some
time now an HDEHP extraction scheme for the removal and separation of amencium
and curium from Purex-process high-level waste that mncorporates both normal and
“reverse” Talspeak processes *°™'¢3 A simphfied schematic of their current flow
sheet 1s presented in Fig 5 19, with pertinent stream compositions listed in Table 5 8
[An earher HDEHP solvent extraction flow sheet' ¢* 1é5 had to be abandoned since 1t
produced a citrate-complexed waste in which wvigorous and potentially explosive
exothermic reactions occurred on calcination ] The mitial process step involves
demtration of the high-level waste (1WW solution) by reaction with formic acid
Conditions are maintained n this step under which americium and curium remain in
solution while part of the fisston and corrosion products are coprecipitated The
denitrated waste solution, which contains the americium, curium, fission-product rare
earths, stronttum, and cestum, 1s adjusted to extraction condittons
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Fig. 5.18 HDEHP extraction process used in France in the recovery and purification of americium
and curium from irradiated plutonium—aluminum alloy. [From R. Berger, G. Koehly, C. Musikas,
R. Pottier, and R. Sontag,' *° Processing of Highly irradiated Al1-Pu Alloy, Nuclear Applications
and Technology, 8: 371 (1970).]

The extraction cycle (Fig. 5.19) in the German process involves (1) coextraction of
the americium, curium, and rare earths into an 0.3M HDEHP—0.2M TBP—NPH solvent
(WA mixer—settler bank); (2) partitioning of americium and curium from rare earths
(WB bank) using a 1M lactic acid—0.05M DTPA solution to preferentially strip the
actinides (reverse Talspeak-type process); (3) stripping of rare earths with 5M HNO,
(WC bank); and (4) further purification of the americium and curium by a normal
Talspeak process (WD bank). The rare-earth-loaded solvent (WDW solution) from the
WD bank is recycled to the WA bank. The spent solvent (WCW solution) from the WC
bank after cleanup is recycled as extractant to the WA and WD banks and as organic
scrub solution to the WB bank. The dilute americium and curium product from the
WD bank is a 1M lactic acid—0.05M DTPA solution that is concentrated and purified
further by the cation-exchange resin process discussed on pages 245 to 252.
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Fig. 5.19 German HDEHP extraction process for recovering americum and curtum from
high-level Purex-process waste (Stream compositions are hsted in Table 58) [From
G. Koch, Z. Kolarik, H Haug, W. Hild, and S. Drobmik,' ¢! Recovery of Transplutonium Elements
from Fuel Reprocessing High-Level Waste Solutions, in Symposium on the Management of
Radioactive Wastes from Fuel Reprocessing, Pans, France, November 27-December 1, 1972
(CONF-721107, pp. 1081-1110), also, German Report KFK-1651, November 1972.]
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Table 5.8
GERMAN HDEHP AMERICIUM—-CURIUM RECOVERY PROCESS: STREAM FLOWS AND COMPOSITION*

Stream Composition

desig-  Am Cm  HNO, REj FP§ NaNO, NiNO,), CPq H,DTPA** HLACIY HDEHPii TBPSS§
nation} g hter ' g liter’ M ghter! ghter’ M M g liter™! M M M M  pH Flow
1WWD  0.12 0.01 4 27 0.22 4 100
WAL 0.06 0.005 5 3qq a.11 0.004 2 200
WAX 0.002 0.3 0.2 500
WAS 0.22 134
WAW 18 0.07 0.002 1.1 334
WBt 0.024  0.002 2 0.3 0.2 500
WBX 0.05 1 3.0 166
WBS 0.3 0.2 166
WDF 0.072  0.006 0.006 0.05 1 3.0 166
WCF 1.5 0.3 0.2 666
WCX 5 166
WCRE 4.9 6 166
WCwW 0.3 0.2 166
WDX 0.3 0.2 125
wDS 0.05 1 3.0 42
WDAC 0.058 0.0048 0.05 1 3.0 208
wDw 0.008 0.3 0.2 125

*[From G. Koch, Z. Kolank, H. Haug, W. Hild, and S. Drobnik,’ ¢' Recovery of Transplutonium Elements from I uel Reprocessing
High-Level Waste Solutions, in Symposium on the Management of Radioactive Wastes from Fuel Reprocessing, Pans, France, November
27-December 1, 1972 (CONF-721107, pp. 1081-1110), also, German Report KFK-1651, November 1971.]

+See Fig. 5.19.

fRare-earth fission products.

§ Other fission products.

q Corrosion products.

**Diethylenetnaminepentaacetic acid.

t+Lactic acid.

11 Bis(2-ethylhexyl)phosphoric acid

§ § Tri-n-butyl phosphate.

€ ¢ Essentially rubidium, strontium, cesium, and barum,
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Thus far the German HDEHP americium—curium extraction process has been
demonstrated only on a laboratory-scale with simulated Purex-process waste contain-
ing added radioisotopes. Although process performance was excellent under such
conditions, it is clear, as Koch'®!' notes, that pilot-plant-scale tests with actual
high-level waste are needed to determine fully the utility of this americium—curium
recovery scheme.

HDEHP extraction processes that make use of the differences in stability of the
chloride and thiocyanate complexes of the lanthanides and actinides (compare
Chap. 3) have been proposed®$:101:166:167 fo; separating americium and curium
from the rare earths. Such processes use concentrated LiCl (or CaCl,) and NH;SCN
aqueous feedstocks. Gureev et al."®® have described laboratory-scale mixer—settler
tests in which an 0.74M HDEHP—dodecane solvent was used with either a 6M
NH,SCN or a 11M LiC1-0.4M HCI aqueous feed to extract rare earths away from
americium. Decontamination factors of americium from rare earths of ~10 (CI'
system) and ~1000 (SCN system) were realized in these tests. No industrial-scale
application of such processes is anticipated, since they are less efficient than the
Talspeak process (or modifications thereof)! °! and involve the use of more corrosive
and/or difficult-to-handle aqueous-phase compositions.

Similar to results with TBP (compare pages 201 and 202), there is conflicting
evidence regarding HDEHP extraction of Am(VI) from HNO; solutions. Zangen'?22
states that HDEHP—CCl, solutions extract Am(VI) from 0.05M HNO; ~1000 times
better than Am(Ill). Penneman and Asprey>? also found that an 0.3 HDEHP—
toluene solution extracts Am(VI) quantitatively from 0.1M HNO; —0.1M Na,S, 05
solution and suggest this procedure for separating macro amounts of americium from
Cm(1II). On the other hand, workers at ORNL observe that HDEHP extracts Am(III)
considerably better than Am(VI).! 56168 Myasoedov et al.”® suggest this latter result
may have been obtained because of the reduction of Am(VI) to inextractable Am(V).
Penneman and Keenan®2 note tracer concentrations of americium are difficult to
maintain in the hexavalent state. Definitive experiments are needed to resolve this
conflict.

Watanabe and Sagawa'®® have devised an HDEHP extraction process for
separating curium and plutonium from americium. This procedure involves reduction of
Am(VI) to Am(V) with H,0, in 0.1M HNO; solution, and extraction of plutonium
and Cm(III) into a 50 vol.% HDEHP—xylene (or dodecane) solvent. A decontamina-
tion factor of 2*'Am from 2#2Cm of 30+ 10 is obtained in one cycle of solvent
extraction. It is not clear why H, O, does not reduce Am(V) to Am(I1l), nor is it clear
whether plutonium is in the +4 or the +3 state. Lee! 7% has reported on a study of the
Am(III)—Cm(III) separation factors in HDEHP extraction systems.

Myasoedov et al.!7!''72 report that a 3 : 1 mixture of HDEHP and P,0O¢ in
cyclohexane extracts Am>®’ quantitatively from 1M to 12M HNOj; solution
(Fig. 5.20). Large concentrations of AI(NO;3); do not interfere in the extraction of
Am** by an 0.3M HDEHP—0.1M P,0; solution. The Russian investigators postulate
that an entity with a great affinity for trivalent transplutonium elements forms when
P,0; is dissolved in HDEHP solutions. Myasoedov and coworkers also report that the
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Fig. 5 20 Extraction of Am(lIl) by HDEHP-P,O; solutions [From B F Myasoedov, M K
Chmutova, N E Kochetkova, and G A Pribylova,’”! Solvent Extraction of Trivalent Amerncum
from Acid Media, Radiochemical and Radioanalytical Letters, 14: 63 (1973) |

extractive properties of HDEHP—P,05 mixtures decrease with time A satisfactory
way of strnpping metal values from the HDEHP—P,0; extractant has not been
reported

Synergistic and antagonmistic effects in the extraction of Am(VI) and Am(III) by
HDEHP—TBP solvents have been reported by Zangen'22 73 and by Kolarnk ' 7# In
the system 0 03M HDEHP-0 1M TBP--CCl;—0 05M HNO; Zangen noted a syner
gistic effect for the extraction of Am(VI) and an antagomstic effect for Am(III)
Kolarik notes also that TBP causes only an antagonistic effect in HDEHP extraction of
Am(I1I) from perchlorate, citrate, and mtrilotriacetate solutions

Other Organophosphorus Acid Extractants Only HDEHP has found large-scale
use for the recovery and separation of americium, however much laboratory-scale
work has been done to evaluate various other organophosphorus acids for their ability
to extract amernicrum from different aqueous media and to establish chemustry
mvolved 1n such extraction systems Several interesting and relevant features of this
laboratory work are mentioned here, a more complete description of these studies 1s
provided in Ref 88

Monoacidic phosphonates are obtained by substituting a phosphorus-bound alkyl
or aryl group for an ester group of a monoacidic phosphate The former compounds,
as shown first by Peppard, Mason, and Hucher,'”® '7% are considerably more
powerful extractants for the actiides than are the corresponding monoacidic
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phosphates. Taking advantage of this greater extractive power, Baybarz, Leuze, and
Weaver' 771 7® devised a countercurrent extraction process using a 1M solution of
HEH@P [bis(2-ethylhexyl) phenylphosphonic acid] in diethylbenzene as an extractant
to separate americium and curium from transcurium elements contained in 1M HCI.
Americium and curium remain in the aqueous phase while the transcurium elements
are stripped from the organic phase with 4M HCl. Curium losses are about 0.1%, and
the decontamination factor of transcurium elements from americium is ~10%. Routine
use of this process at ORNL in actinide processing operations was precluded by the
presence of zirconium in feed solutions because of corrosion of zirconium-based
equipment. Zirconium is strongly extracted by HEH@P (Ref. 179); such extraction
adversely affects the separation of americium and curium from transcurium elements.

Separation of lanthanides and actinides in the Talspeak process (compare pages
208 to 220) is smaller when HDEHP is replaced by the more powerful HEH@P
(Ref. 151). For example, extraction by 0.1M HEH@P in diisopropylbenzene from 1M
lactic solutions 0.04M to 0.2M in NagDTPA gives separation factors of 100 for cerium
and europium over americium, but the neodymium/californium separation factor is
only about one-half as large as that obtained with HDEHP.

Mason, Bollmeier, and Peppard'®°''8! have used bis(2,6-dimethyl-4-heptyl)
phosphoric acid, [(i-C4H,), CHO} ,PO(OH), to preferentially extract Am(VI) and thus
partition americium from lanthanides and trivalent actinides. They report that, in the
system 0.6F [i-C4Hy),CHO} ,PO(OH)-n-heptane— 0.025F HNO; —0.025F AgNO;—
0.185F K;,5,0g, the extraction constant for oxidized americium is greater than 40,
whereas that for Cm(III) is <10™. Mason, Bollmeier and Peppard recommend the use
of bis(2,6-dimethyl-4-heptyl)phosphoric acid as the stationary phase in extraction
chromatography systems (compare page 255), but thus far no such application has
been reported.

Much interest has been shown in the chemistry and reaction mechanisms involved
in the extraction of Am(lI) by mono-(2-ethylhexyl)-phosphoric acid
[(H,)EHP] 143:145.166.1827188 This reagent has a much higher tendency to
polymerize than HDEHP. In alcohols where (H,)EHP is monomeric, Am(III)
extraction follows the mechanism:* #¢

Amga*q) + 3[(H,)EHP] (o) = Am(HEHP); (1) + 3H{aq) (5.11)

Rao, Mason, and Peppard’®? give the following mechanism for the extraction of
Am3* by dimeric (H, )EHP in hexone:

Amijq) + 2.5[(H,)EHP] 5 (org) = Am(HEHP) [Hy (EHP), | 2 org) + 3H{,q, (5.12)

Finally the extraction of Am(III) by (H,)EHP in nonpolar diluents (e.g., n-hexane)
can be represented as:!82°184-185

Amfq) * [(H,)EHP]

(aq) = Am [HZ p-3(EHP)p](org) t 3Hzaq) (5.13)

p(crg)
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Because the extraction capacity of (H,)EHP is greater than that of HEDHP,
considerable effort has been expended in devising (H,)EHP extraction processes for
separating Am(II) from lanthanides. Systems studied in laboratory-scale batch and
countercurrent tests involve the extraction of Am(II) from concentrated LiCl
solutions'#°7'°! and from 0.1M to 10.3M NH,;SCN media.'¢®''35 Although
excellent separations have been obtained in some cases, none of these (H),EHP
extraction schemes have found any plant-scale use largely because of the required
precise control of conditions.

In addition to those already cited, the following organophosphorus acids have also
been used in laboratory-scale americium extraction studies: di[para(l,1,3,3-tetra-
me thylbutyl)phenyl] -phosphoric acid;!4%:146:1%2  di(hexoxymethyl)phosphoric
acid;'?31°* di-n-octylphosphoric acid;'®S di-neooctylphosphoric acid;'®® bis(2,6-
dimethyl-4-heptyl)phosphoric acid;'®7? di-n-octylphosphinic acid;!*®'*®® mono-n-
octylphosphinic acid;*?? 2-ethylhexylphosphinic acid;Z%® n-octylphenylphosphinic
acid;?°! and cyclooctylphenylphosphinic acid.?®!

Amine Extractants. Nitrogen-based extractants, particularly tertiary amines and
quaternary ammonium compounds, have been widely studied and used for separating
and recovering americium and other actinide elements from aqueous media. General
reviews of amine extractants and extraction chemistry have been written by
Schmidt,2®? by Coleman, Blake, and Brown,?°3:2°% and by Muller.®3

Tertiary Amine Salts. Paralleling the behavior of neutral monodentate organo-
phosphorus extractants, tertiary amine salts extract Am®" only poorly from
concentrated HNO; or HCI solutions but very strongly from concentrated nitrate or
chloride solutions of low acidity (Fig.5.21). Tertiary amine extraction of tracer
amounts of americium from HNOj;-—metal nitrate [e.g., AI(NO;);, LiNO;, and
Mg(NO;),] solutions has been investigated in detail as a function of type and
concentration of metal nitrate! ©5:106:113:123 amine type and concentra-
tion;123:2067208 4n4 diluent type.'®5''?3 Similar studies have been made for
tertiary amine extraction of tracer americium from HCl—metal chloride solutions:
type and concentration of metal chloride;? 3! 78:2997215 amine type and concentra-
tion;! 78-209:2147219a 4,4 djluent effects.?®®'215:216 Results and findings of these

studies are recounted in Refs. 88 and 95.

In tertiary amine extraction of americium from both nitrate and chloride
solutions, DA varies with the square of the amine concentra-
tion.!78:205,206,209.214.216.218 Rrom this extraction dependency, Marcus, Givon,
and Choppin?®® and Horwitz et al.?®5 assume that Am3* is extracted from nitrate
media as the complex (R3NH), Am(NO,)s. In a similar fashion, Moore?'¢ postulated
that tertiary amines extract Am®” from chloride solutions according to the reaction:

2R3N org) + 2H{aq) + AMCIE (4q) = (R3NH), AmCls (org) (5.14)
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Fig. 5.21 Amine extraction of Am®* from nitrate solutions. {(a) Extraction from HNO, solutions
by 10 vol.% trni-n-octylamine in xylene. [Adapted from W.E. Keder, J. C. Sheppard, and A.S.
Wilson,??7” The Extraction of Actinide Elements from Nitric Acid Solutions by Tri-n-Octylamine,
Journal of Inorganic and Nuclear Chemistry, 12: 327 (1960).] (b) Extraction from HNOQ, —metal
nitrate solutions by 0.59M Alamine 336 - HNO; 1n diisopropylbenzene and 0.39M Aliquat
336 - NO,* HNO, in xylene. [From E.P. Horwitz, C. A. A. Bloomquist, L. J. Sauro, and D. J.
Henderson,?® The Liquid—Liquid Extraction of Certain Tripositive Transplutonium Ions from
Salted Nitrate Solutions with a Tertiary and Quaternary Amine, Journal of Inorganic and Nuclear
Chemistry, 28: 2313 (1966).]
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Miiller, Duyckaerts, and Fuger*!” postulate that the complex extracted from chloride
solutions is formed by association of the (R;NH)AmCl; complex with tertiary amine
salts R3NHCI; the resultant ionic quadrupoles

R;NH* AmCl;
CI  R,NH'

also contain two amine molecules per Am® " ion.

Marcus®!®? has reported on results of studies of tri-n-octylamine extraction of
macro amounts of Am®"* from 0.85M HCI—9.45M LiCl solutions. He observed
coextraction of lithium with americiumin a 1 : 1 mol ratio; lithium was not extracted
in the absence of americium. To account for his results, Marcus suggested the
following extraction mechanism:

AmCl} (3q) + 2Cltaq) + Liaq) + 2(RsNHCD, R NH'Cliorg)

= [(R3NHCI),R3NH] , LIAmClg (org) (5.15)
Weaver®® mentions having heard doubts expressed about the coextraction of lithium
and the validity of Eq.5.15. In some recent related extraction studies, Harmon
etal.2'®® observed that 1M solutions of Adogen 464 (a quaternary ammonium salt
available from Ashland Chemical Company) in xylene extract substantial amounts of
lithium from 10M LiCl solutions.

Distribution coefficients of Am3®* and other trivalent transplutonium elements
from concentrated LiCl solutions are 150- to >1000-fold higher than those of trivalent
lanthanides (Fig. 5.22). This phenomenon was used by Moore?!6:229:221 i various
analytical applications; it was also exploited by process chemists at ORNL in the
development of the Tramex process’23:178:209:215.222,223 £4; plant.scale separa-
tion of americium, curium, and other transplutonium elements from fission-product
lanthanides and other contaminants.

The flow sheet in Fig. 5.23(a) illustrates the essentials of the Tramex process as
originally devised,'’® whereas that in Fig. 5.23(b) shows the particular Tramex
process used in the Curium Recovery Facility at Oak Ridge to recover 35 g each of

243 Am and 2**Cm and about 25 g of 242Cm in a highly pure form.!*® The basic
Tramex process [Fig. 5.23(a)] involves selective extraction of Am>®* and other
transplutonium elements from 10M to 11M LiCl-0.02M to 0.25M HCI into the
hydrogen chloride salt of a tertiary amine in an appropriate diluent. The organic
extract is scrubbed with a small volume of 11M LiCl-HCI solution, stripped with 8M
HCI, and discarded to waste without reuse. The strip product is scrubbed with amine
extractant containing nitrous acid to improve decontamination from radioruthenium.

The chemistry involved in the Tramex process has been thoroughly worked out by
ORNL chemists and engineers.!23:178:209.215.223 Opy highlights of this chemistry
are mentioned here; much greater detail is provided in an article by Leuze and
Lloyd.”¢ Distribution coefficients in the Tramex system, in agreement with the earlier
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Fig. 5.22 Relatve extractability of actimides and lanthanides from 10M LiCl solution. Extractant,
0.6M Alamine 336 * HCl in diethylbenzene [From R D. Baybarz, B S. Weaver, and H B.
Kimnser,2®® Isolation of Transplutonium Elements by Tertiary Amine Extraction, Nuclear Science
and Engineening, 17: 457 (1963).]

discussion 1n this chapter, are directly proportional to the second power of the amine
concentration and also highly dependent on the type of diluent. Various tertiary
amunes were tested in laboratory-scale studies, but Alamine 336 (General Mills, Inc.)
and Adogen 364HP (Archer Damels Midland Company), both mixtures of octyl and
decyl amines, because they are available in suitably pure form (particularly Adogen
364HP) in commercially available quantities, have been generally used in large-scale
Tramex process operation. West and Navarez??® have published specifications for
satisfactory tertiary amune extractants for use in the Tramex process. Because of 1ts
ready availabihity, hugh flash pomt, and high distribution coefficients for actinides,
diethylbenzene 1s a preferred diluent.

Extractabihity of the transplutonium and lanthamide elements into the Tramex
process solvent 1s strongly dependent on the chlonde concentrations of the aqueous
phase. Distnbution coefficients wncrease with mcreasing LiCl concentration and
decrease with an increasing concentration of free HCL. Mathematical representations
for distnbution data in the Tramex system have been denved by Roth and Henry?'®
and by Agee and Roth.®? Alumimum chlonde 1s an effective salting agent 1n the
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Tramex process, but its maximum solubility in 10M LiCl is 0.2M (Ref. 225). At these
salt concentrations, AICl; will precipitate when the HCl concentration is >0.05M.
Actinide—lanthanide separation factors in the Tramex process are seriously compro-
mised by the presence of nitrate in the adjusted feed; nearly complete nitrate removal
is thus required. The Tramex process provides excellent decontamination from rare
earths, aluminum, strontium, and, in general, all those impurities which do not form
extractable anionic chloride complexes. Ruthenium, zirconium, niobium, and iron
are extracted and remain in the organic. Good ruthenium decontamination is difficult
to obtain because of slow conversion of the extracted species to an inextractable one.

Predominant radiolysis effects in the Tramex process are rapid destruction of HC1
and generation of a strong oxidant in LiCl feed solutions which results in poor
decontamination from cerium since Ce*" extracts along with the acti-
nides.76:123:149.150.154.226 T4 counteract these effects, methanol is added to the
feed to suppress the loss of HCl, and 2,5-di-tert-butythydroquinone (DBHQ), an
organic-soluble reductant, is added to the Tramex process solvent to reduce any Ce*"
to Ce3” (Ref. 150). In some early Tramex process operation [Fig. 5.23(b)}, SnCl, was
added to the feed to insure the presence of trivalent cerium.

1M LiCl
002M HCI 8M HCI

Waste solvent
Ru, Zr, Nb, Fe
Feed
10/ LiCl - 0 1M AICIg
~0 02M HCI @
actinides
fission products
Extraction Stripping
06M Al 336 - HCI Product
amine . oo
in diethylbenzene @ F— Am B(I:I;nH?:Il( cf
Waste
LiCi — AICI3

fission products
0 5M Alamine 336 - HCI
0 1M Alamine 336 - HNO,
in diethylbenzene

(a)

Fig. 5.23 Tramex process flow sheets. (a) As onginally devised. (b) As used in the Curium
Recovery Facility at Oak Ridge. [From R. E. Leuze and M. H. Lloyd,”® Processing Methods for
the Recovery of Transplutonium Elements, in Progress in Nuclear Energy, Process Chemistry,
Series II1, C. E. Stevenson, E. A. Mason, and A. T. Gresky (Eds.), Vol. 4, page 549, Pergamon
Press, Inc., New York, 1970.] See facing page for (b).
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The Tramex process has been used routinely since 1967 at the Transuranium
Processing Plant (TRU) at ORNL as part of the processing sequence (Fig. 5.24)
involved in the recovery and purification of transplutonium elements from highly
irradiated (High Flux Isotopes Reactor and/or Savannah River reactors) aluminum-clad
242py—Al alloy, 2*?Pu0,, and 2*3Am0,-24*CmO, targets. [The Pubex process
referred to in Fig. 5.24 involves HDEHP extraction of plutonium and zirconium from
the dissolver solution; the Cleanex process (compare pages 208 to 220) is an HDEHP
extraction process performed to separate the transplutonides from metallic impurities,
and, if necessary, to convert from a nitrate- to a chloride-based system.] At the TRU
the Tramex process has been operated satisfactorily in continuous countercurrent

Scrub Feed Reductant® Extractant
108M LCI 11 0% LiCIP 112M LiCl 065M amine—HCl
003 HCI 025 HCI 025M HCI 003V free HCI in

(0.1 NH20H-HCH? ~5 vol % methanol 0 15M SnCl, diethylbenzene
) 0125 g hiter-1 242Cm r
~15 W Iiter-1

e @ Note [EXtractant 194
Feed + scrub

Mixer speed 1200 to 1300 rpm
Scrub } Extraction
8 stages 1 8 stages
! " 22 Ratfinate
Temperature 50°C . Lo

fission products

Strip 4> +Sn
80¥ HCIE® Wash 1

0.654 amine—HNO3

n diethylbenzene Wash 2
(chilled) 0.6 amine—HCid
0034 free HCI

in diethylbenzene

@ Mixer speed 1100 Yo 1300 rpm
Stripping : Wash
Tstages | 9 stages ~
Temperature 50°C \1_8/

During the processing of the raw dissolver solution,

these modifications were used Product
I Waste organic I ;. ?Ji%HL‘g(va:::‘;ncluded in the scrub. 06 hCl
Nn ¥ ~0.06 g hter-1 244Cm
To waste c. No reductant was used. ~7 W Iter-1
storage d. 0.8M HDEHP was used nstead of amine—HCl.
e. 2M HCL.

. _ Stream flow ratio, feed = 1.0;
Note: O ~ HDEHP = bis(2-ethythexyl) phasphonc acid

(b}

Fig. §.23 (Continued; see facing page for caption.)
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Fig. 5.24 Schematic of processing steps used in the Transuranium Processing Plant at Oak Ridge.
Adapted from Ref. 66

equipment (pulse columns) constructed of Zircaloy under flow-sheet conditions very
similar to those shown in Fig. 5.23(b) except for the substitution of DHBQ for SnCl,.
Design details of the original pulse columns used in Tramex process operations are
given in the paper by Leuze and Lloyd;”® design changes made in second-generation
Tramex process pulse columns are mentioned in Ref. 227. Continuous Tramex process
operation has been generally satisfactory with feeds derived from PuO, and
AmO, —Cm0O, targets. In the initial processing of 242Pu—Al alloy tubes irradiated at
Savannah River, extensive carry-over of aluminum to the LiCl feed and attendant
solids formation prohibited operation of the continuous Tramex process equip-
ment;?2® batch-type operation was necessary to process such feeds. Other details of
the Oak Ridge experience with plant-scale Tramex process operation are provided in a
paper by Bigelow, Chattin, and Vaughen.' °

The Tramex process was also used for a time at the Savannah River Laboratory as
part of the process sequence??® carried out to produce and purify kilograms of
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244Cm and 243 Am. Savannah River Laboratory experience with continuous Tramex
process operation in mixer—settlers has been summarized by Groh et al.!®®? and
Prout et al.23% The two-cycle Tramex process flow sheet shown in Fig. 5.25 was
initially satisfactorily demonstrated in laboratory-scale facilities with miniature
mixer—settlers. [The actinide—lanthanide concentrate (~2g liter* 24*Cm, ~09 g
liter* 243Am, 6M NO3, and 0.4M H") used as feed to the process derived from the
prior batch TBP extraction operations described on pages 195 to 202; the Clanex
process described later in this chapter was used as a head-end step to prepare
chloride-based feed to the Tramex process.] Subsequently this solvent extraction
process (Fig. 5.25) was applied in a large pilot production facility”? to purify ~1.5 kg
of 244Cm and ~0.7 kg of 243 Am. Prout et al.23? state: “The 2%*Cm produced met
the radioactive purity specifications given in the initial report of this series (DP-1009).
Although product quality was good, the rate of production was slow. The exacting
analysis requirements for process control, and maintenance problems caused by the
high concentrations of chloride in the extraction system, made continuous multicycle
operation impractical ...” (author’s italics). After their unpleasant and frustrating
experience with a scaled-up Tramex process, the Savannah River group used a
high-pressure displacement chromatographic cation-exchange process (compare pages
245 t0 252) to purify the remaining (~3 kg) >#*Cm and **3 Am.

Nitrate ion in Tramex process chloride feedstock adversely affects the separation
of actinides from lanthanides, as previously noted. A HDEHP solvent extraction
process (Cleanex process) for converting from nitrate- to chloride-based systems has
already been described (compare pages 195 to 202). The Clanex process (Fig. 5.26) is
another such nitrate-to-chloride conversion process. In this process, americium,
curium, and lanthanides in a 1M to 2M AI(NO3); or a 7M to 8M NO3 [mixed
Al(NO3); and LiNOj] solution are extracted into an 0.6M Alamine 336—HNOQ; —di-
ethylbenzene solvent, scrubbed with 8M LiNO;, and stripped with 3M to 8M HCI. The
strip product is scrubbed with 0.6M Alamine 336—HCl—diethylbenzene to remove the
last traces of nitrate. The rare earths coextract with the trivalent actinides, but most
other contaminants are sufficiently inextractable that they remain in the aqueous
raffinate. Applications of the Clanex process have been made both at Oak
Ridge”%°23! and at Savannah River.”61052:231

In other laboratory-scale investigations of tertiary amine extractants, Chmutova
et al.232 have studied extraction of Am®" and other trivalent transplutonide elements
by mixtures of trioctylamine with TBP, tri-n-octylphosphine oxide, and triphenyl-
phosphine oxide. The synergistic effect with such solvents is sufficient according to
these Russian scientists to permit quantitative extraction of Am3* from 1M
HNO, —-7M LiNO; solutions. Conversely Koehly, Madic, and Berger*®® report that
extraction of Am®* from LiNOj; solutions by trilaurylamine nitrate solvent decreases
when capric acid is added to the organic phase; the antagonistic effect of capric acid is
accounted for by these workers on the basis of an addition reaction between one
molecule of trilaurylamine nitrate and one capric acid dimer.

Koehly and Berger?3# have studied the effects of aminopolycarboxylic acids (e.g.,
DTPA and EDTA) on the extraction of Am®" and lanthanides from low-acid LiNO;
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and AI(NQj;); solutions by 064M trilaurylamine in a dodecane—chlorobenzene
diluent, separation factors (DrE/Dam) similar to those found (Table 5 5) in TBP
extraction from sumilar solutions were observed Koehly and Berger used their data to
devise countercurrent extraction processes for separating Am®* from Pm®* and Cm3*,
these processes were subsequently satisfactonily demonstrated in mimature mixer—
settler tests with aqueous LINO; —DTPA solutions containing milligram amounts of
241 243 A and 244Cm (Refs 234 and 235)

Moore?3 reported data for Alamine 336 extraction of Am®* from 0 01M HNO,
solutions containing citric, tartaric, oxalic, acetic, EDTA, or a-hydroxyisobutyric
acids

Weaver made a brief companson of the extraction of Am(VI) and Am(III)
from LiINO; solution by Alamine 336 nitrate in dusopropylbenzene At low nitrate
concentrations, Am(III) was less extractable than Am(VI), but a difference in
nitrate-concentration dependency reversed the preference at concentrations above 4M
LlN03
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Quaternary Ammonum Salts Quaternary alkyl ammonium nitrate salts extract
Am®” considerably more efficiently from low-acid, highly salted aqueous mitrate
solutions than do tertiary alkyl amunes, as shown by the data of Horwitz et al 2%
[Figure 5 21(b)] [Ahquat 336 1s a muixture of trioctylmethyl- and tridecylmethyl-
ammonium salts made by General Mills, Inc ] Moore?3# also studied the extraction of
Am(IIT) from LiNO; solutions, whereas Van Ooyen?3? 249 studied the extraction of
Am®* and other transplutonium elements from LiNO; solutions with trilaurylmethyl
ammonium nitrate—xylene solutions Chudinov and Pirozhkov?#! investigated the
effect of the type of metal nitrate salting agent on the extraction of Am(III) by xylene
solutions of tetraoctylammonium nitrate Collectively these studiesshow that Dap
decreases rapidly at HNOj concentrations much higher than 0 01M because of the
competition between excess HNOj; and the americium nitrate complex for the
extractant, Dy, also varies with diluent type and with the type and concentration of
salting agent and appears to be a first-order function of quaternary ammonium
extractant concentration The extracted species may be R4;NAmM(NO,),, but Horwitz
et al 2% and others are quick to point out that this empirical formula may well be too
simple to account for the extraction process The extraction sequence for trivalent
actinides into erther Aliquat 336 * nitrate or trilaurylmethylammonium nitrate 1s
Cm <Cf <Am <Es

Horwitz, Bloomquist, and Griffin included an extraction step with Ahquat 336
in the preparation of 20 to 30 C1 of high-punity 2°2Cm Iniadiated 2*!'AmO,
encapsulated 1n aluminum was dissolved in an HNOj; —Hg(NO3), solution, a xylene
solution of Ahquat 336 was used to extract curium and americium from the AI(NO3);
solution and from certain fission products

Koch and Schoen®?® 244 devised and tested on a laboratory scale a quaternary
ammonium extraction process for the 1solatton of 2*! Am from aged plutonmum scrap
Feed for the extraction process 1s the americium-contamning raffinate resulting from
anion-exchange recovery of the plutommum from a strong HNO; solution This
raffinate 1s concentrated by evaporation, residual plutonium and, if present, uranium
are extracted with Aliquat 336 nitrate 1n an aromatic diluent The aqueous solution
free of plutonium and uranium 1s adjusted to 7M NH4NO; and pH 1 5, and Am®” s
extracted with the Alquat 336 solvent After the organic phase 1s scrubbed with 7M
NH4NO;, the punfied americium 1s stripped with 3M HNO; No large-scale
application of this process has been reported

Advantages of a quaternary ammonium nitrate extraction process over other
schemes (e g, Tramex process) for 1solating trivalent actimde--lanthanide elements
were discussed by Moore 238 But agam, no large-scale use of quaternary amines for
the purpose has been made

Moore?*S 24¢ and later Gerontopulos, Rigali, and Barbano®*’ found that the
thiocyanate salt of Aliquat 336 preferentially extracts actinides over lanthanides from
moderately concentrated NH;SCN solutions Moore?*5 gives the order of extractabil-
ity as Cf >Bk>Am>Cm>» Yb>» Tm>Eu>Pm>Y>Ce>La Gerontopulos
et al report that distribution coefficients m this system are dependent on temperature,
the presence of various contaminant anions, and the type of diluent but that
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separation factors between americium and rare earths remain relatively constant.
Several process-scale applications of the Aliquat 336—NH4SCN system were suggested
by Moore but none have been made.

Polish workers>*® have reported on extraction of Am®*, Cm>3*, and rare earths
from LiNO3;—-0.01M HNO; solutions by chloroform solutions of cetyltrimethyl-
ammonijum bromide and cetylpyridinium bromide. Zaman, Merciny, and Duyck-
aerts>*® investigated the extraction of americium—HEDTA complexes with Ali-
quat 336 chloride -benzene solution, whereas Moore?*®'2%! discussed the extraction
of.americium-HEDTA and americium—-DTPA complexes with xylene solutions of
Aliquat 336.

ION-EXCHANGE PROCESSES

Introduction

Ion-exchange processes—both cation and anion—are extensively used to concen-
trate, separate, and purify both micro and macro amounts of americium from a whole
host of inert and radioactive contaminants, including, particularly, Cm(Ill) and
lanthanides. A recent innovation for this purpose has been the application of very
finely divided resins and high-pressure techniques. Feedstock for the americium
ion-exchange processes derives usually from prior solvent extraction (see preceding
section), pyrochemical (pages 185 to 187), and even precipitation (pages 190 to 194)
schemes.

Ryan?®? has recently completed a comprehensive review of the chemistry and
principles involved in the sorption of americium from various aqueous media by both
organic and inorganic exchangers. Other authors have reviewed use of ion-exchange
materials for the analysis of americium?®® and for studies of americium com-
plexes.2®* Rather than attempting to duplicate this excellent coverage, emphasis here
is primarily on an account of the flow sheets, operating details, and performance of
the jon-exchange processes used to routinely separate and purify kilograms of
americium. Jenkins and Wain?5° have recently authored a list of publications covering
the use of ion exchange for recovering and purifying 2** Am and ?%* Am.

Anion-Exchange Resin Systems

Many different aqueous and mixed aqueous—organic media have been used in
laboratory-scale studies of the absorption of americium by anion-exchange resins;
results of these studies have been reviewed by Ryan.?5? For routine, large-scale
purification of americium, however, application of anion-exchange resins is limited to
sorption from thiocyanate, chloride, and, to a smaller extent, nitrate solutions.
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Thiocyanate Solutions Amencium(lll) forms relatively strong complexes
[AmSCN?*, Am(SCN)3, Am(SCN)3] 1n concentrated aqueous thiocyanate solutions
(compare Table 3 11) Thiocyanate species are sorbed on anion-exchange resins
considerably more strongly*”? 256 258 than are the corresponding lanthamde thiocy-
anate complexes, as illustrated by the distribution data plotted in Fig 527
Distribution coefficients and lanthanide—actimde separation factors decrease with an
mncrease i temperature?®® (Fig 5 28), Ryan?5? has pomted out that the europium
results of Fig 2 of Ref 258 are incorrectly plotted a factor of 10 higher than the true
values

1T T1TTT T | 1T T

100 |— 25°C
Dowex 1-X10 resin

+
+/Eu(nl)

Am(i1)

T T TTTI

TTTT]

DISTRIBUTION COEFFICIENT

! Lol

1 10
MOLALITY OF NH4SCN

Fig. 5.27 Anion-exchange absorption of Am(IIl), ku(ll), Yb(Ill), and La(Ill) from aqueous
NH,SCN solutions [brom J S Coleman, L B Asprey, and R C Chisholm,2** The Anion-
Exchange Absorption of Amencmum, Yttrium, Lanthanum, Europium, and Ytterbium from
Aqueous Ammonium Thiocyanate, Journal of Inorganic and Nuclear Chemustry 31+ 1167 (1969) |

Much use has been made, particularly in the United States, of thiocyanate
anion-exchange systems to purify americium from rare earths and other impurities
Figure 5 29 details in schematic form the thiocyanate 1on-exchange process used at the
Rocky Flats Plant for about 15 years (1960 to 1975) for routine purification of
kilograms of 2*! Am recovered from aged plutomum metal by the pyrochemical
process discussed on pages 185 to 187 This purification scheme was developed
ongmnally by Coleman etal®? 25° and Keenan?®® at the Los Alamos Scientific
Laboratory and applied there and also by Naito?®! at the University of Cahfornia,
Lawrence Radiation Laboratory, for purification of milligrams of americium

Feedstock for the Rocky Flats thiocyanate 1on-exchange process 1s derived from
prior aqueous processing of the NaCl-KCl—MgCl, salt product of the pyrochemical
process described on pages 185 to 187 For many years, as discussed on
pages 190 to 194, a hydroxide precipitation scheme was used to 1solate and concen-
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trate americium from the chloride salt. The hydroxide precipitate was dissolved in
nitric acid, and the resulting solution passes through a bed of Dowex 1 anion-exchange
resin to remove the bulk of the plutonium. The 7M HNO; effluent from the
anion-exchange column, after dilution to about 0.4 HNO; constituted feed to the
thiocyanate process.

In the thiocyanate process, feedstock was loaded at 25°C and at a rate of about
100 liters hr' onto a 16.2-liter bed of 50-100 mesh H'-form Dowex 50-X8 resin
(column 1) to sorb and concentrate the americium and plutonium. Feed to this first
column contained, typically, 0.02g Am liter’'; 0.003 gPu liter'; and varying
amounts of lanthanum, other rare earths, iron, magnesium, and other metallic
impurities. After washing with water and 0.5M NH4SCN to remove the major part of
the iron [as the Fe(SCN)2™ complex], americium, plutonium, and rare earths were
eluted with a 6M NH; SCN solution.

The 6M NH,SCN eluate from the cation column, containing at this point
approximately 1 g Am liter ' and 0.1 g Pu liter™?, was loaded onto a 16.2-liter bed of
50-100 mesh SCN-form Dowex 1-X4 anion-exchange resin (column 2). To provide

Y0P 1M NH4SCN

Americium

1M NH,SCN

Europium

LOG DISTRIBUTION COEFFICIENT

-1.0 | l
3.0 3.5

1000/T, °K

Fig. 5.28 Temperature dependence of distribution coefficients of Am(II) and Eu(IIl) into Dowex
1-X8 resin from aqueous NH,SCN solutions. [From J. L. Ryan,>*? lon Exchange, in Gmelins
Handbuch der Anorganischen Chemie, Band 21, Transurane, Teil D2, G. Koch (Ed.), Verlag
Chemie, G.m.b.H., Weinheim, Germany, 1974.]
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L | L | I— AmO;
1 i Strip to Pu
“ recovery

Load wash effluent to waste

Fig 5.29 Rocky llats thiocyanate ion exchange amerncium recovery process All columns are
15 2 cm 1n diameter

decontamination from cosorbed rare earths, the loaded resin bed was washed with
several column volumes of 6M NH4SCN This sorption—wash sequence was the key
element in the overall americium purification scheme, providing separation not only
from rare earths but also from 1ron, magnesium, bismuth, copper, potassium, nickel,
and zinc 22 Naito?®' and also Hagan and Miller?®® have shown that some
decontamination from aluminum and manganese 1s also obtained by washing the resin
bed with a imited amount of 2 NH,4 SCN after the lanthamides are removed

The amount of resin required to achieve essentially complete separation of
americium from rare earths in the thiocyanate 1on-exchange process depends on the
rare earth/americium ratio For a lanthamide/americium ratio of 300 1, about 30 ml
of resin per gram of lanthanide 1s required,*” 25° whereas a loading of about 15 g Am
liter ' resmn can be used for the satisfactory purification of americium that 1s already
largely free of rare earths 2¢°

The final two 1on-exchange columns in the Rocky Flats thiocyanate process served
to further concentrate the americium and separate it from plutonium To this end,
americium and plutonum 1n the 0 1M HCI solution resulting from elution of the first
Dowex 1 resin bed (column 2) were loaded onto a second bed of Dowex 50 resin
Subsequently americium and plutonium were eluted into a 74 HC1 solution, and the
plutonium then preferentially sorbed onto a bed of Dowex I resin The effluent from
the latter loading step containing purified americium was evaporated to yield a 6) HCl
solution containing 25 to 30 g Am liter ! from which the americium was precipitated,
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after adjustment of the acidity to 0.5M to 1M, as the oxalate. The oxalate precipitate
was calcined to yield high-purity AmO, .

Some additional details of the Rocky Flats thiocyanate ion-exchange process for
purifying americium were given in a paper by Ryan and Pringle.?¢? Their report was
published in 1960; however, Rocky Flats personnel state that the process was
performed, with only minor modifications, much as outlined by Ryan and Pringle.
Over 15 years’ experience at Rocky Flatsshows that the thiocyanate process can be
operated successfully on a plant scale to purify americium from rare earths and other
metallic impurities. Such experience has also disclosed several process disadvantages,
including relatively low (60 to 70%) overall americium recovery, production of
troublesome free sulfur from alpha radiolysis of SCN', and the general difficulties of
handling and disposing of large volumes of viscous concentrated thiocyanate solutions.
For these reasons the thiocyanate process has been replaced by a new cation-exchange
process (compare pages 244 to 252) to recover and purify americium.

Enhanced anion-exchange resin separation of americium from rare earths can be
achieved, according to Russian scientists,?®*2¢® by adding various alcohols (meth-
anol, ethanol, etc.) to aqueous 0.1 to 1.0M NH,SCN solutions. Their results show
that distribution coefficients of Am>" increase much more rapidly than do those of
lanthanides as the alcohol content of the solution increases. The nature of the resin
phase complex in such systems is unknown; no large-scale use of such systems for
purifying americium has yet been made.

Chloride Solutions. Distribution of Am(III) into anion-exchange resins is much
higher from concentrated LiCl solutions?®7-2¢® than from concentrated HCI
solutions.?¢°+27° Moreover, Am(III) is sorbed much more strongly from concentrated
LiCl solutions than are the lanthanides (Fig. 5.30a). Americium distribution ratios
increase with increased LiCl concentration (Fig. 5.30b), whereas increased temperature
enhances the separation of americium from rare earths (Fig. 5.31). Ryan?%? states
that about 10M LiCl appears to be optimum for actinide—lanthanide group
separations, with poorer separation at lower concentrations and inconveniently long
elution times at higher concentrations. Ryan has also questioned the basis for the
hypothesis of Marcus?!® that the complex species in the resin is AmCl;.

An LiCl-based anion-exchange process (Fig. 5.32) for separating multigram
amounts of americium and curium from transuranium elements is routinely and
successfully operated at the Oak Ridge TRU facility.?”' 273 Feedstock for this
process is the chloride solution resulting from the Tramex process (compare pages 222
to 233). Satisfactorily pure actinide products are obtained by controlling the loading
step (Fig. 5.32) so that the actinides load only onto the top 20% (~5 to 15 g liter”' of
resin average loading) of the resin bed. Following the loading step the resin bed is
washed with 5 to 8 column volumes of 10M LiCl-0.1M NH,0H - HCl-5 vol%
CH;3OH to remove nickel and rare earths; hydroxylamine is used to maintain cerium in
the trivalent state, whereas methanol”®:22¢ is used to suppress the evolution of gas
formed by radiolysis. The washed bed is then eluted, as shown in Fig. 5.32, with
LiCI-HCl solutions to obtain, sequentially, an americium—curium fraction, a
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Fig. 5.30a Distribution coefficients of actimides and lanthanides mto Dowex 1-X8 resin from 10M
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Fig. 5.30b Distrnibution of americtum, lanthanum, and lutetium into Dowex 1-X8 resin as a
function of LiCl concentration. [From E. K. Hulet, R G Gutmacher, and M. S. Coops,2%® Group
Separation of the Actinides from the Lanthanides by Anion Exchange, Journal of Inorganic and
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Fig. 5.31 Distribution of americium, lanthanum, and lutetium into Dowex 1-X8 resin from 10M
LiC1-0.1M HCI as a function of temperature. [From E. K. Hulet, R. G, Gutmacher, and M. S.
Coops,?%® Group Separation of the Actinides from the Lanthanides by Anion Exchange, Journal
of Inorganic and Nuclear Chemistry, 17: 350 (1961).]

curium—berkelium fraction, and a berkelium—californium fraction. Currently in the
TRU facility, the LiCl-based process is operated as a conventional low-pressure
ion-exchange process.

Chemists®7-68-274 at the European Transuranium Institute in Karlsruhe have
successfully applied the LiCl-based anion-exchange process to isolate the americium—
curium fraction from irradiated >*! Am targets.

Morrow,2”® Guseva and Tikhomirova,?”% Orlandini and Korkisch,2?”7 and
Bochkarev and Lbov®7® have all determined the distribution of Am®* between
anjon-exchange resins and either HCl or LiCI-HCl aqueous solutions containing
varying amounts of ethanol, methanol, acetone and other water-miscible organic
components. For several of these mixed solvent systems, americium distribution
coefficients were higher than for the corresponding aqueous solutions; better
americium—lanthanide separation factors were also observed in some instances. No
plant-scale application of these mixed solvent systems to isolate or purify americium
has been reported.

Nitrate Solutions. Paralleling behavior in chloride solutions (compare preceding
section), Am(III) sorbs only slightly?”® (Kp ~15 at?3® 20M HNO;) onto
anion-exchange resins from acidic nitrate solutions but moderately strongly?®! 2284
from neutral solutions of various metal nitrates. Data for the uptake of americium by
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Fig. 5.32 LiCl-anion exchange process flow sheet used in the Transuranium Processing Plant at
Oak Ridge. [From R.E. Leuze and M. H. Lloyd,”® Processing Methods for the Recovery of
Transplutontum Elements, in Progress in Nuclear Energy, Process Chemistry, Series I, C. E.
Stevenson, E. A. Mason, and A.T. Gresky (Eds.), Vol. 4, page 549, Pergamon Press, Inc., New
York, 1970.]

Dowex 1 resin from 3M to 10M LiNO;—0.05M H' solutions are?®® shown in
Fig. 5.33. Ryan®®? observes that, with due regard to the effects attributable to
variations in cross-linkage, Am(II[) sorbs about equally well from LiNO; and
A¥NO3;); solutions but less strongly from Ca(NOj), solutions. With Dowex 1-X8
resins, distribution coefficients of Am(I1I) from LiNO; solutions decrease both with
an increase in temperature and an increase in acidity above ~0.01M H” (Ref. 285).
Contrary to results obtained with either chloride or thiocyanate solutions,
distribution ratios of Am(III) from nitrate solutions onto anion-exchange resins
overlap those of the lanthanides. Plant-scale use of nitrate-based anion-exchange
systems for purifying americium has been largely precluded by the inability to obtain
satisfactory decontamination from rare earths. Lloyd?3¢ devised an anion-exchange
process (Fig. 5.34) for recovering americium, curium, and rare earths from the nitrate
waste solution resulting from processing of highly irradiated plutonium—aluminum




ION-EXCHANGE PROCESSES

alloys Although recoveries of >95% were demonstrated m laboratory tests, only 30 to
40% of the americlum—curium was recovered when this process was scaled up for use
at Oak Ridge Solids, mostly aluminum hydroxide, which formed during the feed
preparation step, proved difficult to filter and restricted flow rates 1n the resin column
Lloyd and Leuze®®7 state that thus anion-exchange process (Fig 5 34) appears much
more difficult to operate than the TBP extraction processes described earlier (compare
pages 195 to 202)

Lloyd and Leuze?®7 also devised an alternate anion-exchange process for
recovering americium and curium from irradiated plutonium—aluminum alloys and for
separating them from rare earths In this scheme (Fig 5 35), americium, curtum, and
rare earths are sorbed on Dowex 1-10X resin from an 8M LINO; solution, followed by
selective elution of rare earths with 10M LiCl and elution of americium and curtum
with 1M HCl Subsequently Kingsley?®® modified this process for the purification and
concentration of americtum recovered at Hanford (compare pages 202 to 205) To
date, however, no plant-scale use has been made of the flow sheet shown in Fig 5 35
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Fig. 5.33 Distribution coefficients of Am(III) between LINO, (0 005M H*) solutions and Dowex
1-X8 resin [From S Adar, R K Sjoblom, R I' Barnes, P R Fields, E K Hulet, and H D
Wilson,?® * [on-Exchange Behavior of the Transuranium Elements in LINO, Solutions, Journal of
Inorganic and Nuclear Chemustry, 25: 447 (1963) |
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Fig. 5.34 Anijon-exchange process for recovering americium and curum from NO, waste from
plutonium—aluminum alloy processing. [From M. H. Lloyd,?®¢ An Anion Exchange Process for
Americrum—Curium Recovery from Plutonium Process Waste, Nuclear Science and Engineering,
17: 452 (1963).]

Just as with chloride and thiocyanate solutions, anion-exchange resins sorb
Am(III) much more strongly from mixtures of HNO; or LiNO; with metha-
nol283:289:290 and other organic solvents?®! than from aqueous HNO; and LiNO;
solutions. Russian scientists>®2 have made use of this fact to develop what they claim
is a very efficient ion-exchange process for separating and purifying americium from
irradiated plutonium targets. In their scheme trivalent actinides and lanthanides are
loaded onto a strong base anion-exchange resin from 1M HNO; in 90% methanol; inert
iron and aluminum and fission-product cesium, strontium, zirconium, niobium, and
ruthenium are not sorbed from this solution. Separation of rare earths from the
americium and curium is accomplished by washing the former off with 0.5M
NH4SCN—0.1M HCl in 80% methanol (compare page 237). Americium and curium are
then sequentially eluted with 0.5M HNO; in 80% methanol. Lebedev, Myasoedov, and
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LiNO3 LiNOg, Fe, Ni, and Cr LiCl and rare earths LiCl, Am, and Cm

Fig. 5.35 LiNO, —-LiCl anion-exchange process for separating americium and curium from rare
earths., [From M. H. Lloyd and R. E. Leuze,>®? Anion Exchange Separation of Trivalent Actinides
and Lanthanides, Nuclear Science and Engineering, 11: 274 (1961).]

Guseva®®? state: “The described process of americium—curium recovery is highly

convenient for use in laboratory-scale work. . . . its obvious economic advantages and
technological simplicity allow the expectation that the given method may be used on a
larger scale.”

‘Berger et a and his fellow Frenchmen used a nitrate-based anion-exchange
system to separate americium and curium previously recovered from irradiated
plutonium—aluminum alloy (compare pages 208 to 220) by a Talspeak-type HDEHP
extraction process. The 3M LiNO;—0.065M DTPA strip product (compare Fig. 5.18)
from the HDEHP extraction step was adjusted to 6M LiNO3 and 0.1M AI(NO;);, and
the americium and curium were batch extracted into a 40% TBP—dodecane solvent.
Transplutonium elements were stripped into 1M HNOj; an ethanolic (80 vol.%)
solution containing 1.33M NH,NO; and 0.05M to 0.1M HNO; was prepared from the
strip solution as feed to a bed of 200-400 mesh Dowex 1-X8 resin. Subsequently
curium was selectively eluted using an 80 vol.% ethanol solution containing 1.33M
NH,4NO;, 0.025M DTPA, and 0.08M HNO,. Following removal of the curium,
americium was eluted either with 1M HNO; or a further portion of ethanolic 1.33M
NH4NO;—0.025M DTPA—-0.08M HNO,; solution. This anion-exchange procedure
permitted rapid and clean separation of milligram amounts of americium and curium.

1159

243



244

RECOVERY, SEPARATION, PURIFICATION

Cation-Exchange Resin Systems

General. Cation exchange resins sorb Am®* very strongly from dilute acid
solutions according to the reaction

Am®*+ 3HR = AmR, + 3H" (5 16)

An important application of Eq 516 1s to sumply concentrate Am>* and other
trivalent and tetravalent 1ons from acid solutions obtained in prior solvent extraction
or precipitation processes and to separate them, at least partially, from monovalent
and divalent impurities that have less affinity for the resin Instances of such use of
cation-exchange resins m americium recovery and purification schemes will be
discussed later

A combination of chromatographic elution techniques with cation-exchange resins
provides a powerful and sophisticated tool for punfying americtum from lanthanides
and other trivalent actintdes Elution chromatography involves the use of organic
chelating agents to produce the largest possible difference in the distribution
coefficients of the metal 1ons to be separated

Both elution-development and displacement-development (also known as barrier-
ton or retaining-ton) chromatography have been used in cation-exchange separation
and punfication of americium Ryan?%2? ponts out that displacement-development
chromatography 1s only capable of separating macro quantities, whereas, unless very
large columns are used, elution-development chromatography is applicable only to the
separation of tracer amounts Because of this limitation of the elution-development
chromatographic method, its application to purification of americium is not discussed
further here Helfferich?®? has presented, in a comprehensive fashion, the theory of
both the elution-development and displacement-development procedures

The basic principles of displacement chromatography have been stated by
Ryan®3? as follows

In displacement development chromatography with a chelating agent, a macro-amount of
the actimde or lanthanide 1s loaded onto the upper portion of a column, the rest of which
mnitially contams a restratning or barrier 1on This 1on 1s one which in the presence of the
complexant exhibits a much lower distribution coefficient than the actimide or lanthanide 1on
Flution is carned out with a complexant of such strength and concentration of the free ligand
that the M** distribution coefficients are very low This 1s normally achieved by neutralizing
complexants to a higher pH than would be used for elution development with the same
complexant Under these conditions the distribution coefficient of the M®** 1s lower than that
of the NHZ or Na* 1on used i the neutralization, and the M3 g displaced with a
self sharpening boundary An eluant concentration such that there 1s an excess of the trivalent
10n 1n the resin is used, I or a mixture of actinides and/or lanthanides the reaction

M, (Chelate) + MR, = My, (Chelate) + MyR, 3
occurs because of competition for the imited supply of the chelating agent Separation factors

are related to complex formation constants i the same manner as discussed in the previous
paragraph As the eluant reaches the retaining or barrier 10n, 1t forms a stronger complex with 1t
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than with the actinide or lanthanide, releasing the latter to be absorbed by the resin Since the
complexants are weak acids, H* 1on 1s a satisfactory barrier 10n unless the complex acid 1s not
sufficiently soluble, in which case an appropriate metal 1on i1s used The actimdes and
lanthanides develop into discrete bands or zones 1n direct contact with each other, the resin in
the bands being principally in the actinide or lanthanide form The bands become resolved after
a certain distance and travel with no further change after that
The effectiveness of chelating agents m cation-exchange displacement elution
systems for americium purification 1s conveniently evaluated in terms of separation

factors The separation factor between elements a and b 1s

a _ (KD)a =(DV)a 517
% = ®p)o ~ Dy 17

where Kp = (mg metal/g resin)/(mg metal/ml solution) and Dy = (mg metal/ml
resin)/(mg metal/ml solution). Separation factors are commonly referred to one
actinide, e g, cunum (ag[m) or one lanthanide, e g, gadolnium (ag d)

Distribution Coefficients Separation Factors Data for the distribution of Am®*
between cation-exchange resins and aqueous HCIO,, HNO,;, HCl, HF, HBr, HI,
oxalate, acetate, phosphate, and sulfate solutions have been collected and interpreted
by Ryan 2%% Much of this information was gathered to determine formation constants
of complex species (Table 3 11) Not surprisingly, cation-exchange systems for
large-scale separation and purification of americium use only HNO; solutions as feeds
Extensive use has been made of HCI solutions in cation-exchange systems for
laboratory- and analytical-scale separation of americtum from trivalent lantha-
nides,”! 269 294 297 byt no large-scale use has been made of such systems

Distribution coefficients for Am®* into Dowex-50 resin remain®®? very low and
essentially constant over the range 4M to 11M HNO; Even so, the results of Starik
and Ginzburg?®® indicate that, from HNO; solutions, Am** sorbs shghtly more
strongly onto catton-exchange resins than do the lanthanides

Solutions of a-hydroxycarboxylic and aminopolycarboxylic acids are commonly
used to elute americtum from cation-exchange resin. When these reagents are used 1n a
displacement development elution system, they provide, as detailed on pages 245 to
252, excellent separation of americium from trivalent lanthanides and other trivalent
actimdes Separation factors, aég]‘ and alénT, provided by some of these compounds
are listed 1n Tables 5.9 and 5 10 Ryan’s review?®? furmishes additional mformation
on the use of these organic chelating reagents in eluting transplutonium elements from
cation-exchange resins.

Typical Cation-Exchange Americium Purification Processes. Simple Load-Elution
Concentration Processes Relatively simple load-elute cation-exchange processes still
find much use 1n concentrating (and purifying) americium from dilute feed solutions
At Hanford, for example, such a process 1s used to concentrate americtum and
plutonium 1n the dilute product stream from the DBBP solvent extraction process (see
pages 205 to 208) After this solution (containing, typically, 107 to 107 g hter™* each
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Table 5.9

SEPARATION FACTORS IN AMERICIUM CATION-EXCHANGE PURIFICATION
SYSTEMS- ELUTION WITH ccHYDROXYCARBOXYLIC ACIDS

Separation factors

Chelating Solution Temp., Am/Cm Am/Pm
agent Cation resin composition pH °C a Ref. a  Ref.
Citrate Dowex 50 X12 0 25M NH, citrate 3.35 25 .18 295 103 295
87 117 269
Glycolate Dowex 50-X12 0.25M glycolic acid 4.0 25 1.31 298 098 299
4.0 87 1.24 299 092 299
AHIB* Dowex 50-X4 0.5M NH, AHIB 25 139 300 1.21 300
Dowex 50-X12  0.4M NH, AHIB 3.8-4.8 78 145 301
Zeokarb-225 0.4M NH, AHIB 40 77 138 302
Dowex 50-X12  1.0M NH, AHIB 45-50 87 145 301
1.41 303
Lactate Dowex 50-X12 0 37M NH, lactate 4.1 25 1.21 304 097 304
0.4M NH, lactate 4.0 87 1.23 269
04M NH, lactate 4.6 87 1.19 304 0.97 304
1.0M NH, lactate 30 87 1.27 305 0.97 305
0.4M NH, lactate 4.0-4.5 87 1.21 269
0 27M NH, lactate 42 87 1.16 303
Tartrate Dowex 50-X12 0.1 tartanic acid 4.0 25 130 304 0.89 304
0.1M tartanc acd 4.3 87 107 304
0 8M tartanc acid 2.8 87 120 304

*AHIB = o-hydroxyisobutync acid

of americium and plutontum) 1s diluted with water to about 0 25M HNOj, 1t 1s then
loaded at 25°C onto a 14-liter bed (15 ¢m i diameter) of H'-form Dowex 50-X8
cation-exchange resin Considerable decontamination from sodium, calcium, magne-
sium, and other divalent cations 1s obtaned 1n this step. Subsequently the americtum
and plutonmum are eluted either upflow or downflow with about 6 column volumes of
7M HNO;, the eluate contaming roughly 2 to 4 g lhiter! each of americium and
plutonium 1s used as feed to final 10n-exchange purification as described subsequently

A new®'! cation—anion exchange process (Fig 5.36) has recently replaced the
hydroxide-precipitation (compare pages 190 to 194) and multistage thiocyanate
1on-exchange (compare pages 234 to 237) systems formerly used at the Rocky Flats
Plant for recovering **! Am from solutions of spent NaCl—-KCl-MgCl, salt residues
In this new process, americium and plutontum m an 0 5M H' feed solution contaming,
typically, 4 g Pu liter! and 04 g Am liter™, are furst loaded onto an 11-hter bed of
50-100 mesh Dowex 50-X8 resin. The loaded bed 1s washed with water and then
eluted with 2 5 column volumes of 7M HNO; [An earlier version of this separation
process developed by Kudera and Guyer®!? involved dissolving the NaCl—-KCl—MgCl,
muxture in 0.35M HNO; and subsequently loading the americium and plutontum onto
a cation-exchange resin ]
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Table §.10

SEPARATION FACTORS IN AMERICIUM CATION-EXCHANGE PURIFICATION
SYSTEMS: ELUTION WITH AMINOPOLYCARBOXYLIC ACIDS

Separation factor

Chelating Temp., Am/Cm
agent* Cation resin Solution composition pH °C o Refs.
NTA Dowex 50-X12  0.001M NTA-0.1M NH,CIO, 2.95 72 1.46 306
FDTA Dowex 50-X12  0.001M EDTA-0.1M NH,CIO,  2-3.5 25 2,04 307, 308
2.35 80 1.1 308
2.6 80 1.45 308
NHEDTA  Dowex 50-X12  0.001M NHEDTA-0.15M KC1 2.3 22 1.30 309
2.3 80 1.30 309
2.7 22 1.15 309
2.7 80 1.25 309
29 22 1.70 309
2.9 80 1.30 309
DCTA Dowex 50-X12  0.01M DCTA-0.1M NH,CIO, 3.0 25 118 310

*NTA = nitrilotriacetic acid
EDTA = ethylenediaminetetraacetic aad
NHLDTA = N-(2-hydrovyethyl)ethylenediaminetnacetic acid.
DCTA = 1,2-diaminocyclohexanetetraacetic acid

+0.1M glycolic acid also present.

In the anion-exchange portion of the new Rocky Flats americium purification
process, the 7M HNO; solution resulting from elution of the cation-exchange resin is
passed through a bed of Dowex 1-X4 resin to sorb plutonium and separate it from
americium. Americium in the 7M HNO; effluent from the anion-exchange load cycle
is contaminated with only small amounts of magnesium, potassium, sodium, and
plutonium; no chloride ion is present. Double oxalate precipitation of americium from
this solution yields, after calcination, AmO, of a purity comparable to that obtained
by the former thiocyanate ion-exchange process. The oxalate precipitation process
involves evaporation of the 7M HNOj; load-cycle effluent to achieve a 10-fold
concentration, adjustment of acidity to 0.5M HNO;, precipitation of
Am,(C,04); * 10H,0, dissolution of the precipitate, and a second precipitation of
americium oxalate.

Proctor”” at the Rocky Flats Plant has also devised a cation-exchange procedure
to recover and further purify americium from the 7M HNOj; load-cycle effluent stream
obtained in the plutonium removal step. In this process, after acidity adjustment, all
the metal ions in the feed are absorbed onto a bed of Dowex 50 resin. Foltowing the
loading step, the bed is washed with 0.1M oxalic acid to remove >99% of any iron,
nickel, cobalt, and plutonium and about 60% of any aluminum with minimal (<0.1%)
loss of americium. The americium is then eluted with a 0.4M citric acid (pH 3)
solution; the alkali and alkaline earth elements remain on the resin in this step.
Americium can be precipitated directly from the citrate eluant by adding oxalic acid.
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Precipitation process
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Fig. 5.36 New cation-exchange process used at the Rocky Flats Plant for recovering americium
from molten-salt extraction process residues. (a) lon exchange vs hydroxide precipitation head-end
processes. (b) lon-exchange process flow sheet.®!?

Preliminary laboratory-scale data indicated this cation-exchange process would recover
97% of the americium in the feed while generating only 40% of the waste produced by
the thiocyanate process. When it was found that a double oxalate precipitation process
could be used to purify the americium directly from the anion-exchange resin
load-cycle effluent, this second cation-exchange purification cycle was unnecessary.
Americium recovery by the new cation—anion exchange process presently in use at
Rocky Flats is considerably simpler than by the former precipitation—thiocyanate




ION-EXCHANGE PROCESSES

ion-exchange system. It is anticipated that this process simplification will be reflected
in greater americium throughput and generation of a substantially smaller volume of
aqueous waste more amenable (no thiocyanate) to treatment and disposition.

Haug®!? and others'®?''¢! in Germany have developed a cation-exchange cycle
for the concentration and decontamination of americium and curium present in the
0.05M DTPA--1M lactic acid product solution resulting from prior HDEHP-TBP
solvent extraction of actinides from Purex-process high-level waste (compare pages 208
to 220). Their scheme involves loading the americium and curium from the
DTPA-lactic acid solution (adjusted to pH 1.0) onto the Dowex 50-X8 resin, washing
the resin with several column volumes of 0.1M HNOj, and then eluting the americium
and curium with 3M HNO;. In tracer-level tests, this purification scheme provided
excellent decontamination of the americium and curium from DTPA, lactic acid,
fission products, and other actinides.

Chromatographic Elution Schemes. In the past, a-hydroxycarboxylic acids were
used extensively as eluting agents in cation-exchange processes for the separation and
purification of milligram and even gram amounts of americium. For example,
Campbell®'? in 1956 purified 9 g Am from kilograms of lanthanum by eluting the
americium from a 25% loaded Dowex 50 resin column with 0.15M citric acid—0.1M
diammonium citrate—0.3M NH4NO; solution at pH 3.3. Workers at LASL also
successfully purified gram quantities of americium from kilograms of lanthanum by
displacement elution at 25°C with 0.1% ammonium citrate, pH 8 solution; the
retaining ion was H'.

Both lactic and a-hydroxyisobutyric acids provide better separation (Table 5.9) of
americium from curium than does citric acid. Higgins and Crane?®’ devised an
ion-exchange scheme to isolate and purify thousand-curie quantities of *%Cm from
irrauiated 2*'Am targets; one step in this process involved the use of lactic acid
solution to selectively elute curium from a cation-exchange resin. Perdue and Hicks®!®
separated americium from cerium by selective elution of the former from Dowex 50W
resin with 1M lactic acid adjusted to pH 2.97 with NH,OH. Both Russian®®7 and
German®'®3!8 workers have used a-hydroxyisobutyric acid in chromatographic
cation-exchange separation and purification of 2*2Cm from solutions of neutron-irra-
diated 2*' Am targets. Using chromatographic elution from Dowex 50-X12 resin with
o-hydroxyisobutyric acid, Campbell®!® demonstrated the use of high-pressure
ion-exchange methods for the rapid separation of americium from curium. Burney and
Harbour®?? separated milligram quantities of 252Cf from multigram quantities of
244Cm and **3Am using pressurized cation-exchange elution chromatography and
a-hydroxyisobutyric acid as the eluent.

Highly efficient displacement chromatographic separation schemes that use
nitrilotriacetic acid and/or diethylenetriaminepentaacetic acid as eluents have been
developed and applied in the last 10 years by Wheelwright at Hanford and by Hale,
Lowe, and others at Savannah River to purify kilograms of americium from curium
and lanthanides. For Dowex 50 resin, Wheelwright et al.>?! report the following
elution sequences:
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With DTPA,
Zn?* Pb** Er®*—Ho®*-Dy**, Gd®*, Eu®*, Sm®*, Y3*, Pm3®*, Nd**, Pr®*, Ce3*, La®*
1 4
Cm®* Am?®*
With NTA,

Zn?* (Cm®" — Y3"),Gd®", (Eu®*, Am®"), Sm®*, Pm3*, Na3*, Pr3*

On the basis of these elution sequences, Wheelright®*' 324 successfully used a
two-cycle cation-exchange process in conventional equipment to separate and purify
1 kg 24 Am and 2%3Am, about 60 g 2**Cm, and 140 g ' *"Pm recovered (by solvent
extraction techniques, compare pages 202 to 205) from 13.5 tons of blanket fuel
elements of the Shippingport reactor. In this process, Am** and Cm>* (contained in
the dilute HNO; feed solution) were initially loaded onto a 34.3-cm-diameter bed of
H"-form Dowex 50W-X8 (50-100 mesh) resin. Subsequently the americium and curium
were separated from promethium, other lanthanides, and other cosorbed impurities by
displacement elution at 60°C through a series of seven Zn*'-form Dowex 50-X8
(50-100 mesh) resin beds with a 0.05M DTPA solution buffered to pH 6.5 with
NH,OH; the eluent was pumped through the column system at a flow rate of 4 ml
em? min . The americium—curium product from the DTPA cycle was adjusted to
0.5M HNO; and loaded onto a 10.8-cm-diameter bed of H'-form Dowex 50 resin.
Separated and highly purified americium and curium fractions were obtained by
americium—curium displacement elution at 60°C through a series of four Zn?*-form
Dowex 50 resin beds with a 0.105M NTA solution buffered to pH 6.5 with NH,OH.
Figure 5.37 illustrates simulated elution curves for Wheelwright’s two-cycle americium
purification process.

lon-exchange technology developed by Wheelwright®?S is currently used for the
final purification of **! Am recovered at Hanford by reprocessing of aged plutonium
metallurgical scrap. Americium and plutonium in the 7M HNO; solution obtained in
prior solvent extraction and jon-exchange (compare pages 202—204 and 245) steps are
first separated by sorption of the plutonium on Dowex 1 resin. Subsequently the 7M
HNO; waste stream containing the americium is diluted with water to yield a 1M
HNO; solution containing 0.25 to 0.5 g Am liter ' . Americium in this feed is loaded
onto a 10.8-cm-diameter bed of H'-form Dowex 50-X8 (50-100 mesh) resin and then
eluted through a series of four Zn?*-form Dowex 50-X8 resin beds with a 0.105M
NTA solution buffered to pH 6.5 with NH,OH. Displacement elution is performed at
60°C at a flow rate of 8 ml cm? min™! . The center product cut from the final column
contains 8 to 9 g liter ' of highly purified americium. Oxalic acid is added to this
solution, and the resulting oxalate precipitate is calcined to AmO,. This ion-exchange
scheme is used to purify about 1 kg >*! Am year.

Lowe, Hale, Hallman, and others®®®'3267328 4¢ the Savannah River Plant adapted
Wheelwright’s DTPA displacement elution scheme to pilot-scale operation in pressur-
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Fig. 5.37 Typical elution curves for two-cycle chromatographic cation-exchange americium
purification process. DTPA = diethylenetriaminepentaacetic acid; NTA = nitrilotriacetic acid.®?*

ized equipment. [Pressurization eliminates the bed disruptions caused by radiolytically
produced gases in gravity-fed columns, and a severalfold increase in flow rate
minimizes radiolytic resin degradation. Pressurization also allows the use of very finely
divided resin, thereby improving sorption kinetics.] The pilot-scale system used by the
Savannah River workers to successfully purify 3 kg 24*Cm and 243 Am consisted of
four columns constructed of 304L stainless steel, Schedule 80 pipe; column diameters
were nominally 10.2, 7.62, 5.08, and 2.54 cm, respectively, and each column was
122 c¢m long. All columns were filled with Dowex 50W-X8 (25- to 55-um) resin in the
Zn*"form. A typical batch of feed solution, obtained by prior solvent extraction
(compare pages 202 to 205) processing of highly irradiated plutonium, contained 75 g
244Cm, 24 g 23 Am, and ~1.6 mol of fission-product lanthanides. After loading this
feed onto the top 30 to 40% of the 10.2-cm-diameter column, the americium, curium,
and lanthanides were eluted at 70°C with a 0.05M DTPA solution adjusted to pH 6.0
with NH,OH. The desired elution rate of 16 ml cm® min' was obtained on each
column without exceeding the design pressure of 1000 psig. A typical elution diagram
for product fractions collected from the final 2.54-cm-diameter column is shown in
Fig. 5.38. Hale and Lowe®°® note that, because the curium/americium ratio in the
feed to the pressurized ion-exchange system was ~3: 1, a large fraction of pure
curium could be separated from both americium and lanthanides in a single DTPA
ion-exchange cycle.

In further work at the Savannah River Plant, Kelly®2® devised a pressurized
cation-exchange system for separating and purifying 2**Cm and 2%3Am from feed
solutions with a lanthanide/actinide ratio of ~17 : 1. This process was developed as
part of a program to produce gram amounts of 2*2Cf and was intended for use in the
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Fig. 5.38 Typical elution diagram for pressunzed chromatographic 1on-exchange separation of
americium from curtum Resin, Dowex 50W-X8, Eluent, 0 05 DTPA at pH60 [From J T
Lowe, W H Hale, Jr, and D ¥ Hallman,?2¢ Development of a Pressunized Cation Exchange
Chromatographic Process for Separation of Transplutonium Actimides, Industrial and Engineering
Chenustry, Process Design and Development, 10: 131 (1971) ]

Multipurpose Processing Facility constructed at the Savannah River Plant, no
large-scale use of this 1on exchange process has yet been made Wakat and Peterson®3°
have described an on-line radiochemcal system for providing control information for
pressurized cation-exchange chromatography processes

Specht, Schutz, and Born®3' have reported on a laboratory-scale plant for
separating 100 C1 of 242Cm from gram amounts of americium using high-pressure
1on-exchange chromatography Schutz, Specht, and Born used an O 5M a-hydroxyiso-
butyric acid solution adjusted to pH 3 65 as the eluent

Inorgamc Exchangers

Several authors have reported results of studies of sorption of Am®* from nitrate
and chloride media by various inorganic exchangers (Table 5 11) Studied most
mtenstvely has been sorption of Am*®* by zirconium phosphate, distribution data for
uptake at 75°C of Am®” and other trivalent 1ons from nitric acid solutions are plotted
m Fig 5§39 The order of the distribution coefficients of trivalent actinides and
lanthamdes nto zwcontum phosphate 15 the reverse of the order observed with a
typical strong base resin exchanger, mndicating that the phosphate groups probably
replace part of the water in the hydration sphere of the 1ons *3? Equilibrium m the
zircontum phosphate HNO;—Am?®” system 1s established very slowly, even for tracer
loading at 75°C33? 335 however, >99% absorption of tracer Am®* occurs 1n 15 mun
at 75°C
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Table 5.11
SUMMARY OF SORPTION OF Am(II) BY INORGANIC EXCHANGERS

Exchanger Media Refs,
Zirconium phosphate 0.01M—-1.0M HNO, 332-334
Zirconum phosphate 4M—11M L1C1-0.01M HC1 336
Zirconium phosphate—silicate* 0.01M—-1.0M HNO, 335
Zirconium molybdate pH 1-5 mitrate solutions 333
Zirconum tungstate pH 1-5 nitrate solutions 333
Zuconum tungstate 11M LiC1-0.01M HC1 336
Zyrcontum oxadet 4M- 11M 11C1-0.01M HC1 333, 336
Ammonmum phosphomolybdate 10M LiC1-0.01M HC1 336
Permutit Decalso M-4 % 11M LiC1-0.01M HCI1 336
Linde Molecular Sieve X-13§ 11M LiC1-0.01M HCl 336
Linde Molecular Sieve AW 5008 11M L1C1-0.01M HCI 336
Chromatographic AL, O, 11M LiC1-0.01M HC1 336

*Am Kp = 12,400 at 0.01M HNO, , 7.8 at 1.0M HNO, .
+Am Kp = 5.1 at 4M LiC1-0.01M HCI, 2300 at 11M LiCi—0.01M HCL.
$Sodwm aluminum silicate made by the Permutit Company.

§ Aluminum silicate made by the Linde Division of Union Carbide
Company

According to Ryan,”®? several of the eluting agents previously used successfully

with resin exchangers have been tested with zirconium phosphate Citrate, tartrate,
and oxalate solutions dissolve zirconium phosphate, whereas 2M lactate solutions at
pH’s 3 and 5 and a 1 5SM a-hydroxyisobutyrate solution at pH4 2 do not elute
trivalent actimdes and lanthanides Concentrated muneral acids elute M3* 1ons without
separation Separation of americtum from europium or cerium by elution from a
zirconium phosphate column with a 10M LiCl solution (pH 2 to 3) has been reported
by ORNL workers 3¢

Uptake of Am®"* from mitrate solutions by zirconium molybdate 1s simular to that
by zirconium phosphate With zirconium tungstate, Kp’s for Am®* and Cm®* from
10M LiC1-0 01M HCI are higher by a factor of 2 than for any of the lanthanides
Absorption of Am®* from 10M LiC1-0 01M HCl by ammonium molybdophosphate 1s
farly simular to that by zircontum phosphate.®2® From the same chlonde media,
Permutit Decalso M-4 and Linde Molecular Sieves X-13 and AW 500 sorb Am3” only
weakly, whereas moderately strong absorption occurs with chromatographic alu-
mina,33®

Both American®®7 338 and Russian®3° 249 scientists have recently announced a
new way of using a zirconium phosphate exchanger for separating americium from
curium and other metal 1ons This method takes advantage of the fact that the singly
charged AmO3 10n 15 not sorbed by zircontum phosphate from dilute acid media Also,
unlke organic exchangers, the inorganic exchanger will not reduce the strongly
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Fig. 5.39 Distribution coefficients (Kp) for several ions onto amorphous zirconium phosphate
(PO, /Zr = 1.34) sorbent from HNO; solution at 75°C. [From E.P.Horwitz,®*? The Sorption of
Certain Transplutonium Ions on Amorphous Zirconium Phosphate, Journal of Inorganic and
Nuclear Chemistry, 28: 1469 (1966).]

oxidizing AmO3. Shafiev, Efremov, and Andreev®*° have recently separated milligram
amounts of americium and curium on zirconium phosphate by sorbing curium
preferentially from a pH 2.5 solution containing Am(V) and Cm(IHI).

In the americium—curium separation scheme patented by Moore,>>® Am** in a
0.01M HNOj; solution is oxidized to AmO3 by heating at 80 to 90°C with
(NH,4),S,05; the oxidized solution is transferred to the zirconium phosphate
exchanger, and the americium is eluted with 0.01M HNO;. If desired, a curium
fraction can be eluted with 10M HNO;. The Russian procedure®*® for separating
americium from curium is essentially the same as that described by Moore, except for
the use of 0.1M HNO; to elute the AmO;. The Russian scientists note that, in some
cases, the oxidized solution may contain some AmO?%” as well as AmO3; Am(VI) is
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retained slightly more strongly than Am(V) but can be readily eluted with 0.05M to
0.15M HNOj; solutions.

Chelating Resins
Ryan2%? observed that very little work has been done on the reaction of
americium and other transuranium elements with chelating exchangers and gives
reasons why this is so. Goya and Lai®*! report a value of Kp = 1.3 X 10* for sorption
of trace amounts of Am®* from seawater into Chelex 100 resin. Myasoedov and
Molochnikova®4? have used a chelating resin based on aminopolystyrene and
Arsenazo I [2-arsonobenzene-(1-azo-2)-1, 8-dihydroxynaphthalene-3-6-disulfonic acid)
to concentrate trace amounts of americium and curium and to separate them from
plutonium and fission products. In this analytical procedure, Am*®* and Cm>®" are
sorbed from a mineral acid solution of 0.1N to 1V, after washing the chelating resin
with 0.5M oxalic acid and 11N H,SO4, americium and curium are eluted with 2M
ammonium citrate solution.
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EXTRACTION CHROMATOGRAPHIC PROCESSES

Extraction chromatography (reversed-phase partition chromatography in some of
the older literature) combines the best features of solvent extraction and chromato-
graphic separations techniques. Extraction chromatographic systems involve a mobile
liquid phase and a stationary liquid phase on an inert support; separations are achieved
by taking advantage of the difference in the distribution of ions between the two
liquid phases.

Systems that have been studied for extraction chromatographic separation of
americium from rare earths, Cm(III), and other transplutonium elements are briefly
described in Table 5.12. Not surprisingly, most of the systems investigated have used
either HDEHP or Aliquat 336 as the stationary phase. For the most part, the
extraction chromatographic procedures listed in Table 5.12 have been tested only with
tracer amounts of americium either to investigate americium chemistry in such systems
or to develop analytical procedures. A notable exception is the Aliquat 336
(NOj;-form)—kieselguhr system that has been used recently both in the United
States®S” and in Europe®*°'3¢° to separate milligram and even gram amounts of
americium from curium.

MISCELLANEOQUS SEPARATION TECHNIQUES

Many of the solvent extraction, ion exchange, and precipitation processes
described earlier in this chapter are used, as noted previously, for large-scale separation
and purification of americium in the United States and elsewhere. Various other




Table 5.12

EXTRACTION CHROMATOGRAPHY SYSTEMS FOR AMERICIUM SEPARATION

Mesh Temp.,
Carrier size Stationary phase Eluent °C Application Refs.

Kieselguhr* 200-400 HDEHP 0.5M HCl1 87 Separate Am(III) from 343-345
Bk and Cf

Silica gel 12-18 » HDEHP 0.74M—1.02M HC1 25 Distribution coefficient 346
data for Am(III)

Celite 545t 0.4M HDEHP—heptane 0.1¥—-0.6N HCl or HNO, 18-60 Distribution coefficient 347
data for Am(1I)

Celite 545+ 25 8.82 wt.% HDEHP 0.1¥-0.6N HCl1 or HNO, 25-75 Separate Am(III) from 348
Cm(III)

Kieselguhr* 100-400 HDEHP—xylene 0.1N—-1N HNO, 20 Separate Am(III) from 349
La and other rare
earths

Filter Cel 200-400 HDEHP 0.3V, 0.5V, and 2.1N HNO, Separate Am(III) from 350
Pm

KEL-F% 170-250 10% HDEHP-heptane 0.97N-3.6N HC1 20 Separate Am(III) from 351
Eu

Tee-Six 70--80 0.45M HDEHP—heptane 1M monochloroacetic acid— 25 Separate Am(III) from 352

0.025M DTPA rare earths

Teflon-6§ 60-70 1M HDEHP-heptane 0.01M HNO, 25 Separate Am(V) from 353
Cm(III)

Celite 545t  80-100 1M HDEHP 0.1M—2M HNO, 0.40  Study behavior of 354
Am(II), (V), and (VI)

Celite 545+ 0.2M HDEHP 0.1 HNO, 25 Study extraction be- 355

havior of Am(VI)
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Kieselguhr* 100-400 Aliquat 3364 —NO,-form

Plaskon - Aliguat 336—SCN-form
CTFE 2300**
Celite 80-120 Aliquat 336—SCN-form
Paper 0.5M tri-n-octylamine—xylene
Paper 0.02M-0.18M HTTAtt -
0.02M TOPii

Kieselguhr* 100-400 0.8M TOPO§ § —xylene

3.6M LiNO, —0.01M HNO,

0.1N—-0.6N NH,SCN
0.1¥-9¥ NH,SCN—

0.002¥-0.1N¥ H, SO,
3M LiNO, —0.02M HNO,
0.05M HCl1

0.1M—1M HNO,

23-24 Separate Am(III) from

25

25

25

25

20

Cm(III)

Separate Am(III) from
rare earths

Separate Am(II) from
rare earths

Separate Am(III) from
Cm(III)

Synergistic effect study

Separate Am(III) from
Eu

68, 70,
239, 240,
356-360

361
362
363
364

349

*Commercially available diatomaceous earth,
tProduct of the Johns-Manville Company.
fPolytrifluoro— monochloroethylene.

§ Polytetrafluoroethylene,

q General Mills, Inc.; mixture of trioctylmethyl- and tridecylmethylammonium chloride.
**Trifluorochloroethylene made by the Allied Chemical Company,

11 Thenoyltrifluoroacetone,
1 fTri-n-octylphosphate,
§ § Tri-n-octylphosphine oxide.
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schemes have been proposed and/or used from time to time for recovery, purification,
characterization, or analysis of, generally, micro amounts of americium.

Bilal and others®®573%% in Germany, principally at the Hahn-Meitner Institute,
suggest that counterflow ion-migration procedures are applicable to the recovery and
purification of americium from Purex-process high-level waste as well as irradiated
241 Am and %% Am targets. These procedures involve a flow of a solvent counter to
that of the ions of a mixture migrating in an electrical field; the velocity of this solvent
compensates the mean migration velocity of the ions to be separated. The net result is
to set up a stationary distribution of the mixture, within which the more rapid ions are
transported upstream and the slower ions downstream. Separations of metal ions
provided by counterflow ion-migration processes can be enhanced by the addition of
ligands, which form complexes of different strengths with the various metal ions. In
the favorable situation, one of the metal ions is converted to a neutral or anionic
species, which is then transported out of the separation column by the counterflow
liquid and is thus electrolytically extracted from the stationary mixture.

Counterflow ion-migration processes for separating large amounts of material are
conveniently performed in troughs.>¢7-3¢8 Such troughs are divided by permeable
diaphragms into compartments to avoid remixing caused by thermal convection and
nonuniform flow profiles. Bilal et al.>®® have described the successful application of
the counterflow ion-migration technique to recover tracer amounts of **! Am from
synthetic denitrated Purex-process waste to which acetic acid had been added. Bilal
etal.®®S also applied this technique to cleanly separate americium and plutonium
from a 2M acetic acid—0.05M HNOj; electrolyte containing 40 g Pu(IV) liter ! and
0.15 g Am(I1I) liter™ .

The extraction of americium from dilute acetic acid solutions by sodium amalgam
has been reported by Kobayashi and Saito.>®® In their experiments, 0.4M to 0.8M
acetic acid solutions containing about 1 g Am®" liter ! were contacted with sodium
amalgam; 98 to 99% of the americium was in the amalgam phase. Most other actinide
elements, as well as the lanthanides from lanthanum to europium, also extract under

these conditions.

Other reported®”® separation procedures include selective leaching of **'Am

from PuO, powder by 1.2M formic acid at 90°C; ~20% of the available americium
extracts into the leach solution. Independent confirmation of this somewhat surprising
leach behavior has not yet been reported. Zvarova, Zvdra, and coworkers® 7' 73 have
separated microgram amounts of americium, curium, and plutonium by gas chroma-
tography of the volatile chloride complexes formed by the reaction of Al,Clg vapor
with solid actinide chlorides at 250 to 500°C (Fig. 5.40).

Paper electrophoretic procedures using 6M to 12M HNO; (Ref. 374), HNO;—
EDTA solutions (Ref. 375), 0.2M citric acid (Ref. 376), and 0.07M a-hydroxyiso-
butyric acid at pH 2.1 (Ref. 377) have been described for separating Am(IIT) from
Cm(Il1), Ac(Ill), Pb(1I), Th(IV), and Pu(IV). So-called focusing electrophoretic
techniques have been used to separate Am(III) and Cm(III) from La(III} and Ce(III)
(Ref. 378), and to separate Am(III) from Cm(III) (Ref. 379); the latter separation was
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Fig. 5.40 Gas chromatographic separation of a mixture of chlorides of plutonium, americium, anc
curium, Glass capillary column (2.5m by 1 mm in inside diameter) at 250°C; Al,Cl, partiat
pressure, ~100 torrs; helium flow, 8 ml min™, [From T. S. Zvarova and 1. Zvdra,®”! Separation of
Transuranium Elements by Gas Chromatography of Their Chlorides, Journal of Chromatography,
49: 290 (1970).]

accomplished in a sodium polyphosphate solution at pH 7.0. Details of these
electrophoretic methods are given in the text by Myasoedov et al.?$

Szeglowski and other Polish scientists*®°*38! have studied frothless ion flotation
of anionic nitrate and citrate complexes of Am(IlI) from LiNO; and citric acid
solutions, respectively. Cetylpyridynium bromide in isooctyl alcohol was used as a
cationic collector. Americium recovery by ion flotation increases with increased
LiNO; concentration but decreases linearly with increased citrate concentration. The
Polish workers also studied the flotation of colloidal americium hydroxide from
various aqueous solutions using sodium tetradecyl sulfate as an anionic collector;
maximum recovery of americium was observed at pH 5.
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Acetate, 167
Acetylacetonate, 167
Alloys
See also Intermetallic compounds
with aluminum, 126
with beryllum, 127
with lanthanum, 128
with neptumum, 128
with plutonum, 129
with thorium, 130
Aluminate, 131
Amencium(lil) 1on
n aqueous solution, 47-49
in molten salts, 47
1n solid compounds, 145
Amerncium({IH) 1on
calculated electronic energy levels, 73
electrode potentials, 55-58
hydrolysis of, 49-51
oxidation
of peroxydisulfate in HNO, , 64-66
by peroxydisulfate in K, CO, solution,
67
paramagnetic susceptibility, 49
preparation in aqueous solution, 48
spectrum, 1n aqueous lithium solutions,
72-73
1n ethanolic HC, 72-73, 77
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in fused LINO, , 72-73, 78

in K, CO, solution, 72-73, 76

in Mgl, solution, 72-73

1n mineral acids, 72-76

1n saturated KF solution, 72-73, 77
thermodynamic quantities, 55

Amencium(IV) ion

autoreduction of, 60
calculated electronic energy bands, 75
disproportionation of, 60-62
electrode potentials, 55-58
preparation 1n aqueous solution, 48, 51-52
self-reduction of, in H; PO, , 60
spectrum, 1n H; PO, solution, 75-76, 80
n KF solution, 75, 79
in NH, F solution, 75, 78, 80
thermodynamic quantities, 55

Americium(V) 1on

calculated electronic energy bands, 77

disproportionation of, 62-64

electrode potentials, 55-58

oxidation of peroxydisulfate in HNO,
solution, 67

preparation 1n aqueous solutions, 48,
52-53

reduction, by H,0,, 69
by Np(1V) 1in HCIO,, solution, 70
by Np(V) in HCIO, solution, 70-71
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by Np(V) 1n Na, CO, solution, 71
by U(IV) in HCIO, solution, 71
self-reduction of, 59-60
spectrum, in HCI solution, 80-81
in HCIO, solution, 80-81"
in H, SO, solution, 80
thermodynamic quantities, 55
Amerncium(VI) 1on
calculated electronic energy bands, 79, 82
electrode potentials, $5-58
preparation in aqueous solution, 48,
53-54
reduction, 1n acid peroxydisulfate
solutions, 72
by H,0,, 68
by muiscellaneous reagents, 68-69
self-reduction of, 58-59
spectrum, 1n CsOH solution, 86
1n mineral acids, 80, 82-83
in Na, CO, solution, 85
in NaOH solution, 80, 86
in Na, P, O, solution, 84
thermodynamic quantities, 55
Americium(VII} 1on
preparation 1n aqueous solutions, 48, 54
spectrum 1n NaOH solution, 84, 86
Americium 1sotope *** Am
availability, from power reactors, 27-28
from ?4! Pu decay, 24
cntical mass, 12-13
critical radus, 12-13
decay scheme, S
price, 24
production by 2*! Pu decay, 23
target for production of 242Cm, 33
uses, table of, 30
Americium 1sotope 242 Am
availability from power reactors, 27-28
decay scheme, 6
production from 242Py, 24
target, for production of 2%2Cf, 33-34
for production of *44Cm, 33-34
Anion exchange
from aqueous nitrate solutions, 239-243
from Li1C1-HCI solutions, 239
from LiCl solutions, 237-238, 240
from methanolic nitrate solutions, 242-
243
from thiocyanate solutions, 234-237
Antimonides, 131-132
Arsenate, 132
Arsenides, 132
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Benzoyltrifluorcacetonate, 168
Borate, 132
Bromides

dibromade, 138

tribromude, 138

Carbide, 139
Carbonates, 139-141
ammonium compound, 139
barium compounds, 140
calctum compound, 140
cestum compound, 139
potassium compounds, 139-140
rubidium compound, 140
sodium compounds, 140-141
Cation exchange
americium distribution ratios, 245
displacement chromatography, 244-245,
249-252
elution chromatography, 244
pressurized systems, 250-252
recovery processes, 245-252
separation factors, 245-247
Chlorndes, binary
dichlonde, 141
oxychlonde, 142
trichlornide, 141-142
Chlorndes, ternary
Am(lIl) compounds, 142-143
Am(V) compounds, 143
Am(VI]) compound, 143-144
Clanex process, 229, 231
Cleanex process, 211
Complexes formed in solution
norganic hgands, 99-100
kinetics of formation, 106
organic higands, 100-102
tabulated formation constants, 1norganic
hgands, 87-90
organic hgands, 90-98
thermodynamic functions,
102-106
Compounds
1norganic, table of, 133-137
organic, table of, 167
Crnitical mass, 12-13
Cntical radu, 12-13
Curium, separation from americium
by extraction, with bis(2,6-dimethyl-
1-4-hexyl)phosphoric acid, 221
with bis(2-ethylhexyl)phosphoric
acd, 219




SUBJECT INDEX

by extraction chromatography with
Aliquat 336, 255-256
by gas chromatography of chlondes,
258-259
by mitrate-based anion exchange, 243
by precipitation with K, AmO, (CO, ),,
190, 192
by pressunized cation exchange, 250-252
by pyrochemical procedures, 187
separation factors for cation-exchange
systems, 246-247
by sorption on zirconium phosphate ex-
changer, 253-255
Cytlooctatetracnate, 168
Cyclopentadicnide, 168

Dapex process, 210, 213
Dipivaloylmethanato compounds, 168
Discovery, 1

Flectrode potentials

in HCI1O, , 56-57

in H, PO, , 58

in NaOH, 57-58
Electron configuration, 7

Fluonides, binary
spectra of, 144
tetrafluonde, 146
tnfluonde, 145
Fluondes, ternary
Am(III) compounds, 146
Am(IV) compounds, 147
Am(V) compound, 147
Formate, 169

Germanate, 147-148

Hexafluoroacetylacetonate, 169
Hydndes, 148-149
Hydroperoxide, 149
Hydroxides

Am(Ill), 149

Am(1V), 149-150
Hydroxyquinolates, 169-170

Inorganic exchangers
sorption of Am(III) by, 252-254
zirconium phosphate, 253-254
Intermetallic compounds
Al Am, 126
AmBe, ,, 127
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AmBi, 127

Co, Am, 126
Fe, Am, 126
Ir, Am, 128

N1, Am, 128
Os,Am, 129
Pd, Am, 129
Pt, Am, 129
Pt;Am, 129
Rh, Am, 130
Rh, Am, 130

Todides
diiodide, 150
oxylodide, 151
trnodide, 150-151
lonization potentials, 4, 8
Isotopes
See also Americium 1sotope 2** Am and
Americium 1sotope 243 Am
list of, 2-3
nuclear properties of, 2-3, 7

Lanthanides (separation from americium)

by Ahiquat 336 extraction, 232

by anion exchange from LiCl solutions,
237,239

by anion exchange from thiocyanate
solutions, 234-237

by bis(2-ethylhexyl)phosphoric acid
extraction, 211-221

by displacement chromatographic cation
exchange, 249-252

by mono(2-ethylhexyl)phosphoric acid
extraction, 222

by precipitation processes, 190

by pressurized cation exchange,
250-252

separation factors in cation exchange
systems, 246

by Talspeak process, 211-214, 216-218,
221

by Tramex process, 224-230

by trni-n-butylphosphate extraction,
198-202

Metal
phase transformations, 124
preparation of, 122-124
properties, physical, 124-125
table of, 125
Molybdates, 151
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Nitrate, 151
Nitride, 151

Organometallic compounds, 166-171
Oxalate, 170
Oxides, binary
dioxade, 153, 155-157
monoxide, 152
sesquioxide, 152, 154
Oxides, ternary
with barium and strontium, 157, 159
with curium, 159-160
with Iithium and sodium, 157-158
with niobium, tantalum, and protactinium,
162
with zircomum, hafnium, and thorium,
159-160
Oxychlonde, 142
Oxytodide, 151
Oxytellunide, 166

Perxenate, 166

Phosphate, 162

Phosphide, 163

Phthalocyaninato compound, 170
Pyndine carboxylates, 170-171

Radu

cntical, 12-13

onic, 4, 8

metallic, 4, 8

Recovery

from aged plutonium metal, 185-187,
189,232

by amalgamation, 258

by anion-exchange procedures, 233-243

by cation-exchange procedures, 244-252

at Hanford Plant, 196-197, 202-204, 207,
210, 212, 245-246, 249-251

by 10n flotation, 259

from 1rradiated 24 Am targets, 190, 239

from 1rradiated Pu Al alloy, 188, 195-
196, 199, 214, 216, 240-242

from LiCl-HCl solutions, 200, 205, 237,
240

from Liquid-Metal-Cooled Fast Breeder
Reactor fuel, 204

at Oak Ridge TRU Plant, 190, 192, 227-
228, 237, 240

by precipitation, of Am, (C,0,),, 189-
190, 193-194, 247, 250
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of AmF,, 189, 191
of Am(OH),, 189, 191, 193
of Am,(S0O,), + Na,SO,, 192
of K, AmO, (CO,),, 189
of K;AmO, (CO, ),, 190, 192
of K; Am, (S0,),, 189
by Purex process waste, 197, 206, 215-
219, 249
by pyrochemical procedures, 185-189
at Rocky Flats Plant, 185-186, 193-
194, 234-237, 246-249
at Savannah River Plant, 190, 192-193,
228-230, 250-252
by selective leaching from Pu0,, 258
from Shippingport reactor fuel, 196-197,
199, 210, 212, 249-251
from slag and crucible waste, 197-198
by Tramex process, 224-229

Scandate, 163
Selemides, 163
Separation
See also Recovery
by chelating 10n-exchange resins, 255
by counterflow ton migration, 258
from cunum (see Curium)
by extraction chromatography, 255-256
by gas chromatography of chlondes, 258-
259
by morganic exchangers, 252-255
from lanthanides (see Lanthanides)
by paper electrophoresis, 258-259
by precipitation processes, 190-194
by pyrochemical processes, 185-189
by solvent extraction methods, 195-233
by Talspeak process, 211-218, 221
by Tramex process, 224-231
Silicates, 163
Solvent extraction [Am(III)]
by Alamine 336, 223, 225-226, 229, 231
by Aliquat 336, 223, 232-233
by bis(2,6-dimethyl-4-heptyl)phosphoric
acid, 221
by bis(2-ethylhexylphenyl)phosphornc
acid, 221
by bis(2-ethythexyl)phosphoric acid,
208-220
by dibutylbutyl phosphonate, 206-209
by dibutyl-V,N-diethylcarbamylmethylene
phosphonate, 206-209
by dihexyl-V,N-diethylcarbamylmethylene
phosphonate, 207-208
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by dusoamylmethyl phosphonate, 205

by methyldibutyl phosphonate, 205

by mixtures of bis(2-ethylhexyl)phos-
phoric acid and P, 0,,219-220

by mono(2-ethylhexyl)phosphoric acid,
221-222

by quaternary amine salts, 224, 232-233

by tertiary amines, 222-231

by tri-n-butyl phosphate, 188-189,
195-202

by tri-n-octyl amine, 223

by various organophosphorus acids,
222

-Solvent extraction [Am(VI1}]

by Alamine 336 nitrate, 231

by bis(2,6-dimethyl-4-heptyl)phosphoric
aad, 221

by bis(2-ethylhexyl)phosphoric acid,
219-220

by tri-n-butyl phosphate, 201-202

Spectra
absorption
see individual americium 10ns
emission, 6, 9-10
luminescence, 10
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Mossbauer, 11-12

X ray, 10-11
Sulfates

of Am(III), 164

double, 164
Sulfides, 165

Talspeak process

distribution data, 214-215

reverse Talspeak-type processes,

214-216

Tellurides, 165-166
Thenoyltrifluoroacetonate, 171
Thermodynamic quantities, 55
Tramex process

chemustry of, 224, 226

distribution data, 225

Qak Ridge flow sheet, 224, 226-228

radiolytic efforts, 226

Savannah River flow sheet, 228-231
Tungstate, 166

Vanadates, 166

Zirconium phosphate exchanger, sorption
of Am(III), 252-255
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