

MASTER

The Chemistry of
AMERICIUM

Wallace W. Schulz

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

The Chemistry of AMERICIUM

Wallace W. Schulz
Atlantic Richfield Hanford Company

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Energy Research and Development Administration, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

1976

MASTER

Published by Technical Information Center
Energy Research and Development Administration

THIS REPORT CONTAINS neither recommendations nor conclusions of the Energy Research and Development Administration. It is the property of the United States Government and is loaned to your agency; it and its contents are not to be distributed outside your agency without the express permission of the Director, Technical Information Center.

E13

Library of Congress Cataloging in Publication Data

Schulz, Wallace W

The chemistry of americium

(ERDA critical review series)

"TID-26971 "

Includes indexes

**1 Americium I Title II Series United States Energy
Research and Development Administration ERDA critical review series
QD181 A5S38 546' 441 76-25824
ISBN 0-87079-040-4**

Available as TID-26971 for \$6.00 (foreign, \$8.50) from

**National Technical Information Service
U. S. Department of Commerce
Springfield, Virginia 22161**

ERDA Distribution Category UC-4

**Printed in the United States of America
ERDA Technical Information Center, Oak Ridge, Tennessee**

October 1976

FOREWORD

The two principal americium isotopes of interest (^{241}Am and ^{243}Am) are both by-products of the nuclear industry and are expected to be available in relatively large quantities in the future. Americium-241, which is formed by beta decay, has been in short supply since it was first offered for sale in March 1962 at \$1500 per gram by the U. S. Atomic Energy Commission. The first material made available for sale came from the Atomic Energy Commission's Rocky Flats Plant. This source has been supplemented in recent years by the recovery of significant quantities of ^{241}Am at Richland and Savannah River reprocessing facilities.

Probably no actinide isotope has more uses than ^{241}Am , which is used in nuclear gauges for numerous applications, in location sensing devices, in ^{241}Am -Be neutron sources for oil well logging, etc., in static eliminators, in smoke detectors, and in many other applications. In addition, ^{241}Am has been used as a target material in nuclear reactors to produce ^{242}Am , which has a number of potential uses, including its decay to ^{238}Pu . Americium-243 is useful as a reactor target material for the production of ^{244}Am , ^{252}Cf , and other actinides.

In 1968, Richland demonstrated the recovery of americium from high-level wastes generated from the reprocessing of the Shippingport blanket. This americium was subsequently isolated and purified by chromatographic processes. Significant quantities of ^{243}Am were produced in Savannah River production reactors as early as the late 1950s as part of special irradiations to produce transplutonium isotopes for research uses and in the ^{252}Cf production programs. Thus the Savannah River Laboratory has played an important role in the americium chemistry development programs.

The long-range availability of americium looks attractive since increasing quantities of ^{241}Am and ^{243}Am could be expected from plutonium recycle either in light-water power reactors or fast breeder reactors. As greater quantities of these isotopes become available at reasonable prices, it can be expected that new and expanded uses will be found for them.

F. P. Baranowski

Director, Division of Nuclear Fuel Cycle and Production
Energy Research and Development Administration

PREFACE

This book has a straightforward purpose, that is, to collect and review in one place the essential features of the descriptive chemistry of americium as it is known in the mid-1970s. Highlights of this material are, of course, discussed in standard texts on the chemistry of the transuranium elements; but, because of space limitations, the coverage given americium is far from comprehensive. Other important aspects of americium chemistry are disclosed in widely scattered journal articles and in various governmental reports, both foreign and domestic, not always easily available to all the scientific community. These circumstances coupled with the great advances in our knowledge of americium chemistry during the past decade provide more than sufficient motivation for this review.

Americium chemistry is delineated here within the traditional "occurrence—properties—compounds—uses" framework. No attempt is made to compare americium chemistry with that of other actinide elements, this task being more properly in the scope of books that discuss the chemistry of all the transuranium elements. A chapter on the analytical chemistry of americium, provisionally included in the initial outline of this review, was omitted—partly to reduce the length of the manuscript but mainly because of the recent appearance of an excellent book* that treats the subject in great detail. Missing from this text also is any discussion of the behavior of americium in biological and ecological systems; this is a vast and important segment of americium chemistry which would more fittingly be reviewed by qualified life scientists.

*B. F. Myasoedov, L. I. Guseva, I. A. Lebedev, M. S. Milyukova, and M. K. Chmutova, *Analytical Chemistry of Transplutonium Elements*, John Wiley & Sons, Inc., New York, 1974.

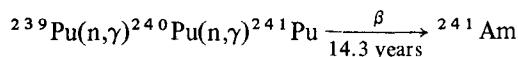
This book could not have been written without the cooperation and counsel of a great many talented scientists and engineers at various Energy Research and Development Administration (ERDA) laboratories and installations. Stimulating discussions of various facets of americium chemistry were held with R. A. Penneman and L. B. Asprey of the Los Alamos Scientific Laboratory; with W. H. Hale of the Savannah River Laboratory; with E. J. Wheelwright of the Battelle Pacific Northwest Laboratories; with R. E. Leuze of the Oak Ridge National Laboratory; and with J. B. Knighton, S. G. Proctor, and F. J. Minor at the Rocky Flats site. J. L. Ryan, Battelle Pacific Northwest Laboratories, a recognized authority on the chemistry of the transuranium elements, kindly reviewed the entire manuscript and made many helpful suggestions for its improvement. I am indebted also to T. D. Chikalla and R. P. Turcotte of the Battelle Pacific Northwest Laboratories for an expert critique of the chemistry of americium oxides.

The many drafts of the manuscript of the book were carefully typed (and retyped!) by Eleanore Earhart and Judy Foley, amanuenses of exceptional ability.

My special thanks go to my dear wife, Dorothy, and to R. F. Pigeon of ERDA's Office of Technical Information, for their encouragement and great patience while this book was being written.

Wallace W. Schulz
Atlantic Richfield Hanford Company

CONTENTS


Preface	iii
1 Discovery; Atomic and Nuclear Properties; Collateral Reading	1
Discovery	1
Isotopes and Nuclear Properties	1
Atomic Properties	4
Collateral Reading	14
2 Production and Uses	23
Introduction	23
Production of ^{241}Am by Irradiation of ^{239}Pu	23
Production of ^{243}Am by Irradiation of ^{242}Pu	24
Availability of ^{241}Am and ^{243}Am from Power Reactors	27
Applications of ^{241}Am	29
Applications of ^{243}Am	33
3 Chemistry in Aqueous Solution	47
Oxidation States	47
Thermodynamic Values	55
Electrode Potentials	55
Autoreduction Effects	58
Disproportionation	60
Kinetics of Oxidation—Reduction Reactions	64

Solution Absorption Spectra	72
Complexes of Americium Ions	85
4 Metal, Alloys, and Compounds	122
Metal	122
Alloys and Intermetallic Compounds	126
Compounds	131
5 Recovery; Separation; Purification	184
Introduction	184
Pyrochemical Processes	185
Precipitation Processes	189
Solvent Extraction Processes	195
Ion-Exchange Processes	233
Extraction Chromatographic Processes	255
Miscellaneous Separation Techniques	255
Author Index	281
Subject Index	287

1 **DISCOVERY; ATOMIC AND NUCLEAR PROPERTIES; COLLATERAL READING**

DISCOVERY

Americium, element 95, the third element past uranium, was actually the fourth transuranium element to be discovered—after curium. Working at the wartime Metallurgical Laboratory of the University of Chicago, Seaborg, Ghiorso, James, and Morgan in late 1944 and early 1945 identified ^{241}Am produced by the reactions

Historical details surrounding discovery and identification of ^{241}Am , including the first (Nov. 11, 1945) announcement of its discovery on a national radio program, have been recounted by Seaborg and others.¹⁻⁸ By analogy with the naming of its rare-earth homolog, europium, after Europe, element 95 was named (in 1946) americium after the Americas. Less than a year after it was discovered, Cunningham^{9,10} isolated americium in pure form as the compound $\text{Am}(\text{OH})_3$ and made the first measurements of its absorption spectrum in aqueous solution.

The longest lived americium isotope, ^{243}Am ($t_{1/2} = 7400$ years), was identified in 1950 by Seaborg, Ghiorso, and Street¹¹ as the product resulting from two successive neutron captures by ^{241}Am . Now americium isotopes with all the mass numbers from 232 to 247 are known or at least have been tentatively identified.

ISOTOPES AND NUCLEAR PROPERTIES

Key data relative to the synthesis and radioactive decay properties of all the presently known isotopes of americium are compiled in Table 1.1. (Details of the

Table 1.1
AMERICIUM ISOTOPES AND PROPERTIES

Mass number ^a	Half-life ^b	Decay mode ^c	Principal radiations, MeV	Principal synthesis reactions	Refs.
232	1.4 min	SF isomer		$^{230}\text{Th}(\text{^10B},8\text{n})$	13-15
234	3.3 ± 0.1 min	α	α 6.46	$^{230}\text{Th}(\text{^10B},6\text{n})$	13, 15
235^{md}				$^{237}\text{Np}(\text{^4He},6\text{n})$	16
236^{md}				$^{237}\text{Np}(\text{^4He},5\text{n})$	16
237	75 min	EC 99+% α 0.005%	α 6.02	$^{239}\text{Pu}(\text{d},4\text{n})$	17-19
237^m	5 nsec	SF isomer		$^{238}\text{Pu}(\text{p},2\text{n})$	20
238	1.86 hr	EC, α 10 ⁻⁴ %	γ 0.36, 0.58, 0.95, 0.98, 1.35, others	$^{237}\text{Np}(\alpha,3\text{n})$ $^{239}\text{Pu}(\text{d},3\text{n})$	21-24
238^m	60 μ sec	SF isomer		$^{239}\text{Pu}(\text{p},2\text{n})$	25
239	12.1 hr	EC	γ 0.225, 0.275, others	$^{239}\text{Pu}(\text{d},2\text{n})$ $^{237}\text{Np}(\alpha,2\text{n})$	17, 21, 23 25-27
239^m	160 nsec	SF isomer		$^{240}\text{Pu}(\text{p},2\text{n})$ $^{239}\text{Np}(\text{d},2\text{n})$	28
240	51.0 hr	EC	γ 0.90 (23%)	$^{240}\text{Pu}(\text{d},\text{n})$	11, 21, 26
		α 1.9×10^{-4} %	1.00 (77%)	$^{239}\text{Pu}(\alpha,\text{p}2\text{n})$	29, 30
			1.40 (<10%)	$^{237}\text{Np}(\alpha,\text{n})$	
240^m	0.90 msec	SF isomer		$^{240}\text{Pu}(\text{d},2\text{n})$ $^{241}\text{Pu}(\text{p},2\text{n})$	31
241	432.9 years	α	α 5.49 (85%), 5.44 (13%) γ 0.060 (36%) Others see Fig. 1.1	$^{241}\text{Pu} \xrightarrow{\beta^-} {}^{241}\text{Am}$	26, 32-38
241^{me-h}	1.5 μ sec	SF isomer		$^{241}\text{Pu}(\text{d},2\text{n})$ $^{242}\text{Pu}(\text{p},2\text{n})$	28
242	16.01 hr	β^- (82.8-84%) EC (17.2-16%)	β^- 0.67 max γ Pu X-rays e^- 0.021, 0.0037	$^{241}\text{Am}(\text{n},\gamma)$	30, 39-44
242^{m1e-h}	152 years	IT 99% α 0.48%	e^- 0.028, 0.044 α 5.21	$^{241}\text{Am}(\text{n},\gamma)$	11, 26, 42, 45

$^{242}m^2$	14.0 msec	SF isomer	$^{243}Am(n,2n)$ $^{241}Am(d,p)$ $^{241}Am(n,\gamma)$ $^{238}U(^{11}B,\alpha 3n)$	46-56	
$^{243}e^h$	7400 years	α	α 5 28 (87%), 5 23 (11.5%) Others see Fig. 12 γ 0.044 (5%), 0.075 (61%) Others see Fig. 12	$^{243}Pu \xrightarrow{\beta^-} {}^{243}Am$ $^{243}Am(n,\gamma)$	11, 30, 33 57, 58
^{243}m	6.5 μ sec	SF isomer		$^{243}Am(d,pn)$	20
244	10.1 hr	β	β 0 387 max γ 0 746 (66%), 0.900 (28%)	$^{243}Am(n,\gamma)$	58, 59
$^{244}m^1$	26 min	β^- (99+%) EC (0.039%)	β 1 50 max (80%), others γ 0 0429, others	$^{243}Am(n,\gamma)$	11, 59-61
$^{244}m^2$	0.9 msec	SF isomer		$^{243}Am(d,p)$	47, 49, 50
245	2.04 hr	β^-	β^- 0 91 max, others γ (^{245}Cm) various	$^{245}Pu \xrightarrow{\beta^-} {}^{245}Am$	30, 50, 62, 63-66
^{245}m	640 ± 60 nsec	SF isomer		$^{244}Pu(\alpha,p2n)$	67
246	25.0 min	β^-	β^- 2 10 max (7%), others γ (^{246}Cm) various	$^{246}Pu \xrightarrow{\beta^-} {}^{246}Am$	30, 65, 68
$^{246}m^1$	39 min	β	β 1 12 (53%), 1.25 (13%) 1 80 (14%), 2.0 (20%) γ (^{246}Cm) various	$^{244}Pu(\alpha,d)$ $^{244}Pu(^3He,p)$ $^{244}Pu(\alpha,pn)$	58, 69, 70
$^{246}m^2$	75 ± 10 μ sec	SF isomer		$^{244}Pu(\alpha,pn)$	67
247	22 min	β^-	γ (^{247}Cm) 0 226, 0.285	$^{244}Pu(\alpha,p)$	58, 69, 70

^aExact atomic masses are listed in Table 12, specific activities are given in Ref. 12.

^bAccepted values are listed in *Nuclear Data Sheets*

^cEC, electron capture, α , alpha decay, SF, spontaneous fission, β^- , negative beta decay, e^- , internal conversion electron

^dOnly tentatively identified.

^eSpin ^{241}Am , 5/2 (Ref. 71), $^{242}m^1Am$, 1 (Ref. 71), ^{243}Am , 5/2 (Ref. 71)

^f $T_{1/2}[SF]$ ^{241}Am , 1.15×10^{14} years (Ref. 72), $^{242}m^1Am$, 9.50×10^{11} years (Ref. 73), ^{243}Am , 2.00×10^{14} years (Ref. 74).

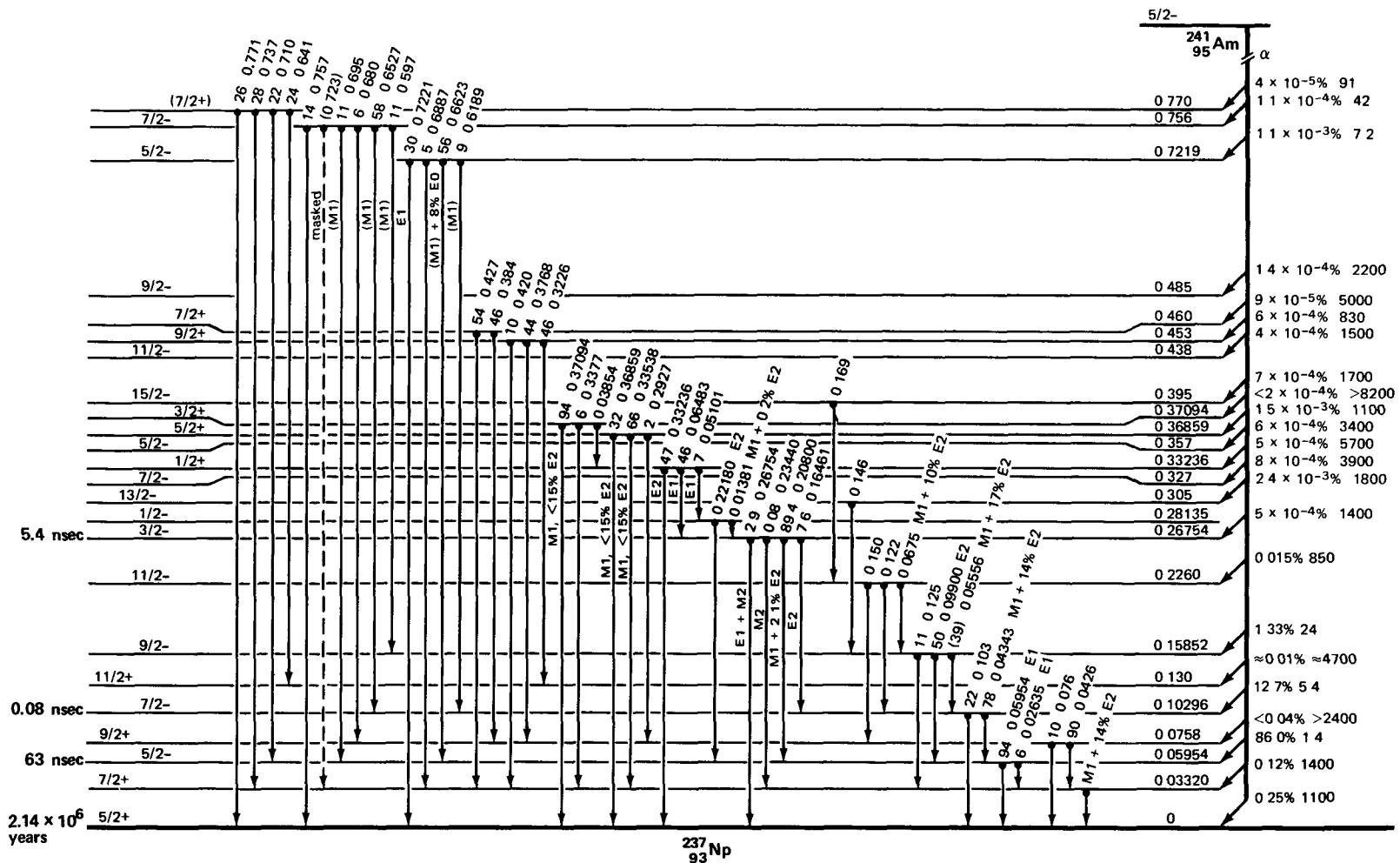
^gElectric quadrupole moment, $q(10^{-24} \text{ cm}^2)$ ^{241}Am , +4.9 (Ref. 75), $^{242}m^1Am$, -2.76 (Refs. 75-77), ^{243}Am , +4.9 (Ref. 78)

^hNuclear dipole moment, (nuclear magnetons) ^{241}Am , +1.58 (Refs. 75, 79), $^{242}m^1Am$, +0.381 (Ref. 79), ^{243}Am , +1.4 (Ref. 80).

various decay modes and associated energies of the long-lived ^{241}Am and ^{243}Am are shown in Figs. 1.1 and 1.2.) Table 1.1 is adapted from the listing recently prepared by Hyde.⁸¹ Hyde's article⁸¹ and the books by Hyde, Perlman, and Seaborg,³⁰ Lederer, Hollander, and Perlman,⁸² and Dzhelepov and Peker⁸³ provide exhaustive treatment of the nuclear properties of the various americium isotopes. Mughabghab and Garber⁸⁴ have recently (1973) tabulated thermal cross sections and resonance properties of ^{241}Am , ^{242}Am , ^{242m}Am , ^{243}Am , ^{244}Am , and ^{243m}Am ; cross-section data for ^{241}Am were listed earlier (1959) by Howerton.⁸⁵ Wapstra and Gove⁸⁶ have tabulated known nuclear systematics—masses and energetics—of the various americium isotopes of mass numbers 234 to 248; their data are given in Table 1.2. An earlier compilation of such data was given by Viola and Seaborg.⁸⁷

ATOMIC PROPERTIES

Electron Configuration


The generally accepted⁸⁸⁻⁹⁰ electron configuration of gaseous americium neutral atoms and cations, as determined from spectroscopic and atomic beam experiments,⁹¹ is shown in Table 1.3. Americium is the sixth member of the actinide series of elements; the electron configurations of americium in both its ground and ionized states are completely analogous to those of its homolog, europium, the sixth member of the lanthanide series. Recognition in 1944 of the possibility that elements 95 and 96 might be members of an actinide series led directly, as Seaborg^{3,92} has noted, to the identification of ^{242}Cm and ^{241}Am .

Atomic and Ionic Radii

Metallic, covalent crystal, and ionic radii of americium in various oxidation states were first calculated by Zachariasen.⁹³ His values (Table 1.4), even though 20 years old, are still cited.⁸⁸ The radius of americium metal [coordination number (CN)12] is 1.73 Å.^{94,95} Peterson and Cunningham, as part of their studies of berkelium compounds, calculated the ionic radius (CN 6) of several trivalent actinides in various compounds. Their results for Am^{3+} are 0.962 Å in AmF_3 (Ref. 96), 1.006 Å in AmCl_3 (Ref. 97), and 0.985 Å in Am_2O_3 (Ref. 98). On the basis of a refined crystal structure for AmCl_3 , Burns and Peterson⁹⁹ calculated the ionic radius (CN 6) of Am^{3+} in AmCl_3 to be 0.984 ± 0.003 Å.

Ionization Potentials

Carlson, Nestor, Wasserman, and McDowell¹⁰⁰ have calculated ionization potentials for americium (Table 1.5) based on a simple spherical shell model using eigenvalues and mean radii from Hartree-Fock solutions for neutral atoms.

Fig. 1.1 Decay scheme for ^{241}Am . (From C. M. Lederer, J. M. Hollander, and I. Perlman, *Table of Isotopes*, 6th ed., p. 430, John Wiley & Sons, Inc., New York, 1967.)

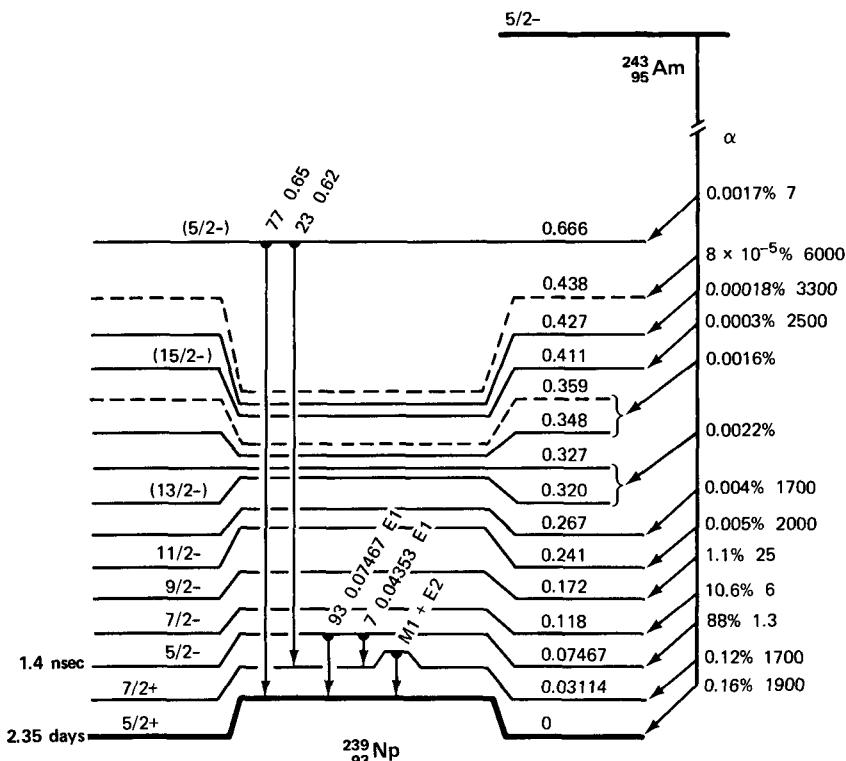


Fig. 1.2 Decay scheme for ^{243}Am . (From C. M. Lederer, J. M. Hollander, and I. Perlman, *Table of Isotopes*, 6th ed., p. 433, John Wiley & Sons, Inc., New York, 1967.)

Emission Spectra

Detailed studies of the arc and spark spectra of americium have been made by Tomkins and Fred,^{91,101,102} Thorne,^{103,104} and Oganov, Striganov, and Slobolov.¹⁰⁵ Such studies identified 1000 to 2000 Am I and Am II spectral lines. Table 1.6, compiled by Carnall,¹⁰⁶ lists term assignments relative to the $5f^77s^2(^8S_1)$ ground state made by Tomkins and Fred¹⁰² for the identified even and odd parity levels of Am I. Carnall noted that the number of lines classified on the basis of the indicated terms constituted only about 10% of the Am I lines observed in the spectrum of ^{241}Am excited both in hollow cathode and electrodeless discharge sources. Term assignments for even and odd parity levels of Am II are also given in Ref. 106.

Corresponding to the absolute term value ($48,767 \text{ cm}^{-1}$) of the ground state, the ionization potential of Am I is 6.0 eV. This value is in fair agreement with the value 5.655 eV shown in Table 1.5. The experimental isotope shift constant βC_{exp}

Table 1.2
NUCLEAR SYSTEMATICS OF AMERICIUM ISOTOPES*

A	Z	N	Atomic mass, μ	Mass excess, keV†	Binding energy, keV‡	Beta-decay energy, keV §
234	95	139	234.04770	44,430	1,770,010	-4,060
235	95	140	235.04796	44,670	1,777,840	
236	95	141	236.04942	46,030	1,784,550	-1,950
237	95	142	237.05008	46,650	1,792,010	-2,530
238	95	143	238.05205	48,490	1,798,240	-930
239	95	144	239.053039	49,406	1,805,394	-1,700
240	95	145	240.05533	51,540	1,811,330	-180
241	95	146	241.056844	52,951	1,817,992	-772
242	95	147	242.059575	55,494	1,823,520	667
243	95	148	243.061394	57,189	1,829,897	-7.1
244	95	149	244.064302	59,898	1,835,260	1,429
245	95	150	245.066475	61,922	1,841,307	901.6
246	95	151	246.06972	64,940	1,846,360	2,300
247	95	152	247.07209	67,160	1,852,220	1,600
248	95	153	248.07570	70,520	1,856,930	3,100

*From A. H. Wapstra and N. B. Gove, The 1971 Atomic Mass Evaluation in Five Parts, *Nuclear Data Tables*, 9: 265 (1971).

†M (in μ) - A.

‡Total binding energy [ZM(1 H) + NM(1 n) - M(A,Z)].

§M(A,Z) - M(A,Z + 1).

Table 1.3
OUTER ELECTRON CONFIGURATION OF NEUTRAL AND CHARGED AMERICIUM ATOMS

Ionization state	Electron configuration *	Term symbol
0	5f ⁷ 7s ²	⁸ S _{1/2}
1+	5f ⁷ 7s	⁹ S ₄
2+	5f ⁷	⁸ S _{7/2}
3+	5f ⁶	⁷ F ₀
4+	5f ⁵	⁶ H _{5/2}
5+	5f ⁴	⁵ I ₄

* All with underlying radon core configuration.

Table 1.4
CALCULATED RADII OF AMERICIUM ATOMS AND IONS*

Oxidation state	Radius, Å		
	Metallic†,‡	Ionic	Covalent crystal
+3	1.84	0.99	
+4	1.69	0.89	1.57
+5	1.58	0.86	1.47
+6	1.50	0.80	1.39

*Taken from W. H. Zachariasen, Crystal Chemistry of the 5f Elements, in *The Actinide Elements*, G. T. Seaborg and J. J. Katz (Eds.), p. 776, McGraw-Hill Book Company, Inc., New York, 1954.

†CN 12.

‡Radius expected if metal were trivalent, etc.

Table 1.5
CALCULATED IONIZATION POTENTIALS
OF AMERICIUM

Atomic charge	Ionization potential, eV
Neutral	5.655
1+	12.15
2+	18.82
3+	36.15
4+	58.14
5+	80.12
6+	95.31
7+	110.4
8+	125.5
9+	140.6
10+	162.5

Table 1.6
ENERGY LEVELS OF Am I

Configuration	Term, J*	Level, cm ⁻¹	Isotope shift,† 10 ⁻³ cm ⁻¹	Hyperfine structure width, 10 ⁻³ cm ⁻¹
Odd parity levels				
5f ⁷ 7s ²	a ⁸ S $\frac{1}{2}$	0	(600)‡	0
5f ⁷ 6d7s	A $\frac{5}{2}$	15,135.94	302	1,062
	A $\frac{3}{2}$	15,764.76	300	1,209
5f ⁷ 7s8s	e ¹ ⁰ S $\frac{1}{2}$	30,884.73	455	1,860
	e ⁸ S $\frac{1}{2}$	31,795.77	450	1,424
	e ⁶ S $\frac{5}{2}$	33,728.27	430	-1,425
	f ⁸ S $\frac{1}{2}$	33,981.86	370	-684
5f ⁷ 7s7d	E $\frac{7}{2}$	35,092.24	400	509
		37,111.56	394	1,499
		37,156.73	429	
		37,165.32	472	
		37,995.11	440	
Even parity levels +				
5f ⁷ 7s7p	z ¹ ⁰ P $\frac{1}{2}$	15,608.15	364	940
	z ¹ ⁰ P $\frac{3}{2}$	16,511.69	398	1,456
	(5/2)	17,858.18	763	-313
	5/2	18,429.09	577	-586
	7/2	18,504.40	447	-628
	7/2	18,701.44	821	0
	(7/2)	19,993.60	842	119
	(5/2)	20,031.33	649	201
	5/2	21,239.91	747	432
	7/2	21,354.01	543	917
	9/2	21,440.38	600	872
		21,845.97	854	200
		23,307.50	738	193
		23,437.04	756	118
	(9/2 ²⁺)	27,103.20	549	988
		27,217.06	523	217
		27,743.57	822	150
		28,009.78	527	0
	9/2	28,312.92	545	1,153
		28,480.85	606	0
		29,009.29	849	0
	7/2	29,446.55	512	1,311

*J-values in parentheses are uncertain.

†²⁴¹Am - ²⁴³Am.

‡Assumed.

Table 1.7
ANALYTICALLY USEFUL SPECTRAL LINES
OF AMERICIUM

$\lambda, \text{\AA}$	I*
2832 3	
2920 6	10
2969 4	
3162 1	
3510 1	>10
3569 2	10
3673 1	>10
3926 2	>10
4089 3	
4575 6	>10
4662 8	10
4681 6	10
5402 7	10
6054 9	10

*Relative intensity, Ref 92

$(^{241}\text{Am} - ^{243}\text{Am}) = (890 \pm 50) \times 10^3 \text{ cm}^{-1}$, where $\beta \approx 1$ is the screening constant, is the average of three different calculations involving the ionization potential and experimentally observed shifts¹⁰⁷

Spectral lines of americium useful for analytical purposes are listed in Table 1.7^{105,108}

X-Ray Spectra

The list of K and L X-ray energies and wavelengths for americium shown in Table 1.8 was compiled by Carnall¹⁰⁹ from data gathered by Nelson and associates^{110,111} (K X-rays) and from the critical literature evaluation by Bearden¹¹² of the results of Merrill and DuMond¹¹³ and Day¹¹⁴. The K X-ray energies, all of which correspond to electric-dipole transitions, were measured with a Cauchois-type bent-crystal spectrometer^{110,111}. The absorption edge of Am(L_{III}) is $668\ 648 \pm 0\ 028$ X-units based on $\lambda(\text{MoK}_\alpha)$ ¹¹³. Atomic energy levels (binding energies) of americium have been calculated from experimental measurements of X-ray emission wavelengths, a listing of these values is given in the article by Carnall¹⁰⁹.

Luminescence Spectra of Am(III)

According to Carnall,¹¹⁵ "The first observation of fluorescence in a transuranium element compound was made for LaCl₃ Am³⁺ self-excited by the intense α -activity of

Table 1.8
X-RAY ENERGIES OF AMERICIUM

Line	Transition	λ		Energy, keV
		X units	\AA	
α_2	K-L _{II}	121.254	0.121506	102.041
α_1	K-L _{III}	116.194	0.116435	106.484
β_3	K-M _{II}	103.749	0.103964	119.258
β_1	K-M _{III}	102.834	0.103048	120.319
β_4	L _I -M _{II}	684.98	0.68640	18.0630
β_3	L _I -M _{III}	647.58	0.64892	19.1063
γ_2	L _I -N _{II}	553.3	0.5544	22.363
β_1	L _{II} -M _{IV}	656.305	0.657668	18.8523
γ_1	L _{II} -N _{IV}	560.733	0.561897	22.0655
α_1	L _{III} -M _V	846.446	0.848204	14.6174
λ	L _{III} -M _I	999.1	1.0012	12.383
α_2	L _{III} -M _{IV}	858.500	0.860283	14.4122
β_6	L _{III} -N _I	732.67	0.73419	16.8873

the ^{241}Am ; 34 lines were detected.¹¹⁶ More complete data were taken later and interpreted in terms of transitions in which the initial state was a component of $^5\text{D}_2$ or $^5\text{L}_6$ and the final state was a component of one of the terms of the ^7F ground multiplet.¹¹⁷ No self-luminescence nor self-excited fluorescence was found for crystals of Am^{3+} - β -diketone chelates.^{118*}

Mössbauer Spectra

Israeli scientists¹¹⁹ and various other workers¹²⁰⁻¹²⁶ have found that ^{237}Np , formed by alpha decay of ^{241}Am , is a convenient nucleus for recoilless absorption (Mössbauer effect) measurements. Gal et al., using the Mössbauer effect, determined the charge states of neptunium ions in various ^{241}Am sources. Their results are shown in Table 1.9. (Additional Mössbauer-effect data for ^{241}Am sources are given in Chap. 4 and also in an article by Keller and Randl.¹²⁷) The Israeli workers summarized their results by stating that the neptunium charge states were 3+ in all sources containing americium ions in frozen solutions and 4+ and 5+ in all oxide sources. In most other americium salts, neptunium attained the valence of the host lattice.

*References are those listed by Carnall but have been renumbered for purposes of this chapter.

Table 1.9
MOSSBAUER STUDIES WITH ^{241}Am SOURCES*

Am charge states	Sources	Isomer shift, mm sec ⁻¹ , Np charge states			Temperature of source and absorber, °K
		3+	4+	5+	
Solid compounds					
3+	Am_2O_3 (cubic)		18 ± 0.5	27.7 ± 0.5	77
3+	Am_2O_3 (hexagonal)		17 ± 0.5	28.0 ± 0.5	77
3+	AmF_3	44.6 ± 0.5			4.2
3+	$\text{Am}_2(\text{C}_2\text{O}_4)_3 \cdot 6\text{H}_2\text{O}$	-40.5 ± 0.5			4.2
4+	AmO_2		11 ± 0.5	25.2 ± 0.5	77
4+	AmO_2		12 ± 0.5	25.1 ± 0.5	4.2
4+	$\text{Am}(\text{OH})_4 \cdot \text{H}_2\text{O}$ (precipitate)	40.9 ± 0.8			4.2
5+	$\text{K}_5[\text{AmO}_2(\text{CO}_3)_5]_3$			25.0 ± 2.0	4.2
Frozen solutions					
3+	$\text{Am}(\text{III})$ in HNO_3	42.6 ± 1.0			4.2
3+	$\text{Am}(\text{III})$ in $10M \text{H}_3\text{PO}_4$	-42.6 ± 0.5			4.2
4+	$\text{Am}(\text{IV})$ in saturated NH_4F	-45.5 ± 0.8			4.2
4+	$\text{Am}(\text{IV})$ in $10M \text{H}_3\text{PO}_4$	-42.6 ± 0.5			4.2
5+	$\text{K}_5[\text{AmO}_2(\text{CO}_3)_5]_3$ dissolved in HNO_3	-41.0 ± 1.0			4.2
6+	AmO_2^{2+} in H_3PO_4	-42.6 ± 1.0			4.2
6+	AmO_2^{2+} in HNO_3	42.0 ± 1.0			4.2

*Adapted from J Gal, Z Hadari, E Yanir, E R Bauminger, and S Ofer, Charge States of Np Recoil Atoms Following α Decay, *Journal of Inorganic Nuclear Chemistry*, 32: 2509 (1970)

Beta decay of ^{243}Pu ($t_{1/2} = 4.98$ hr) to the 83.9-keV level of ^{243}Am occurs in 27.6% of the disintegrations.¹²⁸ This excited nuclear state ($t_{1/2} = 2.34$ nsec) of ^{243}Am is suitable for Mossbauer spectroscopy¹²⁹ as evidenced by the resonance spectra of $^{243}\text{AmF}_3$ and $^{243}\text{AmO}_2$ shown in Fig 1.3. These results were obtained at 4.2°K with a 50-mCi $^{243}\text{PuO}_2$ source. The shift of the $^{243}\text{AmF}_3$ resonance line relative to the $^{243}\text{AmO}_2$ lines is 55 mm sec⁻¹, the greatest shift so far observed for two oxidation states differing by one unit.

Critical Mass

Bierman and Clayton¹³⁰ have calculated the critical radii and mass of ^{241}Am and ^{242}Am metals (Table 1.10). In aqueous solution¹³¹ the minimum critical mass of ^{242}Am is 23 g at a concentration of 5 g liter⁻¹.

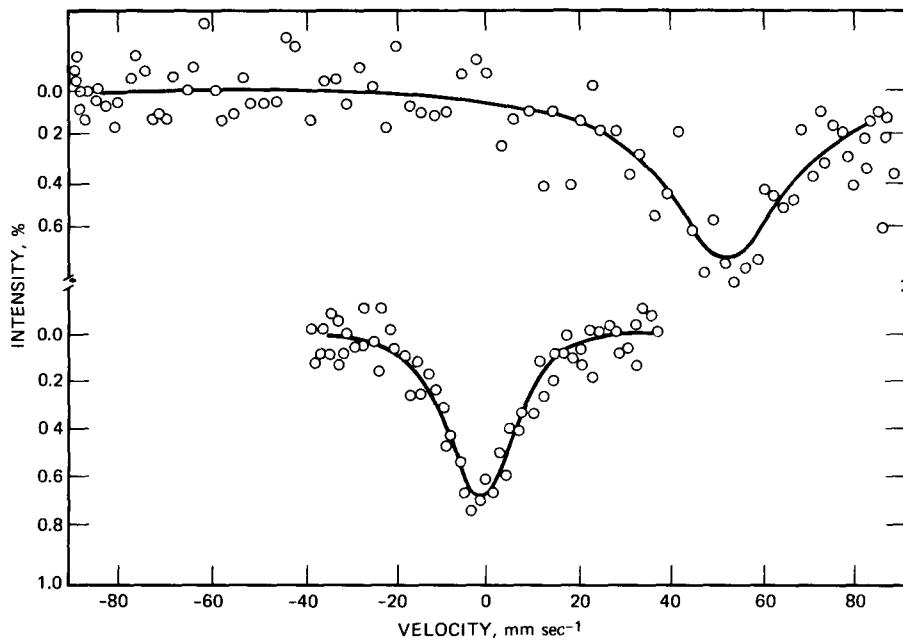


Fig. 1.3 Mossbauer spectrum of (a) $^{243}\text{AmF}_3$ and (b) $^{243}\text{AmO}_2$. [From G. M. Kalvius, S. L. Ruby, B. D. Dunlap, G. K. Shenoy, D. Cohen, and M. B. Brodsky, Mossbauer Isomer Shift in ^{243}Am , *Physics Letters, B*, 29: 489 (1969).]

Table 1.10
CALCULATED CRITICAL RADII AND MASS OF AMERICIUM METAL*,†

	Isotope	
	^{241}Am	^{242}Am
Density, g cm^{-3}	11.7	11.7
Critical radius, cm		
Bare	13.23	5.55
Water-reflected‡	12.90	4.26
Critical mass, kg		
Bare	113.5	8.4
Water-reflected‡	105.2	3.8

*From S. R. Bierman and E. D. Clayton, Criticality of Transuranium Actinides: Unmoderated Systems, *Transactions of the American Nuclear Society*, 12: 887 (1969).

†Spherical geometry.

‡20-cm reflector.

COLLATERAL READING

The literature on americium chemistry is extensive and spread over many books, articles, and reports. In addition to the coverage provided here, the following sources should be consulted for further information on various aspects of americium chemistry.

General Chemistry

Bibliographies

- C. E. Stuber (Comp.), *Transplutonium Elements, A Bibliography*, USAEC Report TID-3317, February 1968.
- Ibid.*, Suppl. 2, October 1970.
- Ibid.*, Suppl. 3, October 1972.
- Ibid.*, Suppl. 4, January 1974.
- Ibid.*, Suppl. 5, September 1975.
- H. W. Miller (Comp.), *Annotated Bibliography of the Chemistry and Physics of Americium*, USAEC Report RFP-770, Dow Chemical Co., 1966.
- Chemistry of Transplutonium Elements*, Bibliographical Series No. 19, International Atomic Energy Agency, Vienna, 1968 (STI/PUB/21/19).
- D. Demine, *Bibliography Concerning Transplutonium Elements*, European Atomic Energy Community Report EUR-2508e, September 1965.
- R. W. Clarke (Comp.), *Bibliography of Unclassified Reports and Published Literature on the Transplutonium Elements (1957-1964)*, British Report AERE-R-4761, 1964.
- E. H. Smith (Comp.), *Isotopic Power Sources: A Compendium Property and Processes Review*. Parts I and II. USAEC Report MND-P-2581, Martin Co., Nuclear Division, 1961.

Books and Monographs

- B. F. Myasoedov, L. I. Guseva, I. A. Lebedev, M. S. Milyukova, and M. S. Chmutova, *Analytical Chemistry of the Transplutonium Elements* (English translation), John Wiley & Sons, Inc., New York, 1974.
- A. J. Freeman and J. B. Darby, Jr. (Eds.), *The Actinides: Electronic Structure and Related Properties*, Vols. I and II. Academic Press, Inc., New York, 1974.
- Gmelins Handbook of Inorganic Chemistry—Transuranium Elements*, Verlag Chemie GmbH, Weinheim, Germany: Vol. 4, Part C, Compounds, 1972; Vol. 7a, Part A1, The Elements, 1973; Vol. 8, Part A2, The Elements, 1973.
- C. Keller, *Chemistry of the Transuranium Elements*, Verlag Chemie GmbH, Weinheim, Germany, 1972.
- K. W. Bagnall, *The Actinide Elements*, Elsevier Publishing Company, New York, 1972.
- J. J. Katz and G. T. Seaborg, *The Chemistry of the Actinide Elements*, pp. 331-385, John Wiley & Sons, Inc., New York, 1957. (Presently being revised.)

- A. F. Trotman-Dickenson (Ed.), *Comprehensive Inorganic Chemistry—Actinides, Master Index*, Vol. 5, Pergamon Press, Ltd., Oxford, 1973.
- K. W. Bagnall (Ed.), *Lanthanides and Actinides—MTP International Review of Science*, Vol. 7, University Park Press, Baltimore, Md., 1972.
- V. I. Gol'danskii and S. M. Polikanov, *The Transuranium Elements* (English translation), J. E. S. Bradley (Translator), Consultants Bureau, New York, 1969.
- V. M. Vdovenko (Ed.), *Chemistry of Transuranium Elements*, Izdatel'stvo Nauka, Leningrad, 1967.
- G. T. Seaborg, *Man-Made Transuranium Elements*, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1963.
- R. A. Penneman and T. K. Keenan, *The Radiochemistry of Americium and Curium*, Monograph NAS-NS-3006, National Academy of Sciences—National Research Council, 1960.
- I. Perlman and K. Street, Jr., Chemistry of the Transplutonium Elements in *The Actinide Elements*, G. T. Seaborg and J. J. Katz (Eds.), National Nuclear Energy Series, Div. IV, Vol. 14A, McGraw-Hill Book Company, Inc., New York, 1954.

Review Articles

- L. B. Asprey and R. A. Penneman, The Chemistry of the Actinides, *Chem. Eng. News*, 45(32): (July 31, 1967).
- T. K. Keenan, Americium and Curium, *J. Chem. Educ.*, 36: 27 (1959).
- S. W. Rabideau, L. B. Asprey, T. K. Keenan, and T. W. Newton, Recent Advances in the Basic Chemistry of Plutonium, Americium, and Curium, in *Proceedings of the Second International Conference on the Peaceful Uses of Atomic Energy, Geneva, 1958*, Vol. 28, p. 361, United Nations, New York, 1959.
- R. A. Penneman and L. B. Asprey, A Review of Americium and Curium Chemistry, *Proceedings of the First International Conference on the Peaceful Uses of Atomic Energy, Geneva, 1955*, Vol. 7, p. 355, United Nations, New York, 1956.

Special Chemistry Topics

Discovery

- G. T. Seaborg, 25th Anniversary of the Discovery of Americium and Curium Elements 95 and 96: 25 Years Ago, in *Proceedings of the Robert A. Welch Foundation Conference on Chemical Research. XIII. The Transuranium Elements*, Houston, Tex., Nov. 17, 1969, W. O. Milligan (Ed.), Robert A. Welch Foundation, Houston, Tex., 1970.

Solution Chemistry and Complexes

- J. Tostain, Solution Chemistry of the Transuranides, French Report CEA-Bib-193, May 1972.

- A. D. Gel'man, A. I. Moskvin, L. M. Zaitsev, and M. P. Mefod'eva, *Complex Compounds of Transuranides* (English translation), Chap. IV, Israel Program for Scientific Translations, Ltd., Jerusalem, 1967.
- A. D. Jones and G. R. Choppin, Complexes of Actinide Ions in Aqueous Solution, *Actinides Rev.*, 1: 311 (1969).
- Y. Marcus, M. Givon, and M. Shiloh, The Chemistry of the Trivalent Actinides in Aqueous Solutions and Their Recovery, in *Proceedings of the Third International Conference on the Peaceful Uses of Atomic Energy, Geneva, 1964*, Vol. 10, p. 588, United Nations, New York, 1965.

Halides

- D. Brown, *Halides of the Lanthanides and Actinides*, John Wiley & Sons, Inc., New York, 1968.
- R. A. Penneman, R. R. Ryan, and A. Rosenzweig, Structural Systematics in Actinide Fluoride Complexes, *Struct. Bonding (Berlin)*, 13: 1 (1973).
- K. W. Bagnall, The Coordination Chemistry of the Actinide Halides, *Coord. Chem. Rev.*, 2: 145 (1967).
- J. J. Katz and I. Sheft, Halides of the Actinide Elements, in *Advanced Inorganic Chemistry and Radiochemistry*, Vol. 2, p. 195, H. J. Emeleus and A. G. Sharpe (Eds.), Academic Press, Inc., New York, 1960.

Recovery, Separation, and Uses

- J. Ulstrup, Methods of Separating the Actinide Elements, *At. Energy Rev.*, 4: 3 (1966).
- R. E. Leuze and M. H. Lloyd, Processing Methods for the Recovery of Transplutonium Elements, in *Progress in Nuclear Energy, Series III. Process Chemistry*, C. E. Stevenson, E. A. Mason, and A. T. Gresky (Eds.), Vol. 4, p. 549, Pergamon Press, Inc., New York, 1970.
- R. D. Baybarz, Recovery and Application of the Transuranium Elements ^{237}Np , ^{241}Am , ^{242}Cm , ^{244}Cm , and ^{252}Cf , *At. Energy Rev.*, 8: 327 (1970).
- B. Weaver, Solvent Extraction in the Separation of Rare Earths and Trivalent Actinides, in *Ion Exchange and Solvent Extraction, A Series of Advances*, Vol. 6, J. A. Marinsky and Y. Marcus (Eds.), Marcel Dekker, Inc., New York, 1974.
- F. E. Levert and E. L. Helminski, Literature Review and Commercial Source Evaluation of Americium-241, Final Report, March 1, 1972-May 31, 1973, USAEC Report ORO-4333-1, Tuskegee Institute, June 1973.

Analytical

- C. Ferradini, Americium and Its Analytic Properties, *Chem. Anal. (Paris)*, 45: 647 (1963).

REFERENCES

1. G. T. Seaborg, The Synthetic Actinides—From Discovery to Manufacture, *Nucl. Appl. Technol.*, 9: 830 (1970).

2. G. T. Seaborg, History of the Synthetic Actinide Elements, *Actinides Rev.*, **1**: 3 (1967)
3. G. T. Seaborg, *Man-Made Transuranium Elements*, pp. 16-17, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1963.
4. G. T. Seaborg and R. A. James, Methods of Preparation of Element 95, U. S. Patent No. 3,044,944, July 1962
5. G. T. Seaborg, *The Transuranium Elements*, pp. 79-82, Addison-Wesley Publishing Company, Inc., Reading, Mass., 1958.
6. J. J. Katz and G. T. Seaborg, *The Chemistry of the Actinide Elements*, p. 250, Methuen & Co., Ltd., London, 1957.
7. G. T. Seaborg and A. Ghiorso, The Newest Synthetic Elements, *Sci. Amer.*, **195**: 66 (1956).
8. M. Weeks, in *Discovery of the Elements*, H. M. Leicester (Ed.), pp. 875-876, Journal of Chemical Education, Easton, Pa., 1956.
9. B. B. Cunningham, Isolation and Chemistry of Americium, USAEC Report ANL-JJK-124, Argonne National Laboratory, February 1948.
10. J. C. Wallmann, The First Isolations of the Transuranium Elements, *J. Chem. Educ.*, **26**: 350 (1959)
11. K. Street, A. Ghiorso, and G. T. Seaborg, The Isotopes of Americium, *Phys. Rev. C*, **79**: 530 (1950).
12. W. Schürmer and N. Wächter, Table of Specific Activities of the Nucleides with $Z = 88$ to $Z = 104$, *Actinides Rev.*, **1**: 125 (1958)
13. N. K. Skobelev, Delayed Fission of Some Neutron-Deficient Nuclei, *Yadern. Fiz.*, **15**: 444 (1972) through *Sov. J. Nucl. Phys. (Engl. Transl.)*, **15**: 249 (1972), Russian Report JINR-P7-5584 through Report Np-tr-1936
14. V. I. Kuznetsov and N. K. Skobelev, Investigation of the Spontaneously Fissionable Products ($T_{1/2} = 1.4$ minutes) in the $^{230}\text{Th} + ^{10}\text{B}$ Reaction, Russian Report JINR-P7-2984 through USAEC Report ORO-tr-3346-15.
15. J. B. Natowitz, Angular Momentum Effects in Nuclear Reactions, 1972 Progress Report, USAEC Report ORO-3924-14, Oak Ridge Operations Office, 1973.
16. J. B. Natowitz and J. K. Archer, Production of Spontaneous Fission Isomers in the Reaction of ^{237}Np with 30 to 70 MeV ^4He , *Phys. Lett. B*, **30**: 463 (1969).
17. G. H. Higgins, An Investigation of the Isotopes of Americium and Curium (Thesis), USAEC Report UCRL-1796, University of California Radiation Laboratory, June 1972.
18. I. Ahmad, R. F. Barnes, P. R. Fields, and R. K. Sjoblom, Electron Capture Decay of ^{237}Am , *Bull. Amer. Phys. Soc.*, **15**: 76 (1970).
19. Chemistry Division Annual Report, July 1971-June 1972, USAEC Report ANL-7996, pp. 29-44, Argonne National Laboratory, February 1973.
20. S. M. Polikanov and G. Sletten, Spontaneously Fissioning Isomers in U, Pu, Am, and Cm Isotopes, *Nucl. Phys. A*, **151**: 656 (1970).
21. R. A. Glass, R. J. Carr, and W. M. Gibson, Radioactive Decay Properties of ^{238}Am , ^{239}Am , ^{240}Am , ^{240}Cm , and ^{241}Cm , *J. Inorg. Nucl. Chem.*, **13**: 181 (1960).
22. I. Ahmad, R. K. Sjoblom, R. F. Barnes, F. Wagner, Jr., and P. R. Fields, Electron Capture Decay of ^{238}Am and Electric Monopole Transitions in ^{238}Pu , *Nucl. Phys. A*, **186**: 620 (1972).
23. J. C. Post and A. H. W. Aten, Decay of ^{238}Am , *Radiochim. Acta*, **15**: 205 (1971).
24. J. C. Post and A. H. W. Aten, Decay of ^{238}Am , *Radiochim. Acta*, **16**: 60 (1971).
25. J. Borggreen, J. P. Gangsksy, G. Sletten, and S. Bjørnholm, A New Spontaneously Fissioning Isomer ^{238}Am , *Phys. Lett. B*, **25**: 402 (1967).
26. G. T. Seaborg, R. A. James, and L. G. Morgan, The New Element Americium (Atomic Number 95), in *The Transuranium Elements*, G. T. Seaborg, J. J. Katz, and W. M. Manning (Eds.), pp. 1525-1553, McGraw-Hill Book Co., Inc., New York, 1949.
27. F. T. Porter et al., Energy Levels in ^{239}Pu Populated by Electron-Capture Decay of 11.9-h ^{239}Am , *Phys. Rev. C*, **5**: 1738 (1972).

28. N. Lark, J. Pederson, G. Sletten, and S. Bjørnholm, Spontaneously Fissioning Isomers in U, Np, Pu, and Am Isotopes, *Nucl Phys., A*, **139**: 481 (1969)
29. D. J. Gorman and F. Asaro, Alpha Decay of ^{240}Am , *Phys Rev., C*, **2**: 2406 (1970)
30. E. K. Hyde, I. Perlman, and G. T. Seaborg, *The Nuclear Properties of the Heavy Elements*, Vol II, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1971.
31. S. Bjørnholm, J. Borggreen, L. Westgaard, and V. A. Karnaukhov, Excitation Energy of the Spontaneously Fissioning Isomeric State in ^{240}Am , *Nucl Phys., A*, **95**: 513 (1967)
32. J. Jove and R. Robert, Mesure de la Période de ^{241}Am par Microcalorimétrie, *Radiochem Radioanal Lett*, **10**: 139 (1972).
33. L. C. Brown and R. C. Propst, A New Determination of the Half-Life of ^{243}Am , *J Inorg Nucl Chem.*, **30**: 2591 (1968).
34. F. L. Oetting and S. R. Gunn, A Calorimetric Determination of the Specific Power and Half-Life of Americium-241, *J. Inorg. Nucl. Chem.*, **29**: 2659 (1967).
35. R. E. Stone and E. K. Hulet, Radiochemical Determination of the Alpha Half-Life of ^{241}Am , *J. Inorg. Nucl. Chem.*, **30**: 2003 (1968).
36. G. R. Hall and T. L. Markin, The Alpha Half-Life of Americium-241, *J. Inorg. Nucl. Chem.*, **4**: 137 (1957).
37. J. C. Wallmann, P. Graf, and L. Goda, The Specific Activities and Half-Lives of Americium-241 and Americium-243, *J. Inorg. Nucl. Chem.*, **7**: 199 (1958).
38. G. R. Hall and T. L. Markin, The Alpha Half-Life of Am^{241} , *J. Inorg. Nucl. Chem.*, **2**: 203 (1956).
39. B. M. Aleksandrov et al., The Decay of Am^{242} , *At Energ (USSR)*, **27**: 41 (1969) through *Sov At Energy (Engl Transl)*, **27**: 724 (1969).
40. T. K. Keenan, R. A. Penneman, and B. B. McInteer, A New Determination of the Half-Life of Am^{242m} , The Problem of Counting Short-Lived Activities, *J. Chem. Phys.*, **21**: 1802 (1963).
41. R. W. Hoff, F. K. Hulet, and M. C. Michel, Branching Ratio of ^{242m}Am Decay, *J. Nucl. Energy*, **8**: 224 (1959).
42. R. F. Barnes, D. J. Henderson, A. L. Harkness, and H. Diamond, The Alpha and Electron Capture Partial Half-Lives of ^{242}Am , *J. Inorg. Nucl. Chem.*, **9**: 106 (1959).
43. R. W. Hoff, H. Jaffe, T. O. Passell, F. S. Stephens, E. K. Hulet, and S. G. Thompson, Radioactive Decay of the Isomers of Americium-242, *Phys. Rev.*, **100**: 1403 (1955).
44. R. Gasteiger, G. Höhlein, and W. Weinlander, Bestimmung des Zesfallsverhältnisses β^-/EC des ^{242}Am , *Radiochim. Acta*, **11**: 158 (1969).
45. F. Asaro, I. Perlman, J. O. Rasmussen, and S. G. Thompson, Isomers of ^{242}Am , *Phys. Rev.*, **120**: 939 (1960).
46. D. S. Brenner, L. Westgaard, and S. Bjørnholm, A Study of Nuclear Isomers Which Decay by Spontaneous Fission, *Nucl. Phys.*, **89**: 267 (1966).
47. S. M. Polikanov, Spontaneously Fissioning Isomers, *Usp. Fiz. Nauk*, **94**: 43 (1968) through *Sov. Phys. Usp. (Engl. Transl.)*, **11**: 22 (1968).
48. G. N. Flerov et al., Excitation Energy of Spontaneously Fissioning Isomer ^{242m}Am , *Nucl. Phys., A*, **97**: 444 (1967).
49. S. Bjørnholm, J. Borggreen, Yu. P. Gangriskii, and G. Sletten, Investigation of (d,p) and (d,t) Reactions Leading to Spontaneously Fissile Isomeric States, *Yadern. Fiz.*, **8**: 459 (1968) through *Sov. J. Nucl. Phys. (Engl. Transl.)*, **8**: 267 (1968).
50. G. N. Flerov et al., A Study of the Spontaneously-Fissioning Isomer of ^{242}Am Through the $^{241}\text{Am}(\text{n},\gamma)$ Reaction, *Nucl. Phys., A*, **102**: 443 (1967).
51. B. N. Markov, A. A. Pleve, S. M. Polikanov, and G. N. Flerov, Experiments on Synthesis of a Spontaneously Fissile Isomer in the Reaction $^{241}\text{Am}(\text{n},\gamma) ^{241}\text{Am}(\text{E})$, *Yadern. Fiz.*, **3**: 455 (1966) through *Sov. J. Nucl. Phys. (Engl. Transl.)*, **3**: 329 (1966).
52. Yu. P. Gangriskii, B. N. Markov, and Yu. M. Tsvetnyuk, Investigation of the Properties of the Spontaneously Fissioning Isomer ^{241}Pu in the Reaction (γ,n) , Russian Report JINR-E15-5071 through *Nuclear Science Abstracts*, **24**: 38209

53. Yu. V. Lobanov, V. I. Kuznetsov, V. P. Perelygin, S. M. Polikanov, Yu. Ts. Oganesyan, and G. N. Flerov, Spontaneous Fissile Isomer with 0.9 msec Half-Life (E), *Yadern. Fiz.*, **1**: 67 (1965) through *Sov. J. Nucl. Phys. (Engl. Transl.)*, **1**: 45 (1965).

54. A. F. Linev, B. N. Markov, A. A. Pleve, and S. M. Polikanov, The Formation of a Spontaneously Fissioning Isomer in the Capture of Neutrons by Am, *Nucl. Phys.*, **63**: 173 (1965).

55. S. M. Polikanov et al., Spontaneous Fission with an Anomalously Short Period, *Zh. Eksp. Teor. Fiz.*, **42**: 1464 (1962) through *Chemical Abstracts*, **57**: 93951.

56. Y. A. Ellis, A = 242 in *Nuclear Data Sheets, Section B*, Vol. 4, p. 687, Academic Press, Inc., New York, 1970.

57. A. B. Beadle, D. F. Dance, L. M. Glover, and J. Milstead, The Half-Life of Americium-243, *J. Inorg. Nucl. Chem.*, **12**: 359 (1960).

58. Y. A. Ellis and A. H. Wapstra, A = 243-261, in *Nuclear Data Sheets, Section B*, Vol. 3, pp. B-3-2-6 to B-3-2-53, Academic Press, Inc., New York, 1969.

59. S. E. Vandenbosch and P. Day, The Decay Scheme of 10.1-h Am²⁴⁴, *Nucl. Phys.*, **30**: 177 (1962).

60. A. Ghiors, S. G. Thompson, G. R. Choppin, and B. G. Harvey, New Isotopes of Americium, Berkelium, and Californium, *Phys. Rev.*, **94**: 1081 (1954).

61. P. R. Fields, J. E. Gindler, A. L. Harkness, M. H. Studier, J. R. Huijzena, and A. M. Friedman, Electron Capture Decay of Am²⁴⁴ and the Spontaneous Fission Half-Life of Pu²⁴⁴, *Phys. Rev.*, **100**: 172 (1955).

62. J. P. Butler, T. A. Eastwood, T. L. Collins, M. E. Jones, F. M. Rourke, and R. P. Schuman, Half-Lives and Neutron Capture Cross Sections of the Heavy Plutonium Isotopes, *Phys. Rev.*, **103**: 634 (1956).

63. W. R. Daniels, D. C. Hoffman, F. O. Lawrence, and C. J. Orth, Decay of ²⁴⁵Pu, *Nucl. Phys. A*, **107**: 569 (1968).

64. P. R. Fields, M. H. Studier, A. M. Friedman, H. Diamond, R. Sjoblom, and P. A. Sellers, Production of Pu²⁴⁵ and Am²⁴⁵ by Neutron Irradiation of Pu²⁴⁴, *J. Inorg. Nucl. Chem.*, **1**: 262 (1955).

65. C. I. Browne et al., The Decay Chain Pu²⁴⁵—Am²⁴⁵—Cm²⁴⁵, *J. Inorg. Nucl. Chem.*, **1**: 254 (1955).

66. M. E. Bunker, D. C. Hoffman, C. J. Orth, and J. W. Stairer, Decay of ²⁴⁵Am, *Nucl. Phys. A*, **97**: 593 (1967).

67. K. L. Wolf and J. P. Unik, Fissioning Isomers of Americium, Curium, and Berkelium Isotopes, *Phys. Lett. B*, **38**: 405 (1972).

68. D. Engelkemeir et al., The New Isotopes Pu²⁴⁶ and Am²⁴⁶, *J. Inorg. Nucl. Chem.*, **1**: 345 (1953).

69. P. R. Fields, I. Ahmad, R. K. Sjoblom, R. F. Barnes, and E. P. Horowitz, Nuclear Properties of ²⁴⁶Am and ²⁴⁷Am, *J. Inorg. Nucl. Chem.*, **30**: 1345 (1968).

70. C. J. Orth, W. R. Daniels, B. H. Erkkila, F. O. Lawrence, and D. C. Hoffman, New Short-Lived Americium Beta Emitters, *Phys. Rev. Lett.*, **19**: 128 (1967).

71. G. Frilander, J. W. Kennedy, and J. M. Miller, *Nuclear and Radiochemistry*, John Wiley & Sons, Inc., New York, 1964.

72. R. Gold, R. J. Armani, and J. R. Roberts, Spontaneous-Fission Decay Constant of ²⁴¹Am, *Phys. Rev. C*, **1**: 738 (1970).

73. J. T. Caldwell, S. C. Fultz, C. D. Bowman, and R. W. Hoff, Spontaneous Fission Half-Life of Am^{242m}, *Phys. Rev.*, **155**: 1309 (1967).

74. B. A. Gvozdev et al., Period of Spontaneous Fission of Americium-243, *Radiokhimiya*, **8**: 493 (1966) through *Sov. Radiochem. (Engl. Transl.)*, **8**: 459 (1966).

75. R. Marrus and J. Winocur, Hyperfine Structure and Nuclear Moments of Americium-242, *Phys. Rev.*, **124**: 1904 (1961).

76 R W Hoff, J L Olsen, and L G Mann, Electron Capture and Alpha Decay of Np^{235} , *Phys Rev* **102**: 805 (1956)

77 J M Hollander, F Reynolds, and B B Cunningham (Eds), Nuclear Chemistry Division Annual Report, 1965, USAEC Report UCRL-16580 University of California Lawrence Radiation Laboratory, January 1966

78 I Lindgren, Table of Nuclear Spins and Moments, in *Alpha Beta and Gamma Ray Spectroscopy* K Siegbahn (Ed), Appendix 4, North Holland Publishing Co, Amsterdam, 1964

79 L Armstrong and R Marrus, Nuclear Moments of Americium-241 and 16 h Americium 242 and Analysis of the Hyperfine Fields, *Phys Rev* **144**: 994 (1966)

80 T E Manning, M Fred, and F S Tomkins, Nuclear Moments of Am^{241} and Am^{243} *Phys Rev* **102**: 1108 (1956)

81 E K Hyde, Properties of the Atomic Nuclei, in *Gmelins Handbuch der Anorganischen Chemie Band 7a Transurane Teil A1* I G Koch (Ed), pp 19 61, Verlag Chemie GmbH, Weinheim, 1973

82 C M Lederer, J M Hollander, and I Perlman, *Table of Isotopes* 6th ed, John Wiley & Sons, Inc, New York, 1967

83 B S Dzhelepopov and L K Peker, *Decay Schemes of Radioactive Nuclei*, English translation, D L Allan (Ed), Pergamon Press, Inc, New York, 1961

84 S F Mughabghab and D I Garber Neutron Cross Sections, Vol 1, Resonance Parameters, USAEC Report BNL 325 (Vol 1) (3rd ed), Brookhaven National Laboratory, June 1973

85 R J Howerton, Tabulated Neutron Cross Sections Part I 0 001–14 5 MeV, USAEC Report UCRL 5226, University of California Lawrence Radiation Laboratory, October 1959

86 A H Wapstra and N B Gove, The 1971 Atomic Mass Evaluation in Five Parts, *Nucl Data Tables* **9** 265 (1971)

87 V E Viola, Jr, and G T Seaborg, Nuclear Systematics of the Heavy Elements I Energetics and Masses, *J Inorg Nucl Chem* **28**: 697 (1966)

88 T Moeller, Periodicity and the Lanthanides and Actinides, *J Chem Educ*, **47**: 417 (1970)

89 B Kanellakopoulos and R D Fisher, Allgemeines Eigenschaften der Atome und Ionen, in *Gmelins Handbuch der Anorganischen Chemie Band 7a Transurane Teil A2* G Koch (Ed), pp 2-3, Verlag Chemie GmbH, Weinheim, 1973

90 G T Seaborg, Elements Beyond 100, Present Status and Future Prospects, *Ann Rev Nucl Sci* **18**: 53 (1968)

91 F S Tomkins and M Fred, The Spectra of the Heavy Elements, *J Opt Soc Amer* **39**: 357 (1947), USAEC Report AECD 2478, December 1948

92 G T Seaborg, The Chemical and Radioactive Properties of the Heavy Elements, *Chem Eng News* **23**: 2192 (1945)

93 W H Zachariasen, Crystal Chemistry of the 5f Elements, in *The Actinide Elements*, G T Seaborg and J J Katz (Eds), pp 769-795, McGraw Hill Book Co, Inc, New York, 1954

94 D B McWhan, J C Wallmann, B B Cunningham, L B Asprey, F H Ellinger, and W H Zachariasen, Preparation and Crystal Structure of Americium Metal, *J Inorg Nucl Chem* **15**: 185 (1960)

95 D B McWhan, B B Cunningham, and J C Wallmann, Crystal Structure, Thermal Expansion, and Melting Point of Americium Metal, *J Inorg Nucl Chem* **24**: 1025 (1962)

96 J R Peterson and B B Cunningham, Crystal Structure and Lattice Parameters of the Compounds of Berkelium IV Berkelium Trifluoride, *J Inorg Nucl Chem* **30**: 1775 (1968)

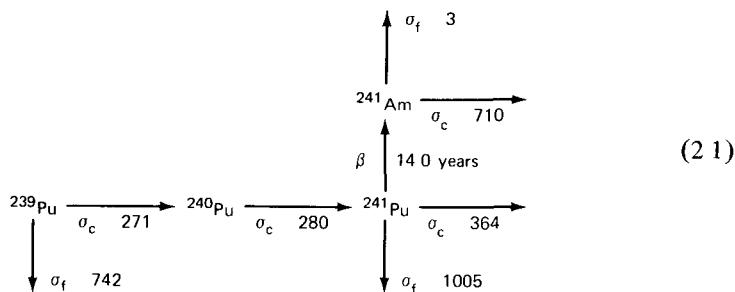
97 J R Peterson and B B Cunningham, Crystal Structure and Lattice Parameters of the Compounds of Berkelium II Berkelium Trichloride, *J Inorg Nucl Chem* **30**: 823 (1968)

98 J R Peterson and B B Cunningham, Crystal Structures and Lattice Parameters of the Compounds of Berkelium I Berkelium Dioxide and Berkelium Sesquioxide, *Inorg Nucl Chem Lett* **3**: 327 (1967)

99 J H Burns and J R Peterson, Refinement of the Crystal Structure of AmCl_3 , *Acta Crystallogr Sec B* **26**: 1885 (1970)

100. T. A. Carlson, C. W. Nestor, Jr., N. Wasserman, and J. D. McDowell, Comprehensive Calculations of Ionization Potentials and Binding Energies for Multiply-Charged Ions, USAEC Report ORNL-4562, Oak Ridge National Laboratory, July 1970.
101. M. Fred and F. S. Tomkins, Preliminary Term Analysis of Am I and Am II Spectra, *J. Opt. Soc. Amer.*, **44**: 824 (1957)
102. M. Fred and F. S. Tomkins, Preliminary Term Analysis of Am I and Am II Spectra, *J. Opt. Soc. Amer.*, **47**: 1076 (1957).
103. R. P. Thorne, The Emission Spectra of Americium. Part I, British Report AERE-CR-1309, December 1953.
104. R. P. Thorne, The Spark Spectra of Americium, *Spectrochim. Acta*, **8**: 71 (1956)
105. M. N. Oganov, A. R. Striganov, and Yu. P. Sobolev, The Atomic Spectrum of Americium, *Opt. Spektros.*, **1**: 965 (1957), USAEC Report AFC-tr-2919, 1957.
106. W. T. Carnall, Emission Spectra, in *Gmelins Handbuch der Anorganischen Chemie, Band 8, Transurane, Teil A2*, G. Koch (Ed.), p. 42, Verlag Chemie GmbH, Weinheim, 1973
107. J. Blaise and A. Steudel, Isotopieverschiebungskonstanten von Th, U, Pu, und Am, *Z. Phys.*, **209**: 311 (1968)
108. C. Keller, *The Chemistry of the Transuranium Elements*, Verlag Chemie GmbH, Weinheim, 1971
109. W. T. Carnall, X-Ray Spectra, in *Gmelins Handbuch der Anorganischen Chemie, Band 8, Transurane, Teil A2*, G. Koch (Ed.), p. 80, Verlag Chemie GmbH, Weinheim, 1973.
110. G. C. Nelson, B. G. Saunders, and S. I. Salem, Energies of the $K\alpha_1$, $K\alpha_2$, $K\beta_1$, and $K\beta_2$ X-Rays and the K-Shell Binding Energies in Neptunium, Plutonium, and Americium, *Z. Phys.*, **235**: 308 (1970).
111. G. C. Nelson, B. G. Saunders, and S. I. Salem, $K\beta_3/K\beta_1$ Transition Probabilities in Elements of Medium and High Atomic Number, *Phys. Rev. A*, **1**: 1563 (1970).
112. J. A. Bearden, X-Ray Wavelengths, *Rev. Mod. Phys.*, **39**: 78 (1967)
113. J. J. Merrill and J. W. M. DuMond, Precision Measurement of L X-Ray Wavelengths and Line Widths for $74 \leq Z \leq 95$ and Their Interpretation in Terms of Nuclear Perturbations, *Ann. Phys. (N. Y.)*, **14**: 166 (1961)
114. P. P. Day, Electromagnetic Spectrum of Am^{241} , *Phys. Rev.*, **97**: 689 (1955)
115. W. T. Carnall, Americium(III)-Luminescence Spectra, in *Gmelins Handbuch der Anorganischen Chemie, Band 8, Transurane, Teil A2*, G. Koch (Ed.), p. 59, Verlag Chemie GmbH, Weinheim, 1973.
116. D. M. Gruen, J. G. Conway, R. D. McLaughlin, and B. B. Cunningham, Fluorescence Spectra of Am^{3+} in $LaCl_3$, *J. Chem. Phys.*, **24**: 1115 (1956).
117. J. G. Conway, Energy Levels of Am(III) in $LaCl_3$, *J. Chem. Phys.*, **40**: 2504 (1964)
118. L. J. Nugent et al., Intramolecular Energy Transfer and Sensitized Luminescence in Actinide(III) β -Diketone Chelates, *J. Phys. Chem.*, **73**: 1540 (1969).
119. J. Gal, Z. Hadari, E. Yanir, E. R. Bauminger, and S. Ofer, Charge States of Np Recoil Atoms Following α Decay, *J. Inorg. Nucl. Chem.*, **32**: 2509 (1970).
120. J. A. Stone and W. L. Pilling, Isomer Shifts in Neptunium Compounds, USAEC Report DP-M5-67-82, E. I. du Pont de Nemours and Company, Inc., Savannah River Laboratory, September 1967.
121. B. M. Aleksandrov, A. V. Kalyamin, A. S. Krivokhatskii, B. G. Lur'e, A. N. Murin, and Yu. V. Romanov, Mössbauer Spectrum of Neptunium-237 After α -Decay of Americium-241 in a Thorium Lattice, *Fiz. Tverd. Tela*, **10**: 1896 (1968) through *Sov. Phys.-Solid State (Engl. Transl.)*, **10**: 1494 (1968)
122. J. A. Stone and W. L. Pilling, Recoilless Gamma-Ray Emission After Alpha Decay, *Phys. Rev. Lett.*, **13**: 200 (1964)
123. V. A. Bryukhanov, V. V. Ovechkin, A. I. Peryshkin, E. I. Rzhevskaya, and V. S. Shpinel, The Mössbauer Effect on ^{237}Np Nuclei in Neptunium Dioxide, *Fiz. Tverd. Tela*, **9**: 1519 (1967) through *Sov. Phys.-Solid State (Engl. Transl.)*, **9**: 1189 (1967)

124. B. D. Dunlap, D. J. Lam, G. M. Kalvius, and G. K. Shenoy, Investigations of the Magnetic Behavior of Some Conducting Am Systems, *J. Appl. Phys.*, **42**: 1719 (1971).
125. B. M. Aleksandrov, A. V. Kalyamin, A. S. Krivokhatskii, B. G. Lur'e, A. N. Murin, and Yu. F. Romanov, The Mössbauer Effect in Neptunium Compounds, *Radiokhimiya*, **12**: 852 (1970) through *Sov. Radiochem. (Engl. Transl.)*, **12**: 822 (1970).
126. B. D. Dunlap, M. B. Brodsky, G. M. Kalvius, and G. K. Shenoy, Magnetic Behavior of Np Metal and Dilute Np Alloys from Mössbauer Effect Studies, in *Plutonium 1970 and Other Actinides*, Proceedings of the 4th International Conference, Santa Fe, N. Mex., Vol. 17, Parts I and II, Nuclear Metallurgy, USAEC Report CONF-701001, 1970.
127. C. Keller and R. P. Rndl, Mössbauer Spectra, in *Gmelins Handbuch der Anorganischen Chemie, Band 8, Transurane, Teil A2*, G. Koch (Ed.), p. 88, Verlag Chemie GmbH, Weinheim, 1973.
128. D. C. Hoffman, F. O. Lawrence, and W. R. Daniels, Decay of ^{243}Pu , *Nucl. Phys., A*, **131**: 551 (1969).
129. G. M. Kalvius, S. L. Ruby, B. D. Dunlap, G. K. Shenoy, D. Cohen, and M. B. Brodsky, Mössbauer Isomer Shift in ^{243}Am , *Phys. Lett., B*, **29**: 489 (1969).
130. S. R. Bierman and E. D. Clayton, Criticality of Transuranium Actinides Unmoderated System, *Trans Amer. Nucl. Soc.*, **12**: 887 (1969).
131. H. K. Clark, Critical Masses of Fissile Transplutonium Isotopes, *Trans Amer. Nucl. Soc.*, **12**: 886 (1969).

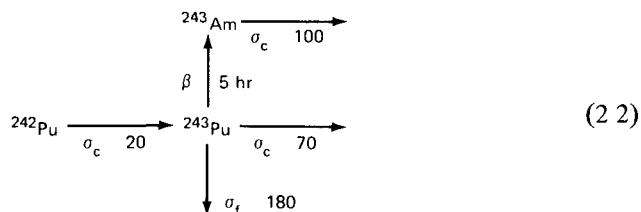

2 PRODUCTION AND USES

INTRODUCTION

Of the isotopes of americium, only three have half-lives greater than a few hours: ^{243}Am ($t_{1/2} = 7400$ years); ^{241}Am ($t_{1/2} = 433$ years); and ^{242m}Am ($t_{1/2} = 152$ years). The latter isotope is formed by irradiation of ^{241}Am with thermal neutrons and can be separated from ^{241}Am only by electromagnetic means. For all practical purposes, therefore, the chemistry and uses of americium center around the production and availability of the isotopes with mass numbers 241 and 243. In this review the discussion of the availability of ^{241}Am and ^{243}Am is limited to their production by reactor irradiation; other sources, e.g., accelerators and nuclear explosions, do not contribute substantial amounts of these isotopes to the world's supply.

PRODUCTION OF ^{241}Am BY IRRADIATION OF ^{239}Pu

Neutron irradiation of ^{239}Pu produces ^{241}Pu , which beta decays with a half-life of 14.0 years ± 0.3 year to ^{241}Am ; a 10-g sample of ^{241}Pu will yield about 4 g of ^{241}Am after about 10 years (Ref. 1). The nuclear transformations involved in the production of ^{241}Am by irradiation of ^{239}Pu are:



Currently at the various Energy Research and Development Administration (ERDA) sites in the United States, some 5 to 10 kg of ^{241}Am are recovered and purified each year as part of normal rework of aged plutonium inventories containing varying amounts of the ^{241}Pu isotope. The bulk of this supply derives from the Rocky Flats site, annual availability of ^{241}Am from this site was estimated² at 4 to 5 kg in 1964 and may be higher now. Additional ^{241}Am is recovered at the Hanford and Los Alamos sites in conjunction with operation of plutonium scrap-recovery facilities. (Processes used to recover and purify ^{241}Am at the ERDA sites are discussed in Chap. 5.) The purified ^{241}Am is stockpiled at the Oak Ridge National Laboratory (ORNL), where it is marketed to various academic, governmental, and industrial customers, in 1973 alone, some 13 kg of ^{241}Am were sold to 13 different customers.³ The ERDA price for ^{241}Am in late 1970 was \$150 per gram,⁴ down from \$1000 per gram⁵ in 1969 and \$1500 per gram earlier.

In addition to U.S. sources, various other countries also purify and market milligram to gram amounts of ^{241}Am recovered largely from aged plutonium. For example, sealed solid ^{241}Am alpha and gamma sources are available from the Australian AEC,⁶ the Radiochemical Centre, Amersham, England,⁷ and the French Commissariat à l'Energie Atomique.⁸ Production statistics for the quantities of ^{241}Am recovered in these and other foreign countries have not been published.

PRODUCTION OF ^{243}Am BY IRRADIATION OF ^{242}Pu

Nearly isotopically pure ^{243}Am results from irradiation of ^{242}Pu with thermal neutrons according to the reaction sequence

Over the last 10 years or so, Eq. 2.2 has been used in ERDA reactors to produce about 9 kg of ^{243}Am for use as target material in subsequent production of ^{252}Cf and for research purposes.⁹⁻¹³ For production of ^{242}Pu for use in Eq. 2.2, most of the ^{239}Pu in Pu-Al alloy targets is first burned out during a preliminary irradiation in a production reactor at the ERDA Savannah River site at an average flux of about 10^{14} neutrons $\text{cm}^{-2} \text{ sec}^{-1}$; the first irradiation is stopped at an exposure of 3×10^{21} neutrons cm^{-2} (Fig. 2.1). After separation and purification (Fig. 2.2), $^{242}\text{PuO}_2$ targets are irradiated either in high-flux (6×10^{15} neutrons $\text{cm}^{-2} \text{ sec}^{-1}$) lattices at Savannah River¹⁴⁻¹⁸ or in the High Flux Isotope Reactor (HFIR) at the ERDA Oak Ridge site at fluxes up to 3×10^{15} neutrons $\text{cm}^{-2} \text{ sec}^{-1}$. Figure 2.3 and Table 2.1, from Baxter,¹ depict the production of ^{243}Am and other high mass nuclides from irradiation of

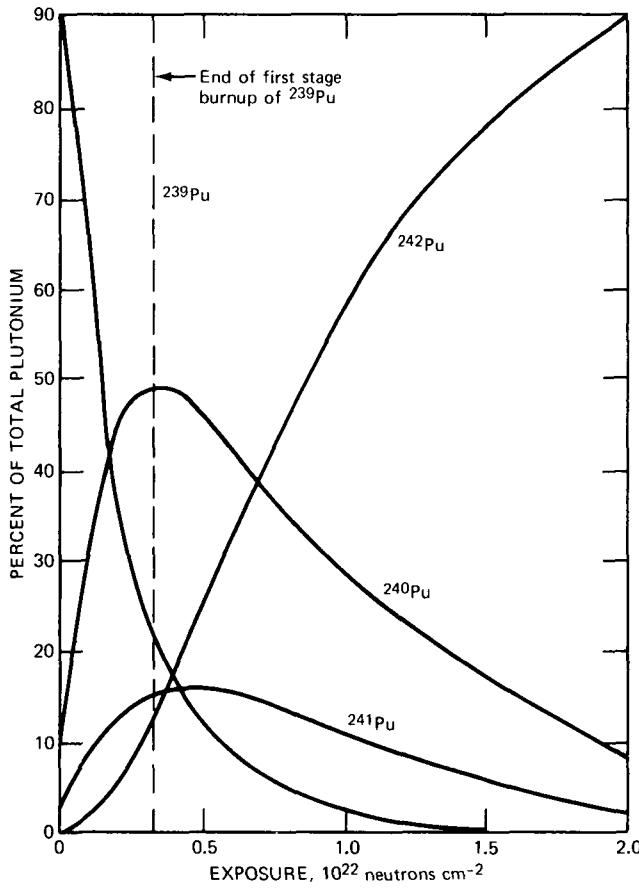


Fig. 2.1 Yield of plutonium isotopes from irradiation of ^{239}Pu .

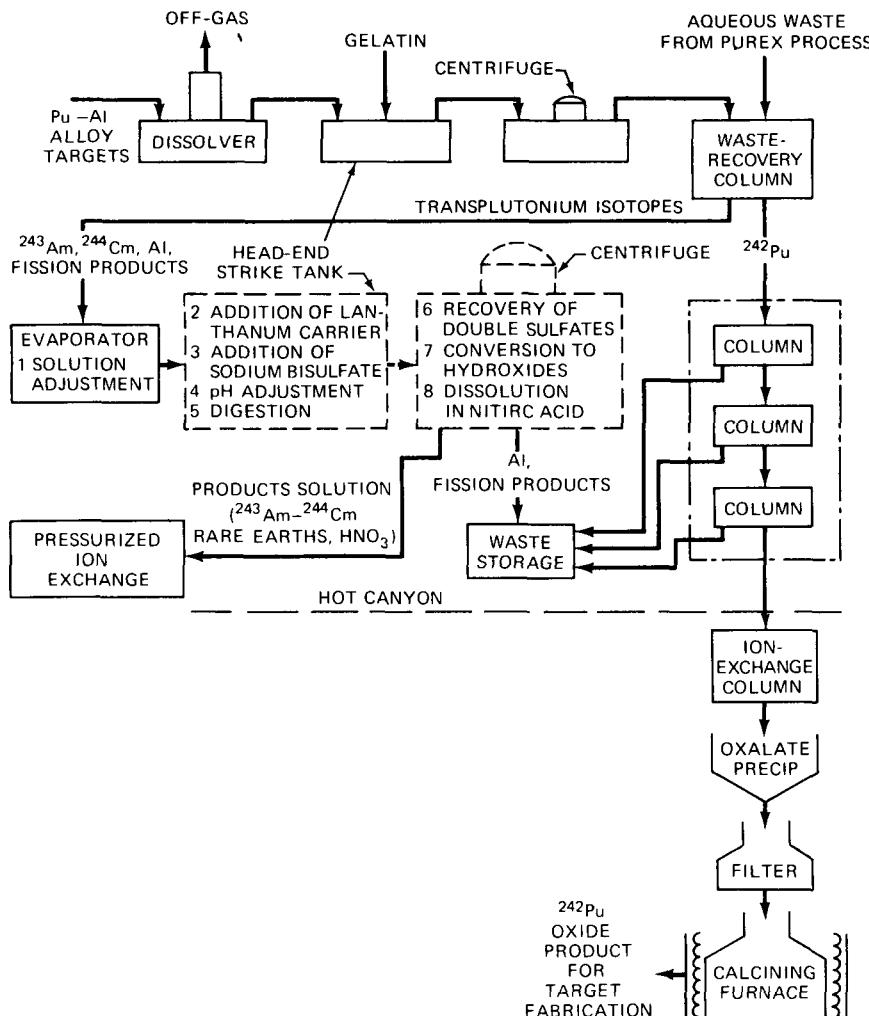


Fig. 2.2 Flow sheet of Savannah River Plant transplutonium process.

^{242}Pu . Chemical procedures used to recover and purify ^{243}Am from irradiated $^{242}\text{PuO}_2$ targets are discussed in Chap. 5, and use of ^{243}Am for production of ^{244}Cm is outlined on pages 33 to 36. Several authors^{1,10-12,19,20} have reviewed construction and operation of the HFIR and overall objectives of the ERDA Transplutonium Element Program.

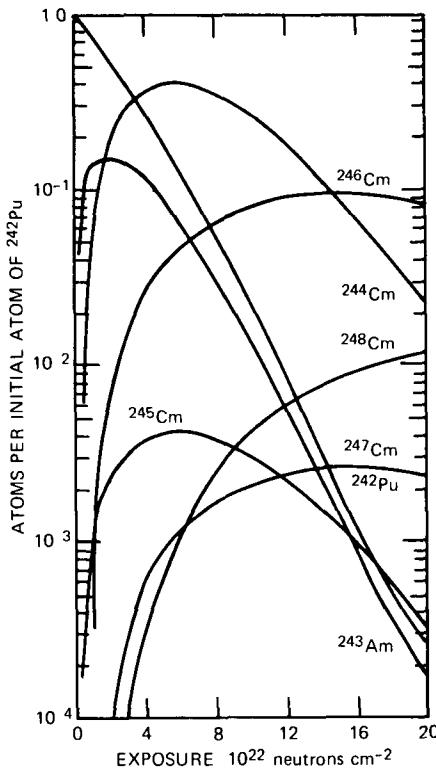


Fig. 2.3 Production of americium and curium from irradiation of ^{242}Pu .

AVAILABILITY OF ^{241}Am AND ^{243}Am FROM POWER REACTORS

For almost 10 years now, numerous writers^{1,21-29} have emphasized that large quantities of ^{241}Am and ^{243}Am are being and will continue to be produced in power reactors throughout the world. The exact composition of the mixture of americium isotopes available from this source varies with reactor exposure, at an exposure of 20,000 MWd ton⁻¹, the mixture is essentially 50-50 ^{241}Am and ^{243}Am .²¹ Table 2.2 lists projections made recently by Baxter¹ of the availability of ^{241}Am and ^{243}Am from U. S. commercial power reactors over the next 15 years. Of course, these estimates as well as earlier ones²¹⁻²⁹ depend very strongly on the assumptions made about reactor types and fuels and about the total U. S. nuclear generating capacity. Since these bases, particularly the latter quantity, are subject to constant change,

Table 2 1
PRODUCTION OF AMERICIUM ISOTOPES BY IRRADIATION OF
PLUTONIUM AT A FLUX OF 3×10^{15} neutrons $\text{cm}^{-2} \text{ sec}^{-1}$

Fluence, 10^{22} neutrons cm^{-2}	Days	Atoms produced per atom irradiated			
		^{242}Pu	^{241}Am	^{241m}Am	^{243}Am
0	0	1.00	0	0	0
2	77	0.566	$0.547^{-7}*$	0.106^{-8}	0.154
4	154	0.290	0.121^{-6}	0.237^{-8}	0.113
6	232	0.131	0.139^{-6}	0.274^{-8}	0.646 ¹
8	309	0.542 ⁻¹	0.124^{-6}	0.243^{-8}	0.313 ⁻¹
10	386	0.214 ¹	0.941^{-7}	0.185^{-8}	0.135 ¹
12	463	0.834 ⁻²	0.644^{-7}	0.127^{-8}	0.549 ⁻²
14	540	0.330 ⁻²	0.410^{-7}	0.809^{-9}	0.219 ⁻²
16	617	0.134 ⁻²	0.247^{-7}	0.488^{-9}	0.883 ⁻³
18	694	0.572 ⁻³	0.144^{-7}	0.285^{-9}	0.367 ⁻³
20	772	0.255 ⁻³	0.821^{-8}	0.162^{-9}	0.159 ⁻³

* Exponents are powers of 10 by which the number is to be multiplied

Table 2 2
ESTIMATED U. S. ANNUAL PRODUCTION OF AMERICIUM FROM POWER REACTORS

Calendar year	Annual availability of ^{241}Am in Am mixture, kg year ⁻¹		Annual availability of ^{243}Am in Am mixture, kg year ⁻¹		Annual availability of ^{241}Am from processing Pu stockpile, kg year ⁻¹	
	Case A* (LWR†)	Case B‡ (LWR-U/Pu, FBR§)	Case A* (LWR†)	Case B‡ (LWR-U/Pu, FBR§)	Case A* (LWR†)	Case B‡ (LWR-U/Pu, FBR§)
1975	38	39	50	53	118	119
1980	122	225	167	384	823	806
1985	237	568	312	913	2560	2510
1990	377	695	462	645	6290	6210

*Case A Light water reactors fueled with slightly enriched uranium without plutonium or uranium (^{236}U) recycle. Both cases assume 150 $\times 10^9$ electrical watts installed by 1980

†LWR = Light water reactors

‡Case B Light water reactors with 50% ^{236}U recycle, limited plutonium recycle, and maximum FBR additions beginning in 1980 PWR-U/Pu and FBR

§FBR = Fast breeder reactor includes liquid metal cooled fast breeder reactors

projections such as those shown in Table 2 2 should be regarded only as indicative of the amounts of ^{241}Am and ^{243}Am which may be available from power reactors Hennelly²⁷ estimates that nuclide availability, including that of ^{241}Am and ^{243}Am , from chemical processing in the 1970s of fuels irradiated in power reactors outside the United States will be at least 50% of the U S supply in the same time period

Some suggested methods of using the ^{241}Am - ^{243}Am mixture available from power-reactor fuels are discussed under the subheading "Applications of ^{243}Am " Because of the lack of any profit incentive, however, none of the actual or announced industrial fuel reprocessors in the United States has opted for recovery of americium isotopes (About 1 kg of ^{241}Am and ^{243}Am was recovered during reprocessing of Shippingport blanket fuel under ERDA aegis at the Hanford plant³⁰) Certainly of interest and potentially of great significance in this latter connection is the research program³¹ recently under way at several ERDA laboratories to determine if practicable ways can be found for removing all long-lived actinides from high-level Purex-process liquid waste to facilitate its subsequent treatment and storage³² Eventual success in this venture might provide the impetus for routine recovery in the United States of the ^{241}Am and ^{243}Am in power-reactor fuel

The high-level waste resulting from the reprocessing of 40 metric tons of irradiated (20,000 MWd metric ton⁻¹) UO_2 in the West German WFK (Wiederaufarbeitungsanlage Karlsruhe) facility will contain an estimated³³ 2 kg of ^{241}Am and 0.6 kg of ^{243}Am per year As part of their "Project Actinides," German scientists are devising and testing chemical flow sheets (compare Chap 5) for recovery of the americium isotopes and subsequent irradiation to ^{252}Cf

APPLICATION OF ^{241}Am

Uses Based on Characteristic Radiations

Because of its essentially monoenergetic alpha (5.44 and 5.49 MeV) and gamma (59.6 keV) radiations, ^{241}Am is particularly suited for use as an X-ray excitation source and in a multitude of industrial and scientific gauging, thickness, density, and radiographic measurements Indeed, Seaborg³⁴ states that the list of applications of ^{241}Am may well be the longest of any actinide isotope Crandall³⁵ points out that in terms of cost, convenience, spectral purity, and lifetime, ^{241}Am is superior to all competing radioisotopes as a low-energy gamma source

Neutron sources of various sizes which use ^{241}Am to furnish alpha particles for the reaction $^9\text{Be}(\alpha, n)^{12}\text{C}$ find extensive use in many fields, including petroleum well logging In 1970 Baybarz³⁶ stated that most of the ^{241}Am recovered worldwide was used in the manufacture of neutron sources, preparation of such sources is still (1976) the major outlet for both U S and foreign-produced ^{241}Am

Table 2 3 lists specific uses of ^{241}Am in various fields and industries along with the particular radiation type and property on which they are based This compilation,

Table 2.3
CATALOG OF USES FOR ^{241}Am

Radiation		Application		
Type	Property	Field/industry	Specific use	Refs.
Gamma	Transmission	Medicine	1. Determine mineral content of bone 2. Determine lipid content of soft tissue 3. Evaluate regional pulmonary ventilation 4. Determine body composition	46-61 62 63 64,65
		Industrial gauging	1. Determine thickness of plate glass 2. Determine thickness of metals 3. Determine thickness of Al materials 4. Determine wire thickness	66 67-69 70 71
		Soil science	1. Measure soil moisture and density	72-79
		Hydrology	1. Radiation logging of groundwater 2. Sediment concentration gauge	80 81
	Mineralogy		1. Determine ore concentration	82
		Miscellaneous	1. Maintain helicopter flight formation 2. Dynamics of Freon fire extinguishers	83 84
	Backscatter*	Meteorology	1. Determine atmospheric density	85-86
		Coal	1. Determine ash content of coal	87-91
		Concrete	1. Determine cement in concrete	92
		Mineralogy	1. Mineral mining machine 2. Measure iron content of ores	93 94
Gamma	X-ray excitation source	Mineralogy	1. On-stream analyses of minerals and slurries 2. Analysis of ores	95-98 99-102

Table 2.3 (Continued)

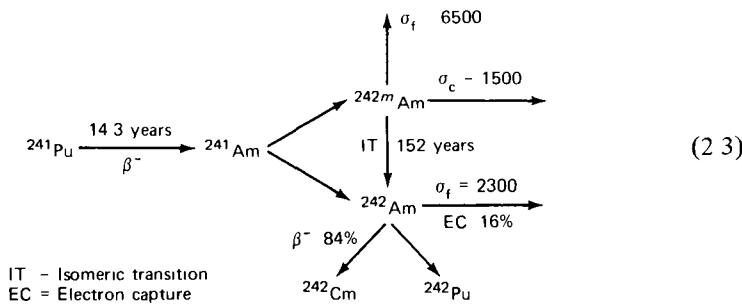
Radiation		Application		
Type	Property	Field/industry	Specific use	Refs
Gamma	Absorption radiography	Analytical chemistry	1 Equipment for production of X rays 2 Assay high purity gold	103-109 110
		Medicine	1 Thyroid diagnosis	111
		Gauging	1 Tile wear measurements 2 Measure thickness of metal coatings on steel 3 Determine paper weight density	112 113-117 118
		Medicine	1 Determine surface-to-volume ratio of bone	119
		Metallurgy	1 Radiography of thin sheets of Al and Mg	120
	Aerospace	Aerospace	1 Nondestructive testing of steel tubing	121
		Miscellaneous	1 Development of radiographic camera	122
	Gamma source	Radiation detectors	1 Calibration of detectors 2 Preparation of low-level gamma sources	123-125 126-129
		Medicine	1 Intracranial pressure sensor	130
Alpha	Ionization	Gas density	1 Ionization gauge for gas densities 2 Determine planetary atmospheric density	131-134 135
		Gas chromatography	1 Ionization detector	136
		Building	1 Air conditioning 2 Lightning rods 3 Smoke-density detector	137 138-144 145-147
		Watchmaking	1 Preparation of luminous paints	148
		Alpha detectors	1 Calibration of alpha spectrometer	149-151
		Gauging	1 Determine uniformity of thin films	152-155

(Table continues on next page.)

Table 2.3 (Continued)

Radiation		Application		
Type	Property	Field/industry	Specific use	Refs.
Alpha	Neutron source	Miscellaneous	1. Measure relative humidity of air 2. Spinning disk aerosol generator 3. Source preparation	156 157 158-164
		Petroleum	1. Well logging	165-168
		Soil science	1. Determine soil density and moisture content	169-173
		Moisture meter	1. Moisture content of coke 2. Moisture content of concrete	174,175 176
		Activation analysis	1. Determine carbon in fly ash 2. Determine protein in grain 3. Determine fluorine in ores 4. Determine silicon in cast iron 5. Determine phosphorus in bone	177 178 179 180 181
		Neutron counter	1. Thermal neutron counter	182
		Neutron-source preparation	1. Preparation of (α, n) and (γ, n) sources 2. Preparation of a $^{241}\text{Am-Be}$ - ^{242}Cm source	183-188 189

* Backscatter methods depend on Compton scattering of gamma rays to return degraded source gamma rays to a detector near the source


although not necessarily complete, includes examples of all the principal areas where ^{241}Am has found some actual or suggested use. Applications of ^{241}Am (and, in some cases, also of ^{243}Am) have been discussed previously by Baxter,¹ Crandall,³⁵ Baybarz,³⁶ Rohrmann,³⁷ Seaborg,^{13,34} Fowler,³⁸ Eichholz,³⁹ Muller,⁴⁰ Keller,⁴¹ Ranschoff,⁴² Strain and Leddicotte,⁴³ West,⁴⁴ and most recently by LeVert and Helminski.⁴⁵ The review paper by LeVert and Helminski is particularly exhaustive and provides detailed information on many of the applications mentioned in Table 2.3. In addition to those cited in Table 2.3, references to the preparation of $^{241}\text{Am-Be}$ neutron sources are given in Chap. 4, Sec. 4.2.2.

Use in Production of ^{242}Cm

The use of ^{241}Am as a target in nuclear reactors for the production of ^{242}Cm is potentially a very important application. Alpha decay of ^{242}Cm produces ^{238}Pu , a radionuclide much in demand as an isotopic power source in space and medical applications. The ^{238}Pu produced by the decay of ^{242}Cm contains minimal amounts (<0.02 ppm)¹⁹⁰ of the undesirable ^{236}Pu contaminant, compared to the 10 ppm or so in the ^{238}Pu produced by ^{237}Np irradiation in a light-water-reactor spectrum.¹⁹¹ This is a distinct advantage for ^{238}Pu to be used in cardiac pacemakers.¹⁹²

Because of its high power output (120 W g^{-1}) and minor shielding requirements, ^{242}Cm has been projected for use in the preparation of heat sources. A 900-W SNAP-11 generator fueled with 7.5 g of ^{242}Cm (as Cm_2O_3) was fabricated at ORNL,¹⁹³ whereas European¹⁹⁴ workers manufactured a thermoelectric battery containing 400 mg of ^{242}Cm . The potential application of ^{242}Cm as an isotopic power source is limited, as Baybarz notes,³⁶ by its relatively short half-life (163 days), in most heat-source applications, the main criterion is that the generator supply a relatively uniform heat output for an extended period of time.

The thermal-neutron-capture sequence involved in producing ^{242}Cm from pure ^{241}Am is

Hennelly²⁷ notes that ^{242}Cm product is lost by ^{242m}Am formation, by ^{242}Am fission, which is a function of neutron flux, by electron capture of ^{242}Am to form ^{242}Pu , and by ^{242}Cm alpha decay giving an optimum yield of about 0.65 g of ^{242}Cm per gram of ^{241}Am burned.

APPLICATION OF ^{243}Am

Its longer half-life and lower specific activity compared to those of ^{241}Am make ^{243}Am particularly useful in determining or redetermining basic aqueous and solid state chemistry of americium, its use in such studies is steadily increasing. By far, however, the most important application of ^{243}Am is its use as a target material for the production of ^{244}Cm and, when mixed with ^{244}Cm , as a target material for the manufacture of ^{252}Cf and other transuranium elements in high neutron-flux reactors.

The neutron-capture sequence involved in the production of ^{244}Cm and ^{252}Cf is shown in Fig. 2.4

Mixed ^{244}Cm – ^{243}Am oxide for use in fabricating targets for irradiation in the HFIR at Oak Ridge is currently prepared by calcining cation-exchange resin containing sorbed ^{244}Cm and ^{243}Am .¹⁹⁵ Techniques for preparing target ^{244}Cm – ^{243}Am oxide microspheres by solgel methods have also been described.^{196,197} Target assemblies containing ^{243}Am and ^{244}Cm are prepared for irradiation in high-flux high-power density cores at Savannah River by uniformly mixing americium–curium oxide material with aluminum powder and pressing the material into compacts,¹⁴ several of these compacts are canned together to form 6-in.-long slugs.

Curium-244, which has an 18-year half-life, has been proposed as an alternative to ^{238}Pu for use in isotopic power sources. Curium-244 has the advantage of a higher thermal power than ^{238}Pu but suffers from having a higher radiation level of neutrons produced by spontaneous fission. The latter failing prevents its use for biomedical purposes. Baybarz³⁶ mentions that, whereas ^{238}Pu heat sources are mainly limited to the thermoelectric mode of generating electric power, the thermionic mode may be envisioned for ^{244}Cm heat sources.

Americium separated from power-reactor fuel contains, as discussed previously, a mixture of ^{241}Am and ^{243}Am in varying ratios. Table 2.4, from Baxter,¹ lists the production of high-mass nuclides obtained by irradiating power-reactor americium (50:50 mixture of ^{241}Am and ^{243}Am) at a flux of 1.75×10^{14} neutrons $\text{cm}^{-2} \text{ sec}^{-1}$.

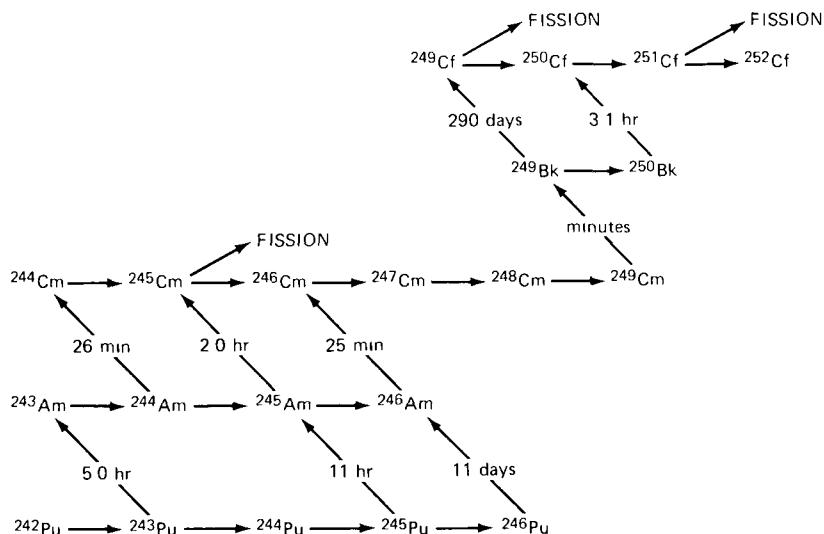
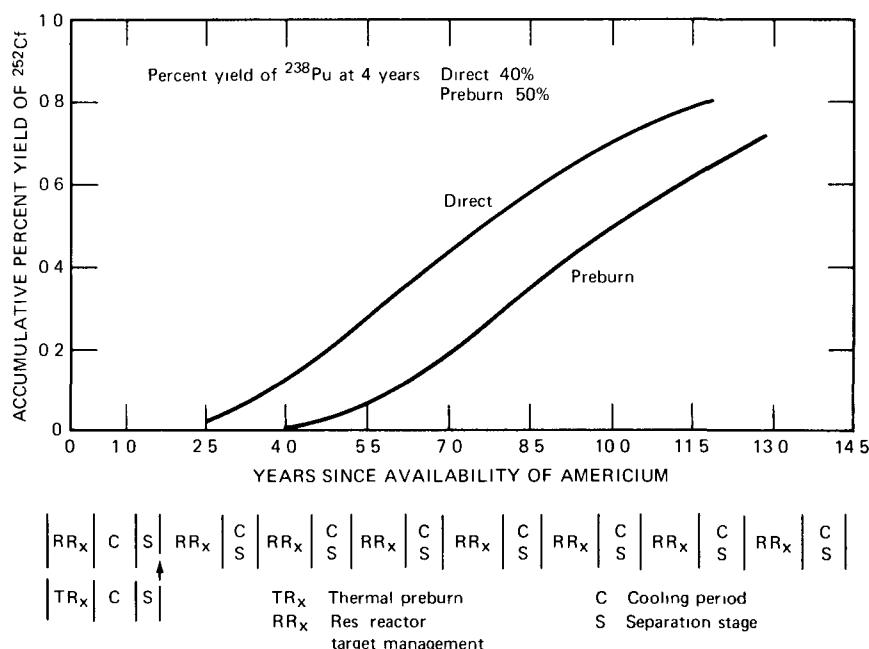


Fig. 2.4 Nuclear reactions for the production of ^{252}Cf . [From R. D. Baybarz, Recovery and Applications of the Transuranium Elements ^{237}Np , ^{238}Pu , ^{241}Am , ^{242}Cm , ^{244}Cm , and ^{252}Cf , *Atomic Energy Review*, 8, 327 (1970).]

Table 2.4


PRODUCTION OF HIGH-MASS NUCLIDES* BY IRRADIATION OF POWER-REACTOR
AMERICIUM AT A FLUX OF 1.75×10^{14} neutrons cm^{-2} sec $^{-1}$

Fluence, 10^{22} neu- trons cm^{-2}	Days	Atoms produced per single "average atom" of ^{241}Am and ^{243}Am irradiated							
		^{238}Pu	^{239}Pu	^{240}Pu	^{241}Pu	^{242}Pu	^{241}Am	^{242}mAm	^{243}Am
0							1.000		1.000
0.2	132	$0.841^{-1}\dagger$	0.182^{-1}	0.278^{-2}	0.643^{-3}	0.702^{-1}	0.356	0.685^{-2}	0.833
0.4	265	0.150	0.540^{-1}	0.132^{-1}	0.437^{-2}	0.906^{-1}	0.124	0.245^{-2}	0.687
0.6	397	0.152	0.693^{-1}	0.246^{-1}	0.939^{-2}	0.960^{-1}	0.426^{-1}	0.849^{-3}	0.561
0.8	529	0.122	0.640^{-1}	0.307^{-1}	0.127^{-1}	0.978^{-1}	0.147^{-1}	0.293^{-3}	0.457
1.0	661	0.870^{-1}	0.497^{-1}	0.309^{-1}	0.137^{-1}	0.989^{-1}	0.514^{-2}	0.102^{-3}	0.371
1.2	794	0.575^{-1}	0.348^{-1}	0.272^{-1}	0.129^{-1}	0.993^{-1}	0.190^{-2}	0.377^{-4}	0.301
1.4	926	0.362^{-1}	0.228^{-1}	0.224^{-1}	0.112^{-1}	0.985^{-1}	0.784^{-3}	0.154^{-4}	0.244
1.6	1058	0.221^{-1}	0.143^{-1}	0.181^{-1}	0.940^{-2}	0.965^{-1}	0.385^{-3}	0.741^{-5}	0.199
1.8	1190	0.132^{-1}	0.872^{-2}	0.148^{-1}	0.781^{-2}	0.935^{-1}	0.229^{-3}	0.435^{-5}	0.162
2.0	1323	0.771^{-2}	0.519^{-2}	0.125^{-1}	0.663^{-2}	0.897^{-1}	0.161^{-3}	0.300^{-5}	0.132
Fluence, 10^{22} neu- trons cm^{-2}	Days	Atoms produced per single "average atom" of ^{241}Am and ^{243}Am irradiated							
		^{242}Cm	^{243}Cm	^{244}Cm	^{245}Cm	^{246}Cm	^{247}Cm	^{248}Cm	
0									
0.2	132	0.304	0.349^{-2}	0.189	0.175^{-2}	0.488^{-3}	0.196^{-5}	0.598^{-7}	
0.4	265	0.277	0.509^{-2}	0.341	0.305^{-2}	0.188^{-2}	0.149^{-4}	0.984^{-6}	
0.6	397	0.191	0.433^{-2}	0.459	0.399^{-2}	0.388^{-2}	0.440^{-4}	0.455^{-5}	
0.8	529	0.119	0.300^{-2}	0.549	0.468^{-2}	0.631^{-2}	0.902^{-4}	0.129^{-4}	
1.0	661	0.701^{-1}	0.189^{-2}	0.616	0.518^{-2}	0.905^{-2}	0.152^{-3}	0.279^{-4}	
1.2	794	0.403^{-1}	0.112^{-2}	0.664	0.554^{-2}	0.120^{-1}	0.228^{-3}	0.515^{-4}	
1.4	926	0.229^{-1}	0.651^{-3}	0.696	0.578^{-2}	0.151^{-1}	0.316^{-3}	0.849^{-4}	
1.6	1058	0.129^{-1}	0.371^{-3}	0.716	0.594^{-2}	0.182^{-1}	0.412^{-3}	0.129^{-3}	
1.8	1190	0.729^{-2}	0.210^{-3}	0.727	0.602^{-2}	0.214^{-1}	0.514^{-3}	0.185^{-3}	
2.0	1323	0.409^{-2}	0.119^{-3}	0.730	0.605^{-2}	0.246^{-1}	0.621^{-3}	0.253^{-3}	

*From Ref. 3.

[†]Exponents are powers of 10 by which the number is to be multiplied.

One method of using power-reactor ^{241}Am - ^{243}Am mixtures is to preburn them in a thermal reactor to burn up ^{241}Am , preferentially to ^{242}Cm which would decay to ^{238}Pu . After the ^{243}Am -rich target mixture is chemically separated, it could be recycled to a resonance reactor for the production of ^{252}Cf . An alternative, according to Christman and Cornman,¹⁹⁰ is to irradiate the target mixture in the resonance reactor to accelerate the production of ^{252}Cf from ^{243}Am and, at the same time, to produce ^{238}Pu from ^{241}Am . Figure 25 shows the production yields for ^{252}Cf and ^{238}Pu which might be realized for this latter alternative with the target management schedules that are necessary because the ^{242}Cm alpha activity limits and/or delays chemical separation and target-fabrication operations.

Fig. 2.5 Yields of ^{252}Cf and ^{238}Pu from americium [From R. P. Christman and W. R. Cornman, Utilization of Power Reactor Americium for ^{252}Cf Production, *Transactions of the American Nuclear Society*, 12, 54 (1969).]

REFERENCES

- 1 R. G. Baxter, Actinide Properties and Methods of Production, USAEC Report DP-1269, Savannah River Laboratory, December 1972
- 2 A K Williams, Americium Capability at Rocky Flats, USAEC Report RFP 349, Dow Chemical Company, 1964

- 3 J. L. Simmons (Comp.), List of AEC Radioisotope Customers with Summary of Radioisotope Shipments FY 1973, USAEC Report BNWL-1824, Battelle Memorial Institute, Pacific Northwest Laboratories, June 1974
- 4 Nuclide Price Changes, *Isotop Radiat Technol.*, 8(2) 243 (Winter 1970-1971)
- 5 Prices for Two Radioisotopes Being Lowered, *Isotop Radiat Technol.*, 6(1) 119 (Fall 1968)
- 6 Australia Supplies Solid Radioactive Sources for Calibration Purposes, *Isotop Radiat Technol.*, 6(3) 338 (Spring 1969).
7. *Radiochemicals Catalog 1972/73*, Amersham/Searle Corporation, Arlington Heights, Ill
- 8 New French Isotope Catalog, *Isotop Radiat Technol.*, 7(1) 123 (Fall 1969).
9. J. L. Crandall and J. A. Smith, A Description of the Savannah River High-Flux Charge, *Trans Amer Nucl Soc.*, 8 53 (1965).
10. G. T. Seaborg, J. L. Crandall, P. R. Fields, A. Ghiors, O. L. Keller, Jr., and R. A. Penneman, Recent Advances in the United States of the Transuranium Elements, in *Proceedings of the Fourth International Conference on the Peaceful Uses of Atomic Energy, Geneva, 1971*, Vol 7, p 487, United Nations, New York, 1972.
11. D. E. Ferguson and J. E. Bigelow, Production of ^{252}Cf and Other Transplutonium Isotopes in the United States of America, *Actinides Rev.*, 1 213 (1969)
- 12 D. E. Ferguson (Ed.), ORNL Transuranium Program The Production of Transuranium Elements, *Nucl Sci Eng.*, 17 435 (1963).
13. G. T. Seaborg, Mass Production and Practical Applications of Actinide Elements, *Isotop Radiat Technol.*, 6(1) 1 (Fall 1968).
14. T. C. Gorrell, Transplutonium Production, *Trans Amer Nucl Soc.*, 14 343 (1971)
- 15 C. J. Banick, Americium, Curium, and Plutonium Yields in SRP High-Flux Irradiations, USAEC Report DP-1157, Savannah River Laboratory, July 1968
16. H. P. Holcomb, Yields of Transcurium Nucleides in SRP High-Flux Reactor, USAEC Report DP-1137, Savannah River Laboratory, December 1967.
- 17 W. P. Overbeck, C. H. Ice, and G. Dessauer, Production of Transplutonium Elements at Savannah River, USAEC Report DP-1000, Savannah River Laboratory, November 1965
- 18 J. L. Crandall, The Savannah River High-Flux Demonstration, USAEC Report DP-999, Savannah River Laboratory, June 1965.
19. C. E. Winter, The High-Flux Isotope Reactor, *Nucl Sci Eng.*, 17 443 (1963)
20. J. A. Swartout, A. L. Bach, T. E. Cole, R. D. Cheverton, G. M. Adamson, and C. E. Winter, The Oak Ridge High-Flux Isotope Reactor, in *Proceedings of the Third International Conference on the Peaceful Uses of Atomic Energy, Geneva, 1964*, Vol 7, p 360, United Nations, New York, 1965
21. C. A. Rohrmann, Values in Spent Fuel from Power Reactors, USAEC Report BNWL-25, Battelle Memorial Institute, Pacific Northwest Laboratories, March 1965
- 22 E. J. Hennelly and R. R. Hood, Radioisotope Production Capabilities of U. S. Power Reactors, USAEC Report DP-1015, Savannah River Laboratory, November 1965
23. D. E. Deonigi and E. A. Eschbach, Production and Indifference Pricing of Transuranium Isotopes, USAEC Report BNWL-223, Battelle Memorial Institute, Pacific Northwest Laboratories, March 1965
24. R. W. McKee, D. E. Deonigi, and D. R. Haffner, Isotope Production Projections for the U.S. Nuclear Power Reactors, USAEC Report BNWL-SA-1529, Battelle Memorial Institute, Pacific Northwest Laboratories, March 1968
- 25 D. E. Deonigi, Isotope Production and Availability from Power Reactors, USAEC Report BNWL-716, Battelle Memorial Institute, Pacific Northwest Laboratories, July 1968.
26. D. E. Deonigi, ^{241}Am and ^{238}Pu Availability, in Pacific Northwest Laboratory Division of Isotope Development Programs, Quarterly Report, November 1968-January 1969, K. Drumheller (Ed.), USAEC Report BNWL-1010, Battelle Memorial Institute, Pacific Northwest Laboratories, February 1969.

27. E. J. Hennelly, Large-Scale Production of Radioisotopes, in *Radioisotope Engineering*, G. G. Eichholz (Ed.), pp. 47-134, Marcel Dekker, Inc., New York, 1972
28. P. M. Wood, Isotope Production and Development, *Isotop. Radiat. Technol.*, 9(2) 129 (Winter 1971-1972).
29. L. W. Lang, D. E. Deonigi, and C. A. Rohrmann, Power Cost Reduction from Isotope Revenues, *Nucl. Appl.*, 3 665 (1967).
30. E. J. Wheelwright, F. P. Roberts, and L. A. Bray, Simultaneous Recovery and Purification of Pm, Am, and Cm by the Use of Alternating DTPA and NTA Cation-Exchange Flowsheets, USAEC Report BNWL-SA-1492, Battelle Memorial Institute, Pacific Northwest Laboratories, March 1968
31. J. W. Bartlett, L. A. Bray, L. L. Burger, R. E. Burns, and J. L. Ryan, Feasibility Evaluation and R&D Program Plan for Transuranic Partitioning of High-Level Fuel Reprocessing Waste, USAEC Report BNWL-1776, Battelle Memorial Institute, Pacific Northwest Laboratories, November 1973.
32. J. O. Blomeke, J. P. Nichols, and W. C. McClain, Managing Radioactive Wastes, *Phys. Today*, 26 36 (1973).
33. G. Hohlein and R. Gasteiger, Das Actiniden-Projekt der Gesellschaft fuer Kernforschung mbH, in Proceedings of Seminar on Radiation Protection Problems Relating to Transuranium Elements, Karlsruhe, 1970 (CONF-700930)
34. G. T. Seaborg, The Synthetic Actinides From Discovery to Manufacture, *Nucl. Appl. Technol.*, 9 830 (1970).
35. J. L. Crandall, Applications of Transplutonium Elements, USAEC Report DP-MS-71-52, Savannah River Laboratory, September 1971
36. R. D. Baybarz, Recovery and Application of the Transuranium Elements ^{237}Np , ^{238}Pu , ^{241}Am , ^{242}Cm , ^{244}Cm , and ^{252}Cf , *At. Energy Rev.*, 8 327 (1970).
37. C. A. Rohrmann, Availability and Applications of Radioactive and Stable By-Products from the Chemical Processing of Spent Nuclear Power Fuels, USAEC Report BNWL-SA-4108, Battelle Memorial Institute, Pacific Northwest Laboratories, 1971
38. E. E. Fowler, Recent Advances in Applications of Isotopes and Radiation in the United States, in *Proceedings of the Fourth International Conference on the Peaceful Uses of Atomic Energy, Geneva, 1971*, Vol. 14, p. 29, United Nations, New York, 1972
39. G. G. Eichholz, *Radioisotope Engineering*, Marcel Dekker, Inc., New York, 1972
40. W. Muller, Possible Applications of Transuranium Elements, *Chem. Ztg.*, 95 285 (1971).
41. C. Keller, Preparation and Application of Transuranium Elements, *Naturwiss. Rundsch.*, 25 331 (1972).
42. M. J. A. Ranschoff, Americium, *Energ. Nucl.*, 7 246 (1965)
43. J. E. Stram and G. W. Leddicotte, The Preparation, Properties, and Uses of Americium-241 Alpha, Gamma, and Neutron Sources, USAEC Report ORNL-3335, Oak Ridge National Laboratory, September 1962, also in *Nucleonics*, 20 90 (1962).
44. R. West, Low-Energy Gamma-Ray Sources, *Nucleonics*, 11 20 (1953).
45. F. E. LeVert and E. L. Helminski, Literature Review and Commercial Source Evaluation of Americium-241, USAEC Report ORO-4333-1, Tuskegee Institute, June 1973
46. J. R. Cameron and J. A. Sorenson, Measurement of Bone Mineral and Body Composition in Vivo, in *Proceedings of the Fourth Nordic Meeting of Chemical Physics*, A. Rytila and E. Spring (Eds.), Helsinki, 1966.
47. J. R. Cameron and J. Sorenson, Measurement of Bone Mineral in Vivo An Improved Method, *Science*, 142 230 (1963)
48. A. J. Gilson, M. J. Cohen, and F. Day, Bone Density Measurement by Means of Radioisotopic Source Photon Attenuation, presented at Society of Nuclear Medicine, 12th Annual Meeting, Bal Harbour, Fla., 1965

49. Bo E. R. Nilsson, Post-Traumatic Osteopenia A Quantitative Study of the Bone Mineral Mass in the Femur Following Fracture of the Tibia in Man Using ^{241}Am as a Photon Source, *Acta Orthop Scand*, 37 (Suppl 91) 1 (1966).
50. J. A. Sorenson and J. R. Cameron, Measurement of Bone Mineral by the Direct Photon Absorption Method Principles and Instrumentation, in Conference on Progress in Methods of Bone Mineral Measurement, Bethesda, Md, Feb 15, 1968, USAEC Report CONF-680211-1 (COO-1422-21), 1968
51. E. M. Davis, L. H. Lanzl, and A. B. Cox, Detection, Prevention, and Retardation of Menopausal Osteoporosis, presented at International Symposium on Osteoporosis, Bronx, N.Y., June 25-26, 1969, USAEC Report CONF-690633-1
52. Bo E. Nilsson, Bone Densitometry Using a Single Beam from a Radionuclide Source, in Conference on Progress in Methods of Bone Mineral Measurements, Bethesda, Md, 1968 (CONF-680211, pp 319-328)
53. P. F. Judy, Theoretical Accuracy and Precision in the Photon Attenuation Measurement of Bone Mineral, in Proceedings of Bone Measurement Conference, Chicago, Ill, May 22-23, 1970, J. R. Cameron (Ed.), USAEC Report CONF-700515, pp 1-21
54. L. H. Lanzl, A. Cox, G. Dobben, R. Olson, J. Toman, and A. Schrodit, Additional System for Bone Densitometry Studies, in Proceedings of Bone Measurement Conference, Chicago, Ill, May 22-23, 1970, J. R. Cameron (Ed.), USAEC Report CONF-700515, pp 33-47
55. A. G. Schrodit, R. E. Schavey, and J. E. Kus, Features and Performance Characteristics of the Packard Osteodensitometer, in Proceedings of Bone Measurement Conference, Chicago, Ill, May 22-23, 1970, J. R. Cameron (Ed.), USAEC Report CONF-700515, pp 48-57
56. B. Roos, B. Rosengren, and H. Skoeldborn, Determination of Bone Mineral Content in Lumbar Vertebrae by a Double Gamma Ray Technique, in Proceedings of Bone Measurement Conference, Chicago, Ill, May 22-23, 1970, J. R. Cameron (Ed.), USAEC Report CONF-700515, pp 243-254
57. W. Burch and P. Block, Two Wavelength Techniques for the Measurement of Bone Mineral Content in Vivo, in Proceedings of Bone Measurement Conference, Chicago, Ill, May 22-23, 1970, J. R. Cameron (Ed.), USAEC Report CONF-700515, pp 263-271
58. R. B. Mazess, J. R. Cameron, R. O'Connor, and D. Knutzen, Accuracy of Bone Mineral Measurement, *Science*, 145 388 (1964)
59. E. A. Spring, Simplified Method for Bone Mineral Measurements in Vivo, *Int J. Appl. Radiat. Isotop.*, 18 700 (1967).
60. R. R. West and G. W. Weed, The Measurement of Bone Mineral in Vivo by Photon Beam Scanning, *Brit J. Radiol.*, 43 886 (1970)
61. B. E. Nilsson and N. E. Westlin, Bone Density in Athletes, *Clin Orthop.*, 77 179 (1971).
62. W. G. Schmonsees and L. E. Preuss, Two Photon Absorptiometric Analysis Using ^{109}Cd , *Clin Orthop.*, 77 272-273
63. M. W. Zelefsky, Evaluation of Regional Pulmonary Ventilation by Gamma Ray Densitography, *Radiology*, 91 1208 (1968).
64. R. B. Mazess, J. R. Cameron, and J. A. Sorenson, Determining Body Compositions by Radiation Absorption Spectrometry, *Nature (London)*, 228 771 (1970).
65. J. R. Cameron, Body Composition by Transmitted Gamma Ray Measurements, *Trans Amer. Nucl. Soc.*, 15 42 (1972).
66. H. Langel, Thickness Measurements on Hot Glass Sheets in the Manufacture of Plate Glass, Euratom Report EUR-3269 d, February 1967.
67. J. F. Cameron and G. Clayton, *Radioisotope Instruments*, Part 1, Pergamon Press, Ltd, Oxford, 1971
68. H. Miwa and M. Mizukoshi, Metal Thickness Gauge Using ^{241}Am as the Radiation Source Its Performance and Examples, *Genshiryoku Kogyo*, 12 67 (1966)
69. H. Langel, Thickness and Density Measurements with the Aid of Nuclear Radiation, *Kerntechnik*, 12 219 (1970).

70. G. Boehme, Thickness Gaging by Means of ^{85}Kr Bremsstrahlung and ^{241}Am Sources with Special Respect to Aluminum Materials, *Isotopenpraxis*, 3 262 (1967).

71. R. Plesch, Radioisotope Thickness Measurements in the Manufacture of Wire, *Siemens Rev*, 39 223 (1972).

72. L. G. King, Gamma-Ray Attenuation for Soil-Water Content Measurements Using ^{241}Am , in *Isotope and Radiation Techniques in Soil Physics and Irrigation Studies*, Symposium Proceedings, Istanbul, 1967, International Atomic Energy Agency, Vienna, 1967 (STI/PUB/158, pp 17-29).

73. J. C. Corey, S. F. Peterson, and M. A. Wakat, Measurement of Attenuation of ^{137}Cs and ^{241}Am Gamma Rays for Soil Density and Water Content Determinations, *Soil Sci Soc Amer., Proc*, 35 215 (1971).

74. J. G. DeSwart and P. H. Groeneveld, Column Scanning with 60 Kev Gamma Radiation, *Soil Sci*, 112 419 (1971).

75. W. H. Gardner and C. Calissendorff, Gamma-Ray and Neutron Attenuation in Measurement of Soil Bulk Density and Water Content, in *Isotope and Radiation Techniques in Soil Physics and Irrigation Studies*, Symposium Proceedings, Istanbul, 1967, International Atomic Energy Agency, Vienna, 1967 (STI/PUB/158, pp 101-112).

76. G. Vachaud, J. Cisler, J. L. Thony, and L. De Backer, Utilisation de l'Emission Gamma de l'Americium-241 pour la Mesure de la Teneur en Eau d'Echantillons de Sol non Saturés (in French), in *Isotope Hydrology, 1970*, Symposium Proceedings, Vienna, 1970, International Atomic Energy Agency, Vienna, 1970 (STI/PUB/255).

77. W. H. Gardner, G. S. Campbell, and C. Calissendorff, Water Content and Soil Bulk Density Measured Concurrently Using Two Gamma Photon Energies, USAEC Report RLO-1543-6, 1969.

78. B. D. Soane, Dual Energy Gamma Ray Transmission for Coincident Measurement of Water Content and Dry Bulk Density of Soil, *Nature*, 214 1273 (1967).

79. D. E. Smiles, G. Vachaud, and M. Vauchin, A Test of the Uniqueness of the Soil Moisture Characteristic During Transient, Nonhysteretic Flow of Water in a Rigid Soil, *Soil Sci Soc Amer., Proc.*, 35 529 (1971).

80. W. S. Keys, Application of Radiation Logs to Groundwater Hydrology, in *Isotopes in Hydrology*, Symposium Proceedings, Vienna, 1966, International Atomic Energy Agency, Vienna, 1967 (STI/PUB/141, pp 477-488).

81. J. R. McHenry, N. L. Coleman, J. C. Willis, C. E. Murphree, G. C. Bolton, O. W. Sampson, and A. C. Gill, Performance of Nuclear-Sediment Concentration Gages, Symposium Proceedings Vienna, 1966, International Atomic Energy Agency, Vienna, 1967 (STI/PUB/141, pp 207-225).

82. H. Fushimi, Studies on the Determination of Ore Concentration and the Water Content by Means of Radioactive ^{241}Am , *Nippon Kogyo Kaishi*, 83 568 (1967).

83. L. K. Hahn, C. E. Krause, and O. L. Utt, Jr., Helicopter Close-Order Formation Keeping System, USAEC Report COO-1471-7, Industrial Nucleonics Corp, August 1968.

84. A. Notea and Y. Segal, Investigation of Freon Fire-Extinguishing Systems with a Nucleonic Gage, *Mater Eval*, 30 153 (1972).

85. D. B. Hawkesell, Measurement of Atmosphere Density Using Gamma Backscatter Techniques, presented at Radioisotope Applications in Aerospace Symposium, Dayton, Ohio, 1966.

86. R. P. Gardner and D. R. Whitaker, Experimental and Theoretical Studies on the Gamma-Ray Scattering Techniques for Measuring Atmospheric Density, *Nucl Eng Des*, 7. 13 (1968).

87. A. Trost, Determination of the Ash Contents of Coal, Thickness Gauging of Glass, Plastics, and Metals with ^{241}Am Gamma Rays, in *Radioisotope Instruments in Industry and Geophysics*, Symposium Proceedings, Warsaw, 1965, International Atomic Energy Agency, Vienna, 1966 (STI/PUB/112).

88. T. Tanemura and H. Suita, Studies on Radioactive X- and Gamma-Ray Sources Applied to the Determination of Ash Content of Coal, *Oyo Butsuri*, 36: 444 (1967).
89. Coal-Ash Measurement with Two Radioisotopic Radiation Sources, *Isotop. Radiat. Technol.*, 7(4): 464 (Summer 1970).
90. J. F. Cameron, Measurement of Ash Content and Calorific Value of Coal with Radioisotope Instrument, in Proceedings of 2nd Symposium on Low-Energy X- and Gamma Sources and Applications, Austin, Tex., March 27-29, 1967, P. S. Baker and Martha Gerrard (Eds.), USAEC Report ORNL-IIC-10, Vol. 2, pp. 903-928, Oak Ridge National Laboratory, September 1967.
91. R. Crosland, D. A. Hall, and M. K. Laverick, Continuous Ash Monitoring and Coal Blending Processes, in *Mineral and Extractive Metallurgy*, M. J. Jones (Ed.), pp. 179-200, Institute of Mining and Metallurgy, London, 1971.
92. Nuclear Applications in Highway Research, *Isotop. Radiat. Technol.*, 8(2): 146-165 (Winter 1970-1971).
93. L. R. Cooper and A. G. Lawrence, Mineral Mining Machine, British Patent 1,045,874, October 1966.
94. K. W. Ostrowski, K. Jelen, and E. Rulikowska, Radiometric Analyses with High-Yield Proportional X-Ray Counters and Low-Activity Sources, in Proceedings of 2nd Symposium on Low-Energy X- and Gamma Sources and Applications, Austin, Tex., March 27-29, 1967, P. S. Baker and Martha Gerrard (Eds.), USAEC Report ORNL-IIC-10, Vol. 2, pp. 944-962, Oak Ridge National Laboratory, September 1967.
95. K. G. Carr-Brion and J. R. Rhodes, On-Stream X-Ray Fluorescence Analysis of Ore Slurries with a Radioisotope X-Ray Source, *Instrum. Pract.*, 19: 1007 (1965).
96. Yu. P. Betin, I. A. Krampit, and S. A. Pel'ts, Radioisotopic Sources ^{109}Cd , $^{147}\text{Pm}/\text{Al}$, ^{241}Am and ^{60}Co for Roentgenometric Analysis of Minerals, *Geofiz. App.*, 49: 55 (1972).
97. W. K. Ellis, R. A. Fookes, V. L. Gravitis, and J. S. Watt, Radioisotope X-Ray Techniques for On-Stream Analysis of Slurries. Feasibility Studies Using Solid Samples of Mineral Products, *Int. J. Appl. Radiat. Isotop.*, 20: 691 (1969).
98. K. G. Carr-Brion, Performance of an On-Stream Radioisotope X-Ray Fluorescence Analyzer, *Trans. Inst. Mining Met.*, 76: C94 (1957).
99. J. R. Rhodes, Some Examples of Ore and Alloy Analysis Using a Multipurpose Portable Analyzer, in Proceedings of 2nd Symposium on Low-Energy X- and Gamma Sources and Applications, Austin, Tex., March 27-29, 1967, P. S. Baker and Martha Gerrard (Eds.), USAEC Report ORNL-IIC-10, Vol. 2, p. 843, Oak Ridge National Laboratory, September 1967.
100. J. R. Rhodes, Optimization of Excitation and Detection Techniques of Silver Ores by Radioisotope X-Ray Spectrometry, in Proceedings of 2nd Symposium on Low-Energy X- and Gamma Sources and Applications, Austin, Tex., March 27-29, 1967, P. S. Baker and Martha Gerrard (Eds.), USAEC Report ORNL-IIC-10, Vol. 1, p. 442, Oak Ridge National Laboratory, September 1967.
101. J. Kuusi, M. Virtanen, and P. Jauho, Heavy Element Analysis by Isotope-Excited X-Ray Fluorescence, *Nucl. Technol.*, 13: 216 (1972).
102. J. Charbucinski, Selective Nonspectrometric Gamma-Gamma Method of Determining the Zr and Pb Content in Polymetallic Ores, *Nucleonika*, 15: 563 (1970).
103. J. W. Watt, Method and Apparatus for Producing X-Rays of Particular Wave Lengths and Applications Thereof, Canadian Patent 785,195, May 1967.
104. J. DeNeef, F. Adams, and J. Hoste, Radioisotopic X-Ray Analysis. Part I. An Instrumental Configuration for the Sensitive Determination of a Number of Elements, *Anal. Chim. Acta*, 59: 333 (1972).
105. J. R. Rhodes, Improvements in or Relating to Apparatus for X-Ray Analysis, British Patent 1,065,918, April 1967.

106. J. S. Watt, Use of Gamma-Ray Excited X-Ray Sources in X-Ray Fluorescence Analysis, *Int J Appl Radiat Isotop.*, 18 383 (1967).
107. R. W. Tolmie, Portable X-Ray Fluorescence Analyzer, in Proceedings of 2nd Symposium on Low-Energy X- and Gamma Sources and Applications, Austin, Tex., March 27-29, 1967, P. S. Baker and Martha Gerrard (Eds.), USAEC Report ORNL-IIC-10, Vol. 2, p 817, Oak Ridge National Laboratory, September 1967
108. J. S. Watt, Some Recent Developments in Low-Energy X- and Gamma-Ray Sources and Applications in Australia, in Proceedings of 2nd Symposium on Low-Energy X- and Gamma Sources and Applications, Austin, Tex., March 27-29, 1967, P. S. Baker and Martha Gerrard (Eds.), USAEC Report ORNL-IIC-10, Vol. 2, p. 665, Oak Ridge National Laboratory, September 1967.
109. J. S. Watt, Gamma-Ray Excited X-Ray Sources, *Int J Appl Radiat Isotop.*, 15 617 (1964).
110. G. C. Snyman, Rapid Assay of High-Purity Gold by Means of Radioisotope X-Ray Fluorimetry, *Int. J. Appl. Radiat. Isotop.*, 18 243 (1967).
111. P. B. Hoffer, Fluorescent Thyroid Scanning, *Amer J Roentgenol, Radium Ther Nucl Med.*, 105 721 (1969).
112. A. Kemper, Wear Measurements by Means of γ -X-Fluorescence, Euratom Report EUR-3627 e, 1967, also in *Wear*, 12 55 (1968).
113. J. Cavailles and P. Martinelli, Continuous Measurement of Galvanization Coatings by Means of X-Ray Fluorescence, in *Radioisotope Instruments in Industry and Geophysics*, Symposium Proceedings, Warsaw, 1965, International Atomic Energy Agency, Vienna, 1966 (STI/PUB/112, Vol. I, p 227).
114. S. Margolinas, X-Ray Fluorescence Applied to the Measurement of Zinc Coating in the Galvanizing Industry, in Proceedings of 2nd Symposium on Low-Energy X- and Gamma Sources and Applications, Austin, Tex., March 27-29, 1967, P. S. Baker and Martha Gerrard (Eds.), USAEC Report ORNL-IIC-10, Vol. 2, p 805, Oak Ridge National Laboratory, September 1967.
115. J. F. Cameron and T. Florkowski, Radioisotope Sources of Low-Energy Electromagnetic Radiation and Their Use in Analysis and Measurement of Coating Thicknesses, in Proceedings of Symposium on Low-Energy X- and Gamma Sources and Applications, Chicago, Ill., October 20-21, 1964, P. S. Baker and Martha Gerrard (Eds.), USAEC Report ORNL-IIC-5, Oak Ridge National Laboratory, October 1965.
116. Y. M. Chen and B. B. Cahill, Industrial Applications of Low-Energy Gamma-Emitting Isotopes, in *Applications of Low Energy X and Gamma-Rays*, C. A. Ziegler (Ed.), Gordon and Breach, Science Publishers, Inc., New York, 1971.
117. K. E. Duftschmid, A Versatile Field Instrument for X-Ray Fluorescence Analysis, in *Nuclear Techniques and Mineral Resources*, Symposium Proceedings, Buenos Aires, 1968, International Atomic Energy Agency, Vienna, 1969 (STI/PUB/198, p 325).
118. J. Kuusi, M. Hietala, H. Puolakka, and A. I. Lehtinen, A Radioisotope X-Ray Method for On-Line Measurement of Fourdriner Machine Water Removal on the Wire Section, *Tappi*, 52 2378 (1969).
119. E. Lloyd, R. E. Rowland, D. Hodges, and J. H. Marshall, Surface to Volume Ratios of Bone Determined by Computer Analysis of Microradiographs, *Nature (London)*, 218 365 (1968).
120. N. W. D. Chrimes, Low-Energy Isotopes for Industrial Radiography, *At. Energy Aust.*, 11 13 (1968).
121. G. Locher, Americium-241 as a Nondestructive Testing Tool for the Aircraft and Space Industry, in Proceedings of Symposium on Low-Energy X- and Gamma Sources and Applications, Chicago, Ill., October 20-21, 1964, P. S. Baker and Martha Gerrard (Eds.), USAEC Report ORNL-IIC-5, Oak Ridge National Laboratory, October 1965.
122. J. H. Gillette, Review of Radioisotopes Program 1967, USAEC Report ORNL-4329, Oak Ridge National Laboratory, November 1968.

- 123 J. H. McCrary, Use of Radioisotopes in Detector Calibrations, *Isotop Radiat Technol.*, 7(4) 436 (Summer 1970)
124. S. V. Damle and G. Joseph, Radioactive Pulse Light Source for In-Flight Calibration of Scintillator Photomultiplier Assembly, *Nucl Instrum. Methods*, 65 123 (1968).
- 125 I. Ahmad and M. Wahlgren, Long-Lived Standards for the Efficiency Calibration of Ge(Li) Detectors, *Nucl Instrum. Methods*, 99 333 (1972).
126. R. C. Milhan, The Preparation of an Americium Gamma Source, USAEC Report DP-173, Savannah River Laboratory, August 1956.
- 127 K. H. Ansell and E. G. Hall, Recent Developments in Low-Energy Photon Sources, in *Applications of Low Energy X and Gamma Rays*, C. A. Ziegler (Ed.), pp 357-371, Gordon and Breach, Science Publishers, Inc., New York, 1971
- 128 J. V. Boggs, Portable Low-Energy Photon Calibration Source, *Trans Amer Nucl Soc.*, 13 880 (1970).
129. R. S. Pressly, Design and Uses of Low-Energy Gamma- and X-Ray Sources, in *Applications of Low-Energy Gamma and X-Ray Sources*, C. Ziegler (Ed.), p 380, Gordon and Breach, Science Publishers, Inc., New York, 1970.
130. G. Bloom, K. Murphy, and T. Cox, An Isotope-Powered, Indwelling Intracranial Pressure Sensor, *Trans Amer. Nucl Soc.*, 13 509 (1970).
- 131 W. Brandt, M. D. D'Agostino, and A. J. Favale, Alpha-Particle Densitometer with Variable Response, *Nucl Technol.*, 11 99 (1971).
- 132 R. N. Brown, D. Balber, and G. V. Rylsky, Device for Measuring Gas Pressure by Means of Alpha Particles, U. S. Patent 3,141,970, July 1964.
133. R. P. Gardner and R. L. Ely, Jr., *Radioisotope Measurements Applications in Engineering*, pp. 287-302, Reinhold Publishing Corporation, New York, 1967.
134. P. Audrioux and B. Iapteff, Improvement of Ionization Gauges Employing a Radioactive Source L'Alphavac 500, in Fourth General Meeting of International Organization for Vacuum Science and Technology, Manchester, England, 1968 (CONF-680401, p 675)
135. F. A. Hansen and B. Sellers, Feasibility Study of Alpha Particle Densitometer for Measuring Planetary Atmospheric Density, National Aeronautics and Space Administration, Report NASA-CR-66825, June 1969.
136. G. R. Shoemaker, D. C. Fenimore, and A. Zlatkis, Radiation Sources for Ionization Detectors in Gas Chromatography, *J. Gas Chromatogr.*, 3 285 (1965).
137. C. G. Invernizzi, Ionic Conditioning of Air, in Conference on Isotope Radiation Techniques in the Building Industry, Brussels, October 28-30, 1970, USAEC Report CONF-701027-2, 1970, through USAEC Report ORNL-tr-2427, translated by Helen Warren, Oak Ridge National Laboratory, 1970.
138. C. G. Invernizzi, Air Ionization Used for Lightning Protection, *Trans Amer Nucl Soc.*, 14 469 (1970).
- 139 G. Berio, The Use of Ionization in the Air for Lightning Protection, *Isotop Radiat. Technol.*, 8(2) 178 (Winter 1970-1971).
140. G. Berio, Lightning Conductor System Using Radioisotopes, in Conference on Radiation and Isotope Techniques in Civil Engineering, Brussels, Belgium, October 28, 1970, Euratom Report Eurisotop-55, Vol. 2, pp. 891-908.
141. H. Baatz, Radioactive Isotopes Do Not Improve Lightning Protection, *Elektrotech Z.*, A93 101 (1972).
142. K. Ritter, Lightning Rod with Ionizing Field, U. S. Patent 3,328,508, June 1967.
143. K. Ritter, Lightning Rod with Great Ionizing Power, U. S. Patent 3,350,496, October 1967.
144. Lightning Rods Go Radioactive, *Elec World*, 173 36 (1970).
145. J. B. Dance, Radioisotopes Speed Fire Detection, *Instrument Practice*, 20 975 (1966).
146. E. Meilh and T. Lampert, Ionization Fire Alarm System, U. S. Patent 3,353,170, November 1967

- 147 USAEC Radioisotope Licensing Changes, Smoke Detectors, *Isotop Radiat Technol*, 6(4) 446 (Summer 1969).
148. J. Mehl, The Choice of Radionuclides for Luminous Paints in the Watchmaking Industry, *Atomkernenergie*, 10 115 (1965).
149. E. K. Stepanov and N. V. Tyutikov, Use of α -Radiation Sources for the Calibration and Determination of the Basic Parameters of the Semiconductor Type α Spectrometers, *Izmer Tekh*, 5 49 (1967).
- 150 B M Aleksandrov, A F Belyatskii, I B Berkovich, et al, Reference Spectrometric Alpha Sources, in *Standardization of Radionuclides*, Symposium Proceedings, Vienna, 1966, International Atomic Energy Agency, Vienna, 1967 (STI/PUB/88).
151. M. L. Acena, Preparation of Radioactive Sources by Electrodeposition for Alpha Spectrometry, in *Standardization of Radionuclides*, Symposium Proceedings, Vienna, 1966, International Atomic Energy Agency, Vienna, 1967 (STI/PUB/88).
- 152 F. O. Halliday, T. O. Passell, and L. E. Bailey, The Use of ^{241}Am Alphas To Measure Properties of Thin Films, Fifth National Meeting, Society for Applied Spectroscopy, Chicago, Ill., 1966.
153. H. L. Adair, Target Thickness and Uniformity Measurements Using Charged Particles, in Proceedings of the Third International Symposium on Research Materials for Nuclear Measurements, Gatlinburg, Tenn., October 5-8, 1971, USAEC Report CONF-711002, pp. 307-320.
154. H. L. Anderson, Thickness Measurements Using Alpha Particles, U. S. Patent 3,193,680, July 1965.
155. K. Teranishi, Measurements of the Thickness of Thin Polymer Films with a Semiconductor α -Particle Detector, *Nucl Eng (Tokyo)*, 11 46 (1965).
156. H. K. Hallowes and A. E. Hodgson, An Alpha-Particle Hygrometer, in *Radioisotope Instruments in Industry and Geophysics*, Symposium Proceedings, Warsaw, 1965, International Atomic Energy Agency, Vienna, 1966 (STI/PUB/112).
157. A. K. Postma, A Compact High-Speed Spinning Disc Aerosol Generator, in Pacific Northwest Laboratory Annual Report for 1966 to the USAEC Division of Biology and Medicine, Vol. II Physical Science, Part 3, Earth Sciences, D. W. Pearce and M. R. Compton (Eds.), USAEC Report BNWL-481, Battelle Memorial Institute, Pacific Northwest Laboratories, January 1968.
158. M. Bellemare, Y. Lachance, and J. C. Roy, Preparation of ^{241}Am Sources by Surface Adsorption on Different Backings, *Nucl. Instrum. Methods*, 104 615 (1972).
159. W. F. Riethmath, G. G. Culver, and J. H. Jarrett, RF Sputtering of Thin Film Radiation Sources and Hazardous Materials, USAEC Report BNWL-SA-4392, Battelle Memorial Institute, Pacific Northwest Laboratories, September 1972.
160. R. E. Greene, R. S. Pressly, and F. N. Case, Review of Alpha Radiation Source Preparation Methods and Applications, USAEC Report ORNL-4819, Oak Ridge National Laboratory, October 1972.
- 161 H Iwnska, Preparation of Adherent ^{241}Am Alpha Sources by Electrodeposition, *Nukleonika*, 17 69 (1972)
162. J. P. Perolat, H. Goenvec, R. Vatin, and M. Laine, Primary Radioactivity Standards, *Bull Inform. Sci. Tech. (Paris)*, 163 19 (1971).
163. R. W. Thiele, W. P. M. Cheng, and S. Yang, Adsorption of Radioisotopes on Thin Al_2O_3 Layers Prepared by Anodic Oxidation as a Method for Source Preparation, *Nucl Sci. J. (Taiwan)*, 7 19 (1969).
- 164 J H Jarrett (Comp.), Pacific Northwest Laboratory, Isotope Development Program Quarterly Report February-April 1973, USAEC Report BNWL-1308-14, Battelle Memorial Institute, Pacific Northwest Laboratories, May 1973.

165. F. E. Armstrong and W. D. Howell, Recent Advances in Radioisotope Applications for Exploitation of Petroleum and Natural-Gas Reservoirs, *Isotop Radiat Technol*, 3(2) 102 (Winter 1965-1966).
166. J. Tittman, H. Sherman, W. A. Nagel, and R. P. Alger, The Sidewall Epithermal Neutron Porosity Log, *J. Petrol Technol*, 18 1351 (1966).
167. R. L. Caldwell and W. W. Gwens, Pulsed Neutron Source Comprising a Plurality of Alpha Sources and Associated Targets with a Rotatable Shutter There-Between, U. S. Patent 3,389,257, June 1968
168. H. J. Parp and H. D. Scott, The Use of ^{252}Cf as a Neutron Source for Well Logging, in Proceedings of the American Nuclear Society Meeting on Neutron Sources and Applications, Augusta, Ga., April 19-21, 1971, USAEC Report CONF-710402, Vol. 3, pp. III.30-42, 1971
169. L. Pospisilova-Rothscheinova, P. Klablena, J. Habarta, and A. Honig (Eds.), *Commercial Portable Gauges for Radiometric Determination of the Density and Moisture Content of Building Materials* A Comparative Study, Technical Reports Series, No. 130, International Atomic Energy Agency, Vienna, 1971 (STI/DOC/10/130).
170. J. B. Rieder, Measurement with Radioactive Sources of Soil Moisture and Soil Density in Differently Treated Pastures, *Bayer. Landwirt Jahrb.*, 48 259 (1971).
171. C. H. M. Van Bavel and G. B. Strik, Soil Water Measurement with a $^{241}\text{Am-Be}$ Neutron Source and an Application to Evaporimetry, *J. Hydrol.*, 5 40 (1967).
172. I. F. Long and B. K. French, Measurements of Soil Moisture in the Field by Neutron Moderation, *J. Soil Sci.*, 18 49 (1967).
173. P. K. Aditya and A. K. Batia, Moisture Measurement by Neutron Moderators, *Ind. J. Pure Appl. Phys.*, 7 323 (1969)
174. K. Papez, J. F. Cameron, and B. Machaj, On-Line Neutron Moisture Gauges in the Steel Industry, in *Nuclear Techniques in the Basic Metal Industries*, Symposium Proceedings, Helsinki, 1972, International Atomic Energy Agency, Vienna, 1973 (STI/PUB/314)
175. K. Myagawa, I. Mishima, T. Takeda, and Y. Tanabiki, Applications of Neutron Moisture Gauge in the Steel Industry, *Trans Iron Steel Inst Jap.*, 9 285 (1969)
176. H. Kaga, M. Yamamoto, and T. Mizushima, Quality Control of Concrete Using a Neutron Moisture Gauge, *Taiset Kentsetsu Gijutsu Kenkyusho Ho*, 3 27 (1970).
177. R. F. Stewart and W. L. Farrior, Jr., Nuclear Measurement of Carbon in Fly Ash, U.S. Bureau of Mines, Information Circular No. 8348, pp. 262-270, 1967.
178. P. N. Tiwari, Rapid and Nondestructive Determination of Protein in Grain Samples, *Radiochem. Radioanal. Lett.*, 6 363 (1971).
179. P. G. Jeffrey and J. M. Bakes, The Determination of Fluorine and Fluorite Ores and Concentrates by Isotope Source, Fast Neutron Activation Analysis, *Analyst*, 92 151 (1967).
180. D. E. Wood, Activation Analysis in the Metals Industry, *Nucl. News*, 9 12 (1966).
181. K. Boddy and D. Gloros, The Measurement of Phosphorus in Human Bone Using Radioactive Neutron Sources—A Technique for Partial Body in Vivo Activation Analysis, *Int. J. Appl. Radiat. Isotop.*, 24 147 (1973).
182. P. L. Eisenacher, Self-Calibrating Thermal Neutron Counter, USAEC Report KAPL-M-PLE-3, Knolls Atomic Power Laboratory, November 1960.
183. W. E. Downs, Properties of Isotopic α -n and γ -n Neutron Sources, Canadian Report CPSR-272, June 1970.
184. R. W. Tolmie, Recent Developments in Radioisotope Neutron Sources, in Proceedings of the American Nuclear Society Meeting on Neutron Sources and Applications, Augusta, Ga., April 19-21, 1971, USAEC Report CONF-710402, Vol. 1, pp. I.29-51, 1971.
185. K. H. Ansell and E. G. Hall, Recent Developments in (α, n) Sources in Meeting on Neutron Sources and Applications, Augusta, Ga., April 18-21, 1971, USAEC Report CONF-710402, Vol. 2, pp. I.90-99, 1971

- 186 E. A. Lorch, Neutron Spectra of $^{241}\text{Am}/\text{B}$, $^{241}\text{Am}/\text{Be}$, $^{241}\text{Am}/\text{F}$, $^{242}\text{Cm}/\text{Be}$, $^{238}\text{Pu}/^{13}\text{C}$, and ^{252}Cf Isotopic Neutron Sources, *Int J Appl Radiat Isotop*, 24 585 (1973).
187. A. D. Vajaya and A. Kumar, Neutron Spectrum of Am-Be Neutron Sources, *Nucl Instrum Methods*, 111 435 (1973).
188. J. W. Cleland, Radioisotopic Sources To Study Radiation Damage in Semiconductors, *Isotop Radiat Tech*, 3(1) 61 (Fall 1965).
- 189 M. Wahlgren, J. Wing, and D. C. Stewart, A High-Intensity $^{241}\text{Am-Be}-^{242}\text{Cm}$ Neutron Source, in *Modern Trends in Activation Analysis*, J R DeVoe (Ed), Vol 1, pp 501-506, National Bureau of Standards, Washington, D. C., 1969
- 190 R. P. Christman and W. R. Cornman, Utilization of Power Reactor Americium for ^{252}Cf Production, *Trans Amer Nucl Soc*, 12 54 (1969)
- 191 P. M. Wood, Isotope Production in Commercial Power Reactors, *Isotop Radiat Technol*, 9(2) 129 (Winter 1971-1972).
192. J. D. Hixson, Comparison of Radioisotope-Fueled Energy Sources for a Prosthetic Device, *Isotop Radiat Technol*, 9(2) 215 (Winter 1971-1972)
- 193 V. C. A. Vaughn, W. T. McDuffee, E. Lamb, and R. A. Robinson, The Preparation of Multigram Quantities of ^{242}Cm for SNAP 11, *Nucl Appl*, 6 549 (1969)
- 194 Inbetriebnahme einer Isotopen Batterie mit Curium-242, *Atomwirtschaft*, 13 415 (1968)
- 195 W. O. Burch, J. E. Bigelow, and L. J. King, Transuranium Processing Plant, Semiannual Report of Production, Status, and Plans for Period Ending December 31, 1971, USAEC Report ORNL-4767, Oak Ridge National Laboratory, May 1972
196. V. C. A. Vaughn, J. D. Hoeschele, and M. H. Lloyd, Preparation of $^{244}\text{Cm}-^{243}\text{Am}$ Oxide Microspheres by a Sol-Gel Method, *Trans Amer Nucl Soc*, 12 55 (1969)
- 197 Oak Ridge National Laboratory, Chemical Technology Division Annual Progress Report for Period Ending May 31, 1970, USAEC Report ORNL-4572, October 1970
- 198 E. J. Hennelly, Production of Biomedical Grade Plutonium-238, *Trans Amer Nucl Soc*, 11 456 (1968)

3 CHEMISTRY IN AQUEOUS SOLUTION

OXIDATION STATES

Americium in aqueous solutions is well known to exist in the III, IV, V, and VI oxidation states. The hydrated ions $\text{Am}^{3+} \cdot \text{aq}$, $\text{AmO}_2^+ \cdot \text{aq}$, and $\text{AmO}_2^{2+} \cdot \text{aq}$ occur in the absence of complexing agents. Russian workers^{1a} have recently announced evidence for the production of Am(VII) by oxidation of Am(VI) in cooled, strong alkali solutions. Methods of producing the individual americium ions are summarized in Table 3.1. Some additional comments on production and stabilization of the various americium oxidation states in aqueous solution follow. Recent polarographic evidence for the proposed production of Am(II) in aqueous solution is also reviewed. Reference is made to the electrode-potential diagrams shown on pages 55 to 58.

Am(II)

Americium is the heavy homolog of europium which has a readily attained divalent state in aqueous solution. Much effort has gone into attempts to establish the existence of Am^{2+} in aqueous solutions and to prepare compounds containing divalent americium. The latter goal was realized in 1973, as detailed in Chap. 4, by the preparation of AmCl_2 , AmBr_2 , and AmI_2 . Leary and Mullins^{1b} also have obtained evidence for the existence of divalent americium in molten salt-molten plutonium systems. However, reduction conditions² used successfully to prepare Eu^{2+} and Sm^{2+}

Table 3.1
AMERICIUM IONS IN AQUEOUS SOLUTION

Oxidation state	Ionic form	Color in dilute HClO_4	Methods of preparation
III	$\text{Am}^{3+} \cdot \text{aq}$	Pink red*	1 $\text{Am(O)} + \text{HCl}$ 2 $\text{AmO}_2 + \text{HCl}$ (heated) 3 $\text{Am}(>\text{III}) + \text{NH}_2\text{OH, I, SO}_2$, etc 4 Autoreduction of $\text{Am}(>\text{III})$
IV		†	1 Dissolve Am(OH)_4 in 13M NH_4F 2 Electrolytic oxidation of Am^{3+} in 10–15M H_3PO_4 3 $\text{Am(OH)}_4 + \text{alkali fluoride} + \text{K}_4\text{P}_2\text{O}_7$
V	$\text{AmO}_2^+ \cdot \text{aq}$	Yellow	1 Oxidation of Am^{3+} in 0.03M KHCO_3 solution with O_3 , S_2O_8^2- or ClO 2 Dissolve Li_3AmO_4 in dilute HClO_4 3 Electrolytic oxidation of Am^{3+} in 2M LiIO_3 –0.7M HIO_3 solution
VI	$\text{AmO}_2^{2+} \cdot \text{aq}$	Yellow brown‡	1 Oxidation of Am^{3+} in dilute acid media with S_2O_8^2- and $\text{Ag}(\text{II})$ 2 Electrolytic oxidation of Am^{3+} in 6M HClO_4 or in 2M H_3PO_4 3 Dissolve Li_6AmO_6 in dilute HClO_4
VII		§	1 Oxidation of $\text{AmO}_2^+ \cdot \text{aq}$ in 3M–5M NaOH at 0–7°C with O_3 or O_2 ion radical

*Yellow in concentrated HClO_4

†Pink-red Am^{4+} stable only in concentrated fluoride and phosphate solutions

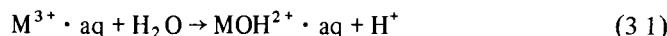
‡Light brown in dilute HNO_3 , green in fluoride solutions, dark brown in H_2SO_4 solutions, red in carbonate solutions

§Green-colored $\text{Am}(\text{VII})$ known only in alkaline solutions

will not reduce $\text{Am}^{3+} \cdot \text{aq}$ to $\text{Am}^{2+} \cdot \text{aq}$. Also, recently Jove and Pages³ failed in attempts to reduce Am^{3+} in liquid ammonia either by electrolysis or with electrons furnished by dissolution of sodium metal.

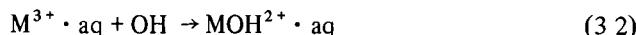
Results of several polarographic experiments with tracer concentrations of americium have been interpreted on the basis of the formation of divalent americium

Thus Myasoedov and Myuzikas^{4,5} observed two waves in polarographic reduction of trivalent americium in 0.1M solutions of $[(C_2H_5)_4N]ClO_4$ in acetonitrile. These scientists account for the two waves, the second of which is twice as high as the first, by the successive reductions $Am^{3+} + e \rightarrow Am^{2+}$ and $Am^{2+} + 2e \rightarrow Am/Hg$. David^{6a} also observed two waves in the radiopolarograms of Am(III) in perchlorate medium at pH 1 to 6 which he postulated to correspond to the reductions $Am^{2+} \rightarrow Am(0)$ and $Am^{3+} \rightarrow Am(0)$.


Nugent^{6b} disagrees with David's interpretation of his polarographic results and states that the amalgamation of $Am^{3+} \cdot aq$ proceeds directly to Am/Hg . In support of this reaction mechanism, Nugent cites a linear relation developed among standard potentials, first half-wave amalgamation potentials, and the atomic radii of the crystalline actinide metals. According to Nugent, $Am^{2+} \cdot aq$ is so unstable, even at tracer concentrations, as to be essentially nonexistent.

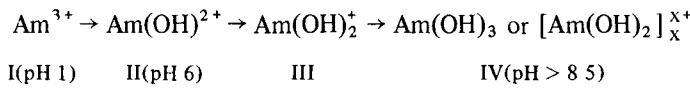
Am(III)

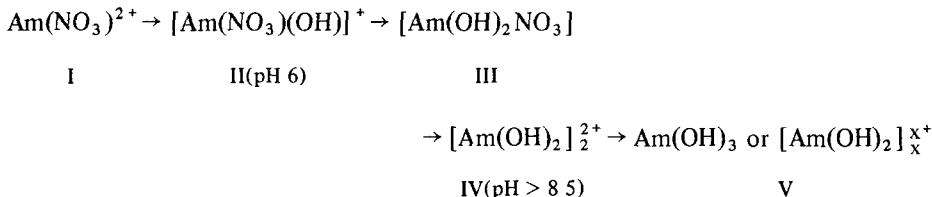
The stability of the higher oxidation states of the transuranium elements typically decreases with increasing atomic number. In agreement with this, the trivalent state of americium is its most stable oxidation state and is the state resulting when americium metal dissolves in acids. Keller^{6c} notes that, even though americium is the homolog of europium, the characteristics of Am^{3+} (radius = 0.99 Å) are more like those of Nd^{3+} (radius = 0.995 Å) than those of Eu^{3+} . The paramagnetic susceptibility^{7a} of $Am^{3+} \cdot aq$ is $700 \times 10^{-6} \text{ cm}^3 \text{ mol}^{-1}$. In aqueous solution, Am(III) ion is precipitated by hydroxide, fluoride, phosphate, and oxalate ions, properties of the resulting compounds are discussed in Chap. 4.


Friedman and Bell^{7b} have recently discussed techniques for preparing $POCl_3 - ZrCl_4$ solutions containing Am^{3+} and efforts to make these solutions show laser activity. Friedman and Bell ascribed failure of these efforts to the short lifetime for the excited state of Am^{3+} .

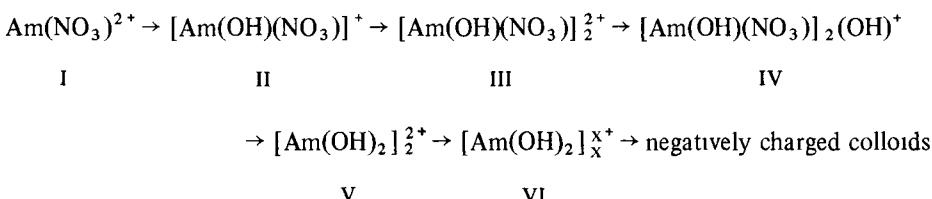
Hydrolysis of the Am^{3+} ion was studied by several investigators. Desire, Hussonnois, and Guillaumont⁸ and Desire^{9a} determined the distribution of americium between aqueous $HClO_4 - LiClO_4$ solutions and a benzene solution of thenoyltrifluoroacetone. From their measurements, they calculate for the reaction

$$K_1 = [MOH^{2+}] [H^+] / [M^{3+}] = 1.2 \times 10^{-6} \text{ at } \mu = 0.1M \text{ and } 23 \pm 1^\circ C$$

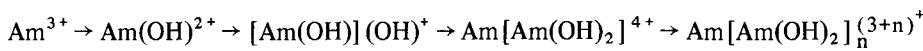

Hydrolysis of the Am^{3+} ion can also be represented by the reaction


for which $K_2 = [MOH^{2+}] / [M^{3+}] [OH^-] = [MOH^{2+}] [H^+] / [M^{3+}] K_w$, where $K_w = [H^+] [OH^-]$. Marin and Kikindai¹⁰ report $K_2 = 2 \pm 0.2 \times 10^{11}$ at $\mu = 0.005M$ and

$15 \pm 1^\circ\text{C}$ from electrophoresis measurements, whereas, from electromigration studies in NH_4ClO_4 media, Shalinets and Stepanov¹¹ report $K_2 = 5 \times 10^{10}$ at $\mu = 0.005M$ and 25°C


Korotkin^{12,13} states that, contrary to the simple representations shown in Eqs 3.1 and 3.2, hydrolysis of Am^{3+} is a complicated process that commences at pHs as low as 0.5 to 1.0 and whose mechanism is determined by the nature of other cations (e.g., Li^+ , Na^+ , and H^+) in solution. Korotkin's conclusion is based on his extensive studies^{12-13b} of the hydrolysis of $10^{-10}M$ to $10^{-6}M$ americium in HClO_4 – LiClO_4 , HNO_3 – LiClO_4 , HNO_3 – LiNO_3 , HNO_3 – KNO_3 , HNO_3 – NaNO_3 , and pure HNO_3 solutions over the pH range 1 to 11. Using paper chromatographic methods, supplemented by ion-exchange and electromigration procedures, Korotkin states that, in HClO_4 – LiClO_4 ($\mu = 0.1M$) media, hydrolysis of $\leq 10^{-6}M$ americium proceeds according to the mechanism

In HNO_3 – LiClO_4 and in HNO_3 – LiNO_3 ($\mu = 0.1M$ to $1M$) solutions, hydrolysis proceeds through the forms



In $0.1M$ solutions of KNO_3 and NaNO_3 , the hydrolysis sequence, according to Korotkin, is

Hydrolysis of $\leq 10^{-6}M$ americium in pure HNO_3 is similar to that in NaNO_3 and KNO_3 solutions, according to Korotkin.

Korotkin^{13c} recently has extended his investigations to paper chromatographic sorption of $10^{-4}M$ americium from pH 1 to 9 HClO_4 solutions. He concludes that at such conditions the hydrolysis mechanism may be represented by the following scheme

I

II

III

IV

V

It is necessary to point out that independent experiments by other scientists to confirm or refute Korotkin's speculations about the various hydrolytic species of americium either have not yet been done or have not yet been published.

Am(IV)

Because of the high value (+2.4 V) of the standard potential of the Am(IV)–Am(III) couple, tetravalent americium is unstable in most mineral acid solutions with respect to disproportionation to Am(III) and Am(V). However, stable aqueous solutions of tetravalent americium in which disproportionation does not occur even at 90°C can be prepared^{14,15} by dissolution of $\text{Am}(\text{OH})_4$ in concentrated solutions of NH_4F , KF, RbF, and CsF. The solubility of Am(IV) in 13M NH_4F at 25°C is 0.02M. This rose-colored solution probably contains the ions AmF_5^- and/or AmF_6^{2-} . Ozone oxidizes Am(IV) in 13M NH_4F to Am(VI), whereas iodide reduces it to Am(III). Slow reduction of Am(IV) to Am(III) occurs because of alpha radiation.

Stable solutions of tetravalent Am(IV) can also be prepared by anodic oxidation (at a platinum electrode) of Am^{3+} in H_3PO_4 solution. This method of stabilizing Am(IV) was first discovered by Yanir, Givon, and Marcus.^{16,17} Subsequent publications by Myasoedov and coworkers^{18a,18b} have recently confirmed and extended this preparation technique. One of their papers^{18a} also presents details of the construction and operation of a suitable electrolysis cell. The Russian workers report^{18a} that pure Am(IV) is obtained in 10M to 15M H_3PO_4 . Kinetic data for the oxidation of Am(III) in 12M H_3PO_4 (Fig. 3.1) show that complete oxidation to Am(IV) requires about an hour under the conditions used by Myasoedov et al.

In their most recent paper, Myasoedov et al.^{18b} discuss the influence of temperature and the concentrations of H_3PO_4 and americium on the completeness of electrochemical oxidation of Am(III) in 3M to 15M H_3PO_4 and the stability of the resulting Am(IV). In 3M to 8M H_3PO_4 , Am(IV) disproportionates according to the scheme $3\text{Am}(\text{IV}) \rightarrow 2\text{Am}(\text{III}) + \text{Am}(\text{VI})$, whereas at H_3PO_4 concentrations above 10M, Am(IV) reduces to Am(III). The apparent rate constant for Am(IV) disproportionation increases with decreasing H_3PO_4 concentration, whereas that for reduction of Am(IV) to Am(III) increases with temperature and with decreasing americium and H_3PO_4 concentration (15M to 10M). The activation energy for the reduction of Am(IV) to Am(III) in 12M H_3PO_4 is 15.6 ± 1.1 kcal mol^{-1} according to results obtained by Myasoedov et al.^{18a}

Myasoedov, Lebedev, and Milyukova^{18c} also report that Am(III) in H_3PO_4 solutions is rapidly oxidized by Ag(II) oxide and a mixture of Ag_3PO_4 and $(\text{NH}_4)_2\text{S}_2\text{O}_8$. Pure Am(IV) is obtained in 9M to 12M H_3PO_4 . In 3M to 6M H_3PO_4 , depending on the oxidation time, pure Am(VI) or a mixture of Am(IV) and Am(VI) are obtained.

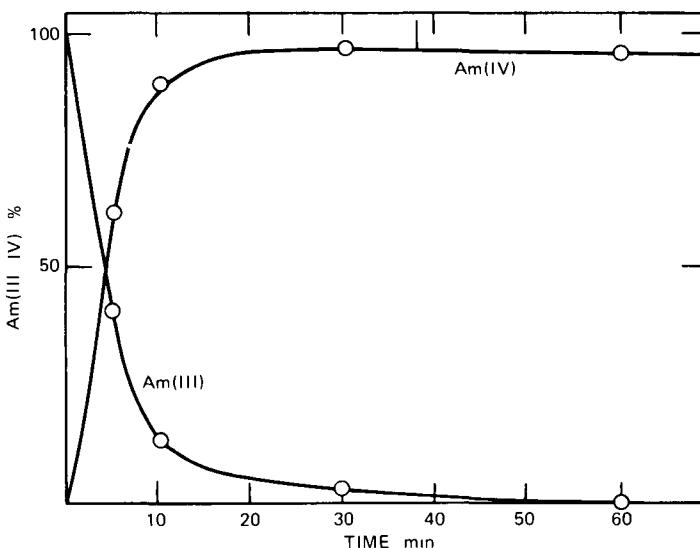
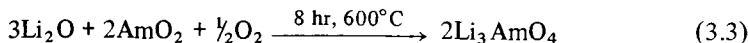


Fig. 3.1 Electrolytic oxidation of Am(III) in 12M H_3PO_4 [From B F Myasoedov, V M Mikhailov, I A Lebedev, O E Kiro, and V Ya Frenkel, Preparation and Stability of Am(IV) and Am(V) in Phosphoric Acid Solutions, *Radiochemical and Radioanalytical Letters* 14 17 (1973)]

A third way of stabilizing Am(IV) in aqueous solution consists of diluting a concentrated alkali fluoride solution in which $Am(OH)_4$ has been dissolved with concentrated $K_4P_2O_7$ solution. Yanır, Givon, and Marcus¹⁷ used this approach to prepare a 0.3M acid solution containing Am(IV) and about 2M $K_4P_2O_7$ and 3M NH_4F . Americium(IV) in this solution was very stable, being reduced only 5% in 7 hr. Direct dissolution of $Am(OH)_4$ in acidified pyrophosphate solutions yielded mixtures of Am(IV) and Am(VI) with $Na_4P_2O_7$ and Am(IV) and Am(V) in $K_4P_2O_7$ solutions.

Am(V)


Oxidation of Am(III) yields Am(VI) in acid solution but both Am(V) and Am(VI) in alkaline solution. This behavior is in accord with that expected from electrode potentials (see pages 55 to 58). Solutions of Am(V) are conventionally prepared by controlled oxidation of Am(III) in alkali carbonate media with ozone,¹⁹⁻²⁴ peroxydisulfate,^{19 23 24} or hypochlorite ion.^{19 23 25 26} Various solid carbonates containing the AmO_2^+ ion (see pages 139 to 141) precipitate from the resulting solutions. Dilute acid solutions of AmO_2^+ containing several percent Am^{3+} can be prepared by dissolution of these solid carbonates.

Americium(V) solutions free of Am(III) can be prepared by intermediate preparation of Am(VI) in 2M Na_2CO_3 solution.²⁷ After 5% O_3 is bubbled through the solution for 1 hr at room temperature to oxidize Am(III) to Am(VI),

$\text{NaAmO}_2\text{CO}_3$ is precipitated by heating the solution for 30 to 60 min at 90°C . Solutions obtained by dissolution of the resulting $\text{NaAmO}_2\text{CO}_3$ contain only AmO_2^+ .

Hara²⁸ prepared perchlorate, sulfate, and acetate solutions containing AmO_2^+ free of Am^{3+} by first extracting AmO_2^+ from 1*M* acetate buffer ($\text{pH} > 3$) solutions of Am(III) and Am(V) into 0.1*M* thenoyltrifluoroacetone in isobutanol. When the organic phase containing Am(V) was shaken with an aqueous phase having a proper pH value and composition, Am(V) was selectively stripped into the aqueous phase.

Newer methods for obtaining the AmO_2^+ ion in aqueous solution include dissolution of solid Li_3AmO_4 in dilute HClO_4 and electrolytic oxidation¹⁷ of Am(III) in 2*M* LiIO_3 –0.7*M* HIO_3 ($\text{pH} 1.47$) solution. Solid Li_3AmO_4 can be prepared by the solid-state reaction:²⁹

Am(VI)

Hexavalent americium can be prepared by oxidation of lower oxidation states in either acid or alkaline solutions. In dilute, nonreducing acid solutions, powerful chemical oxidants such as $\text{S}_2\text{O}_8^{2-}$ and $\text{Ag}(\text{II})$ oxidize both Am(III) and Am(V) to Am(VI).^{27,30a} Peroxydisulfate, however, will not oxidize Am(III) to Am(VI) completely at acidities above about 0.5*M*. In HClO_4 solution, Ce(IV) oxidizes Am(V) to Am(VI) (Ref. 23) but only partly oxidizes Am(III) to Am(VI). Similarly ozone readily oxidizes Am(V) to Am(VI) in heated HNO_3 or HClO_4 solution² but will not oxidize macroconcentrations of Am(III) to Am(VI) in acid media even when heated.^{30b}

Electrolytic oxidation of Am(III) either in 2*M* H_3PO_4 or in 6*M* HClO_4 produces the AmO_2^{2+} ion.^{18,27} Keller^{6c} also states that dissolution of Li_6AmO_6 either in water or in dilute HClO_4 yields a solution containing AmO_2^{2+} . Li_6AmO_6 can be made by the solid-state reaction at 360°C of Li_2O with AmO_2 in the mol ratio of 3.5 : 1 (Ref. 29).

Ozone or peroxydisulfate oxidation of either Am(III) or Am(V) in aqueous Na_2CO_3 or NaHCO_3 solution yields an intense red-brown colored solution thought to contain a carbonate complex of Am(VI).^{22,27} This same complex is also obtained by dissolution of solid sodium americyl acetate in Na_2CO_3 or NaHCO_3 solutions. [Nugent,³¹ in a recent review article, speculates that an Am(VII)–carbonate complex may actually be present in such solutions and suggests that the presence of such a species would be consistent with several experimental observations.] Americium(VI) in 0.1*M* to 0.5*M* NaHCO_3 solution is stable at 90°C to reduction by H_2O , Cl^- , and Br^- but is readily reduced by I^- , N_2H_4 , H_2O_2 , NO_2^- , and NH_2OH . Reduction by water occurs at 90°C in 2*M* Na_2CO_3 .

Ozone oxidation of Am(III) in 2*M* Na_2CO_3 yields AmO_2^{2+} only if the temperature is maintained at $\sim 25^\circ\text{C}$ or below; at 90°C oxidation does not proceed past Am(V). Surprisingly, Am(VI) is *not* produced by O_3 oxidation of either $\text{Am}(\text{OH})_3$ or KAmO_2CO_3 in 0.03*M* to 0.1*M* KHCO_3 solution.²² Similarly $\text{K}_2\text{S}_2\text{O}_8$ will *not* oxidize either $\text{Am}(\text{OH})_3$ or $\text{NaAmO}_2\text{CO}_3$ in 0.1*M* NaHCO_3 to Am(VI), although such

oxidation is accomplished readily with $\text{Na}_2\text{S}_2\text{O}_8$. This chemistry is explained on the basis of the lower solubility of KAmO_2CO_3 compared to that of $\text{NaAmO}_2\text{CO}_3$.

Alkali hydroxide solutions of Am(VI) are yellow colored^{22,32-34} and, according to Cohen,³³ may be easily prepared by ozone oxidation of a slurry of $\text{Am}(\text{OH})_3$ in all the alkali hydroxides from lithium to cesium. An alternative procedure consists of oxidizing Am(III) in dilute NaHCO_3 solution to Am(VI) with ozone, acidifying with dilute HNO_3 , and finally, adding the desired alkali hydroxide to neutralize the HNO_3 and produce an alkaline solution. Alkali hydroxide solutions of Am(VI) are not stable, and a light-tan solid precipitates a few hours after preparation. This solid is soluble in dilute mineral acids to yield a solution containing AmO_2^+ ions.

Solid Na_4XeO_6 is reported³⁴ to oxidize Am(III) in 12*M* to 15*M* CsF media, either with or without added HF, to Am(V) and/or Am(VI). The exact oxidation state—(V) or (VI)—of americium in the oxidized solution has not been determined.

Am(VII)

In preliminary communication, Zaitseva³⁵ indicated that a dark-violet solution containing Am(VII) could be obtained both by disproportionation of Am(VI) in 3*M* NaOH and by the action of strong oxidizing agents on an alkaline solution containing Am(V). Subsequent work³⁶ showed that the claim for Am(VII) was erroneous—the dark-violet color was due to a contamination by Fe(VI). Incidentally, attempts³⁷ to prepare a solid compound containing Am(VII) by careful oxidation of $\text{Li}_2\text{O}-\text{AmO}_2$ mixtures at 300 to 400°C in a stream of oxygen proved unsuccessful. Nugent's speculations about the existence of an Am(VII)—carbonate complex were mentioned earlier.

Krot et al.^{1a} stated that aqueous solutions containing Am(VII) can be prepared by oxidation at 0 to 7°C of Am(VI) in alkaline solutions with either O^- ion radicals or ozone. Thus passage of air containing 20 to 50 mg liter⁻¹ O_3 for 30 to 60 min through a light-yellow 3*M* to 4*M* NaOH solution containing 0.001*M* to 0.002*M* Am(VI) at 0 to 7°C yields a green-colored solution containing at least some Am(VII). A similar green-colored solution results on irradiation (⁶⁰Co) at 0°C of a 3*M* NaOH solution containing 0.001*M* to 0.002*M* Am(VI) and previously saturated with N_2O . (The N_2O functions to transform hydrated electrons produced by radiolysis to O^- ion radicals by the reaction $\text{N}_2\text{O} + \text{e}_{\text{aq}}^- = \text{N}_2 + \text{O}^-$; $\text{S}_2\text{O}_8^{2-}$ may be substituted for N_2O for the same purpose.) With either oxidant the absorbance of the green-colored solution at 370 to 450 nm is about twice that of the original Am(VI) solution and slowly decreases with time. Stability of the Am(VII) species, according to Krot et al., is greater in 5*M* NaOH than in 3*M* NaOH.

To confirm the presence of Am(VII) in the oxidized solutions, the Russian scientists made spectrophotometric studies in 1*M* to 2*M* NaOH solutions of the reactions $\text{Pu}(\text{VI}) + \text{Am}(\text{VII}) = \text{Pu}(\text{VII}) + \text{Am}(\text{VI})$ and $2\text{Np}(\text{VI}) + \text{Am}(\text{VII}) = 2\text{Np}(\text{VII}) + \text{Am}(\text{V})$. Appearance of the characteristic spectrum of pure Pu(VII) under conditions where Am(VII) is the only oxidant provides strong evidence that the green-colored solutions prepared as described above do indeed contain some Am(VII).

Further studies of the preparation and properties of Am(VII) in aqueous solution can surely be anticipated

THERMODYNAMIC VALUES

The heats of solution of americium metal in aqueous HCl solutions at $298.15 \pm 0.05^\circ\text{K}$ were redetermined in 1972 by Fuger, Spirlet, and Muller³⁸ using specially purified and characterized metal. Earlier (1951) measurements were made by Lohr and Cunningham³⁹ and Westrum and Eyring⁴⁰. From their results, Fuger, Spirlet, and Muller³⁸ calculate the standard enthalpy of formation of $\text{Am}^{3+} \cdot \text{aq}$ at 298°K to be $-147.4 \pm 0.3 \text{ kcal mol}^{-1}$. This value, which is about 10% less negative than that previously accepted,^{39,40} confirms the preliminary data of Morss⁴² and is in line with arguments advanced by Ryan⁴³ and by Nugent, Burnett, and Morss⁴⁴.

Fuger and Oetting^{44b} have very recently carefully examined existing knowledge of the entropies of actinide ions. These authors have also critically evaluated available existing enthalpy and electromotive-force data and checked them for consistency with entropy data. Thermodynamic values for americium ions calculated by Fuger and Oetting are listed in Table 3.2 and are the most reliable data extant. Some earlier thermodynamic quantities for americium ions were calculated by Fuger, Spirlet, and Muller,¹¹ by Eyring, Lohr, and Cunningham,⁴⁵ by Gunn and Cunningham,⁴⁶ and by Hinche and Cobble⁴⁷.

Table 3.2
THERMODYNAMIC QUANTITIES FOR AMERICIUM IONS

Ion	Hydration enthalpy and entropy*				
	$-\Delta H^\circ f(298^\circ\text{K}), \ddagger$ kcal mol ⁻¹	$\Delta G^\circ f(298^\circ\text{K}), \ddagger$ kcal mol ⁻¹	$-\bar{S}^\circ(298^\circ\text{K}), \ddagger$ cal mol ⁻¹ K ⁻¹	$-\Delta H_h$, kcal mol ⁻¹	$-\bar{S}_h$, cal mol ⁻¹ K ⁻¹
$\text{Am}^{3+} \cdot \text{aq}$	147.4 ± 0.3	143.2 ± 0.9	48 ± 3	832	91.8
$\text{Am}^{4+} \cdot \text{aq}$	103.4 ± 2.6	89.2 ± 2.4	97 ± 5	1635	128
$\text{AmO}_2^+ \cdot \text{aq}$	192.4 ± 1.1	177.7 ± 1.3	3 ± 2		
$\text{AmO}_2^{2+} \cdot \text{aq}$	155.8 ± 0.5	141.0 ± 0.8	19 ± 2		

*Calculated values from Ref. 47b

†Values from Ref. 44b

ELECTRODE POTENTIALS

Table 3.3 lists electrode potentials (1969 International Union of Pure and Applied Chemistry sign convention) for americium in various aqueous media. The potential diagram for americium in 1M HClO₄ reflects newly estimated values for the (III)-(0),

Table 3.3
ELECTRODE POTENTIALS OF AMERICIUM*†

I. 1M HClO_4	
AmO_2^{2+}	$\frac{1.60}{\text{AmO}_2^+}$
AmO_2^+	$\frac{(+1.1)\ddagger}{\text{Am}^{4+}}$
Am^{4+}	$\frac{2.4}{\text{Am}^{3+}}$
Am^{3+}	$\frac{-2.3}{\text{Am}^{2+}}$
Am^{2+}	$\frac{(-2.0)\ddagger}{\text{Am}}$
	$\boxed{1.69}$
	$\boxed{-2.06}$
	$\boxed{(1.74)\ddagger}$

II. 1M OH^-	
$\text{AmO}_2(\text{OH})_2$	$\frac{1.1}{\text{AmO}_2\text{OH}}$
AmO_2OH	$\frac{(0.7)\ddagger}{\text{Am}(\text{OH})_4}$
$\text{Am}(\text{OH})_4$	$\frac{0.5}{\text{Am}(\text{OH})_3}$
$\text{Am}(\text{OH})_3$	$\frac{-2.68}{\text{Am}}$

III. Phosphoric acid	
$\text{Am}(\text{IV})$	$\frac{1.75 \text{ to } 1.78}{10.0M \text{ to } 14.5M \text{ H}_3\text{PO}_4}$
$\text{Am}(\text{VI})$	$\frac{1.43}{0.54M \text{ H}_3\text{PO}_4}$
$\text{Am}(\text{VI})$	$\frac{1.32}{4.34M \text{ H}_3\text{PO}_4}$
$\text{Am}(\text{V})$	

*In volts.

†1969 International Union of Pure and Applied Chemistry sign convention.

‡Values are determined by difference.

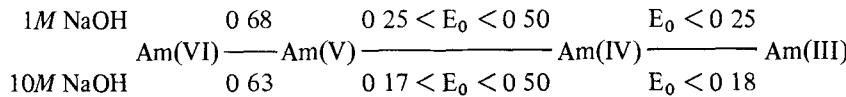
(III)–(II), and (IV)–(III) couples and differs slightly from those previously published.^{6c,48,49} Reference is made to Nugent's recent paper³¹ on the chemical oxidation states of lanthanides and actinides.

Potentials in 1M HClO_4

The potential, 1.60 ± 0.01 V, of the $\text{Am}(\text{VI})$ – $\text{Am}(\text{V})$ couple in 1M HClO_4 has been directly measured.⁵⁰ Potentials of all the other couples are calculated values.

Using their recently carefully determined value of -147.4 ± 0.3 kcal mol⁻¹ for the heat of formation of $\text{Am}^{3+} \cdot \text{aq}$, Fuger, Spirlet, and Müller³⁸ estimate the potential of the $\text{Am}(\text{III})$ – $\text{Am}(\text{O})$ couple in 1M HClO_4 to be -2.06 ± 0.01 V. Earlier,^{39,46} the potential of the (III)–(0) couple was estimated at -2.36 ± 0.04 V.

Nugent et al.^{51a,51b} estimate, from various theoretical considerations, that the best value for the $\text{Am}(\text{III})$ – $\text{Am}(\text{II})$ couple is -2.3 V. They note that this calculated value is in agreement with chemical evidence which indicates that the americium potential should be appreciably greater than the corresponding californium potential of -1.6 V. The standard potential of the $\text{Am}(\text{III})$ – $\text{Am}(\text{II})$ couple has previously been listed at ≤ -1.5 V (Refs. 3, 6c, 48, 52, 53).

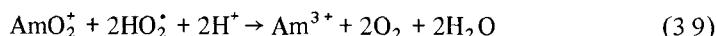
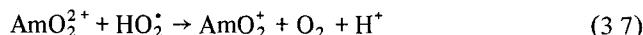

The standard potential of the Am(IV)–Am(III) couple in 1*M* HClO₄ was originally estimated^{4,6} as 2.44 V and was later revised by Cunningham^{5,4} to 2.8 V. Nugent et al.^{5,5} using a variety of new calculational procedures, estimate that the standard potential of the (IV)–(III) couple lies in the range 2.0 to 2.5 V. From their direct measurements of a value of 1.78 V for the (IV)–(III) couple in 10*M* H₃PO₄, Stokely and Baybarz^{5,5} calculate a value of 2.34 V for the couple in 1*M* HClO₄. An average value of 2.4 V is shown in Table 3.3 for the (IV)–(III) couple.

Gunn,^{5,6} from measurements of the heat of reduction of Am(VI) to Am(III) by the Fe²⁺ ion, estimated the potential of the Am(VI)–Am(III) couple at 1.70 V. A value of 1.67 V for this couple was estimated by Nigon^{5,7} on the basis of a study of the oxidation of Am(III) to Am(VI) by the Ce(IV) ion. An earlier^{2,7} estimate of 1.8 V for the (IV)–(III) couple was in error due to a misinterpretation of the effect of acidity on the oxidation of Am(III) to Am(VI) by the S₂O₈²⁻ ion. In passing it should be noted that the currently accepted potentials of both the (VI)–(III) and (VI)–(V) couples are based on results of measurements made 20 years ago when americium chemistry was in its infancy. Repetition of these measurements with long-lived ²⁴³Am would be helpful.

Potentials shown in Table 3.3 for the Am(II)–Am(0), Am(V)–Am(III), and Am(V)–Am(IV) couples are calculated from those listed for the other couples. The new values assigned to the (III)–(0) and (III)–(II) couples lead to a value of –1.9 V for the (II)–(0) couple, which is substantially changed from the potential of <–2.7 V customarily shown.^{6c,4,8} Nugent^{6b} assigns a value of –2.0 V to the (II)–(0) couple. As a reflection of the change in the (IV)–(III) potential from 2.44 to 2.4 V, the potential of the (VI)–(V) couple is calculated to be 1.1 V, only slightly more positive than the value of 1.04 V previously calculated^{6c,4,8} for this potential.

Potentials in 1*M* OH[–]

Standard potentials of americium in 1*M* OH[–] solution (Table 3.3) were originally calculated in 1952 by Latimer^{5,8a} from estimates of the solubility products of Am(OH)₃ and Am(OH)₄. Subsequently, Penneman, Coleman, and Keenan^{3,2} suggested that the standard potential of the Am(OH)₃–Am(OH)₄ couple should be revised from +0.4 V to at least –0.5 V. From recent studies of the reaction of Am(VI) with Np(VI) in 0.01*M* to 12*M* NaOH and with Pu(VI) in 3*M* to 14*M* NaOH, Nikolaevskii, Shilov, and Krot^{5,8b} estimate that the potential of the Am(VI)–Am(V) couple in 1*M* NaOH is ~0.65 V rather than the 1.1 V estimated by Latimer.^{5,8a} Peretrushkin, Nikolaevskii, and Shilov^{5,8c} have investigated the polarographic behavior of Am(V) and Am(VI) in 1*M* to 10*M* NaOH. From their data these authors give the following potential scheme:



Further revision of Latimer's calculated potentials for americium in alkaline solutions is in order, particularly so since there is evidence⁵⁹ that the solubility product of $\text{Am}(\text{OH})_3$ is of the order of 3×10^{-18} rather than 2.7×10^{-20} as estimated by Latimer^{58a}

Potentials in H_3PO_4

The formal potentials of the $\text{Am}(\text{IV})-\text{Am}(\text{III})$ and $\text{Am}(\text{VI})-\text{Am}(\text{V})$ couples in H_3PO_4 solutions which are listed in Table 33 were determined by direct potentiometry^{55, 60}

AUTOREDUCTION EFFECTS

Species (e.g., H_2O_2 and HO_2^\cdot radicals) produced by alpha radiolysis of water reduce the higher oxidation states of americium in aqueous solution eventually to stable $\text{Am}(\text{III})$. Because of its lower specific activity, the rate of autoreduction of $^{243}\text{Am}(>\text{III})$ is much less than that of $^{241}\text{Am}(>\text{III})$. Autoreduction of $\text{Am}(\text{VI})$ has been studied in HClO_4 (Refs. 46, 61-64), H_2SO_4 (Refs. 62-64), and HNO_3 (Ref. 62) solutions while autoreduction of $\text{Am}(\text{V})$ has been followed in HClO_4 (Refs. 46, 61, 63, 64), HNO_3 (Ref. 62), and HCl (Ref. 65) media. Zaitsev et al.⁶² postulate the following reactions to account for the observed kinetics of autoreduction of AmO_2^{2+} and AmO_2^+ ions in the aqueous, air saturated solutions

This reaction scheme assumes that H_2O_2 is consumed only in reducing $\text{Am}(\text{VI})$, whereas $\text{Am}(\text{V})$ is reduced only by HO_2^\cdot radicals. Americium(V) may be oxidized to $\text{Am}(\text{VI})$ by $\dot{\text{O}}\text{H}$ radicals, and this reaction competes with that of hydrogen formation.

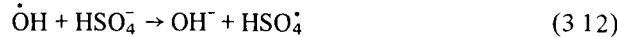
All investigators concur that autoreduction of $\text{Am}(\text{VI})$ is kinetically zero order with respect to the AmO_2^{2+} ion and first order with respect to total americium concentration, i.e.,

$$-\frac{d[\text{Am(VI)}]}{dt} = \frac{d[\text{Am(V)}]}{dt} = k_1 [\text{Am}_{\text{total}}] \quad (3.11)$$

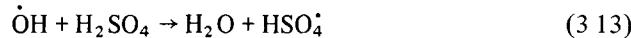
In both HClO_4 and H_2SO_4 media, the rate constant k_1 falls off with increasing acid concentration (Table 3.4). Indeed, Zaitsev and coworkers^{6,2} did not observe any reduction of $^{241}\text{AmO}_2^{2+}$ in 12M HClO_4 over a period of 300 hr! This result is explained by Zaitsev et al on the basis that in concentrated HClO_4 the predominant alpha radiolytic species are Cl_2 and ClO_2 which do not reduce Am(VI) or Am(V) .

Table 3.4
RATE CONSTANTS FOR AUTOREDUCTION OF $^{241}\text{Am(VI)}$ AND $^{241}\text{Am(V)}$

HClO_4			H_2SO_4			HNO_3^*		HCl^{\dagger}		
<i>M</i>	k_1, \ddagger hr ⁻¹	k_2, \S hr ⁻¹	Ref.	<i>M</i>	$k_1,$ hr ⁻¹	Ref.	<i>M</i>	$k_1,$ hr ⁻¹	<i>M</i>	$k_2,$ hr ⁻¹
0.2	0.040	0.020	46	0.1	0.040	62	0.5	0.069	0.5	0.0074
0.2	0.040		62	0.1	0.029	63	3.0	0.086		
0.2	0.030	0.012	63	0.5	0.025	63	6.0	0.087		
0.5	0.054		61	1.0	0.0286	62	9.0	0.103		
1.0	0.0475	0.023	61	2.0	0.0251	62	14.3	0.058		
2.0	0.032		62	2.0	0.0242	65				
4.0	0.032		62	3.0	0.017	63				
9.0	0.028		62	4.0	0.0236	64				
9.0	0.01		63	4.5	0.013	63				
12.0	0.0		62	6.0	0.018	62				
				6.5	0.012	63				
				9.0	0.012	63				
				10.0	0.022	62				


*All from Ref. 62

\ddagger Ref. 65


\S For $\text{Am(VI)} \rightarrow \text{Am(V)}$, see Eq. 3.11

\S For $\text{Am(V)} \rightarrow \text{Am(III)}$, see Eq. 3.14

Zaitsev et al. also state that the falloff in k_1 with increasing H_2SO_4 concentration may be accounted for by the occurrence of the reactions

and/or

which compete with Eq. 3.6 and thereby lower the yield of H_2O_2

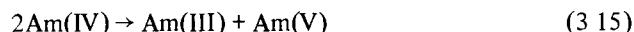
The autoreduction rate of Am(VI) in HNO_3 solutions is a factor of 1.5 to 2 higher than the maximum rate in HClO_4 and H_2SO_4 solutions. Also, in contrast to the behavior noted in HClO_4 and H_2SO_4 media, the reduction rate appears to increase with increasing HNO_3 concentration, at least up to 9M HNO_3 . According to Zaitsev the increased rate of reduction of Am(VI) in HNO_3 solutions is caused by radiolytically generated NO_2 ions that very effectively reduce Am(VI).

As regards autoreduction of Am(V) to Am(III), most investigators have stated that rate of this reaction, like that of the analogous Am(VI)–Am(V) transition, depends only on total americium concentration and is independent of Am(V) concentration, i.e.,

$$-\frac{d[\text{Am(V)}]}{dt} = \frac{d[\text{Am(III)}]}{dt} = k_2 [\text{Am}_{\text{total}}] \quad (3.14)$$

(Values of k_2 determined in several solutions are listed in Table 3.4.) Zaitsev et al.^{62,66} disagree and state that, at least under some conditions, the rate of autoreduction of Am(V) to Am(III) does depend on the concentration of Am(V). In any event, autoreduction of $^{241}\text{AmO}_2^+$ proceeds more slowly in 0.5M HCl than in 0.2M HClO_4 , presumably because of preferential reaction of the primary radiolysis products with chloride species rather than with AmO_2^+ ions. Slow autoreduction of AmO_2^+ in HNO_3 solutions has also been reported,⁶² the maximum reduction rate of AmO_2^+ is ~1% per hour in 0.5M HNO_3 and 0.8% per hour in 3.0M HNO_3 .

The rate of autoreduction of $^{243}\text{Am(VI)}$ in 2.18M HClO_4 solution at 75.7°C is about six times what it is at room temperature.⁶⁷ In 4M HClO_4 –2M NaClO_4 solution, $^{241}\text{Am(VI)}$ autoreduces about four times faster at 75°C than at 25°C (Ref. 62).


In 13M NH_4F , $^{241}\text{Am(IV)}$ autoreduces at a rate of about 4% per hour,¹⁵ whereas, in 3M fluoride solution, the autoreduction rate is about 10% per hour.¹⁷ Self-reduction of Am(IV) to Am(III) in phosphoric acid solution follows first-order reaction kinetics¹⁸ with a rate constant that is dependent on the concentrations of americium and H_3PO_4 (Fig. 3.2). In 12M H_3PO_4 solution containing initially 0.008M Am(IV) (85% ^{243}Am), 27 hr are required for self reduction of half the americium.

DISPROPORTIONATION

Am(IV)

In aqueous solution, Am(IV) is stable only in concentrated H_3PO_4 , $\text{K}_4\text{P}_2\text{O}_7$, and fluoride (NH_4F , KF , etc.) solutions (see pages 51 and 52). In other media, Am(IV) disproportionates to Am(III) and Am(V) in accordance with the large positive potential of the Am(IV)–Am(III) couple (see Table 3.3).

In HNO_3 and HClO_4 solutions, Am(IV) rapidly disproportionates according to the reaction³²

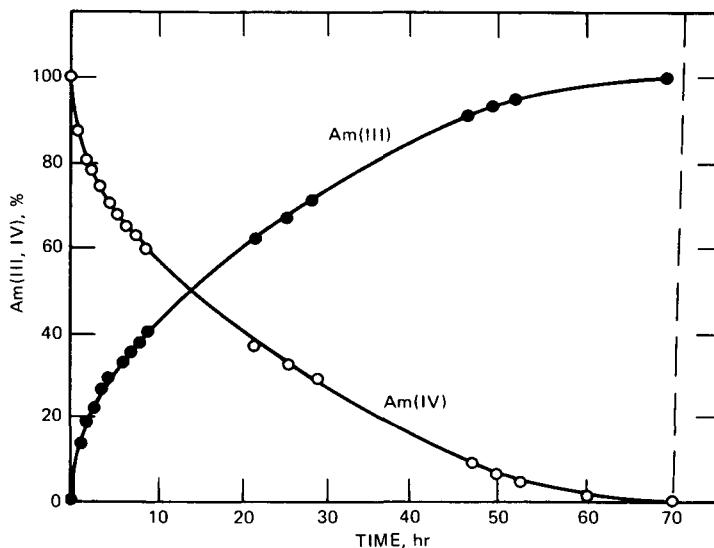


Fig. 3.2 Kinetics of the self-reduction of Am(IV) in 12M H_3PO_4 . [From B. F. Myasoedov, V. M. Mikhailov, I. A. Lebedev, O. E. Koir, and V. Ya. Frenkel, Preparation and Stability of Am(IV) and Am(V) in Phosphoric Acid Solutions, *Radiochemical and Radioanalytical Letters*, 14: 17 (1973).]

Assuming a reaction second order in Am(IV), Penneman, Coleman, and Keenan³² estimated k_1 in the equation

$$-\frac{d[\text{Am(IV)}]}{dt} = k_1 [\text{Am(IV)}]^2 \quad (3.16)$$

to be $> 3.7 \times 10^{-4}$ liter mol⁻¹ hr⁻¹ in 0.05M HNO_3 at 0°C.

Conversely, dissolution of Am(OH)_4 in 0.05M to 2M H_2SO_4 solutions at either 0 or 25°C or of AmO_2 in 1M H_2SO_4 yields solutions^{32,68} containing Am^{3+} and AmO_2^{2+} . These results are explained on the basis of the following mechanism:

Stage 1, simple disproportionation:

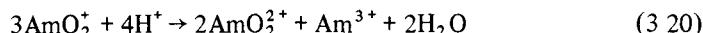
Stage 2, redox reaction:

In support of this postulated mechanism, the proportion of AmO_2^{2+} increases with increasing SO_4^{2-} and HSO_4^- concentrations at constant H^+ concentration. This means that SO_4^{2-} (or HSO_4^-) catalyzes the redox reaction since this step is not observed in HNO_3 or HClO_4 media.

Significantly, the average oxidation number of americium remains IV when $\text{Am}(\text{OH})_4$ is dissolved in either HClO_4 , HNO_3 , or H_2SO_4 media³². This result is somewhat surprising since Zaitsev et al⁶⁸ claim that the reduction of Am^{4+} by water is of increasing importance when AmO_2 is dissolved in $>1M$ H_2SO_4 , e.g., 27% reduction in 2M H_2SO_4 and 64% in 6M H_2SO_4 .

Am(V)

Early studies of the disproportionation of Am(V) in HClO_4 (Refs. 46, 63, 69, 72), H_2SO_4 (Ref. 70a), HNO_3 (Ref. 70a), and HCl (Ref. 65) solutions were all made with ^{241}Am . Results of these studies were greatly obscured by effects produced by alpha decay of the ^{241}Am isotope which, in most cases, led to autoreduction of Am(VI) to Am(V) at a rate which was approximately equal to that of the disproportionation. This complicating effect resulted, as Coleman⁶⁷ has pointed out, in general disagreement regarding both the stoichiometry and kinetics of the disproportionation reaction. Thus Stephanou, Asprey and Penneman⁶⁹ and, later, Hall and Markin⁶³ concluded that the reaction $2\text{Am(V)} \rightarrow \text{Am(VI)} + \text{Am(IV)}$ is followed by immediate reduction of Am(IV) by water, so that the apparent reaction is $2\text{Am(V)} \rightarrow \text{Am(VI)} + \text{Am(III)}$. Conversely, Gunn and Cunningham⁴⁶ suggested that the stoichiometry is $3\text{Am(V)} \rightarrow 2\text{Am(VI)} + \text{Am(III)}$, during which the average oxidation number of the americium is conserved. Zaitsev et al^{70a} supported this latter contention.


The most recent and definitive study of the kinetics of the disproportionation of Am(V) has been made by Coleman⁶⁷ using the isotope ^{243}Am to eliminate radiolytic complications. Coleman investigated disproportionation of Am(V) in 3M to 8M HClO_4 at 25°C, in 1M to 2M HClO_4 at 75 7°C, and in about 2M HCl, H_2SO_4 , and HNO_3 solutions at 75 7°C. His data for disproportionation in 6M HClO_4 at 25°C are shown in Fig. 3 3.

In confirmation of the earlier claims of Gunn and Cunningham⁴⁶ and of Zaitsev et al^{70a}, Coleman⁶⁷ finds that the stoichiometry of the disproportionation reaction in all media but HCl corresponds to

In HCl no Am(VI) is detected, since Am(VI) is rapidly reduced by Cl⁻ in acid media.

According to Coleman,⁶⁷ the net disproportionation reaction is

At 75 7°C in LiClO_4 —0.97 to 1.90M HClO_4 ($\mu = 2.0\text{M}$) solutions, the second order rate constant depends on $[\text{H}^+]^{2.5}$. Coleman⁶⁷ and Newton^{70b} note that this dependence suggests that two activated complexes are involved, one formed from two AmO_2^+ and two H^+ and the other from two AmO_2^+ and three H^+ . Assuming, as Coleman did, these activated complexes are involved in parallel rate-determining steps, the rate law is given by

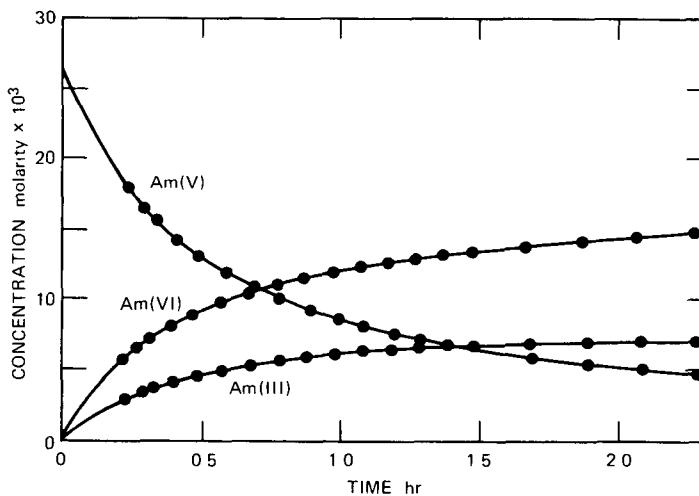


Fig. 3.3 Disproportionation of Am(V) in 6M HClO_4 at 25°C [From J S Coleman, The Kinetics of the Disproportionation of Americium(V) *Inorganic Chemistry* 2 53 (1963)]

$$\frac{d[\text{Am(V)}]}{dt} = k_2 [\text{AmO}_2^+]^2 [\text{H}^+]^2 + k_3 [\text{AmO}_2^+]^2 [\text{H}^+]^3 \quad (3.21)$$

with $k_2 = (6.94 \pm 1.01) \times 10^{-4} \text{ M}^{-3} \text{ sec}^{-1}$ and $k_3 = (4.63 \pm 0.71) \times 10^{-4} \text{ M}^{-1} \text{ sec}^{-1}$

Newton^{70b} states, however "Despite the fact that the rate law above is very satisfactory, an ambiguity in interpretation remains. If the same two activated complexes are formed consecutively, rather than in parallel steps, the rate law is

$$\frac{-d[\text{Am(V)}]}{dt} = [\text{AmO}_2^+] \left(\frac{1}{k_2' [\text{H}^+]^2} + \frac{1}{k_3' [\text{H}^+]^3} \right)^{-1}$$

This equation fits the experimental results just as well as the previous one. Values for k_2' and k_3' are $(2.57 \pm 0.36) \times 10^{-3} \text{ M}^{-4} \text{ sec}^{-1}$ and $(2.06 \pm 0.33) \times 10^{-3} \text{ M}^{-4} \text{ sec}^{-1}$, respectively. These values reproduce the data with a root mean square deviation of 3.2% and a maximum deviation of 6.6%. In order to distinguish between the two rate laws, measurements would have to be extended at least down to 0.7M HClO_4 where the two calculated values for the apparent second-order rate constants would differ by 10%."

Using, in part, temperature-dependence data obtained by Coleman, Newton estimated thermodynamic quantities of activation for the disproportionation of Am(V). Results of his calculations are given in Table 3.4a.

Coleman also notes that at 75.7°C the disproportionation rates in 2M HNO_3 , HCl , and H_2SO_4 are, respectively, 4.0, 4.6, and 24 times as great as that in 2M HClO_4 ,

Table 3.4a

NET ACTIVATION PROCESSES AND THERMODYNAMIC QUANTITIES FOR THE DISPROPORTIONATION OF Am(V)^a

Net activation process	ΔG^* , kcal mol ⁻¹	ΔH^* , kcal mol ⁻¹	ΔS^* , cal mol ⁻¹ deg ⁻¹
$2\text{AmO}_2^+ + 2\text{H}^+ \rightleftharpoons [\text{*}]^{4+}$	26.17	15.4 + 0.3	31 + 1
$2\text{AmO}_2^+ + 3\text{H}^+ \rightleftharpoons [\text{*}]^{5+}$	26.81	9.4 + 0.5	-50 + 1.2

^aAdapted from T. W. Newton, The Kinetics of the Oxidation-Reduction Reactions of Uranium, Neptunium, Plutonium, and Americium in Aqueous Solutions, USAEC Report TID-26506, 1974

whereas at $\sim 25^\circ\text{C}$ the reaction rate increased 450 times in going from 3M to 8M HClO_4

Coleman also observed the reaction

the reverse of the disproportionation reaction, on addition of Am(III)-Am(VI) mixtures to $\text{Al}(\text{ClO}_4)_3$ buffer at pH 4 and on neutralization of Am(III)-Am(VI) mixtures with NaHCO_3 . Studies of the kinetics of Eq. 3.22 have not been made.

KINETICS OF OXIDATION-REDUCTION REACTIONS

A long-neglected area of americium chemistry has been the determination of the rate laws and mechanism of the various oxidation-reduction reactions of americium ions in aqueous solution. Several recent papers by Japanese and Russian workers suggest, however, that this situation may be changing. The following paragraphs summarize data for the few reactions that have been studied in detail and supplement information presented in earlier review papers by Hindman,⁷¹ by Newton and Baker,⁷² and by Gourisse.⁷³ An important up-to-date reference is the ERDA Critical Review by Newton.^{70b}

Peroxydisulfate Oxidation of Am(III) in Acid Media

Japanese workers⁷⁴⁻⁷⁶ have studied kinetics of oxidation of Am(III) to Am(VI) by $\text{S}_2\text{O}_8^{2-}$ ion, in both the presence and absence of Ag^+ ion, in 0.06M to 0.4M HNO_3 solutions at 40 to 70°C . Kinetics of this reaction, in the absence of Ag^+ ion, in 0.09M to 0.6M HNO_3 at 45.6 to 69.0°C have also been investigated by Russian scientists.⁷⁷ The general pattern of the oxidation reaction (Fig. 3.4) involves (1) an induction

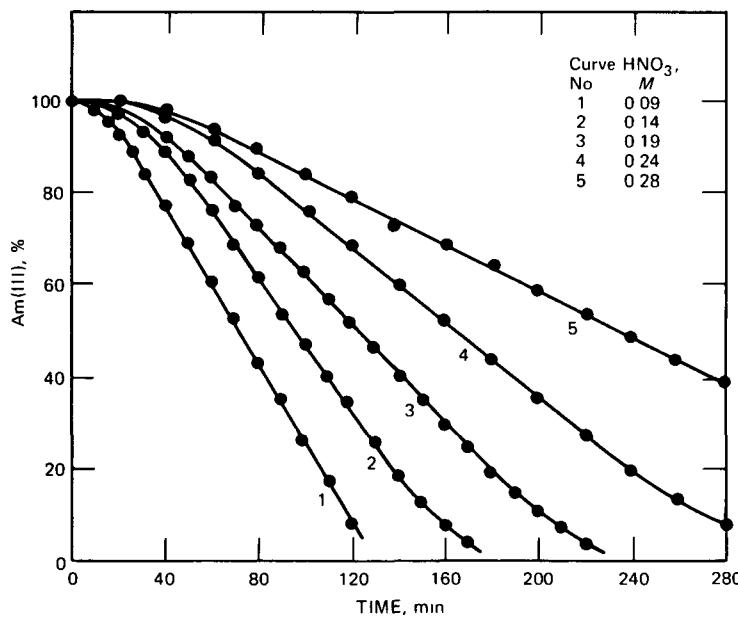
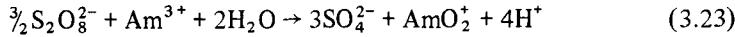



Fig. 3.4 Kinetics of oxidation of Am(III) by peroxydisulfate (50.6°C , $[\text{S}_2\text{O}_8^{2-}]_0 = 0.40\text{M}$). [From V. A. Ermakov, A. G. Rykov, G. A. Timofeev, and G. N. Yakovlev, Investigation of the Kinetics and Redox Reactions of the Actinide Elements. XX. Kinetics and Mechanisms of the Interaction of Americium(III) and (V) with Peroxydisulfate Ions in Nitric Acid Solution, *Radiokhimiya*, **13**: 826 (1971) through *Soviet Radiochemistry (English Translation)*, **13**: 851 (1971).]

period; (2) a linear region of constant rate; and (3) a region of gradually decreasing rate, particularly at higher HNO_3 concentrations. Reaction rates are dependent on temperature and on the concentrations of HNO_3 , $\text{S}_2\text{O}_8^{2-}$, and, when present, Ag^+ . Newton^{70b} states that the stoichiometry of the oxidation reaction is

Both the Japanese and Russian workers concur that the oxidizing agent is not the $\text{S}_2\text{O}_8^{2-}$ ion itself but secondary products (e.g., SO_4^- , OH , and HS_2O_8) resulting from its thermal decomposition.

Using micromolar concentrations of $^{241}\text{Am(III)}$, Ohyoshi, Jyo, and Shinohara⁷⁶ found the oxidation reaction to be first order with respect to both Am^{3+} and $\text{S}_2\text{O}_8^{2-}$ concentrations and to follow the rate expression

$$\frac{-d[\text{Am(III)}]}{dt} = K_h(k_1 + k_2[\text{Ag}^+])[\text{S}_2\text{O}_8^{2-}][\text{Am(III)}] \cdot 1/[\text{H}^+] \quad (3.23a)$$

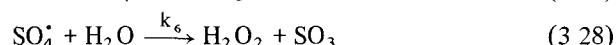
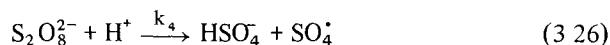
where K_h is the dissociation constant of $H_2S_2O_8^-$ and k_1 and k_2 refer to the silver ion uncatalyzed and catalyzed paths, respectively (Some values for k_1 and k_2 are listed in Table 3.5) The energies of activation are 33.3 kcal mol^{-1} for k_1 and 17.4 kcal mol^{-1} for k_2 This activation energy for k_1 was recalculated by Newton^{70b} from k vs T data in the original Japanese paper Newton notes that the value of 28.6 kcal mol^{-1} reported by Ohyoshi, Jyo, and Shinohara⁷⁶ for the k_1 path is clearly in error

Table 3.5
RATE CONSTANTS FOR PEROXYDISULFATE
OXIDATION OF Am(III)

$$\left\{ [Am(III)]_0 \ddagger = 4.0 \times 10^{-6} M; [NH_4S_2O_8]_0 \ddagger = 2.0 \times 10^{-2} M; [HNO_3]_0 \ddagger = 6.0 \times 10^{-2} M; \mu = 0.50 M \right\}$$

Temp., °C	k_2, \ddagger $M^2 min^{-1}$	k_1, \S $M^{-1} min^{-1}$
40	162	0.013
50	420	0.093
60	915	0.36
70	1820	1.45

\ddagger Subscript zero means initial concentration



\ddagger Silver-catalyzed path Eq 3.23

\S Uncatalyzed path Eq 3.23

Conversely, Ermakov et al.⁷⁷ on the basis of studies with millimolar amounts of $^{243}Am(III)$, claim that the rate of oxidation of Am(III) (in the absence of Ag^+) in the linear portion of the kinetic curves does not depend on the Am(III) concentration and is given by


$$\begin{aligned} \frac{-d[Am(III)]}{dt} &= (a - b[H^+]) [S_2O_8^{2-}] [Am(III)]^0 \\ &= \frac{2}{3} \left(k_1 - \frac{k_4[H^+]}{1+x} \right) [S_2O_8^{2-}]_0 = k_{III} \end{aligned} \quad (3.24)$$

At 50.6°C, $a = 4.9 \times 10^{-5} min^{-1}$ and $b = 0.9 \times 10^{-4} M^{-1} min^{-1}$ In Eq 3.24, $[S_2O_8^{2-}]_0$ is the initial concentration of the peroxydisulfate ion, $x = k_5/k_6 [H_2O]$, and k_1 , $k_4 - k_6$ are rate constants for the following reactions

Peroxydisulfate Oxidation of Am(V) in HNO_3

Ermakov et al⁷⁷ have also investigated the kinetics of the oxidation of Am(V) by $\text{S}_2\text{O}_8^{2-}$ ion in 0.09 to 0.6M HNO_3 media at 45.6 to 60°C. According to Newton,^{70b} the stoichiometry of this reaction is

Ermakov and his coworkers account for their results on the basis of the rate law

$$\begin{aligned} \frac{-d[\text{Am(V)}]}{dt} &= (a' - b'[\text{H}^+]) [\text{S}_2\text{O}_8^{2-}] [\text{Am(V)}]^0 \\ &= 2 \left(k_1 - \frac{k_4 [\text{H}^+]}{1+x} \right) [\text{S}_2\text{O}_8^2]_0 = k_V \end{aligned} \quad (3.30)$$

where x , k_1 , k_4 , and $[\text{S}_2\text{O}_8^{2-}]_0$ are defined as for Eq 3.24. At 50.6°C $a' = 15 \times 10^{-5}$ min^{-1} and $b' = 2.7 \times 10^{-4} \text{M}^{-1} \text{min}^{-1}$

From Eqs 3.24 and 3.30, it follows that the ratio k_V/k_{III} should equal 3 for similar conditions of acidity and temperature. This has been confirmed by Ermakov et al.⁷⁷

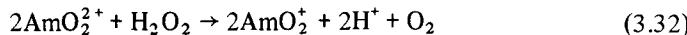
Peroxydisulfate Oxidation of Am(III) in K_2CO_3 Media

Just as in acid media, the rate of oxidation of Am(III) by peroxydisulfate in K_2CO_3 solutions is determined by the rate of thermal decomposition of the $\text{S}_2\text{O}_8^{2-}$ ion. In contrast to behavior in acid media, however, peroxydisulfate oxidation of Am(III) in carbonate solutions proceeds through the intermediate formation of Am(V). These conclusions were established by Ermakov et al⁷⁸ who studied oxidation of 0.001M to 0.003M Am(III) in 1.3M to 2.46M K_2CO_3 solutions by 0.025M to 0.1M $\text{S}_2\text{O}_8^{2-}$ at temperatures in the range 58 to 83°C. Under such conditions the rate of oxidation of Am(III) to Am(V) is independent of the total Am and K_2CO_3 concentrations and equals the rate of decomposition of $\text{S}_2\text{O}_8^{2-}$ ions. The rate of oxidation of Am(V) to Am(VI) is directly proportional to both the total americium concentration and the $\text{S}_2\text{O}_8^{2-}$ concentration and is inversely proportional to the K_2CO_3 concentration.

The effective activation energy of $\text{S}_2\text{O}_8^{2-}$ oxidation of Am(III) to Am(V) in K_2CO_3 solutions is about 33.9 kcal mol^{-1} which is close to the activation energy (33.5 kcal mol^{-1}) of the thermal decomposition of $\text{S}_2\text{O}_8^{2-}$ ions according to the reaction $\text{S}_2\text{O}_8^{2-} \rightarrow 2\text{SO}_4^{2-}$

Reduction of Am(VI) in Acid Peroxydisulfate Solutions

In high acid ($\geq 1\text{M}$ HNO_3) solutions at 50 to 70°C, thermal decomposition products of the $\text{S}_2\text{O}_8^{2-}$ ion reduce Am(VI) to Am(V). For this reduction, Rykov et al^{79a} propose the rate law


$$\frac{-d[Am(VI)]}{dt} = k_{VI}[S_2O_8^{2-}]_0 = 2 \left(\frac{k_4[H^+]}{1+x} - k_1 \right) \quad (3.31)$$

where $[S_2O_8^{2-}]_0$ is the initial concentration of the peroxydisulfate ion, $x = k_5/k_6[H_2O]$ and k_1, k_4, k_5 , and k_6 are the rate constants for Eqs. 3.25, 3.26, 3.27, and 3.28, respectively.

The results of Rykov et al.^{79a} thus indicate that the mechanism of reduction of Am(VI) in the presence of $S_2O_8^{2-}$ ions is identical with that proposed (see page 67) for oxidation of Am(V). The direction of the process—oxidation of Am(V) or reduction of Am(VI)—is determined by the ratio of the contributions of the primary processes of thermal decomposition of $S_2O_8^{2-}$ ions. At low acidities where Eq. 3.25 predominates, oxidation of Am(V) predominates. At high acidities, where the catalytic pathway of decomposition (Eq. 3.26) dominates, Am(VI) is reduced. The hydrogen-ion concentrations where the reaction paths change are temperature dependent.

Reduction of Am(VI) by Hydrogen Peroxide

Using ^{243}Am in $LiClO_4-HClO_4$ media, Woods, Cain, and Sullivan^{79b} studied kinetics of the reaction

These workers report that the empirical form of the rate law for Eq. 3.32 at $25^\circ C$ and $\mu = 1.00M$ is

$$\frac{-d[AmO_2^{2+}]}{dt} = k[AmO_2^{2+}][H_2O_2][H^+]^{-0.12} \quad (3.33)$$

Over the range of hydrogen-ion concentrations from $0.98M$ to $0.1M$, $\log k = 4.952 \pm 0.007 - 0.12 \pm 0.01 \log [H^+]$.

Reduction of Am(VI) by Other Reductants*

Shilov, Nikolaevskii, and Krot^{79c} have reported results of qualitative spectrophotometric studies of the reaction of $2 \times 10^{-4}M$ to $10^{-3}M$ $^{241}Am(VI)$ in dilute HNO_3 solutions with various reducing agents. According to their data (Table 3.5a),

*Woods and Sullivan [*Inorganic Chemistry*, 13: 2774 (1974)] studied the reaction between AmO_2^{2+} and NpO_2^+ in $1M$ $(H, Li)ClO_4$. The rate law is:

$$\frac{-d[Am(VI)]}{dt} = k[Am(VI)][Np(V)]$$

At $25^\circ C$, k is $(2.45 \pm 0.4) \times 10^4 M^{-1} \text{ sec}^{-1}$; for this reaction, $\Delta H^* = 6.66 \pm 0.08 \text{ kcal mol}^{-1}$ and $\Delta S^* = -16.2 \pm 0.3 \text{ cal mol}^{-1} \text{ deg}^{-1}$.

Table 3.5a
REDUCTION OF Am(VI) BY SEVERAL REDUCING AGENTS*
 $\{[Am(VI)]_0 = 2 \times 10^{-4} - 10^{-3}; 25^\circ C\}$

Reductant		Medium	Reaction rate	Final solution	
Reagent	Concentration, M			Am(V), %	Am(III), %
Oxalic acid	0.022	0.5M HNO ₃	Very fast	56	44
	0.15	0.5M HNO ₃	Very fast	57	43
	0.15	pH = 6.0	Very fast	57	43
Tartaric acid	0.0025	0.5M HNO ₃	$t_{1/2} = 3$ min	64	36
	0.0025	pH = 4.0	$t_{1/2} = 10$ sec	63	37
Citric acid	0.0025	0.5M HNO ₃	$t_{1/2} = 1$ min	76	24
HCl	0.09	0.5M HNO ₃	$t_{1/2} = 18$ min	100	0
HCOOH	0.0025	pH = 4.0	$t_{1/2} = 10$ min	100	0
HCHO	0.0024	0.1M HNO ₃	$t_{1/2} = 2$ min	100	0
Li ₂ SO ₃	0.01	0.1M HNO ₃	Very fast	100	0
NH ₂ OH	0.0025	0.1M HNO ₃	Very fast	100	0
H ₂ O ₂	0.0025	0.1M HNO ₃	Very fast	100	0
N ₂ H ₄	0.0025	0.1M HNO ₃	Very fast	100	0

*From V. P. Shilov, V. B. Nikolaevskii, and N. N. Krot, Some Characteristics of the Reaction of Americium(VI) with Reducing Agents in Aqueous Solutions, *Radiokhimika*, 15: 871 (1973) through *Soviet Radiochemistry (English Translation)*, 15: 881 (1973).

oxalic acid and other organic compounds commonly regarded as complexing agents reduce Am(VI) rapidly to approximately equal mixtures of Am(III) and Am(V), whereas other reagents (H₂O₂, etc.) reduce Am(VI) initially only to Am(V). Mechanisms and rate laws involved in reduction of Am(VI) and Am(V) by H₂O₂ are discussed on pages 68 and 69-70, respectively. Detailed studies of the kinetics of reduction of Am(VI) by other reducing agents listed in Table 3.5a have not been reported.

Reduction of Am(V) by Hydrogen Peroxide

From their studies of the reduction of AmO_2^+ to Am^{3+} by H₂O₂ in 0.1M HClO₄, Zaitsev et al.⁸⁰ deduced the rate law

$$\frac{-d[AmO_2^+]}{dt} = k[AmO_2^+][H_2O_2] \quad (3.34)$$

where $k = 14.8 \pm 1.5$, 21.6 ± 2.2 , and 30.3 ± 3.0 liters mol⁻¹ hr⁻¹ at 25, 30, and 35°C, respectively. The activation energy for the reduction reaction is thus 13.2 kcal mol⁻¹.

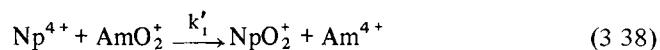
The only other reported studies of the Am(III)-Am(V)-H₂O₂-HClO₄ system have been made by Damien and Pages.^{81,82a} They report that the rate at which

AmO_2^+ is reduced is inversely proportional to the HClO_4 concentration and also is strongly dependent on the initial $[\text{Am}^{3+}]_0/[\text{AmO}_2^+]_0$ and $[\text{H}_2\text{O}_2]_0/[\text{AmO}_2^+]_0$ concentration ratios. In 0.2M HClO_4 at 26°C, the rate data could be described satisfactorily by the relation⁸¹

$$\frac{-d[\text{AmO}_2^+]}{dt} = \frac{k[\text{AmO}_2^+]_0[\text{H}_2\text{O}_2]_0}{1 + k'[\text{Am}^{3+}]_0/[\text{AmO}_2^+]_0} \quad (335)$$

where $k = 3.3$ liters $\text{mol}^{-1} \text{hr}^{-1}$ and $k' = 0.13$ (liter $\text{mol}^{-1} \text{hr}^{-1}$)². Damien and Pages^{82a} suggested that a more general rate law for this system is

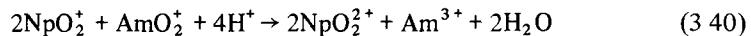
$$\frac{-d[\text{AmO}_2^+]}{dt} = k[\text{AmO}_2^+] + k'[\text{AmO}_2^+]^2 \quad (336)$$


where k' and k are a function, respectively, of acidity and H_2O_2 concentration. Damien and Pages did not attempt to determine these constants.

Reduction of Am(V) by Np(IV) in HClO_4 Media

Blokhan, Ermakov, and Rykov^{82c} used a spectrophotometric procedure to study the kinetics of the Np(IV)-Am(V) reaction in 0.23M to 1.97M HClO_4 at temperatures in the range 35.0 to 54.6°C. Depending on the initial concentrations of Np(IV) and Am(V), the reaction products are either Np(V) and Am(III) or Np(VI) and Am(III). The reaction rate falls rapidly with increasing acidity. Under the assumption of constant Am(IV) concentration, the kinetic data follow the rate law

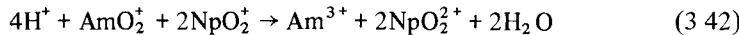
$$\frac{d[\text{Am}^{3+}]}{dt} = k'_1 [\text{Np}^{4+}] [\text{AmO}_2^+] + k'_2 [\text{NpO}_2^+] [\text{AmO}_2^+] \quad (337)$$


where k'_1 and k'_2 are, respectively, rate constants for Eqs. 338 and 339

Values of k'_1 and k'_2 are given in Ref. 82c. The authors of this reference also calculate the following standard thermodynamic activation parameters for Eq. 337: $\Delta H^* = 30 \pm 1$ kcal mol^{-1} , $\Delta G^* = 20.7 \pm 1.0$ kcal mol^{-1} , and $\Delta S^* = 31 \pm 3$ cal $\text{mol}^{-1} \text{deg}^{-1}$.

Reduction of Am(V) by Np(V) in HClO_4 Media

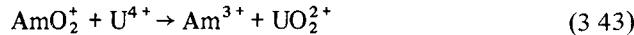
Rykov, Timofeev, and Chistyakov^{82d} have determined spectrophotometrically the rate of the reaction


Kinetic data were collected in perchlorate media ($\mu = 2.0M$) at temperatures in the range 24.7 to 44.1°C. According to these workers, reduction of Am(V) by Np(V) is an irreversible second-order reaction with a rate law given by

$$\frac{-d[AmO_2^+]}{dt} = -\frac{1}{2} \frac{d[NpO_2^+]}{dt} = k[NpO_2^+] [AmO_2^+] \quad (3.41)$$

The rate of the reduction of Am(V) by Np(V) increases with acidity, at 24.7°C and $[H^+] = 0.53M$, $k = 0.71 \text{ mol}^{-1} \text{ min}^{-1}$ whereas at 29.8°C and $[H^+] = 1.89M$, $k' = 6.10 \text{ mol}^{-1} \text{ min}^{-1}$. Standard thermodynamic activation parameters calculated by Rykov, Timofeev, and Chistyakov^{82d} for Eq. 3.40 are $\Delta H^* = 15.2 \text{ kcal mol}^{-1}$, $\Delta G^* = 20.0 \text{ kcal mol}^{-1}$, and $\Delta S^* = -16 \text{ cal mol}^{-1} \text{ deg}^{-1}$.

Reduction of Am(V) by Np(V) in Na_2CO_3 Media


Kinetics of the reduction of Am(V) by Np(V) in Na_2CO_3 solutions have been investigated spectrophotometrically by Chistyakov, Ermakov, and Rykov^{82e}. The stoichiometry of the reduction reaction corresponds to the equation

Kinetics of this reaction were studied at 50.5 to 69.7°C in 0.45M to 1.71M Na_2CO_3 solution containing 0.0013M Np(V) and 0.000655M²⁴³ Am. Under these conditions, kinetics of the Am(V)-Np(V) reaction in Na_2CO_3 media follow the same rate law (Eq. 3.41) as that followed in $HClO_4$ media. In 1.71M Na_2CO_3 at 64°C, the rate constant, k , is 150 ± 15 . The effective activation energy of Eq. 3.42 is independent of Na_2CO_3 concentration and is $14.5 \pm 1.0 \text{ kcal mol}^{-1}$.

Reduction of Am(V) by U(IV) in $HClO_4$ Media

At 11.2 to 36.0°C in 0.51M to 2.50M $HClO_4$, the reaction between Am(V) and U(IV) proceeds according to the reaction

Spectrophotometric measurements of Blokhin, Ermakov, and Rykov^{82f} show that the rate law for this reduction reaction is given by

$$\frac{d[Am^{3+}]}{dt} = k [AmO_2^{2+}] [U^{4+}] \quad (3.44)$$

In 2.0M $HClO_4$ at 19.5°C, $k = 725 \pm 30$. Standard thermodynamic activation parameters for Eq. 3.43 are $\Delta H^* = 18 \pm 1 \text{ kcal mol}^{-1}$, $\Delta G^* = 15.2 \pm 0.2 \text{ kcal mol}^{-1}$, and $\Delta S^* = 9 \pm 3 \text{ cal mol}^{-1} \text{ deg}^{-1}$.

Self-Reduction of Am(VI) and Am(V) in Acid Peroxydisulfate Solution

Self-reduction of Am(VI) and Am(V) in various acid solutions is discussed on pages xxx to xxx Ermakov et al.⁸³ have now studied self-reduction of Am(VI) and Am(V) at 18°C in 0.1M to 0.2M HNO₃ solutions containing 0.10M to 0.41M (NH₄)₂S₂O₈. Alpha radiation doses ranged from 0.95 × 10²¹ to 9.64 × 10²¹ eV liter⁻¹ min⁻¹. Under such conditions the rate of reduction of Am(VI) is independent of its concentration but is a function of dose rate and the concentration of S₂O₈²⁻ ions. No Am(III) is observed until all the Am(VI) is reduced to Am(V). In the presence of S₂O₈²⁻ ions, radiolytic reduction of Am(V) proceeds more slowly than that of Am(VI).

SOLUTION ABSORPTION SPECTRA

Am(III)

A representative list of the various solutions in which the absorption spectra of the Am³⁺ ion have been measured is compiled in Table 3.6. Table 3.7 lists molar absorptivities at maximum absorption wavelengths for Am(III) in various media. These data as well as similar results presented later for Am(IV), (V), and (VI) should be used with some caution, taking into account that the accuracy of the resolution of the narrower absorption peaks may depend on the resolving power of the instrument with

Table 3.6
ABSORPTION SPECTRUM OF AM(III)

Media	References	Typical spectrum
0.2M–10.4M HNO ₃	26, 64, 84	Fig. 3.5a
0.2M–10M HCl	64, 65, 85	Fig. 3.5b
0.2M–10.0M H ₂ SO ₄	64, 86	
0.1M–0.5M HClO ₄ DCIO ₄	2, 27, 48, 64, 65, 87, 91	Fig. 3.5c
4M–13.7M LiCl	92	
11.4M LiBr	84	Fig. 3.6a
6.0M K ₂ CO ₃	84	Fig. 3.6a
40 wt % K ₂ CO ₃	26	
7.37M MgI ₂	84	
10M H ₃ PO ₄	18	Fig. 3.6b
Saturated KF	93	Fig. 3.7a
Ethanoic HCl	88, 94, 95	Fig. 3.7b
Fused LiNO ₃ –KNO ₃	96	Fig. 3.7c

Table 3.7
PROMINENT ABSORPTION BANDS OF
AMERICIUM(III) IN VARIOUS SOLUTIONS

Absorption maximum, nm	Molar absorptivity, liters mol ⁻¹ cm ⁻¹	Media	Ref.
1302	0.2	0.5M DCIO_4	89
1050	7.7	0.5M DCIO_4	89
874	1.1	0.5M DCIO_4	89
818	44.0	40 wt % K_2CO_3	26
815	61.9	10M H_2SO_4	64
813	66.3	0.5M DCIO_4	89
811	64.4	0.1M HClO_4	64
811	43.0	10M HNO_3	64
811	41.0	1M HNO_3	26
510	105.0	LiNO_3 — KNO_3 eutectic	96
508	270.0	40 wt % K_2CO_3	26
505.5	260.0	11.44M LiBr	84
505	70.0	13.7M LiCl	92
505	168.0	10M HNO_3	64
503	378.0	0.1M HClO_4	64
503	379.0	12M H_3PO_4	18
501.2	170.0	Saturated KF	93
377	18.6	0.1M HClO_4	64
360	15.5	0.1M HClO_4	88
335	12.9	0.1M HClO_4	88
235	2790.0	13.7M LiCl	92

which they were measured. In perchlorate media, major peaks in the absorption spectrum of Am^{3+} occur at 503 and 811 nm. Shifts in the position of these peaks and/or changes in molar absorptivity which occur in other media are evidence for formation of various americium complexes.

Theoretical calculations of the electronic energy bands in the Am^{3+} ion have been performed by several investigators.^{91, 97-100} Such calculations revealed^{97, 98} an unexpected $^7\text{F}_0 \leftrightarrow ^5\text{D}_1$ transition at about 17,500 cm^{-1} which had not been observed previously. Subsequently a weak band near the calculated energy level was observed in a concentrated americium solution.¹⁰⁰ The observed intensity of this band is consistent with a weak electric dipole mechanism.⁹⁹ The theoretical calculations also predict transitions between the ground $^7\text{F}_0$ state and even J-levels to be more intense than those to excited odd J-levels.^{91, 98} The observed spectrum of Am^{3+} in LiNO_3 — KNO_3 eutectic is in good agreement with the latter prediction.

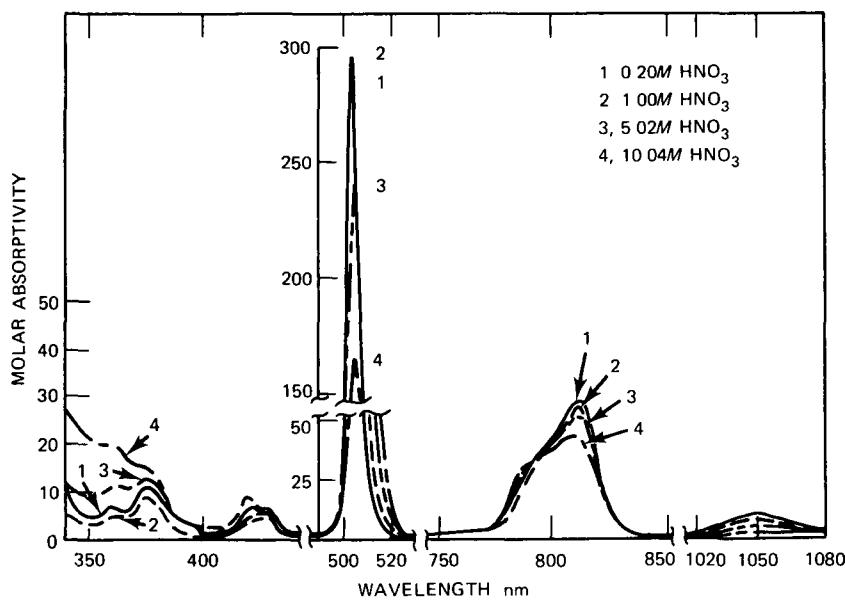


Fig. 3.5a Absorption spectrum of Am(III) in HNO₃. (From G. N. Yakovlev and V. N. Kosyakov, Spectrophotometric Studies of the Behavior of Americium Ions in Solution, in *Proceedings of the International Conference on the Peaceful Uses of Atomic Energy, Geneva, 1955*, Vol. 7, p. 363, United Nations, New York, 1956.)

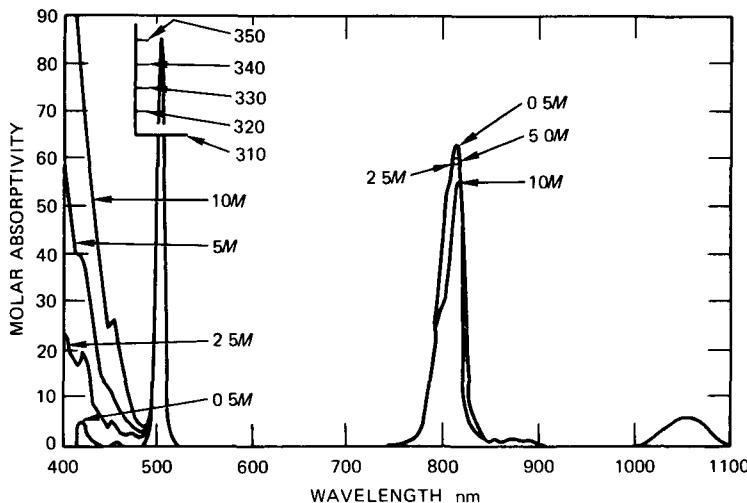


Fig. 3.5b Absorption spectrum of Am(III) in HCl [From G. R. Hall and P. D. Herniman, The Separation and Purification of Americium-241 and the Absorption Spectra of Trivalent and Quinquevalent Americium Solutions, *Journal of the Chemical Society (London)*, p. 2214 (1954).]

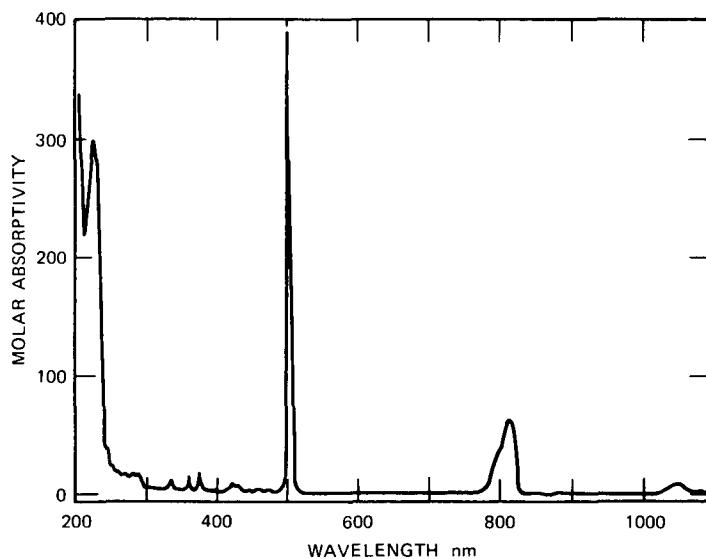


Fig. 3.5c Absorption spectrum of Am(III) in diluted HClO_4 . [From T H Keenan, Americium and Curium, *Journal of Chemical Education*, 36: 27 (1959).]

Am(IV)

The solution spectrum^{14, 15} of Am(IV) has been measured in 10*M* to 12*M* NH_4F (Refs. 14, 15) (Fig. 3.8a) and in 12*M* KF (Ref. 101) (Fig. 3.8b), in the two solutions, resemblance of the spectrum in band energy and intensity (Table 3.8) is evident. The spectrum in 13*M* NH_4F and 12*M* KF also resembles very closely that of solid AmF_4 (see pages 145 and 146).

Varga et al.¹⁰¹ have recently published an account of the first attempts at interpretation of the absorption spectrum of Am^{4+} in aqueous 12*M* KF and solid AmF_4 , including term assignments. Agreement between experimental and calculated levels was generally excellent. Correspondence between the calculated results obtained for Am^{4+} in KF and AmF_4 was very close. Identical interpretations for the low energy levels were obtained, but some differences were found among the higher energy terms.

Am(V)

The solution spectrum of Am(V) has been determined in 0.1*M* H_2SO_4 (Ref. 26) (Fig. 3.9a), 0.5*M* to 5.0*M* HCl (Ref. 65) (Fig. 3.9b) and in dilute HClO_4 (Refs. 27, 48, 88) (Fig. 3.9c). Molar absorptivities at maximum absorption peaks are listed in Table 3.8.

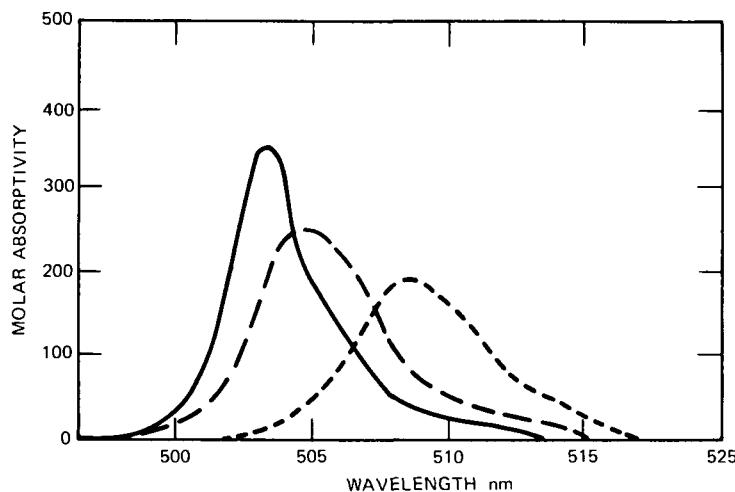


Fig. 3.6a The 503-nm band in the Am(III) spectrum —, 1M HClO_4 , ---, 11.4M LiBr, - - -, 6.0M K_2CO_3 solutions [From M Shiloh, M Givon, and Y Marcus, A Spectrophotometric Study of Trivalent Actinide Complexes in Solutions III Americium with Bromide, Iodide, Nitrate, and Carbonate Ligands, *Journal of Inorganic and Nuclear Chemistry*, 31: 1807 (1969)]

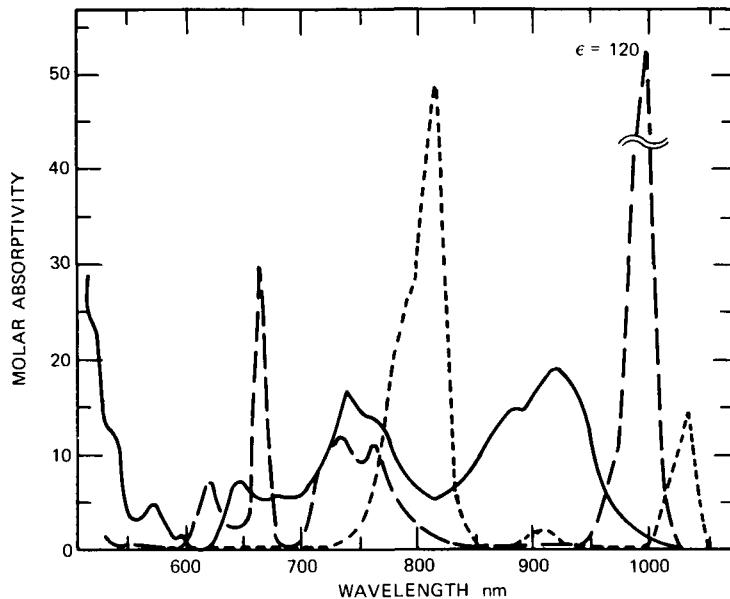
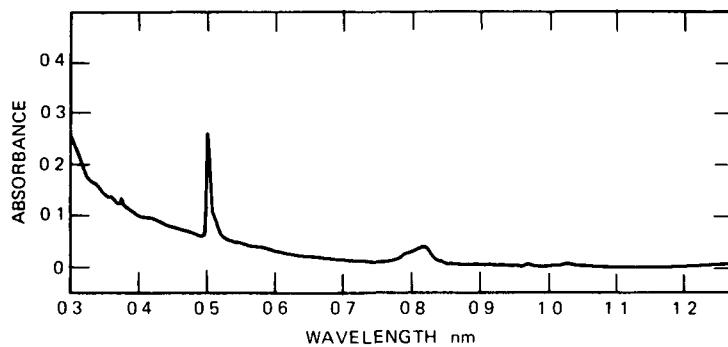
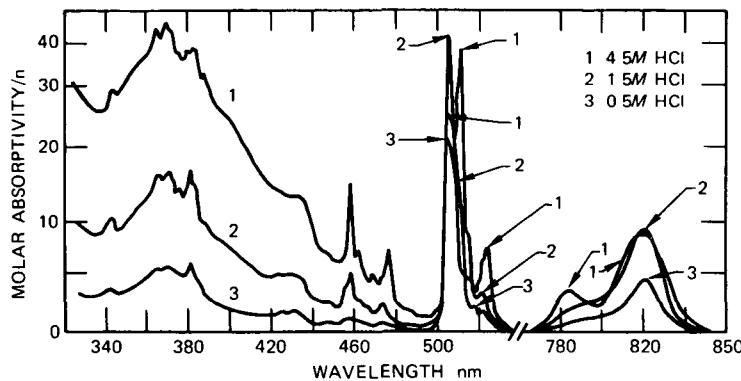




Fig. 3.6b Absorption spectrum of Am(III) in 10M H_3PO_4 , ---, Am(IV) in 10M H_3PO_4 , —, and Am(VI) in 5M H_2PO_4 , - - - [From E Yanir and M Givon, Higher Oxidation States of Americium in Phosphate Solutions, *Inorganic and Nuclear Chemistry Letters*, Supplement to *Journal of Inorganic and Nuclear Chemistry*, 5: 369 (1969)]

Fig. 3.7a Absorption spectrum of Am(III) in saturated KF solution. (From C. E. Thalmayer and D. Cohen, Actinide Chemistry in Saturated Potassium Fluoride Solution, in *Lanthanide/Actinide Chemistry*, R. F. Gould (Ed.), Advances in Chemistry Series, p 256, 1971)

Fig. 3.7b Absorption spectrum of Am(III) in ethanolic HCl (for curves 1, 2, and 3 $n = 1, 10/3$, and 10, respectively). [From Yu. A. Barban, A. G. Gorski, and V. P. Kotin, Absorption Spectra of Am(III) in Standard Solutions of HCl, *Radiokhimiya*, 13: 305 (1971) through *Soviet Radiochemistry (English Translation)*, 13: 314 (1971).]

To interpret the spectra of the $5f^4$ AmO_2^+ ion, Varga et al¹⁰³ made ab initio relativistic calculations of various spectroscopic parameters. These calculated parameters were used to initiate least-squares fits to 15 electronic energy levels of aqueous AmO_2^+ in 1M DClO_4 – D_2O . Correlation with 35 lower levels of the f^4 intermediate spin–orbit coupling diagram allowed term assignments to be made to the experimental aquo-ion levels.

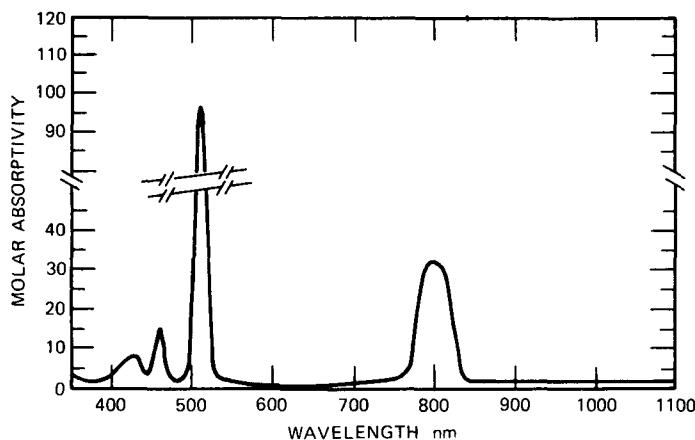


Fig. 3.7c Absorption spectrum of Am(III) LiNO₃-KNO₃ eutectic at 170°C. (From D. M. Gruen, S. Fried, P. Graf, and R. L. McBeth, The Chemistry of Fused Salts, in *Proceedings of the Second International Conference on the Peaceful Uses of Atomic Energy, Geneva, 1958*, Vol. 28, p. 112, United Nations, Geneva, 1958.)

Fig. 3.8a Absorption spectrum of Am(IV) in 13M NH₄F [From L. B. Asprey and R. A. Penneman, Preparation and Properties of Aqueous Tetravalent Americium, *Inorganic Chemistry*, 1: 134 (1962).]

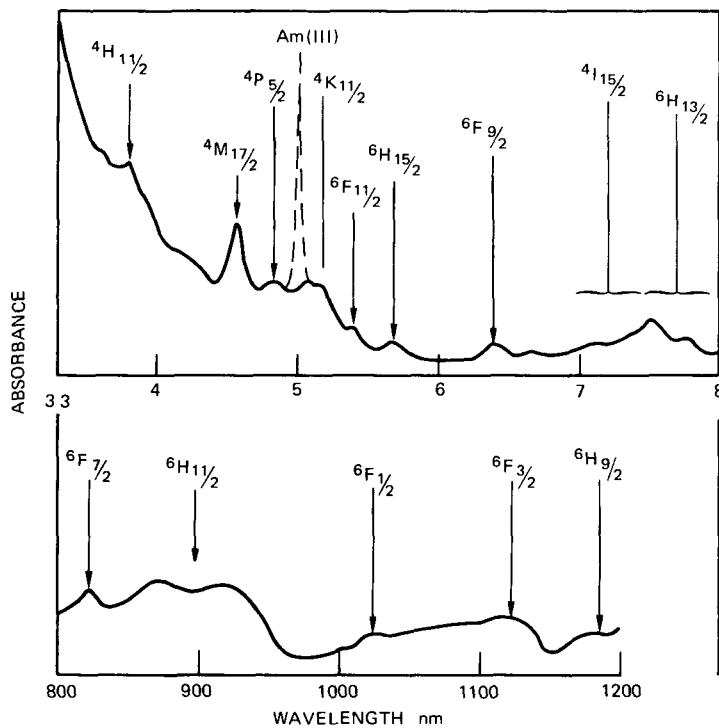


Fig. 3.8b Absorption spectrum of Am^{4+} in 12M KF, room temperature, 1-cm cells. The observed peak at 500 nm for Am(III) indicates incomplete oxidation of the sample. [From L. P. Varga, R. D. Baybarz, M. J. Reisfeld, and L. B. Asprey, Electronic Spectra of the $5f^6$ and $5f^9$ Actinides Am^{4+} , Pa^{3+} , Bk^{2+} , Cf^{3+} , and Es^{4+} . *Journal of Inorganic and Nuclear Chemistry* 35, 2775 (1973).]

Am(VI)

Table 3.9 lists various aqueous media in which the spectrum of Am(VI) has been measured. Molar absorptivity values are shown in Table 3.8. The spectrum of Am(VI) in acid media is not strongly affected by changes in ionic environment. Only small shifts in band energies and/or intensities occur in different acids or at different acidities.^{18, 63, 104} The spectrum of Am(VI) in carbonate solutions (Fig. 3.12a), in 1M CsOH (Fig. 3.12b), and in acid solutions differs markedly.

Varga, Reisfeld, and Asprey¹⁰⁶ calculated the spectrum of the AmO_2^{2+} ion from the f^3 intermediate spin-orbit coupling diagrams. Except for the lower energy levels, agreement between calculated and observed (in 0.1M HClO_4) spectra was poor, however. The electron delocalization associated with the covalent character of the Am-O bond is believed¹⁰³ responsible for the deviation between calculated and observed spectroscopic parameters.

Table 3.8
PROMINENT ABSORPTION BANDS OF AMERICIUM(IV)
(V), (VI), AND (VII) IONS IN VARIOUS SOLUTIONS

Ion	Absorption maximum, nm	Molar absorptivity, liters mol ⁻¹ cm ⁻¹	Media	Ref.
Am(IV)*	920	26.0	12M H ₃ PO ₄	18a
	742	18.0	12M H ₃ PO ₄	18a
	456	30.0	13M NH ₄ F	15
Am(V)	900	6.0	0.1M HClO ₄	64
	720	66.0	0.1M H ₂ SO ₄	26
	715	59.0	0.1M HClO ₄	88
	646	9.5	0.1M HClO ₄	88
	515	48.0	0.1M H ₂ SO ₄	26
	514	44.4	0.5M HCl	65
	514	35.7	5M HCl	65
	513	45.0	0.1M HClO ₄	88
	415	12.0	0.1M HClO ₄	88
Am(VI)	996	194.0	12M H ₃ PO ₄	18a
	996	120.0	5M H ₃ PO ₄	17
	995	86.4	2M HClO ₄	102
	757	10.4	0.1M HClO ₄	88
	713	11.4	0.1M HClO ₄	88
	663	30.5	0.1M HClO ₄	88
	619	12.6	0.1M HClO ₄	88
	548	12.8	0.1M HClO ₄	88
	400	500.0	3.5M NaOH	1a
Am(VII)	740	330.0	3.5M NaOH	1a
	400	1600.0	3.5M NaOH	1a

*Molar absorptivities of Am(IV) in 12M H₃PO₄ at 333, 357, 384, 416, and 454 nm are, respectively, 1363 ± 19, 1029 ± 11, 701 ± 10, 365 ± 12, and 138 ± 9^{a,b}

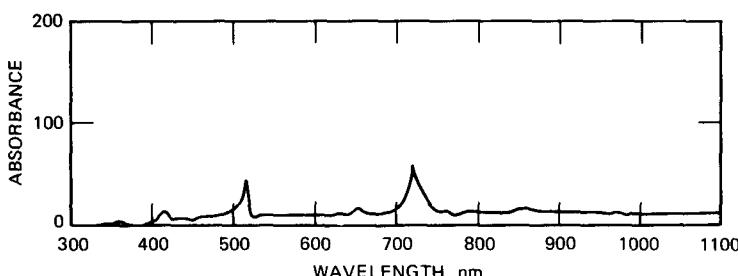


Fig. 3.9a Absorption spectrum of Am(V) in 0.1M H₂SO₄. [From L. B. Werner and I. Perlman, The Pentavalent State of Americium, *Journal of the American Chemical Society*, 73: 495 (1951).]

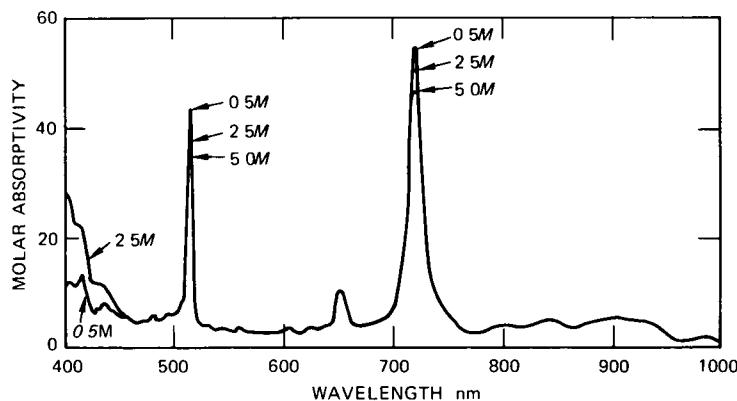


Fig. 3.9b Absorption spectrum of Am(V) in HCl [From G R Hall and P D Herniman, The Separation and Purification of Americium-241 and the Absorption Spectra of Tervalent and Quinquevalent Americium Solutions, *Journal of the Chemical Society (London)*, p 2214 (1954)]

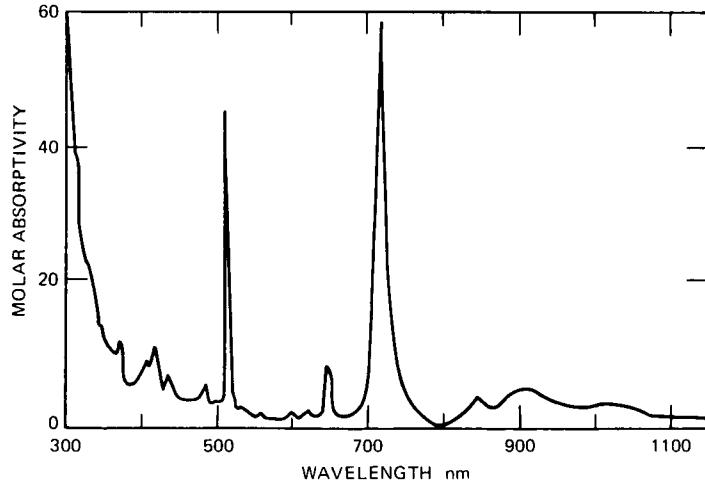


Fig. 3.9c Absorption spectrum of Am(V) in 1M HClO_4 (From R A Penneman and L B Asprey, A Review of Americium and Curium Chemistry, in *Proceedings of the International Conference on the Peaceful Uses of Atomic Energy Geneva, 1955*, Vol 7, p 355, United Nations, New York, 1956)

Bell¹⁰⁷ has compared band positions of the transuranium actinyl spectra including those of AmO_2^+ and AmO_2^{2+} with the spacings between positions of the UO_2^{2+} bonds. His results indicate that a single molecular orbital model can represent any of the actinyl ions when the uranyl ion is assumed to have the bonding orbitals exactly filled, and the transuranium actinyl ions are represented with the uranyl core and a

Table 3.9
SOLUTION ABSORPTION SPECTRUM OF Am(VI)

Media	References	Typical spectrum
0.2M-14.3M HNO_3	30, 104	Fig 3.10a
0.1M-6.0M H_2SO_4	63	Fig 3.10b
0.1M-2.0M HClO_4	27, 48, 64, 88	Fig 3.11a
5.0M-12.0M H_3PO_4	17, 18a	Fig 3.6b
1M HF	105	
0.1M $\text{Na}_4\text{P}_2\text{O}_7$	22	Fig 3.11b
0.1M Na_2CO_3	22	Fig 3.12a
1M CsOH	33	Fig 3.12b

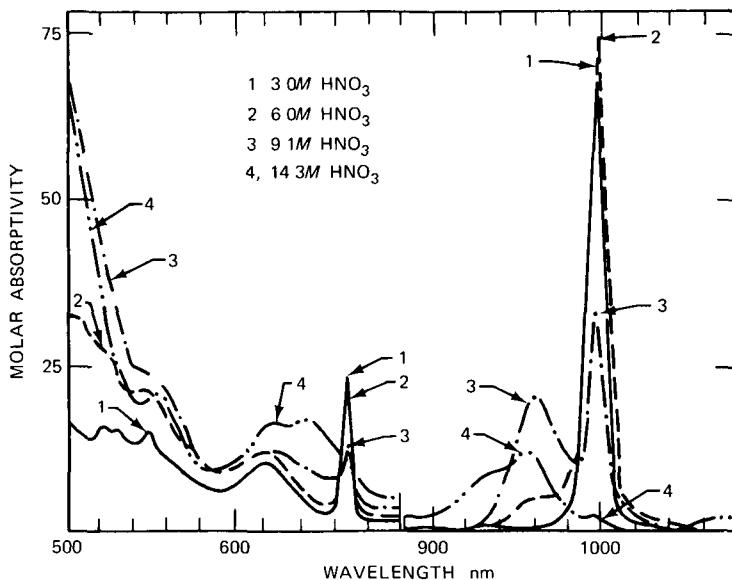


Fig. 3.10a Absorption spectrum of Am(VI) in HNO_3 . (From G. N. Yakovlev and V. N. Kosyakov, An Investigation of the Chemistry of Americium, in *Proceedings of the Second International Conference on the Peaceful Uses of Atomic Energy*, Geneva, 1955, Vol. 28, p. 373, United Nations, Geneva, 1956.)

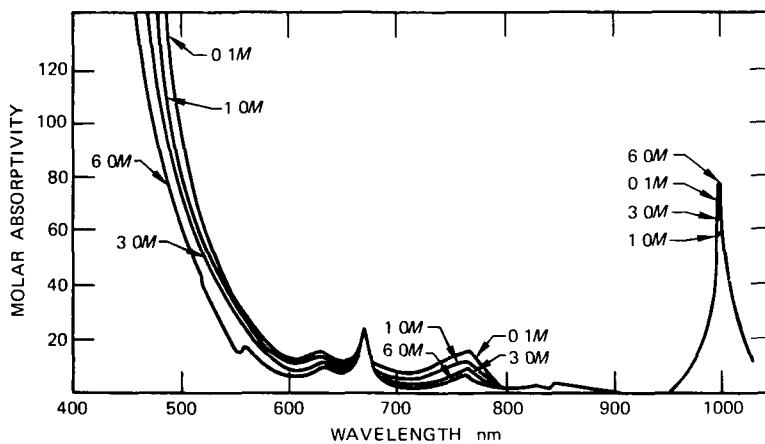


Fig. 3.10b Absorption spectrum of Am(VI) in H_2SO_4 [From G R Hall and T L Markin, The Self-Reduction of Americium(V) and (VI) and the Disproportionation of Americium(V) in Aqueous Solutions, *Journal of Inorganic and Nuclear Chemistry*, 4: 296 (1957)]

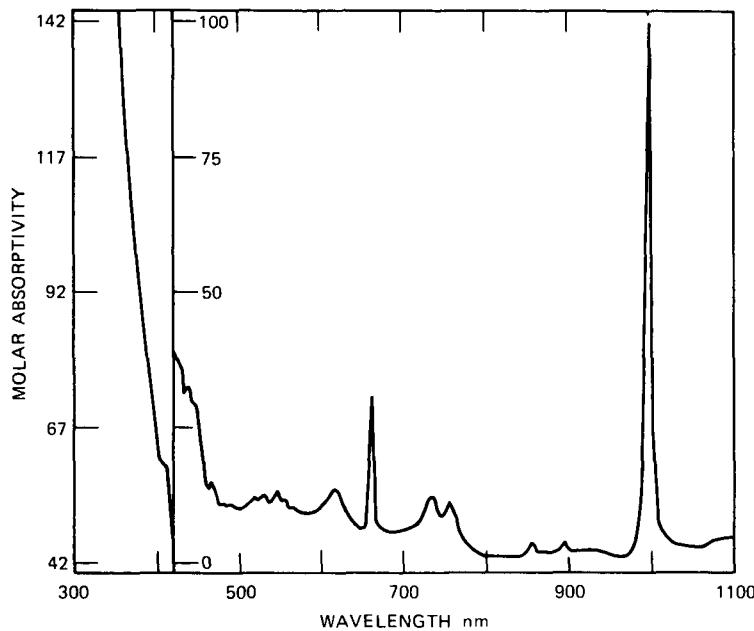


Fig. 3.11a Absorption spectrum of Am(VI) in 1M HClO_4 (From R A Penneman and L B Asprey, A Review of Americium and Curium Chemistry, in *Proceedings of the International Conference on the Peaceful Uses of Atomic Energy, Geneva, 1955*, Vol 7, p 355, United Nations, New York, 1956)

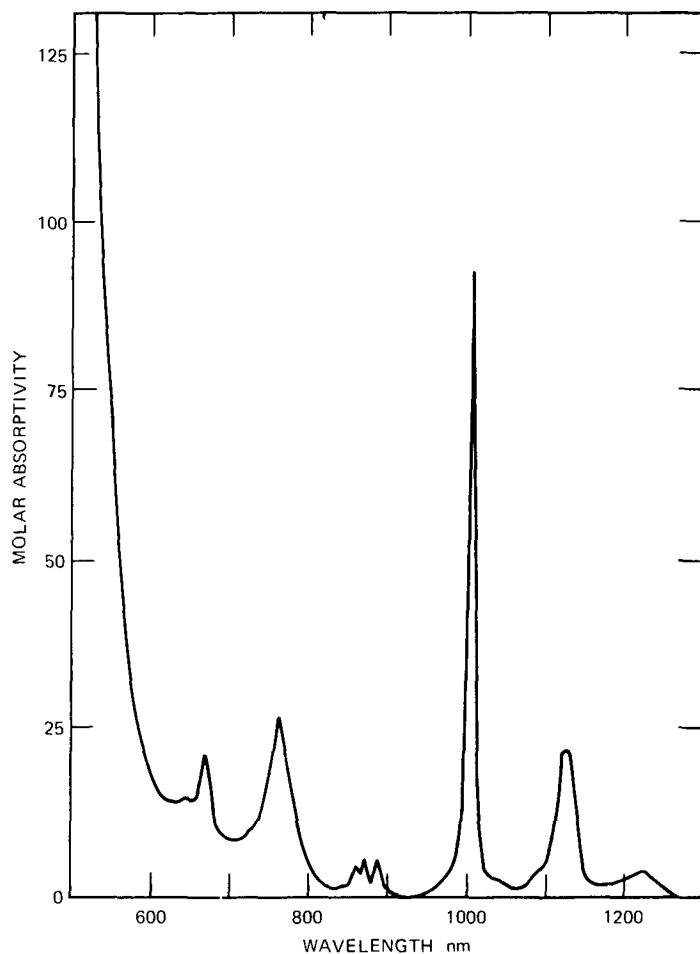
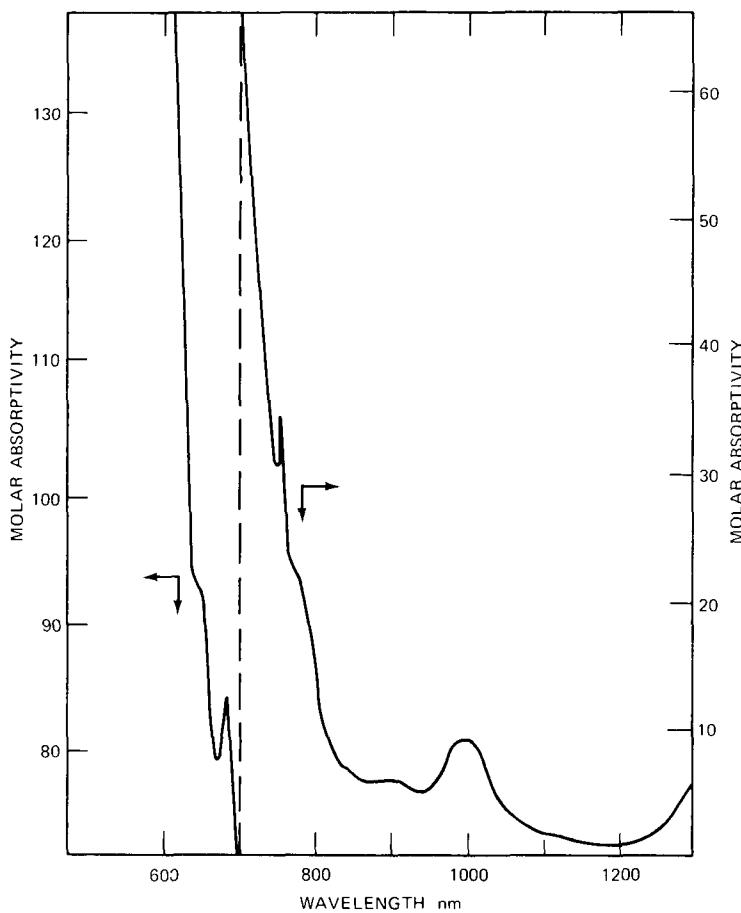



Fig. 3.11b Absorption spectrum of Am(VI) in 1M $\text{Na}_4\text{P}_2\text{O}_7$. [From J S Coleman, T K Keenan, L H Jones, W T Carnall, and R A Penneman, Preparation and Properties of Americium(VI) in Aqueous Carbonate Solutions, *Inorganic Chemistry* 1: 58 (1963)]

progressive increase of electrons in the first two orbitals lying above the bonding orbitals

Am(VII)

Green-colored solutions believed to contain some Am(VII) are prepared (see pages 54 and 55) by oxidation of Am(VI) in 3M to 5M NaOH at 0 to 7°C with either O_3 or the O_2 ion radical. The absorption spectra of Am(VI) and Am(VII) in 3.5M NaOH as measured by Krot et al¹ are shown in Fig. 3.12c

Fig. 3.12a Absorption spectrum of Am(VI) in 0.1M Na_2CO_3 [From J S Coleman, T K Keenan, L H Jones, W T Carnall, and R A Penneman, Preparation and Properties of Americium(VI) in Aqueous Carbonate Solutions, *Inorganic Chemistry*, 1: 58 (1963)]

COMPLEXES OF AMERICIUM IONS

Tabulated Formation Constants

Formation constants and pertinent experimental conditions under which they were determined are collected in Tables 3.10 and 3.11 for complexes of Am^{3+} with inorganic and organic ligands, respectively (A few complexes for which formation constants have not yet been measured are also cited) This listing is believed complete

(Text continues on page 99)

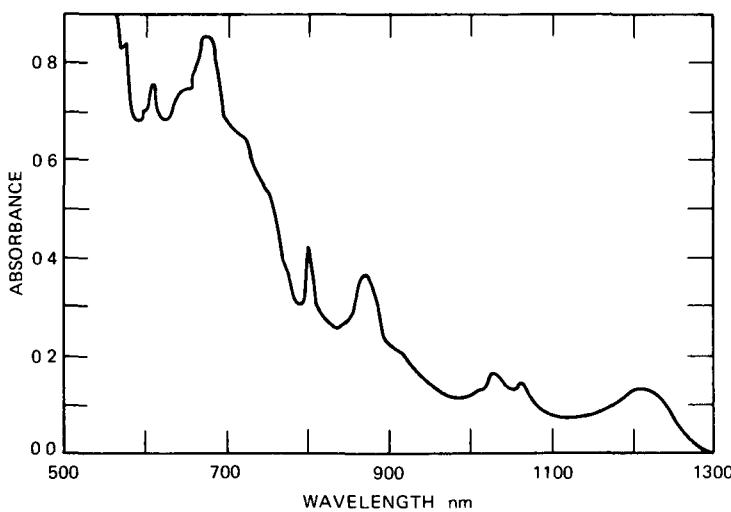


Fig. 3.12b Absorption spectrum of Am(VI) in 1M CsOH [From D Cohen, Americium(VI) in Basic Solution, *Inorganic and Nuclear Chemistry Letters* Supplement to *Journal of Inorganic and Nuclear Chemistry*, 8: 533 (1972)]

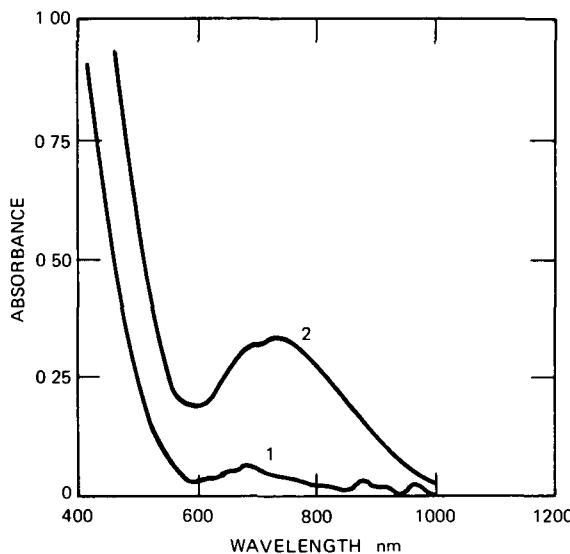


Fig. 3.12c Absorption spectra of Am(VI) and Am(VII) in 3.5M NaOH 1, 0.0194M Am(VI), 2, 0.0194M Am-50% Am(VII) and 50% Am(VI) [From N N Krot, V P Shilov, V B Nikolaevskii, A. K. Nikaev, A. D. Gel'man, and V I Spitsyn, Preparation of Americium in Heptavalent State, *Doklady Akademii Nauk SSSR (USSR)*, 217: 589 (1974) through USAEC Report ORNL-tr-2828, Oak Ridge National Laboratory, 1974]

Table 3.10
COMPLEXES OF AMERICIUM WITH INORGANIC LIGANDS

Ref.	Method	Temp., °C	Ionic strength (μ), M	Medium	Log of formation constants		
					β_1	β_2	Other
Bromide (Br ⁻), Refs 84, 108							
84	Spec	25		8.74-11.4M LiBr	-3.3 ± 0.1 (AmBr ²⁺)		
Carbonate (CO ₃ ²⁻), Refs 64, 84							
84	Soly	25		0.1-0.6M K ₂ CO ₃			[Am(OH)(CO ₃) ₃] ⁴⁻
Chloride (Cl ⁻), Refs 92, 95, 108-119							
92	Spec	25(?)		13.7M LiCl	-2.21 ± 0.08 (AmCl ²⁺)	4.70 ± 0.08 (AmCl ₂ ⁺)	
109	SX	30 ± 0.1	1.0	LiClO ₄ -LiCl	-0.25 ± 0.015		
				HClO ₄ -HCl	0.14 ± 0.024	-0.53 ± 0.044	
				NaClO ₄ -NaCl	0.027 ± 0.01	-0.55 ± 0.13	
				NH ₄ ClO ₄ -NH ₄ Cl	0.117 ± 0.017	0.033 ± 0.020	
110	IX	26 ± 1	1.0	HClO ₄ -HCl	-0.057 ± 0.098	-0.82	
				NaClO ₄ -NaCl, pH 3.0	0.15 ± 0.03		
111	SX	22 ± 1	1.0	HClO ₄ -HCl	-0.046 ± 0.010		
112, 113	SX	25	4.0	4M NaClO ₄	-0.15 ± 0.07	-0.69 ± 0.10	
114	IX		0.5	0.5M HClO ₄	-0.24		
115	Relax				0.03	1.0	
116	IX	20	4.0	HClO ₄ -HCl	-0.16 ± 0.02	-0.75 ± 0.14	
118	Spec	25(?)		*			K ₆ † 150 ± 20
				‡			K ₆ † 60 ± 20
Fluoride (F ⁻), Refs 120a, 120b							
120a	SX	25	0.5	NaClO ₄ -NaF	3.39 ± 0.01 (AmF ²⁺)	6.11 ± 0.03 (AmF ₂ ⁺)	$\beta_3 = 9.0$ (AmF ₃)
120b	SX	25	1.0	NaClO ₄	2.49 ± 0.02		
Hydroxide (OH ⁻), Refs 9a-11							
11	EM	25	0.005	HClO ₄ -NH ₄ ClO ₄	10.7 ± 0.1 (AmOH ²⁺)	20.9 § [Am(OH) ₂ ⁺]	

(Table continues on next page)

Table 3.10 (Continued)

Ref.	Method	Temp., °C	Ionic stre, (μ), M	Medium	Log of formation constants		
					β_1	β_2	Other
10	PEP	15 ± 1	0.005	HCl-KCl	11.32 ± 0.02		
9	SX	23 ± 1	0.1	HClO ₄ -LiClO ₄	8.3		
				Nitrate (NO ₃ ⁻), Refs 84, 109-111, 121-126			
84	Spec	25		8.0M LiNO ₃	1.3 ± 0.1 (AmNO ₃ ²⁺)		
122	IX	20-25	1.0	1.0M NH ₄ ClO ₄ , pH 1.5	0.60		
123	SX	25 ± 0.02	1.0	HClO ₄ -HNO ₃	0.25 ± 0.02		
109	SX	30 ± 0.1	1.0	NH ₄ ClO ₄ -HNO ₃	0.23	0.13 [Am(NO ₃) ₂ ⁺]	
110	IX	26 ± 1		NaClO ₄ -NaNO ₃ , pH 3.0	0.20 ± 0.03		
				HClO ₄ -HNO ₃ , pH 1.0	0.15 ± 0.03	-0.40	
111	SX	22 ± 1	1.0	HClO ₄ -HNO ₃	0.25 ± 0.07		
121	SX	20 ± 1	8.0	8.0M HClO ₄	-0.33	-0.77	$\beta_3 = -1.4$ [Am(NO ₃) ₃]
124	SX		1.0	1.0M NaClO ₄ , pH 3.0	-0.26		
126	SX	25	2.01	NH ₄ NO ₃ -HNO ₃	0.20 ± 0.03		
				Perchlorate (ClO ₄ ⁻), Ref 127			
127	SX	25	2.0	HBF ₄ -HClO ₄	-0.07 ± 0.03 (AmClO ₄ ²⁺)		
				Phosphate (H ₂ PO ₄ ⁻), Refs 128, 129			
128	IX	20 ± 1	1.0	1.0M NH ₄ Cl	1.48 [Am(H ₂ PO ₄) ²⁺]	2.10 (Am(H ₂ PO ₄) ₂ ⁺)	$\beta_3 = 2.85$ [Am(H ₂ PO ₄) ₃] $\beta_4 = 3.4$ [Am(H ₂ PO ₄) ₄]
129	IX	25 ± 0.1	0.2	0.2M NH ₄ ClO ₄		1.69 + 0.78	
				Sulfate (SO ₄ ²⁻), Refs 110, 112, 122, 124, 130-135			
110	IX	26 ± 1	1.13	NaClO ₄ , pH 3.0	1.49 (AmSO ₄ ⁺)	2.47 [Am(SO ₄) ₂ ⁺]	
124	SX		1-1.3	NaClO ₄ , pH 3.0	1.47	2.59	
122	IX	20-25	0.75	0.75M NaClO ₄ , pH 3.5	1.78		
130	IX		1.5	1.5M NH ₄ ClO ₄ , pH 3.5	1.76	2.11	
112, 131	SX	25	1.0	1.0M NaClO ₄	1.57 ± 0.09	2.66 + 0.08	
132	SX	25 ± 0.1	2.0	2.0M NaClO ₄	1.43 ± 0.06	1.83 ± 0.12	

133	IX	27	1 0	$\text{HClO}_4 - \text{H}_2\text{SO}_4$ $\text{NaClO}_4 - \text{Na}_2\text{SO}_4$, pH 3 0	1 22 ± 0 01 1 48 ± 0 01	2 35 ± 0 01	$\beta' = 0 54 \pm 0 03 [\text{Am}(\text{HSO}_4)_2^+]$
134	SX	24-25	0 5	0 5M NaClO_4	1 85 ± 0 01	2 79 ± 0 01	
	IX	25	0 5	0 5M NaClO_4	1 86 ± 0 01	2 73 ± 0 01	
	Thiocyanate (SCN^-), Refs 109, 112, 126, 136-141a, 141b						
109	SX	30 ± 0 1	1 0	$\text{LiClO}_4 + \text{LiSCN}$ $\text{NaClO}_4 - \text{NaSCN}$ $\text{NH}_4\text{ClO}_4 - \text{NH}_4\text{SCN}$	0 06 ± 0 04 (AmSCN^{2+}) 0 17 ± 0 05 0 12 ± 0 06	0 24 ± 0 03 $[\text{Am}(\text{SCN})_2^+]$ 0 51 ± 0 03 0 56 ± 0 02	
112, 136	SX	25	5 0	5 0M NaClO_4	0 85 ± 0 05		$\beta_3 = 0 55 \pm 0 15 [\text{Am}(\text{SCN})_3]$ $\beta_4 = 0 0 + 0 15 [\text{Am}(\text{SCN})_4^-]$
126	SX	25	2 0	$\text{NH}_4\text{NO}_3 - \text{NH}_4\text{SCN}$	0 55 ± 0 15	0 74 ± 0 03	$\beta_3 = 0 87 \pm 0 03$
137	IX		0 5	0 5M NH_4ClO_4	0 66 ± 0 03 ($\mu=0$)		
			5 0	5 0M NH_4ClO_4	0 24		$\beta_3 = -0 04$
138	IX	25	1 0	$\text{NaClO}_4 - \text{NaSCN}$	0 50 ± 0 01	0 84 ± 0 07	
139	SX		5 0	5 0M NaClO_4	0 60 ± 0 06		
140	SX	25 ± 0 1	1 0	$\text{NaClO}_4 + \text{NaSCN}$, pH 2 0	0 36 ± 0 03	-0 01 ± 0 20	$\beta_3 = 0 22 \pm 0 26$
141a	Spec	22 ± 1	1 0	1 0M NaClO_4	0 76 ± 0 03	0 83 ± 0 07	
141b	SX	25	5 0	$\text{NaClO}_4 + \text{NaSCN}$	0 59 ± 0 05		
	Trimetaphosphate ($\text{P}_3\text{O}_9^{3-}$), Ref 142						
142	IX	25 ± 0 1	0 2	NH_4ClO_4 , pH 2-4	2 48 ± 0 04 (AmP_3O_9)		$\beta'_1 = 2 21 + 0 21 (\text{AmHP}_3\text{O}_9^+)$

*85 vol % succinonitrile-15 vol % acetonitrile

†Equilibrium constant for reaction $\text{AmCl}_5^2 + \text{Cl} \rightarrow \text{AmCl}_6^3$

‡Propylene carbonate

§Estimated value

TABLE 3.11
COMPLEXES OF AMERICIUM WITH ORGANIC LIGANDS

Ref.	Method	Ionic strength			Medium	β_1	Log of formation constants		Other
		°C	(μ), M	Medium			β_2		
Acetic acid (HAc), Refs 28, 143-147									
143	IX	20	0.5	9.0M HAc		2.28 (AmAc ²⁺)	3.84 (AmAc ₂ ⁺)		$\beta_3 = 4.78$ (AmAc ₃) $\beta_4 = 5.7$ (AmAc ₄) $\beta_5 = 6.66$ (AmAc ₅ ²⁻) $\beta_6 = 7.62$ (AmAc ₆ ³⁻) $\beta_1 = 4.57$, $\beta_4 = 5.7$ $\beta_5 = 6.73$, $\beta_6 = 7.73$
144	Pot T	20	1.0	1.0M NH ₄ ClO ₄		1.81	3.20		
145	SX	25 + 0.1	2.0	2.0M NH ₄ ClO ₄		1.95 + 0.11			
146	IX	20	0.5	0.5M NaClO ₄		1.99 + 0.01	3.27 + 0.07	$\beta_3 = 3.9$	
147	IX	25(?)	0.2	?		2.15	3.83		
		25(?)	0.5	?		2.30	3.81		
		25(?)	1.0	?		2.08	3.62		
28	SX	~25	0.1	1.0M Ac		1.40 (AmO ₂ Ac)	2.51 (AmO ₂ Ac ₂)		
α Alanine (ALAN), Ref 148									
148	SX	25	2.0	2.0M NaClO ₄		0.79 (AmALAN ²⁺)			
149, 150	Anthranil/N,N-diacetic acid (H, ADA), Refs 149, 150						14.5 (Am(ADA) ³⁻)		
151a	Spec			HAc, HNO ₃		AmAz	AmAZ ₂	AmAZ ₃	
151b	Spec			pH 3.6		AmO ₂ AZ			
<i>N</i> Benzoylphenylhydroxylamine (NBPHA), Ref 152									
152	SX						$\beta = ?$ [Am(NBPHA) ₃]		
Benzoyltrifluoroacetone (BTFA), Ref 153									
153	SX	25	0.1	NH ₄ ClO ₄			$\beta_1 = 14.84$ [Am(BTFA) ₃]		
Citric acid (H, Cit), Refs 154-160									
154, 155	Spec	25	1.0	1.0M NaClO ₄		6.96 (AmCit)	10.3 [Am(Cit) ₂ ³⁻]	$\beta_1 = 4.53$ (AmHCit ⁺) $\beta(?) = 5.61$ (AmCitOH ⁻)	

155	IX	25	0 1	0 1M NaClO ₄	9 16 + 0 03		$\beta'_1 = 7 00$
			0 5	0 5M NaClO ₄	8 73 ± 0 066		$\beta'_1 = 6 29$
			1 0	1 0M NaClO ₄	6 72 + 0 05		$\beta'_1 = 4 24$
156	IX	25	0 1	0 1M NaH ₂ Cit	6 74	11 55	$\beta'_1 = 5 31$
157	IX			1 0M NH ₄ Cl	7 11	14 0	$\beta'_2 = 8 23 [Am(HCit)2]$
158	PEP			0 04M		9 66	$\beta'_3 = 8 29 [Am(H2Cit)3]$
Decanohydroxamic acid (HDHA), Ref 161							
161	SX	20	0 1	0 1M NaClO ₄			$\beta(?) = [Am(DHA)3 + 2H2(DHA)2]$
1,2 Diaminocyclohexanetetraacetic acid (H ₄ DCTA), Refs 162 165							
162	EM	20 ± 0 5	0 1	KCl + HCl	18 34 (AmDCTA)		$\beta'_1 = 2 87 (AmHDCTA)$
163	IX	25 ± 1	0 1	0 1M NH ₄ ClO ₄	18 79		
164	IX	80		0 001M H ₄ DCTA +0 02M ammonium α hydroxyisobutyrate	18 79		
165	SX	20	0 1	0 1M NH ₄ Cl	18 21		
1,2 Diaminopropanetetraacetic acid (H ₄ DTPrA), Ref 155							
155	IX	25	0 1	0 1M NaClO ₄	17 69 (AmDTPrA)		$\beta'_1 = 9 79 (AmHDTPrA)$
Diethyl-(PP')-ethane-(1,2)-diphosphonic acid (H ₂ B ₂ EDP), Ref 166							
166	SX	25	1 0	1 0M NaClO ₄			$\beta'_1 = 14 52 (Am(HB2EDP)3)$
5,7-Dichloro 8-Hydroxyquinoline (HDCO), Refs 167, 168							
167	SX	25 ± 0 5	0 1	0 1M (NH ₄ ,H)ClO ₄			$\beta_3 = 21 93 (Am(DCO)3)$
Diethylenetriaminopentaacetic acid (H ₅ DTPA), Refs 150, 169 178							
150	IX	25	0 1	0 1M NH ₄ ClO ₄	23 07 (AmDTPA ²⁺)		$\beta'_1 = 14 06 (AmHDTPA)$
169	IX	25	0 1	0 1M NH ₄ ClO ₄	22 92		
170	EM	25 ± 0 2	0 1	0 1M KNO ₃	22 74		$\beta'_1 = 14 3$
171	SX		0 1		23 2		
172	Spec	25	0 1		23 2		
173	Spec	25	0 1	0 1M NH ₄ ClO ₄	24 03		
174	Spec	20 ± 0 1	0 5	HClO ₄ , HNO ₃	22 09		
175	IX	25	0 1	0 1M NH ₄ ClO ₄	23 32		
176	IX	25	1 0	1 0M NH ₄ ClO ₄	21 3		$\beta'_1 = 15 46$
Diethylphosphinylpropionic acid (HDEPP), Ref 179							
179	IX	25	0 5	NH ₄ ClO ₄ HClO ₄	1 76 (AmDEPP ²⁺)	3 16 [Am(DEPP) ₂ ⁺]	

(Table continues on next page)

Table 3.11 (Continued)

Ref.	Method	Ionic strength		Medium	Log of formation constants		
		Temp., °C	(μ), M		β_1	β_2	Other
180	Diglycolic acid (H_2DGA), Ref 180 Spec	25	2	0 1	0 1M NH_4ClO_4	6 47 (AmDGA $^+$)	10 96 [Am(DGA) ₂] $\beta_3 = 13 83 [Am(DGA)_3^3]$
166	Diethyl-(PP')-ethane-(1,2)-diphosphonic acid (H_2O_2EDP), Ref 166 SX	25		1 0	1 0M $NaClO_4$		$\beta'_1 = 19 53 [Am(HO_2EDP)_3]$
181	Diphosphine dioxides,* Ref 181 SX	25		2 0	2 0M $NaNO_3$	1 43 [Am(NO_3) ₃ · (1,1-DiPO)] 6 56 [Am(NO_3) ₃ · 2(1,4-DiPO)] 5 92 [Am(NO_3) ₃ · 2(1,5-DiPO)]	
182	Ethylenediamine-bis-isopropylphosphonic acid (H_4EDIP), Ref 182 EM	25		0 1	0 1M KNO_3	18 00 (AmEDIP)	$\beta'_1 = 6 26 (AmH_3EDIP^{2+})$ $\beta''_1 = 8 94 (AmH_2EDIP^+)$ $\beta'''_1 = 13 95 (AmHEDIP)$
183	Ethylenediamine-bis-methylphosphonic acid (H_4EDMP), Refs 183, 184 EM	25		0 1	0 1M KNO_3	16 57 (AmEDMP)	$\beta'_1 = 6 15 (AmH_3EDMP^{2+})$ $\beta''_1 = 7 90 (AmH_2EDMP^+)$ $\beta'''_1 = 12 23 (AmHEDMP)$ $\beta'_1 = 6 12 (AmH_2EDMP^+)$
184	IX	25		0 5	0 5M NH_4ClO_4		
155	Ethylenediaminetetraacetic acid (H_4EDTA), Refs 155, 160, 165, 173, 185, 190 IX	25		0 1	0 1M $NaClO_4$	18 15 (AmEDTA)	
				0 5	0 5M $NaClO_4$	16 36	
				1 0	1 0M $NaClO_4$	15 72	
155	Spec	25 + 0 2	1 0		$NaClO_4$, $HClO_4$	15 33	
165	SX	20	0 1	0 1M	NH_4Cl	16 91 ± 0 04	$\beta'_1 = 9 68 (AmHEDTA)$
173	Spec	25	0 1	0 1M	NH_4ClO_4	18 06	
185	IX	25 + 0 02	0 1	0 1M	NH_4ClO_4	18 16 ± 0 10	
186	IX		1 0	1 0M	NH_4ClO_4	18 03 ± 0 13	$\beta'_1 = 10 29 (AmHEDTA)$
187	EM	25 ± 0 5	0 1	HCl + KCl		17 0	$\beta'_1 = 9 21 (AmHEDTA)$
188	IX	80	0 1	0 001M H_4EDTA + 0 2M α - hydroxyisobutyrate		17 14	

190	EM	25 ± 0 1	0 1	0 1M KNO ₃	17 00 ± 0 09	$\beta'_1 = 9 21$ (AmHEDTA) $\beta = 19 98$ (AmOHL DTA ²)
191		Ethylenediaminetetramethylphosphonic acid (H ₈ EDTMP), Ref 191				
	EM	25 ± 0 1	0 1	0 1M KNO ₃	22 47 ± 0 08 (AmEDTMS ⁵)	$\beta'_1 = 4 8 + 0 6$ (AmH ₈ EDTMP) $\beta''_1 = 7 33 + 0 09$ (AmH ₄ EDTMP) $\beta'''_1 = 11 17 ± 0 07$ (AmH ₃ LDTMP) $\beta''''_1 = 14 90 ± 0 06$ (AmH ₂ EDTMP) $\beta'''''_1 = 18 45 + 0 08$ (AmHLDTMP)
155		Ethylenediaminetetrapropionic acid (H ₄ EDTP), Ref 155				
	Spec	25 ± 0 2	1 0	NaClO ₄ , HClO ₄	18 84 ± 0 02 (AmEDTP)	$\beta_1 = 12 31$ (AmHEDTP)
150		1-thieleneglycol bis 2 aminoethyltetraacetic acid (H ₄ EGTA), Ref 150				
	IX	25	0 1	0 1M NH ₄ ClO ₄	18 22 (AmEGTA)	
192		Glycine (HGLYCN), Ref 192				
	SX	25	2 0	2 0M NaClO ₄	0 69 ± 0 02 (AmGLYCN ²⁺)	
146		Glycolic acid (HGLYC), Refs 146, 155, 193				
193	IX	20	0 5	0 5M NaClO ₄	2 82 (AmGLYC ²⁺)	$\beta_1 = 6 30$ [Am(GLYC) ₂] $\beta_1 = 5 20$
155	SX	25	2 0	2 0M NaClO ₄	2 59	
155	Spec	25 ± 0 2	1 0	NaClO ₄ , HClO ₄	2 44 ± 0 02	
155	IX	25	0 5	0 5M NaClO ₄	2 57 ± 0 02	
155		Hydrazine-N,N-diacetic acid (H, HyDA), Ref 155				
	IX	25	0 1	0 1M NaClO ₄	10 74 (AmHyDA ⁺)	20 20 [Am(HyDA) ₂]
194		Hydrazineiminodiacetic acid (H ₂ HyIDA), Ref 194				
	EM	25	0 1	0 1M KNO ₃	10 98 (AmHyIDA ⁺)	19 97 [Am(HyIDA) ₂] $\beta'_1 = 4 13$ (AmH ₂ HyIDA ²⁺)
155		2-hydroxycyclohexylethylenediaminetriacetic acid (H ₃ HCEDTA), Ref 155				
	IX	25	0 1	0 1M NaClO ₄	16 09 (AmHCEDTA)	$\beta_1 = 7 44$ (AmHHC ₁ DTA ⁺)
150, 195		N'(2 hydroxyethyl)ethylene-N,N,N'-triacetic acid (H ₃ NHEDTA), Refs 150, 155, 173, 195, 196a				
156	IX	25	0 1	HClO ₄ , NH ₄ ClO ₄	15 72 (AmNHEDTA)	22 47 [Am(NHEDTA) ₂ ³⁻] 22 18
173	Spec	25 ± 0 2	1 0	HClO ₄ , NH ₄ ClO ₄	14 84	
196a	Spec	25	0 1	0 1M NH ₄ ClO ₄	16 18	
IX	22	0 15	HCl, KCl	15 34		
196b		Hydroxyethylidenediphosphonic acid (HEDPA), Ref 196b				
	SX	25	0 1	HNO ₃ - NaNO ₃		$\beta_3 = 3 [Am(H3EDPA)33-]$

(Table continues on next page)

Table 3.11 (Continued)

Ref.	Method	Ionic Temp., strength °C (μ , M)			Medium	β_1	Log of formation constants			Other
							β_2			
<i>N'</i> (2-hydroxyethyl)iminodiacetic acid (H ₂ NHIDA), Refs 149, 150, 173, 197, 198										
149, 150	IX	25	0 1	0 1M NH ₄ ClO ₄		9 14 (AmNHIDA ⁺)		17 04 [Am(NHIDA) ₂]		
173	Spec	25	0 1	0 1M NH ₄ ClO ₄		9 80		17 01		
197	SX		0 1			9 3 ± 0 1				
198	EM	25	0 1	0 1M KNO ₃		9 3 ± 0 13		16 5 + 0 2		
α Hydroxyisobutyric acid (HIBA), Refs 155, 199-201										
155	Spec	25 ± 0 2	1 0	HClO ₄ , NaClO ₄		2 68 (AmIBA ²⁺)		4 38 [Am(IBA) ₂ ⁺]		
155	IX	25 ± 0 2	0 5	0 5M NH ₄ ClO ₄		2 88 ± 0 01		4 03 ± 0 02		
199	IX		0 5	NH ₄ ClO ₄ + NH ₄ IBA		2 38		4 67	$\beta_1 = 5 12$ [Am(IBA) ₁]	
200	IX					2 72		4 69	$\beta_1 = 5 64$	
201	SX		0 5						$\beta_1 = 6 1$	
<i>bis</i> Hydroxymethylphosphinic acid (HMPA), Ref 202										
202	IX	25	0 2			1 76 + 0 06 (AmMPA ²⁺)		2 48 ± 0 02 [Am(MPA) ₂ ⁺]		
Hydroxymethylphosphonic acid (HMP'A), Ref 202										
203	IX	25	0 2	0 2M NH ₄ ClO ₄		1 55 (AmMP'A ²⁺)		3 18 [Am(MP'A) ₂ ⁺]		
α Hydroxyphenyliminodiacetic acid (H ₂ HPIDA), Ref 204										
204	SX	25 ± 0 1	0 1	0 1M NH ₄ ClO ₄		6 80 [Am(HPIDA) ²⁺]		11 9 [Am(HPIDA) ₂ ⁺]		
2 Hydroxypropane-1,3-diaminetetraacetic acid (H ₄ PDTA), Ref 173										Am ₂ PDTA ²⁺
173	Spec	25	0 1	0 1M NH ₄ ClO ₄	AmPDTA					
8 Hydroxyquoline (HOX), Refs 152, 167, 168										
152	SX									Am(OX) ₃
167	SX	25 ± 0 5	0 1	0 1M (NH ₄ ,H)ClO ₄						Am(OH)(OX) ₂
8 Hydroxyquinoline-5-sulfonic acid (H ₂ OXSA) Ref 205										
205	IX	25 ± 0 2	0 1	0 1M NH ₄ ClO ₄		8 64 + 0 09 (AmOXSA ⁺)				
Iminodiacetic acid (H ₂ IDA), Refs 150, 155, 173, 180, 206										
150	IX	25	0 1	0 1M NH ₄ ClO ₄		7 37 (AmIDA ⁺)		12 39 (Am(IDA) ₂)		
155	Spec	25 ± 0 2	1 0	HClO ₄ , NaClO ₄		6 14				
173	Spec	25	0 1	0 1M NH ₄ ClO ₄		6 94			$\beta_1 = 3 34$ [Am(IDA) ₅ ⁷]	
206	Spec	25		0 005M H ₂ IDA					Am(IDA) ₃ ³	

205	7-Iodo-8-hydroxyquinaline 5-sulfonic acid (H ₂ IOXSA), Ref 205			
	IX 25 ± 0 2 0 1 0 1M NH ₄ ClO ₄	6 92 (AmIOXSA ⁺)		
153	β Isopropyltropolone (HIPT), Ref 153			
	SX 25 0 1 NH ₄ ClO ₄			β ₃ = 21 37 [Am(IPT) ₃]
148	Lactic acid (HLACT), Refs 148, 207-208			
207	SX 25 2 0 2 0M NH ₄ ClO ₄	2 52 (AmLACT ²⁺)	4 77 [Am(LACT) ₂ ⁺]	β ₃ = 5 98 [Am(LACT) ₃]
208a	IX 0 5 0 5 0 5M NH ₄ ClO ₄	2 77	4 64	
208a	SX 20 0 5 0 5M NH ₄ ClO ₄			β ₃ = 5 71 ± 0 03
208b	IX 20 0 5 0 5M NH ₄ ClO ₄			β ₃ = 5 73
208b	PEP 10 1 5 KCl + HLACT	2 57	4 21	
150	N Methyliminodiacetic acid (H ₂ MIDA), Ref 150			
	IX 25 0 1 0 1M NH ₄ ClO ₄	7 01 (AmMIDA ⁺)	12 51 [Am(MIDA) ₂]	
205	6 Methyl-2-picoline acid (HMAPS), Ref 205			
	IX 25 ± 0 2 0 1 0 1M NH ₄ ClO ₄	4 26 (AmMAPS ²⁺)		
150	6-Methyl 2-picolyliminodiacetic acid (H ₂ MPIDA), Ref 150			
	IX 25 0 1 0 1M NH ₄ ClO ₄	8 38 (AmMPIDA ⁺)		
203	Methylethylphosphoric acid (HMLPA), Ref 203			
	IX 25 0 2 0 2M NH ₄ ClO ₄	1 79 ± 0 12 (AmMELPA ²⁺)		
209	(Methylphenylphosphonyl)-methylphenylphosphinic acid (HMPPA), Ref 209			
	SX 25 0 2 0 2M NH ₄ ClO ₄	3 35 (AmMPPA ²⁺)		
210	Methylphosphinic acid (HMPA), Ref 210			
	IX 25 ± 0 2 0 5 NH ₄ ClO ₄	2 79 [†] (AmMPA ²⁺)		
153	Naphthoyl trifluoroacetone (HNTA), Ref 153			
	SX 25 0 1 NH ₄ ClO ₄			β ₃ = 18 31 (Am(NTA) ₃)
211, 212	Nitrilodiaceticmonobutyric acid (H ₃ NDMBA), Refs 211, 212			
	IX 25 0 1 NH ₄ ClO ₄			β' ₁ = 3 53 (AmHNDMBA)
211, 212	Nitrilodiaceticmonopropionic acid (H ₃ NDAPA), Refs 211, 212			
	IX 25 0 1 NH ₄ ClO ₄	10 54 (AmNDAPA)	17 83 [Am(NDAPA) ₂ ³⁻]	β' ₁ = 4 02 (AmHNDAPA)
211, 212	Nitrilodiaceticmonovaleric acid (H ₃ NDAVA), Refs 211, 212			
	IX 25 0 1 NH ₄ ClO ₄			β' ₁ = 3 47 (AmHNDAVA)

(Table continues on next page)

Table 3.11 (Continued)

Ref.	Method	Temp., °C	Ionic strength (μ , M)	Medium	Log of formation constants		
					β_1	β_2	Other
Nitrilotriacetic acid (H_3NTA), Refs 155, 165, 176, 180, 211-215b							
155	IX	25 + 0 2	0 1	0 1M $NaClO_4$	11 72 + 0 02 (AmNTA)	$\beta_3 = 13 56 [AmNTA(HNTA)^2]$	
			0 5	0 5M $NaClO_4$	10 84 + 0 06		
165	SX	20	0 1	0 1M NH_4ClO_4	10 70	19 71 $[Am(NTA)_2^3]$	
176	IX	20	1 0	1 0M NH_4ClO_4	10 87		
180	IX	25 6	0 1	0 1M NH_4ClO_4	11 91	20 18	
211	IX	25	0 1	NH_4ClO_4 – $HClO_4$	11 52	20 24	
212	IX	25	0 1	0 1M (NH_4 – $HClO_4$)	11 68	20 47	
214	Spec	24 6	0 1	0 1M NH_4ClO_4	11 99	21 1	
215b		20	0 1		11 65	19 52	
Nitrosophenylhydroxylamine (cupferron), Ref 152							
152	SX				Am(Cupf) ₂		
Oxalic acid (H_2Ox), Refs 160, 165, 170, 186 189, 215-217b							
165	SX	20	0 1	0 1M NH_4Cl	8 3 $[Am(Ox)_2]$	$\beta_3 = 11 8 [Am(Ox)_3^3]$	
186	IX		1 0	1 0M NH_4Cl	9 95	$\beta_4 = 11 0 [Am(HOx)_4]$	
215a	Soly	25	0 0	$HClO_4$ – H_2Ox	7 10 (AmOx ⁺)	11 2	$\beta_3 = 12 3$
160	IX	20 25	0 2	0 2M NH_4ClO_4	5 99	10 1	
216	EM	25	0 1	NH_4Cl – HCl	6 45	10 5	
217	SX	25	1 0	1 0M $NaClO_4$	4 63	8 35	$\beta_3 = 11 2$
170	IX	25	0 5	0 5M $NaClO_4$	3 8 + 0 02	8 61 ± 0 01	
217b	Spec	25 + 0 1	0 25	Oxalate, pH 1-5	3 27 (AmO ₂ Ox [–])	2 09 $[AmO_2(Ox)_2^3]$	
1 Phenyl-3-methyl-4-acetyl pyrazolone-5 (HPMAP), Ref 218							
218	SX	25	0 1	0 1M NH_4ClO_4		$\beta_3 = 12 23 [Am(PMAP)_3]$	
1 Phenyl-3 methyl-4-benzoyl pyrazolone-5 (HPMBP), Ref 218							
218	SX	25	0 1	0 1M NH_4ClO_4		$\beta_3 = 16 49 [Am(PMBP)_3]$	
1-Phenyl 3-methyl-4-trichloroacetyl-pyrazolone-5 (HPTCP), Ref 218							
218	SX	25	0 1	0 1M NH_4ClO_4		$\beta_3 = 7 47 [Am(PTCP)_3]$	
1 Phenyl-3-methyl-4 trifluoroacetyl-pyrazolone-5 (PMTFP), Ref 218							
218	SX	25	0 1	0 1M NH_4ClO_4		$\beta_3 = 9 70 [Am(PMTFP)_3]$	

219	Phosphonoacetic acid (H_3PAA), Ref 219 IX 25 0 2 NH_4ClO_4				$\beta'' = 2.75 [Am(H_3PAA)^{2+}]$ $\beta'''_1 = 5.15 (AmHPAA^+)$ $\beta'''_2 = 8.5 [Am(HPAA)_2^-]$
205	Pyridine-2-carboxic acid (HAPS) Ref 205 IX 25 + 0 2 0 1 0 1M NH_4ClO_4	4.28 + 0.05 (AmAPS $^{2+}$)	7.99 ± 0.03 [Am(APS) $^+_2$]	$\beta_3 = 10.51 + 0.05 [Am(APS)_3]$	
205	α -Picolinic acid- <i>N</i> oxide (HAPSNO), Ref 205 IX 25 + 0 2 0 1 0 1M NH_4ClO_4	3.09 + 0.07 (AmAPSNO $^{2+}$)	5.49 + 0.07 [Am(APSNO) $^+_2$]		
149, 150	2-Picolyliminodiacetic acid (H, PIDA) Refs 149, 150 IX 25 0 1 0 1M NH_4ClO_4	8.96 (Am(PIDA $^+$))	17.71 (Am(PIDA))		
154, 155	Propanetricarboxylic acid (H_3PTA), Ref 154, 155 Spec 25 1 0 1M $NaClO_4$	5.61 ± 0.07 (AmPTA)		$\beta'_1 = 4.96 + 0.02 (AmHPTA^+)$	
205	α -Pyridylacetic acid (HAPAA) Ref 205 IX 25 ± 0 2 0 1 0 1M NH_4ClO_4	3.63 + 0.07 (AmAPPA $^{2+}$)			
205	Pyridine 3-carboxylic acid [Nicotinic acid] (HNIC), Ref 205 IX 25 ± 0 2 0 1 0 1M NH_4ClO_4	3.18 + 0.07 (AmNIC $^{2+}$)			
205	Pyridine 2,6-dicarboxylic acid (H ₂ PDA), Ref 205 IX 25 + 0 2 0 1 0 1M NH_4ClO_4	9.33 ± 0.09 (AmPDA $^+$)	16.51 ± 0.09 [Am(PDA)]		
148	Pyruvic acid (HPRUV), Ref 148 SX 25 2 0 2 0M $NaClO_4$	2.03 (AmPRUV $^{2+}$)	3.34 [Am(PRUV) $^+_2$]	$\beta_3 = 3.87 (Am(PRUV)_3)$	
220	<i>bis</i> 3-Methoxy-salicylidenealdehydeethylenedimine (B-3 MoxSEDI), Ref 220 SX 25(?) 0 3 0 3M KNO_3			$\beta = 6.59 [AmH(B-3MoxSEDI)]$	
220	<i>bis</i> -Salicylidenealdehydeethylenedimine (BSLDI), Ref 220 SX 25(?) 0 3 0 3M KNO_3			$\beta'_2 = 4.94 [AmH(BSLDI)_2]$	
221	Squamic acid (H_2Sq), ‡Ref 221 IX 25 1 0 $HClO_4 - NH_4ClO_4$	2.17 (AmSq $^+$)	3.10 (Am(Sq),)		
157	Tartaric acid (H_2TART), Refs 157, 165, 222 IX 1 0M NH_4Cl		10.7 [Am(TART) $^+_2$]		
165	SX 20 0 1 0 1M NH_4Cl	3.9 (AmTART $^+$)	6.8		
222	PEP (?) (?) (?)		7.88		

(Table continues on next page)

Table 3.11 (Continued)

Ref.	Method	Ionic strength			Medium	Log of formation constants		
		Temp., °C	(μ), M	Medium		β_1	β_2	Other
150	IX	25	0.1	0.1M NH_4ClO_4	Taurine- <i>N,N</i> -diacetic acid (H_3TDA), Ref. 150	8.08 (AmTDA)		$\beta'_1 = 2.29$ (AmHTDA $^+$)
173	Spec	20 + 0.1	0.1	0.1M NH_4ClO_4	Tetraethylenepentaamineheptaacetic acid (H_7TPHA), Ref. 173	(o)(AmTPHA $^+$)	(o)[Am(TPHA) $^{1.1}_2$]	
153	SX	25	0.1	NH_4ClO_4	Thenoyle trifluoroacetone (HTTA); Refs. 153, 223	3.4(AmTTA $^{2+}$)	8.5 [Am(TTA) $^+_2$]	$\beta_3 = 13.3$ [Am(TTA) $_3$]
180	Spec	25.6	0.1	0.1M NH_4ClO_4	Thiodiglycolic acid (H_2TDGA), Ref. 180	3.52 + 0.08 (AmTDGA $^+$)	5.66 ± 0.07 (Am(TDGA) $_2$)	$\beta'_1 = 2.06 + 0.08$ (AmHIDGA $^{2+}$)
146	IX	20	0.5	0.5M NH_4ClO_4	Thioglycolic acid (HTGLYC), Ref. 146	1.55(AmGLYC $^{2+}$)	2.60 [Am(TGLYC) $^+_2$]	(o)[Am(TGLYC) $_3$]
127	SX	25	2.0	HClO_4 - pTSAH	<i>p</i> -Toluenesulfonic acid(pTSAH), Ref. 127	-0.028 ± 0.028 (AmpTSA $^{2+}$)		
127	SX	25	2.0	HBF_4 - pTSAH		0.075 ± 0.018		
150	IX	25	0.1	0.1M NH_4ClO_4	Triethylenetetraaminehexaacetic acid (H_6TTHA); Refs. 150, 173		$\beta'_1 = 18.13$ (AmHTTHA $^{2+}$)	
173	Spec	25	0.1	0.1M NH_4ClO_4		27.61 (AmTTHA 3)	$\beta'_1 = 11.85$ (Am $H_2\text{TTHA}$)	
							$\beta = 30.97$ (Am $_2\text{TTHA}$)	
							$\beta = 9.15$ [Am $_2\text{H}_2\text{(TTHA)}^{1.0}_3$]	

*1,1-DiPO = $(\text{C}_6\text{H}_{11})_2\text{P}(\text{O})\text{CH}_2(\text{O})\text{P}(\text{C}_6\text{H}_{11})_2$; 1,4-DiPO = $(\text{C}_6\text{H}_{11})_2\text{P}(\text{O})(\text{CH}_2)_4(\text{O})\text{P}(\text{C}_6\text{H}_{11})_2$; 1,5-DiPO = $(\text{C}_6\text{H}_{11})_2\text{P}(\text{O})(\text{CH}_2)_3(\text{O})\text{P}(\text{C}_6\text{H}_{11})_2$

†At $\mu = 0$

‡Diketocyclobutenediol

§Calculated value at 25°C and $\mu = 0.1M$

for all data reported prior to 1974 * Earlier compilations of formation constants of americium complexes are those of Jones and Choppin,^{47b} Martell and Sillen,²²⁴ Marcus, Givon, and Shiloh,^{225a} Keller,^{6c} and Gel'man et al.^{225b}

The following abbreviations are used in Tables 3 10 and 3 11 Spec, spectrophotometry, Soly, solubility, SX, solvent extraction, IX, ion exchange, Relax, relaxation, EM, electromigration, Pot T, potentiometric titration, and PEP, paper electrophoresis

The constants k_1 and β_1 shown in Tables 3 10 and 3 11 are defined for the reaction of a cation M with a ligand L as follows

$$k_1 = \beta_1 = \frac{[ML]}{[M][L]}, k_2 = \frac{[ML_2]}{[ML][L]}, k_3 = \frac{[ML_3]}{[ML_2][L]}, \text{etc}$$

$$\beta_2 = \frac{[ML_2]}{[M][L]^2}, \beta_3 = \frac{[ML_3]}{[M][L]^3}, \text{etc}$$

and

$$\beta_2 = k_1 k_2, \beta_3 = k_1 k_2 k_3, \text{etc}$$

Complexes with Inorganic Ligands

All the formation constants listed in Table 3 10 are for complexes formed by Am(III). Keller^{6c} observes that the complex formation of trivalent americium is probably better known than that of any other trivalent actinide element but that very little work has been done on complexes of Am(>III). Color changes (Table 3 1) indicate existence of Am(VI) nitrate, sulfate, and fluoride complexes. There is also spectrophotometric evidence²²⁶ for the existence in 1M NaOH solution of a peroxide complex of Am(V). Quantitative data are lacking for the identity of these latter complexes and their formation constants.

Attempts to seek correlations within the data on formation constants of actinide complexes are largely frustrated, as pointed out by Jones and Choppin,^{47b} by the wide range of ionic strengths and supporting electrolytes used. However, at an ionic strength of 1.0M to 2.0M, the stability sequence for complexes of Am(III) with monovalent inorganic ligands appears to be

*A recent paper by E. M. Rogozina, L. F. Konkina, and D. K. Popov published in *Radiokhimiya* 16, 383 (1974) [Soviet Radiochemistry (English Translation) 16, 382 (1974)] lists formation constants for complexes formed by Am(III) with various amino acids.

(The formation constant for AmSCN^{2+} recently determined by Chianizia, et al¹²⁶ is notably out of line with values measured by other investigators) Americium(III) forms relatively strong complexes with SO_4^{2-} and $\text{P}_3\text{O}_9^{3-}$ ions

The complexing behavior of $\text{Am}^{3+} \cdot \text{aq}$ indicates it, like other actinide and lanthanide ions, is a Chatt-Ahrland²²⁷ type "A" or Pearson^{228a} "hard" cation with a characteristic coordination number¹¹⁸ of 8 or 9 in aqueous solution. Association of Am^{3+} with inorganic ligands proceeds initially through electrostatic interactions to form outer-sphere complexes. In some cases (e.g., F^- , SO_4^{2-}), however, there is thermodynamic evidence (see pages 75 and 77) that the ligand displaces the water of hydration, at least to some extent, to form inner-sphere complexes. Spectrophotometric results of Marcus and Shiloh^{92, 108} also provide evidence for inner-sphere complexation of chloride and nitrate to Am^{3+} in concentrated LiCl and LiNO_3 solutions, respectively. Preparation of the solid compound $[(\text{C}_6\text{H}_5)_3\text{PH}]_3$ and AmCl_6^- , containing the octahedral hexahalide complex AmCl_6^{3-} , has been described by Ryan¹¹⁹. Spectra of solutions of $[(\text{C}_6\text{H}_5)_3\text{PH}]_3$ and AmCl_6^- in propylene carbonate and in 15 vol % acetonitrile-85% vol % succinonitrile were measured by Marcus and Bomse¹¹⁸.

The stability of Am^{3+} complexes in many cases is similar to that of complexes of lanthanides of equal ionic radius. In some cases, however, where bonding presumably involves f electrons, the stability of the Am^{3+} complex is slightly greater than that of the corresponding lanthanide complex^{228b}. Advantage can be taken of this difference in stability to effect a separation of Am^{3+} from lanthanide elements. The properties of Am^{3+} -chloride and thiocyanato complexes are particularly useful (Chap. 5) for this latter purpose. Ion-exchange studies^{225, 229-232} with both anion resins and long-chain amine hydrohalides show that Am^{3+} in concentrated LiCl and HCl solutions is complexed with the probable formation of the species AmCl_4^- and $\text{LiA}_2\text{AmCl}_6^-$ in the organic resin and amine phases, respectively. (In the $\text{LiA}_2\text{AmCl}_6^-$ species, A^+ is the result of the dissociation of one chloride ion from an amine hydrochloride aggregate²³³.) The predominant aqueous-phase species in the concentrated LiCl and HCl solutions is AmCl_2^+ .

Complexes with Organic Ligands

Other than those for acetate, diethylenetriaminepentaacetic acid (DTPA), ethylenediaminetetraacetic acid (EDTA), and oxalate complexes of Am(V) , all the data in Table 3.11 are for complexes of Am(III) . The higher oxidation states of americium are relatively strong oxidizing agents and are not stable in the presence of most organic complexants.

For three-quarters of the approximately 80 different organic ligands listed in Table 3.11, formation constants of complexes with Am(III) have been measured only once by a single group of investigators. The accuracy of these formation constants cannot be fully determined in the absence of comparative data. In contrast, formation constants for complexes of Am(III) with hydroxycarboxylic (e.g., citric, glycolic,

lactic, and tartaric) and aminopolycarboxylic (H_5DTPA , H_4EDTA , H_3NTA , etc.) acids so useful in separative work have been determined by many investigators using a variety of experimental conditions and techniques. For these latter complexants, with some obvious exceptions (e.g., data for citric and tartaric acids), formation constants determined by the several investigators for a particular complex at a given ionic strength are in fairly good agreement.

Examination of the results in Table 3.11 reveals that aminopolycarboxylic acids complex $Am(III)$ more strongly than do either hydroxycarboxylic or aminoalkylpolyphosphoric acids (e.g., ethylenediamine-bis-methylenephosphonic acid). Keller^{6c} observes that in the series of α -hydroxycarboxylic acids (e.g., glycolic and lactic) the stability of the americium complex decreases with increasing number of carbon atoms. The stability of the complexes of Am^{3+} with aminopolycarboxylic acids increases linearly (Fig. 3.13) with the number of bound donor atoms of the ligand. Reference has already been made to the changes in the absorption spectrum of Am^{3+} as the result

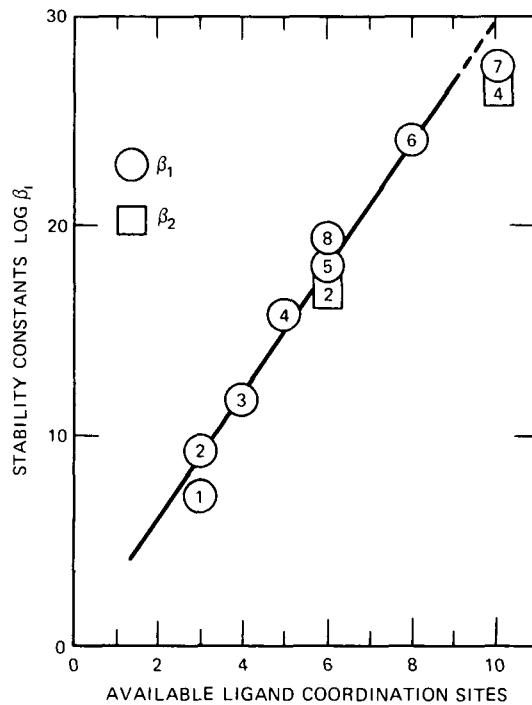
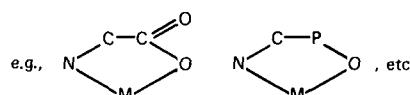



Fig. 3.13 Correlation of stability constants with number of available coordination sites 1, iminodiacetic acid, 2, N-hydroxyethyliminodiacetic acid, 3, nitrilotriacetic acid, 4, N-hydroxyethylethylenediaminetriacetic acid, 5, ethylenediaminetetraacetic acid, 6, diethylenetriamine-pentaacetic acid, 7, triethylenetetraammoniumhexaacetic acid, 8, diaminocyclohexanetetraacetic acid [From C Keller, *The Chemistry of the Transuranium Elements*, Verlag Chemie GmbH, Weinheim, 1971.]

of complex formation; illustrative of such changes is the spectrum of Am^{3+} in 0.1M NaClO_4 —0.005M H₃NTA solutions at different pHs (Fig. 3.14).

Various Russian scientists²³⁴⁻²³⁸ are currently seeking ways to estimate and correlate the strengths of complexes of Am^{3+} and other trivalent actinides and lanthanides with various organic ligands. Shalinets,²³⁵ in particular, suggests a “rule of additivity of the strength of rings” according to which, under similar steric conditions, the logarithm of the thermodynamic formation constant of the complex is proportional to the sum of the strengths of the individual rings

contained in it; i.e.,

$$\log \beta_0^0 = \sum_i N_i \epsilon_i \quad (3.45)$$

where N_i and ϵ_i are, respectively, the number and strength of the rings in the complex and β_0^0 is the thermodynamic formation constant calculated by means of the Davies equation from the formation constant determined at a particular ionic strength. Shalinets²³⁵ has estimated ϵ values for various rings as well as discussed the influence of various factors such as the basicity of the donor atoms, the presence of substituents in the ring, and the number and size of the rings. The general utility and validity of Shalinets' approach has not been completely established, but, in a few test cases at least, formation constants of americium chelates calculated by Eq. 3.45 are in good agreement with experimental data.

Americium(III) also forms many neutral organic-phase soluble salts and chelate adducts [e.g., $\text{Am}(\text{NO}_3)_3 \cdot 3(\text{RO})_3\text{PO}$] with various organophosphorus compounds and also with theonoyltrifluoroacetone. Formulas and formation constants for some of these entities are listed in Chap. 5; more complete listings are given in Refs. 6c, 147, and 201.

Thermodynamics and Kinetics

Thermodynamic functions have been determined for only a few complexes of Am^{3+} . These data, which are collected in Table 3.12, provide evidence for the structures of these complexes in aqueous solution. The thermodynamic changes on complexation of Am^{3+} are the result of two contributions: exothermic enthalpy and negative entropy due to the association of the cation with the ligand and endothermic enthalpy and positive entropy due to the dehydration of the cation and anion. A high positive net change of the entropy indicates inner-sphere complexing. Thus, from the magnitude of the ΔH and ΔS terms for AmSO_4^+ , Carvalho and Choppin²⁴³ conclude that the degree of inner-sphere complexation present is at least comparable to, and

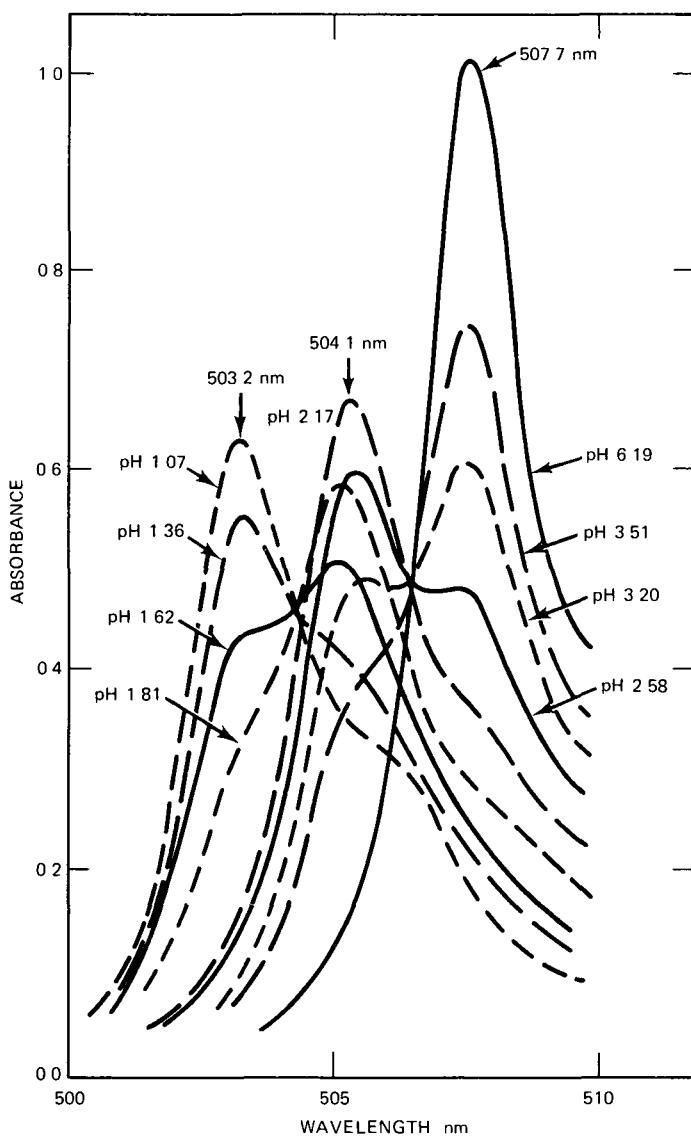


Fig. 3.14 Absorption spectrum of Am(III) in $0.1M\ NaClO_4$ - $0.005M\ H_3NTA$ solution at different pHs [From S H Eberle and C S Sabau, The Thermodynamics of Am(III)-Nitrilotriacetic Acid Complexes, *Radiochemical and Radioanalytical Letters*, 11: 77 (1972)]

Table 3.12
THERMODYNAMIC FUNCTIONS FOR COMPLEXES OF Am(III)

Method*	Conditions	Reaction	ΔG , kcal mol ⁻¹	ΔH , kcal mol ⁻¹	ΔS , cal mol ⁻¹ deg ⁻¹	Ref.
Acetic acid (HAc)						
Tdm(SX) 2 0M NH ₄ ClO ₄		Am ³⁺ + Ac \rightarrow AmAc ²⁺	-2.68 ± 0.03	4.3 ± 0.3	23.4 ± 1	239
Diglycolic acid (H ₂ DGA)						
Tdm(Spec) 0 1M NH ₄ ClO ₄		Am ³⁺ + DGA ²⁻ \rightarrow AmDGA ⁺	-8.75 ± 0.03	0.6 ± 0.71	31 ± 2	180
		AmDGA ⁺ + DGA ²⁻ \rightarrow Am(DGA) ₂	-6.20 ± 0.07	1.6 ± 0.8	26 ± 3	180
		Am(DGA) ₂ + DGA ²⁻ \rightarrow Am(DGA) ₃	-3.93 ± 0.08	0.8 ± 0.2	16 ± 1	180
Ethylenediaminetetraacetic acid (H ₄ EDTA)						
Cal 0 1M KCl, 25°C		Am ³⁺ + EDTA ⁴⁻ \rightarrow AmEDTA	24.78	-4.67 ± 0.25	67.5 ± 2	240
Fluoride (F ⁻)						
Tdm(SX) 1 0M NaClO ₄		Am ³⁺ + F \rightarrow AmF ²⁺	4.10 ± 0.80	7.64	39.3	241
Tdm(Sol) 0 1M HClO ₄		Am ³⁺ + F \rightarrow AmF ²⁺	-5.58	5.23	31.8	242
Glycine (HGLYCN)						
Tdm(SX) 2 0M NaClO ₄		Am ³⁺ + GLYCN \rightarrow AmGLYCN ²⁺	-0.93 ± 0.02	2.9 ± 0.4	13 ± 2	192
Iminodiacetic acid (H ₂ IDA)						
Tdm(Spec) 0 1M NH ₄ ClO ₄		Am ³⁺ + HIDA \rightarrow AmHIDA ²⁺	-1.79 ± 0.15	-14.99 ± 1.52	-44.3 ± 5.7	180
		Am ³⁺ + IDA ²⁻ \rightarrow AmIDA ⁺	-9.64 ± 0.01	-1.19 ± 0.32	28.4 ± 1.1	180
		AmIDA ⁺ + IDA ²⁻ \rightarrow Am(IDA) ₂	7.59 ± 0.04	-3.14 ± 1.68	14.9 ± 5.6	180
		Am(IDA) ₂ + aq \rightarrow Am(IDA) ₂ (OH) ²⁻	10.70 ± 0.09	10.8 ± 1.2	180	
Tdm(Spec) 0 005M H ₂ IDA, 15–90°C		Am + IDA ²⁻ \rightarrow AmIDA ⁺	-3 to -2	6.9 ± 1.2	13.1 ± 3.7	206
Nitrilotriacetic acid (H ₃ NTA)						
Tdm(Spec) 0 1M NH ₄ ClO ₄		Am ³⁺ + NTA ³⁻ \rightarrow AmNTA	16.31 ± 0.04	0.67 ± 0.46	56.1 ± 0.46	180, 214
		AmNTA + NTA ³⁻ \rightarrow Am(NTA) ₂ ³⁻	12.32 ± 0.09	-5.7 ± 0.8	22.3 ± 2.8	180, 214

Sulfate (SO_4^{2-})						
Tdm(SX)	2.0M NaClO_4	$\text{Am}^{3+} + \text{SO}_4^{2-} \rightarrow \text{AmSO}_4^+$	-2.0	4.4	21	243
Thiocyanate (SCN^-)						
Tdm(SX)	1.0M NaClO_4	$\text{Am}^{3+} + \text{SCN}^- \rightarrow \text{AmSCN}^{2+}$	-0.69 ± 0.02	-4.36 ± 0.30	-12.3 ± 1.0	138
		$\text{Am}^{3+} + \text{SCN}^- \rightarrow \text{AmSCN}^{2+}$	-0.81 ± 0.07	2.53 ± 0.29	11.2	139
Tdm(SX)	1.0M NaClO_4	$\text{Am}^{3+} + \text{SCN}^- \rightarrow \text{AmSCN}^{2+}$	-0.47 ± 0.02	1.6 ± 0.7	7 ± 2	140
		$\text{Am}^{3+} + 3\text{SCN}^- \rightarrow \text{Am}(\text{SCN})_3$	-0.19 ± 0.15	-6.4	20 ± 15	140
		$\text{AmSCN}^{2+} + 2\text{SCN}^- \rightarrow \text{Am}(\text{SCN})_3$	0.28 ± 0.16	-8.5	-27 ± 16	140
Tdm(SX)	5.0M ($\text{ClO}_4^- + \text{SCN}^-$) 10–55°C	$\text{Am}^{3+} + 3\text{SCN}^- \rightarrow \text{Am}(\text{SCN})^{2+}$	-0.813 ± 0.074	2.81 ± 0.49	12.0 ± 1.6	141b
Thiodiglycolic acid (H_2TDGA)						
Tdm(Spec)	0.1M NH_4ClO_4	$\text{Am}^{3+} + \text{HTDGA} \rightarrow \text{AmHTDGA}^{2+}$	-2.75 ± 0.19	-7.08 ± 0.98	-14.5 ± 3.9	180
		$\text{Am}^{3+} + \text{TDGA}^2 \rightarrow \text{AmTDGA}^+$	-4.88 ± 0.09	6.76 ± 1.12	39.1 ± 4.2	180
		$\text{AmTDGA}^+ + \text{TDGA}^2 \rightarrow \text{Am}(\text{TDGA})_2^-$	-2.85 ± 0.12	8.88 ± 0.66	39.4 ± 2.4	180

*Tdm, temperature dependence measurements, Spec, spectrophotometry, cal, calorimetry, SX, solvent extraction, Sol, solubility

probably exceeds, that of the outer-sphere complexation. By the same criteria, monodentate complexes of Am^{3+} with fluoride, glycine, and ethylenediaminetetracetic, nitrilotriacetic and diglycolic acids are all also inner sphere complexes. Jones and Choppin^{47b} emphasize the importance of the disruption of the hydration sphere of Am^{3+} and other actinide ions in complexing thermodynamics. Their estimates of the entropy and enthalpy of hydration of Am^{3+} and Am^{4+} are listed in Table 3-2.

On the basis of the limited data available, Moskvin²⁴⁴ has presented some generalizations of the thermodynamics of the formation of actinide ions in aqueous solutions. His analysis includes discussion of the heat capacities of triply charged actinide ions and the changes in their heat capacities on hydration and when transferred from a crystal lattice to solution. Moskvin concludes that further accumulation of thermochemical data for actinide ions, including those of americium, is one of the most urgent contemporary problems in actinide chemistry.

Kinetics of the exchange reaction

were studied in an aqueous acetate buffer solution of $\mu = 0.1M$ ²⁴⁵⁻²⁴⁷. In the pH range 5.5 to 6.5, Choppin and Williams²⁴⁵ find that the exchange obeys the overall rate law

$$\text{Rate} = \left\{ \frac{k_A^1 [\text{EuEDTA}] [\text{Am}^{3+}]}{[\text{Eu}^{3+}]} - k_C [\text{AmEDTA}] \right\} [\text{H}^+] + \{ k_B^1 [\text{EuEDTA}] [\text{Am}^{3+}] - k_D^1 [\text{Eu}^{3+}] [\text{AmEDTA}] \} \quad (3-47)$$

Equation 3-47 correlates with a reaction that proceeds via two pathways, the first set of braces can be associated with an acid-catalyzed mechanism, and the second set represents an acid independent reaction path. The two paths have approximately equal probability at pH 6.4. Activation parameters²⁴⁷ for the exchange reaction are $\Delta H^* = 10.7 \text{ kcal mol}^{-1}$ and $\Delta S^* = -12.2 \text{ cal mol}^{-1} \text{ deg}^{-1}$.

El-Rawi,²⁴⁸ in a recently published thesis, reported results of studies of the kinetics of complexing of americium by the aminopolycarboxylic acids, H_5DTPA , H_4EDTA , N -hydroxyethylenediaminetetraacetic acid (H_3NHEDTA), and diamino-cyclohexanetetraacetic acid (H_4DCTA). Rates of ligand exchange between Am^{3+} and LaX were studied. According to El Rawi,²⁴⁸ ligand exchange proceeds as a first-order reaction in the presence of excess LaX . Respective rate constants for the ligand exchange increase in the order $\text{H}_3\text{NHEDTA} > \text{H}_4\text{EDTA} > \text{H}_5\text{DTPA} > \text{H}_4\text{DCTA}$. H_4DCTA reacts especially slowly, probably because of steric hindrance to chelate formation. Two different reaction mechanisms appear operative in this system: (1) direct reaction of $\text{Am}(\text{III})$ and LaX and (2) a hydrogen ion catalyzed dissociative reaction $\text{LaX}(\text{H}^+) \rightarrow \text{HX}(\text{Am}) \rightarrow \text{AmX}$.

REFERENCES

1. a. N. N. Krot, V. P. Shilov, V. B. Nikolaevskii, A. K. Nikaei, A. D. Gel'man, and V. I. Spitsyn, Preparation of Americium in Heptavalent State, *Dokl Akad Nauk SSSR*, **217**(3): 589 (1974) through USAEC Report ORNL-tr-2828, 1974.
b L J Mullins, A J Beaumont, and J A Leary, Distribution of Americium Between Liquid Plutonium and a Fused Salt Evidence for Divalent Americium, *J Inorg Nucl Chem* **30**: 147 (1968), USAEC Report LA-3562, Los Alamos Scientific Laboratory, May 1966
2. T. H. Keenan, Americium and Curium, *J. Chem. Educ.*, **36**: 27 (1959).
3. J. Jove and M. Pages, Sur le Comportement de Quelques Elements 4f et 5f Dans l'Ammoniac Liquide, *Radiochem. Radioanal. Lett.*, **11**: 7 (1972).
4. B. F. Myasoedov and K. Myuzikas, The Polarographic Reduction of Trivalent Americium in Acetonitrile Medium, *Radiokhimiya*, **12**: 856 (1970) through *Sov. Radiochem. (Engl Transl.)*, **12**: 826 (1970).
5. B. F. Myasoedov and K. Myuzikas, Polarographic Reduction of Americium(III) in Acetonitrile, *Radiochem. Radioanal. Lett.*, **2**: 21 (1969).
6. a. F. David, Etude Polarographique de Lanthanides et d'Elements *cis* et Transuraniens, *Radiochem. Radioanal. Lett.*, **5**: 279 (1970).
b. L. J. Nugent, Standard Electrode Potentials and the Enthalpies of Formation of Some Lanthanide and Actinide Aquo-Ions, *J. Inorg. Nucl. Chem.*, **37**: 1767 (1975).
c C Keller, *The Chemistry of the Transuranium Elements*, Verlag-Chemie GmbH, Weinheim, 1971
7. a. J. J. Howland and M. Calvin, Paramagnetic Susceptibilities and Electronic Structure of Aqueous Cations of Elements 92 to 95, *J. Chem. Phys.*, **18**: 239 (1950), USAEC Report UCRL-206, University of California, Lawrence Radiation Laboratory, November 1948.
b. H. A. Friedman and J. T. Bell, A Search for Laser Phenomena in the Actinides Studies of the Investigations of Am^{3+} in Liquid POCl_3 , *J. Inorg. Nucl. Chem.*, **34**: 3928 (1972).
8. B. Désiré, M. Hussonnois, and R. Guillaumont, Determination de la Première Constante d'Hydrolyse l'Americium, du Curium, du Berkelium, et du Californium, *Compt. Rend., Paris, Ser. C*, **269**: 448 (1969).
9. a. B. Désiré, Determination of the First Hydrolysis Constant for Trivalent Elements of the Series '4f' and '5f', Thesis, USAEC file No. NP-18284, 1970.
b. M. Hussonnois, S. Hubert, L. Brillard, and R. Guillaumont, Determination de la Première Constante d'Hydrolyse de l'Einsteinium, *Radiochem. Radioanal. Lett.*, **15**: 47 (1973).
10. B. Marin and T. Kikindai, Étude Comparee de l'Hydrolyse de l'Europium, et de l'Americium en Milieu Chlorure par Électrophorese sur Papier, *Compt. Rend., Paris, Ser C*, **268**: 1 (1969).
11. A. B. Shalinets and A. V. Stepanov, Investigation of Complex Formation of the Trivalent Actinide and Lanthanide Elements by the Method of Electromigration. XVII. Hydrolysis, *Radiokhimiya*, **14**: 280 (1972) through *Sov. Radiochem. (Engl. Transl.)*, **14**: 290 (1972).
12. Yu. S. Korotkin, Study of Transplutonium Element Hydrolysis. II Hydrolysis of Americium(III) in Presence of Ions with Positive and Negative Hydration Energy, *Radiokhimiya*, **15**: 766 (1973) through *Sov. Radiochem. (Engl. Transl.)*, **15**: 776 (1973).
13. a. Yu. S. Korotkin, Hydrolysis of Transuranium Elements II Hydrolysis of Americium(III) and Curium(III) in Pure Nitric Acid Solutions, *Radiokhimiya*, **15**: 671 (1973) through *Sov. Radiochem. (Engl. Transl.)*, **15**: 677 (1973)
b Yu. S. Korotkin, Hydrolysis of Transuranium Elements. IV Sorption Homogeneity of Microamounts of Americium(III), *Radiokhimiya*, **16**: 217 (1974) through *Sov. Radiochem. (Engl. Transl.)*, **16**: 218 (1974).
c. Yu. S. Korotkin, Hydrolysis of Transuranium Elements. V. Hydrolysis of Americium and Curium in Perchloric Acid Solutions, *Radiokhimiya*, **16**: 221 (1974) through *Sov. Radiochem. (Engl. Transl.)*, **16**: 223 (1974)

- 14 L B Asprey and R A Penneman, First Observation of Aqueous Tetravalent Americium, *J Amer Chem Soc*, 83: 2200 (1961)
- 15 L B Asprey and R A Penneman, Preparation and Properties of Aqueous Tetravalent Americium, *Inorg Chem*, 1: 134 (1962)
- 16 E Yanir, Y Marcus, and M Givon, A Prediction of the Relative Stabilization of the Higher Oxidation States of Am in Solution, in *Progress in Coordination Chemistry*, M Cais (Ed.), Elsevier Publishing Co., New York, 1968
- 17 E Yanir, M Givon, and Y Marcus, Higher Oxidation States of Americium in Phosphate Solutions, *Inorg Nucl Chem Lett*, 5: 369 (1969)
- 18 a B F Myasoedov, V M Mikhailov, I A Lebedev, O E Kiro, and V Ya Frenkel, Preparation and Stability of Am(IV) and Am(VI) in Phosphoric Acid Solutions, *Radiochem Radioanal Lett*, 14: 17 (1973)
- b B F Myasoedov, M S Milyukova, I A Lebedev, M N Litvina, and V Ya Frenkel, Behavior of Americium(IV) in Phosphoric Acid Solution, *J Inorg Nucl Chem*, 37: 1475 (1975)
- c B F Myasoedov, I A Lebedev, and M S Milyukova, Preparation and Stability of Americium in Highest Oxidation States in Phosphoric Acid Solutions, in *Transplutonium Elements* Proceedings of the 4th International Symposium, Baden-Baden, September 13-17, 1975 W Muller and R Lindner (Eds.), North-Holland Publishing Company, Amsterdam, 1976
- 19 J P Nigon, R A Penneman, E Staritzky, T K Keenan, and L B Asprey, Alkali Carbonates of Np(V), Pu(V), and Am(VI), *J Phys Chem*, 58: 403 (1954)
- 20 T K Keenan, Lattice Constants of Some Alkali Metal Actinyl(V) Compounds, *Inorg Chem*, 4: 1500 (1965)
- 21 T K Keenan and F H Kruse, Potassium Double Carbonates of Pentavalent Neptunium, Plutonium, and Americium, *Inorg Chem*, 3: 1231 (1964)
- 22 J S Coleman, T K Keenan, L H Jones, W T Carnall, and R A Penneman, Preparation and Properties of Americium(VI) in Aqueous Carbonate Solutions, *Inorg Chem*, 2: 58 (1963)
- 23 G A Burney, Separation of Americium from Curium by Precipitation of $K_3AmO_2(CO_3)_2$, *Nucl Appl*, 4: 217 (1968)
- 24 F H Ellinger and W H Zachariasen, The Crystal Structure of $KPuO_2CO_3$, $NH_4PuO_2CO_3$, and $RbAmO_2CO_3$, *J Phys Chem*, 58: 405 (1954)
- 25 G N Yakovlev and D S Gorbenko-Germanov, Coprecipitation of Americium(V) with Double Carbonates of Uranium(VI) or Plutonium(VI) with Potassium, in *Proceedings of the International Conference on the Peaceful Uses of Atomic Energy, 1955* Vol 7, p 306, United Nations, New York, 1956
- 26 L B Werner and I Perlman, The Pentavalent State of Americium, *J Amer Chem Soc*, 73: 495 (1950), USAEC Report AECD-2898, June 1950
- 27 L B Asprey, S E Stephanou, and R A Penneman, Hexavalent Americium, *J Amer Chem Soc*, 73: 5715 (1951), USAEC Report AECU-927, Los Alamos Scientific Laboratory, 1950
- 28 M Hara, The Chemistry of Americium I A Study of the Preparation of Am(V) and Its Behavior by Means of TTA Extraction, *Bull Chem Soc Jap*, 43: 89 (1970)
- 29 A Keller, L Koch, and K H Walter, Die Reaktion der Transuranoxide mit Alkalioxiden-II Ternare Oxide der Funfwertigen Transurane und des Protactiniums mit Lithium and Natrium, *J Inorg Nucl Chem*, 27: 1225 (1965)
- 30 a L B Asprey, S E Stephanou, and R A Penneman, A New Valence State of Americium, Am(VI), *J Amer Chem Soc*, 72: 1425 (1950), USAEC Reports LADC-739 and AECD-2950, Los Alamos Scientific Laboratory
- b R A Penneman, Los Alamos Scientific Laboratory, personal communication, 1974
- 31 L J Nugent, Chemical Oxidation States of the Lanthanides and Actinides, *Reviews in Inorganic Chemistry Series 2* MTP/Butterworths in press

32 R A Penneman, J S Coleman, and T K Keenan, Alkaline Oxidation of Americium, Preparation and Reactions of Am(IV) Hydroxide, *J Inorg Nucl Chem* 17: 138 (1961)

33 D Cohen, Americium(VI) in Basic Solution, *Inorg Nucl Chem Lett* 8: 533 (1972)

34 H P Holcomb, A Test for Oxidation of Actinides in Concentrated CsF Solution, *J Inorg Nucl Chem* 29: 2885 (1967)

35 V P Zaitseva, Disproportionation of Am(VI) and Preparation of Americium(VII), *Dokl Akad Nauk SSSR*, 188: 826 (1969)

36 V P Zaitseva, Incorrect Identification of Americium(VII), *Radiochimya*, 13: 658 (1971) through Sov *Radiochem (Engl Transl)*, 13: 679 (1971)

37 C Keller and H Seiffert, Li_5NpO_6 , The First Crystalline Compound with Septivalent Neptunium, and the Existence of Septivalent Plutonium and Americium, *Inorg Nucl Chem Lett*, 5: 51 (1969)

38 J Fuger, J C Spirlet, and W Muller, A New Determination of the Heat of Solution of Americium Metal and the Heat of Formation of Various Americium Ions and Compounds, *Inorg Nucl Chem Lett* 8: 709 (1972)

39 H R Lohr and B B Cunningham, The Heat of Reaction of Americium Metal with 1M Hydrochloric Acid and a Note on the Heats of Formation of $\text{La}^{+3}_{(\text{aq})}$ and $\text{Pr}^{+3}_{(\text{aq})}$, *J Amer Chem Soc*, 73: 2025 (1951), USAEC Report AECD-2902, University of California, Lawrence Radiation Laboratory, July 1950

40 E F Westrum, Jr, and L Eyring, The Preparation and Some Properties of Americium Metal, *J Amer Chem Soc* 73: 3396 (1951)

41 J Fuger and B B Cunningham, Heats of Formation of $\text{Pu}^{+3}_{(\text{aq})}$, $\text{PuCl}_{3(\text{c})}$, $\text{PuOCl}_{(\text{c})}$, $\text{Am}^{3+}_{(\text{aq})}$, $\text{AmCl}_{(\text{c})}$, and $\text{AmOCl}_{(\text{c})}$, *J Inorg Nucl Chem*, 25: 1423 (1963)

42 L R Morss, Crystallography and Thermochemistry of Some Chlorocomplex Compounds of the Lanthanide and Actinide Elements, USAEC Report UCRL-18951, University of California, Lawrence Livermore Laboratory, August 1969

43 J L Ryan, Evidence for Errors in the Published Enthalpies of Formation $\Delta_f H^\circ$ ($\text{Am}^{3+}, \text{aq}$) and $\Delta_f H^\circ$ (AmCl_3, c), *J Chem Thermodyn*, 5: 153 (1973)

44 a L J Nugent, J L Burnett, and L R Morss, Correlation of Some Thermodynamic Properties of the Lanthanide and Actinide Metals, *J Chem Thermodyn* 5: 665 (1973)
b A J Fuger and F L Oetting, Present Status of the Chemical Thermodynamic Properties of the Lanthanide and Actinide Ions, in *Transplutonium Elements*, Proceedings of the 4th International Symposium, Baden-Baden, September 13–17, 1975, W Muller and R Lindner (Eds), North-Holland Publishing Company, Amsterdam, 1976

45 L Eyring, H R Lohr, and B B Cunningham, Heats of Reactions of Some Oxides of Americium and Praseodymium with Nitric Acid and an Estimate of the Potentials of the $\text{Am}(\text{III})-\text{Am}(\text{IV})$ and $\text{Pr}(\text{III})-\text{Pr}(\text{IV})$ Couples, *J Amer Chem Soc*, 74: 1186 (1952), USAEC Report AECD-2897, University of California, Lawrence Radiation Laboratory, 1950.

46 S R Gunn and B B Cunningham, The Heats of Formation of $\text{AmO}_2^+_{(\text{aq})}$ and $\text{AmO}_2^{2+}_{(\text{aq})}$ in 1M HClO_4 , *J Amer Chem Soc* 79: 1563 (1957)

47 a R J Hinche and J W Cobble, Thermodynamic Functions for $\text{Pu}^{3+}_{(\text{aq})}$ and the Entropies for Some Trivalent Actinide Ions, *Inorg Chem*, 9: 922 (1970)
b H D Jones and G R Choppin, Complexes of Actinide Ions in Aqueous Solution, *Actinides Rev*, 1: 311 (1969)

48 R. A Penneman and L B Asprey, A Review of Americium and Curium Chemistry, in *Proceedings of the International Conference on Peaceful Uses of Atomic Energy*, 1955 Vol 7, p 355, United Nations, New York, 1956

49 L B Asprey and R A Penneman, The Chemistry of the Actinides, *Chem Eng News*, 45(32) 75 (1967)

50 R A Penneman and L B Asprey, The Formal Potential of the $\text{Am}(\text{V})-\text{Am}(\text{VI})$ Couple, USAEC Report AECU-936, Los Alamos Scientific Laboratory, September 1950.

51 a L J Nugent, R D Baybarz, and J L Burnett, Electron-Transfer Spectra and the II-III Oxidation Potentials of Some Lanthanide and Actinide Halides in Solution, *J Phys Chem* **73**: 1177 (1969)

b L J Nugent, R D Baybarz, J L Burnett, and J L Ryan, Electron-Transfer and f-d Absorption Bands of Some Lanthanide and Actinide Complexes and the Standard (II-III) Oxidation Potential for Each Member of Lanthanide and Actinide Series, *J Phys Chem*, **77**: 1528 (1973)

52 F David, Polarographie de l'Actinium, *Compt Rend, Paris* **271**: 440 (1970)

53 C K Jørgensen, Neptunium(VII), Nobelium(II), 126(IV) and Other Unexpected Oxidation States of Transuranium Elements, *Chem Phys Lett* **2**: 549 (1968)

54 B B Cunningham, Chemistry of the Actinide Elements, *Annu Rev Nucl Sci* **14**: 323 (1964)

55 L J Nugent, R D Baybarz, J L Burnett, and J L Ryan, Electron-Transfer and f → d Adsorption Bands of Some Lanthanide and Actinide Complexes and the Standard (III-IV) Oxidation Potentials for Each Member of the Lanthanide and Actinide Series, *J Inorg Nucl Chem* **33**: 2503 (1971)

56 S R Gunn, Thermodynamics of the Aqueous Ions of Americium (Thesis), USAEC Report UCRL-2541, University of California, Lawrence Radiation Laboratory, 1954

57 J P Nigon, Los Alamos Scientific Laboratory, unpublished, cited in Ref 48

58 a W M Latimer, *Oxidation Potentials* 2nd ed, Prentice-Hall, Inc, Englewood Cliffs, N. J., 1952

b V B Nikolaevskii, V P Shilov, and N N Krot, Estimation of Oxidation Potential of Americium(VI) in an Alkaline Medium, *Radiokhimiya* **16**: 122 (1974) through Sov Radiochem (Engl Transl), **16**: 120 (1974)

c V F Peretrukhin, V B Nikolaevskii, and V P Shilov, Electrical Properties of Americium Hydroxides in an Aqueous Alkaline Medium, *Radiokhimiya* **16**: 833 (1974) through Sov Radiochem (Engl Transl), **16**: 813 (1974)

59 B Weaver and R R Shoun, Basicities of Trivalent Actinides and Lanthanides and Solubilities of Their Hydroxides, in Proceedings of the 9th Rare Earth Research Conference, Blacksburg, Virginia, October 10-14, 1971, USAEC Report CONF-711001, Vol 1, p 322, 1971

60 E Yanir, M Givon, and Y Marcus, Direct Determination of the Formal Potential of the Am(VI)-Am(III) and Am(VI)-Am(V) Couples in Phosphoric Acid, *Inorg Nucl Chem Lett* **6**: 415 (1959)

61 L B Asprey and S E Stephanou, The Autoreduction of Am(VI) and Am(V) in Dilute Acid, USAEC Report AECU-924, Los Alamos Scientific Laboratory, November 1950

62 A A Zaitsev, V N Kosyakov, A G Rykov, Yu P Sobolov, and G N Yakovlev, Radiolytic Reduction of Am(VI) and Am(V), Sov At Energy (Engl Transl) **7**: 562 (1960)

63 G R Hall and T L Markin, The Self-Reduction of Americium(V) and (VI) and the Disproportionation of Americium(V) in Aqueous Solution, *J Inorg Nucl Chem*, **4**: 296 (1957)

64 G N Yakovlev and V N Kosyakov, Spectrophotometric Studies of the Behavior of Americium Ions in Solutions, in *Proceedings of the International Conference on the Peaceful Uses of Atomic Energy, 1955*, Vol 7, p 363, United Nations, Geneva, 1956

65 G R Hall and P D Herniman, The Separation and Purification of Americium-241 and the Absorption Spectra of Tervalent and Quinquevalent Americium Solutions, *J Chem Soc* p 2214 (1954)

66 G N Yakovlev, A A Zaitsev, V N Kosyakov, A G Rykov, and Yu B Sobolev Coll Isotopes and Radiation in Chemistry (in Russian), Izdaniya AN SSSR, 195, p 326, cited in Ref 62

67 J S Coleman, The Kinetics of the Disproportionation of Americium(V), *Inorg Chem*, **2**: 53 (1963)

68 A A Zaitsev, V N Kosyakov, A G Rykov, Yu P Sobolev, and G S Yakovlev, Disproportionation of Americium(IV), USAEC Report AEC-tr-3885, 1960, from Report NP-7517

69 S E Stephanou, L B Asprey, and R A Penneman, The Disproportionation of Americium(V), USAEC Report AECU-925, Los Alamos Scientific Laboratory, 1950

70 a A A Zaitsev, V N Kosyakov, A G Rykov, Yu P Sobolev, and G N Yakovlev, The Disproportionation of Americium(V), *Radiochimica 2*: 339 (1960) through *Radiochem (USSR) (Engl Transl)* 2: 77 (1960)

b T W Newton, The Kinetics of the Oxidation-Reduction Reactions of Uranium, Neptunium, Plutonium, and Americium Ions in Aqueous Solutions, ERDA Critical Review Series TID 26506 1975

71 J C Hindman, Reaction Kinetics of the Actinide Elements, in *Proceedings of the Second International Conference on the Peaceful Uses of Atomic Energy Geneva 1958* Vol 28, p 349, United Nations, New York, 1958

72 T W Newton and F Baker, Aqueous Oxidation-Reduction Reactions of Uranium, Neptunium, Plutonium, and Americium, in *Lanthanide/Actinide Chemistry*, R F Gould (Ed.), Advances in Chemistry Series, p 268, American Chemical Society, Washington, 1967

73 D Gourisse, Cinetique des Reactions d'Oxydo-Reduction des Elements Transuraniens en Solution, French Report CEA-R-3079, September 1966

74 A Ohyoshi, A Jyo, T Shinohara, and E Ohyoshi, An Attempt to Apply a Tracer Technique for the Kinetic Study of the Oxidation of Am(III), *Radiochem Radioanal Lett* 6: 121 (1971)

75 A Ohyoshi, A Jyo, T Kanaya, and T Shinohara, Kinetic Studies on the Oxidation of Am(III) with Ammonium Peroxydisulphate, *Radiochem Radioanal Lett* 7: 7 (1971)

76 A Ohyoshi, A Jyo, and T Shinohara, Kinetics of the Reaction of Americium(III) with Peroxydisulfate, *Bull Chem Soc Jap* 44: 3057 (1971)

77 V A Ermakov, A G Rykov, G A Timofeev, and G N Yakovlev, Investigations of the Kinetics of Redox Reactions of the Actinide Elements XX Kinetics and Mechanism of the Interaction of Americium(III) and (V) with Peroxydisulfate Ions in Nitric Acid Solution, *Radiochimica*, 13: 826 (1971) through *Sov Radiochem (Engl Transl)*, 13: 851 (1971)

78 V A Ermakov, A G Rykov, G A Timofeev, A V Dzhadav, and G N Yakovlev, Oxidation-Reduction Reactions of Actinide Elements XXII Kinetics and Mechanism of Americium(III) Interaction with Peroxydisulfate Ions in Potassium Carbonate Solutions, *Radiochimica*, 15: 380 (1973) through *Sov Radiochem (Engl Transl)* 15: 381 (1973)

79 a A G Rykov, V A Ermakov, G A Timofeev, V M Chistyakov, and G N Yakovlev, Investigations of Redox Reactions of the Actinide Elements XXI Kinetics and Mechanism of the Interaction of Americium(VI) with Peroxydisulfate Ions in Nitric Acid Solutions, *Radiochimica*, 13: 832 (1970) through *Sov Radiochem (Engl Transl)*, 13: 858 (1970)

b M Woods, A Cain, and J C Sullivan, A Kinetic Study of the Reduction of Americium(VI) by Hydrogen Peroxide in Aqueous Perchlorate Media, *J Inorg Nucl Chem*, 36: 2605 (1974)

c V P Shilov, V B Nikolaevskii, and N N Krot, Some Characteristics of the Reaction of Americium(VI) with Reducing Agents in Aqueous Solutions, *Radiochimica*, 15: 871 (1973) through *Sov Radiochem (Engl Transl)*, 15: 881 (1973)

80 A A Zaitsev, V N Kosyakov, A G Rykov, Yu P Sobolev, and G N Yakovlev, Kinetics of Americium(V) Reduction by Hydrogen Peroxide, *Radiochimica*, 3: 348 (1960) through *Radiochem (USSR) (Engl Transl)*, 3: 86 (1960)

81 N Damien and M Pages, Etude Cinetique de la Reduction de Am(V) par le Peroxyde d'Hydrogene, in Rapport Semestriel du Department de Chimie No 6, Juin 1968-Novembre 1968, French Report CEA-N-1148, p 407, June 1969

82 a N Damien and M Pages, Etude Cinétique de la Reduction de l'Americium Pentavalent par le Peroxyde d'Hydrogène, in Rapport Semestriel du Département de Chimie No 8, Juin 1969 Novembre 1969, French Report CEA-N-1341, p 472, July 1970

b N Damien, Reduction of Pentavalent Americium by Hydrogen Peroxide in Perchloric Solution (Thesis), French Report FRNC-Th-435, 1973

c N B Blokhin, V A Ermakov, and A G Rykov, Oxidation-Reduction Reactions of Actinide Elements XXV Kinetics of Neptunium(IV)-Americium(V) Reaction in Perchlorate Solutions, *Radiokhimiya* 16: 189 (1973) through *Sov Radiochem (Engl Transl)* 16: 191 (1973)

d A G Rykov, G A Timofeev, and V M Chistyakov, Oxidation-Reduction Reactions of Actinide Elements XXIII Kinetics of Neptunium-Americium(V) Reaction in Perchlorate Solutions, *Radiokhimiya* 15: 872 (1973) through *Sov Radiochem (Engl Transl)*, 15: 883 (1973)

e V M Chistyakov, V A Ermakov, and A G Rykov, Kinetics of the Reaction Neptunium(V)-Americium(V) in Sodium Carbonate Solutions, *Radiokhimiya* 16: 553 (1974) through *Sov Radiochem (Engl Transl)* 16: 545 (1974)

f N B Blokhin, V A Ermakov, and A G Rykov, Oxidation-Reduction Reactions of Actinide Elements XXVI Kinetics of the Reaction of Uranium(IV)-Americium(V) in Perchlorate Solutions, *Radiokhimiya* 16: 551 (1974) through *Sov Radiochem (Engl Transl)* 16: 543 (1974)

83 V A Ermakov, G A Timofeev, A G Rykov, and G N Yakovlev, Kinetics of the Radiation Chemical Reduction of Americium(VI) and (V) in Aqueous Solutions in the Presence of Peroxydisulfate Ions, *Radiokhimiya* 13: 709 (1971) through *Sov Radiochem (Engl Transl)*, 13: 727 (1971)

84 M Shiloh, M Givon, and Y Marcus, A Spectrophotometric Study of Trivalent Actinide Complexes in Solutions III Americium with Bromide, Iodide, Nitrate, and Carbonate Ligands, *J Inorg Nucl Chem*, 31: 1807 (1969)

85 D M Gruen, R L McBeth, J Kooi, and W T Carnall, Oxidation States of the Elements and Their Potentials in Fused-Salt Solutions The Actinide Elements, *Ann N Y Acad Sci* 79: 941 (1960)

86 D S Gorbenko-Germanov, Correlations of Absorption Spectra of Americium and Europium in Crystals and Solutions, *Fiz Probl Spektroskopii Akad Nauk SSSR Materialy 13 go Soveschi* 1: 242 (1960)

87 B J Stover, J G Conway, and B B Cunningham, The Solution Absorption Spectrum of Americium, *J Amer Chem Soc* 73: 491 (1951)

88 S E Stephanou, J P Nigon, and R A Penneman, The Solution Absorption Spectra of Americium(III), (V), and (VI), *J Chem Phys*, 21: 42 (1953), USAEC Report LADC-1147, Los Alamos Scientific Laboratory, 1952

89 W T Carnall and P R Fields, The Visible and Near-Infrared Absorption Spectra of Some Trivalent Actinide and Lanthanide Elements in DCLO_4 and in Molten Nitrate Salts, *Develop Appl Spectrosc*, 1: 233 (1962)

90 D C Stewart, Absorption Spectra of Lanthanide and Actinide Rare Earths II Transition Probabilities for $+3$ Ions in the Two Series, USAEC Report AECD-3351, Argonne National Laboratory, 1952

91 W T Carnall and P R Fields, Lanthanide and Actinide Absorption Spectra in Solutions, in *Lanthanide/Actinide Chemistry*, R F Gould (Ed.), Advances in Chemistry Series, p 268, American Chemical Society, Washington, 1967

92 Y Marcus and M Shiloh, A Spectrophotometric Study of Trivalent Actinide Complexes in Solution IV Americium with Chloride Ligands, *Israel J Chem.*, 7: 31 (1969)

93 C E Thalmayer and D Cohen, Actinide Chemistry in Saturated Potassium Fluoride Solution, in *Lanthanide/Actinide Chemistry*, R F Gould (Ed.), Advances in Chemistry Series, p 256, American Chemical Society, Washington, 1967

94 Yu A Barbanel, A G Gorski, and V P Kotlin, Absorption Spectra of Am(III) in Standard Solutions of HCl, *Radiokhimiya* 13: 305 (1971) through *Sov Radiochem (Engl Transl)* 13: 314 (1971)

95 Yu A Barbanel, V P Kotlin, and A G Gorski, Identification of an AmCl_6^3 Octahedral Complex from the Am(III) Absorption Spectrum in Ethanol Solutions of HCl, *Dokl Akad Nauk Tadzh SSR* 202: 830 (1972)

96 D M Gruen, S Fried, P Graf, and R L McBeth, The Chemistry of Fused Salts, in *Proceedings of the Second International Conference on the Peaceful Uses of Atomic Energy Geneva 1958* Vol 28, p 112, United Nations, New York, 1958

97 J G Conway, Energy Levels of Am(IV) in LaCl_3 , *J Chem Phys* 40: 2504 (1964), USAEC Report UCRL-11099, University of California, Lawrence Radiation Laboratory, November 1963

98 W T Carnall and B G Wybourne, Electronic Energy Levels of the Lighter Actinides U^{3+} , Np^{3+} , Pu^{3+} , Am^{3+} , and Cm^{3+} , *J Chem Phys* 40: 3428 (1964)

99 J G Conway and B R Judd, Missing Band in the Spectrum of Tripositive Americium Ion, *J Chem Phys* 41: 1526 (1964)

100 W T Carnall, P R Fields, and B G Wybourne, Low-Lying Energy Levels of Trivalent Americium, *J Chem Phys* 41: 2195 (1964)

101 L P Varga, R D Baybarz, M J Reisfeld, and L B Asprey, Electronic Spectra of the $5f^5$ and $5f^9$ Actinides Am^{4+} , Pu^{3+} , Bk^{2+} , Cf^{3+} , and Es^{4+} , *J Inorg Nucl Chem* 35: 2775 (1973)

102 R A Penneman and T K Keenan, The Radiochemistry of Americium and Curium, Report NAS-NS-3006, National Academy of Sciences-National Research Council, 1960

103 L P Varga, J B Mann, L B Asprey, and M J Reisfeld, Calculated Spectroscopic Parameters and the Intermediate Spin-Orbit Coupling Diagram in the Interpretation of $5f^4$ AmO_2^+ Spectra, *J Chem Phys* 55: 4230 (1971)

104 G N Yakovlev and V N Kosyakov, An Investigation of the Chemistry of Americium, in *Proceedings of the Second International Conference on the Peaceful Uses of Atomic Energy Geneva 1958*, Vol 28, p 373, United Nations, New York, 1958

105 R A Penneman, Los Alamos Scientific Laboratory, unpublished, cited in Ref 48

106 L P Varga, M J Reisfeld, and L B Asprey, Electronic Spectra of the $5f^3$ Actinides U^{3+} , Np^{4+} , Pu^{5+} , and AmO_2^+ The f^3 Intermediate Coupling Diagram, *J Chem Phys*, 53: 250 (1970)

107 J T Bell, Continuities in the Spectra and Structure of the Actinyl Ions, *J Inorg Nucl Chem*, 31: 703 (1969)

108 M Shiloh and Y Marcus, The Chemistry of Trivalent Neptunium, Plutonium, and Americium in Halide Solutions, Israel Report IA-924, April 1964

109 P K Khopkar and P Narayananakutty, Effect of Ionic Media on the Stability Constants of Chloride, Nitrate, and Thiocyanate Complexes of Americium(III) and Europium(III), *J Inorg Nucl Chem*, 33: 495 (1971)

110 B M L Bansal, S K Patil, and H O Sharma, Chloride, Nitrate, and Sulphate Complexes of Europium(III) and Americium(III), *J Inorg Nucl Chem*, 26: 993 (1964)

111 D R Peppard, G W Mason, and I Hucher, Stability Constants of Certain Lanthanide(III) and Actinide(III) Chloride and Nitrate Complexes, *J Inorg Nucl Chem* 24: 881 (1962), USAEC Report TID-14716, November 1961

112 T Sekine, Complex Formation of La(III), Eu(III), Lu(III), and Am(III) with Oxalate, Sulphate, Chloride, and Thiocyanate Ions, *J Inorg Nucl Chem*, 26: 1463 (1964)

113 T Sekine, Solvent Extraction Study of Trivalent Actinide and Lanthanide Complexes of La(III), Eu(III), Lu(III), and Am(III) in $4M \text{NaClO}_4$, *Acta Chem. Scand.*, 19: 1435 (1965)

114 M Ward and G A Welch, The Chloride Complexes of Trivalent Plutonium, Americium, and Curium, *J Inorg Nucl Chem* 2: 395 (1965)

115 V M Vdovenko, V B Kolokol'tsov, and O B Stebunov, Relaxation Processes in Complex Formation I Copper and Americium Chlorides in Aqueous Solutions, *Radiochimica*, **8**: 286 (1966) through *Sov Radiochem (Engl Transl)* **8**: 266 (1966)

116 I Grenthe, Chloride Complexes of Trivalent Americium, *Acta Chem Scand* **16**: 2300 (1962)

117 B Marin, Behavior of Trivalent Actinide and Lanthanide Elements in Chloride Solutions, French Report CEA R-3803, through USAEC Report ORNL tr-2342 1970

118 Y Marcus and M Bomse, Octahedral Chloride Complexes of Trivalent Actinides and Lanthanides in Solution, *Israel J Chem* **8**: 901 (1970)

119 J L Ryan, Octahedral Hexahalide Complexes of the Trivalent Actinides, in *Lanthanide/Actinide Chemistry* R F Gould (Ed.), Advances in Chemistry Series, p 331, American Chemical Society, Washington, 1967

120 a A Aziz and S J Lyle, Equilibrium Constants for Aqueous Fluoro Complexes of Scandium, Yttrium, Americium(III), and Curium(III) by Extraction into Di-2-Ethylhexyl Phosphoric Acid *J Inorg Nucl Chem* **31**: 3471 (1969)
b G R Choppin and P J Unrein, Thermodynamic Study of Actinide Fluoride Complexation, in *Transplutonium Elements* Proceedings of the 4th International Symposium, Baden-Baden, September 13-17, 1975, W Muller and R Lindner (Eds.), North-Holland Publishing Company, Amsterdam, 1976

121 H Lahr and W Knoch, Determination of Stability Constants of Some Actinide Complexes II Nitrate and Chloride Complexes of Uranium, Neptunium, Plutonium, and Americium, *Radiochim Acta* **13**: 1 (1970), USAEC Report ORNL tr-2382, Oak Ridge National Laboratory, 1970

122 I A Lebedev, S V Prozhkov, and G N Yakovlev, Determination of the Composition and Instability Constants of the Oxalate, Nitrate, and Sulfate Complexes of Am(III) and Cm(III) by Ion Exchange, *Radiochimica* **2**: 549 (1960) through *Radiochem (USSR) (Engl Transl)*, **2**(5) 39 (1960)

123 G R Choppin and W F Strazik, Complexes of Trivalent Lanthanides and Actinide Ions I Outer Sphere Ion Pairs, *Inorg Chem* **4**: 1250 (1965)

124 P K Khopkar and H D Sharma, unpublished, cited in Ref 110

125 Research Laboratories Annual Report for the Period January-December 1966, Israel Report IA-1128, 1967

126 R Chianizia, P R Danesi, G Scibona, and L Magon, Liquid Anion Exchange of Thiocyanate-Nitrate Actinide and Lanthanide Complexes, *J Inorg Nucl Chem* **35**: 3595 (1973)

127 P A Baisden, G R Choppin, and W K Kinard, Ion Pairing of Am(III) with Perchlorate, *J Inorg Nucl Chem* **34**: 2029 (1972)

128 A I Moskvin, Investigation of the Complex Formation of Trivalent Plutonium, Americium, and Curium in Phosphate Solutions, *Radiochimica*, **13**: 668 (1971) through *Sov Radiochem (Engl Transl)* **13**: 688 (1971)

129 M S Borisov, A A Elesin, I A Lebedev, V T Filimonov, and G N Yakovlev, Investigation of the Complexing of Trivalent Actinides and Lanthanides in Phosphoric Acid Solutions, *Radiochimica* **8**: 42 (1966) through *Sov Radiochem (Engl Transl)* **8**: 40 (1966)

130 I A Lebedev, S V Prozhkov, and G N Yakovlev, Determination of the Composition and Instability Constants of Oxalate, Nitrate, and Sulfate Complexes of Am(III) and Cm(III) by Ion Exchange, *Akad Nauk SSSR* through USAEC Report AEC-tr-4275, Los Alamos Scientific Laboratory, 1960

131 T Sekine, Solvent Extraction Study of Trivalent Actinide and Lanthanide Complexes in Aqueous Solutions II Sulfate Complexes of La(III), Eu(III), Lu(III), and Am(III) in 1M NaClO₄, *Acta Chem Scand* **19**: 1469 (1965)

132 R G Carvalho and G R Choppin, Lanthanide and Actinide Sulfate Complexes I Determination of Stability Constants, *J Inorg Nucl Chem* **29**: 725 (1967)

133 G S Nair, Americium(III)-Sulphate Complexes, *Radiochim Acta*, **10**: 116 (1968)

134 A Aziz, S J Lyle, and S J Naqvi, Chemical Equilibria in Americium and Cerium Sulphate and Oxalate Systems and an Application of a Liquid Scintillation Counting Method, *J. Inorg Nucl Chem* **30**: 1013 (1968)

135 W J McDowell and C F Coleman, The Sulfate Complexes of Some Trivalent Transplutonium Actinides and Europium, *J. Inorg Nucl Chem* **34**: 2837 (1972)

136 T Sekine, Solvent Extraction Study of Trivalent Actinides and Lanthanide Complexes in Aqueous Solutions IV Thiocyanate Complexes of La(III), Eu(III), Lu(III), and Am(III) in 5M NaClO₄ Solutions at 25 deg C, *Acta Chem Scand*, **19**: 1519 (1965)

137 I A Lebedev and G N Yakovlev, Determination of the Composition and Instability Constants of Thiocyanate Complexes of Am(III), Cm(III), and Ce(III) by Ion Exchange, *Radiokhimiya* **4**: 304 (1962) through *Sov Radiochem (Engl Transl)* **4**: 273 (1962)

138 G R Choppin and J Ketels, Thiocyanate Complexes of Some Trivalent Lanthanide and Actinide Elements, *J. Inorg Nucl Chem* **27**: 1335 (1965)

139 G R Choppin, Thermodynamics of Complexing of Trivalent Actinide Ions by Thiocyanate, USAEC Report TID-25671, Florida State University, 1970

140 H D Harmon, J R Peterson, W J McDowell, and C F Coleman, The Tetrad Effect The Thiocyanate Complex Stability Constants of Some Trivalent Actinides, *J. Inorg Nucl Chem* **34**: 1381 (1972)

141 a H D Harmon, J R Peterson, J T Bell, and W J McDowell, A Spectrophotometric Study of the Formation of Americium Thiocyanate Complexes, *J. Inorg Nucl Chem* **34**: 1711 (1972)
b W F Kinard and G R Choppin, Complexing of Trivalent Actinide Ions by Thiocyanate, *J. Inorg Nucl Chem* **36**: 1131 (1974)
c P K Khopkar and J N Mathur, Thiocyanate Complexing of Some Trivalent Actinides and Lanthanides, *J. Inorg Nucl Chem* **36**: 3819 (1974)

142 A A Elesin, I A Lebedev, E M Piskunov, and G N Yakovlev, Complex Formation of Americium, Curium, and Promethium with Trimetaphosphoric Acid, *Radiokhimiya* **9**: 161 (1967) through *Sov Radiochem (Engl Transl)*, **9**: 159 (1967)

143 A I Moskvin, Investigation of the Complex Formation of Trivalent Plutonium, Americium, and Curium in Acetate Solutions by the Ion Exchange Method, *Radiokhimiya* **13**: 221 (1971) through *Sov Radiochem (Engl Transl)*, **13**: 220 (1971)

144 A I Moskvin, Investigation of the Complex Formation of Trivalent Plutonium and Americium in Acetate Solutions by a Potentiometric Method, *Radiokhimiya* **13**: 224 (1971) through *Sov Radiochem (Engl Transl)* **13**: 224 (1971)

145 G R Choppin and J K Schneider, The Acetate Complexing by Trivalent Actinide Ions, *J. Inorg Nucl Chem*, **32**: 3283 (1970)

146 I Grenthe, On the Stability of the Acetate, Glycolate, and Thioglycolate Complexes of Tervalent Europium and Americium, *Acta Chem. Scand.* **16**: 1695 (1962)

147 E S Gureev et al, Methods of Recovery and Some Chemical Properties of Transplutonium Elements, in *Proceedings of the Third International Conference on the Peaceful Uses of Atomic Energy Geneva 1964* Vol 10, p 348, United Nations, New York, 1965

148 A Aziz and S J Lyle, Americium(III) and Europium(III) Complexes with Lactate, Pyruvate, and α -Alaninate in Aqueous Solutions—A Comparison of Equilibrium Constants, *J. Inorg Nucl Chem*, **33**: 3407 (1971)

149 S H Eberle and I Bayat, Stabilitätskonstanten und Koordinationszahlen der Chelate Dreiwertiger Transplutoniumelemente mit Immodiaceticacid-Derivates, *Inorg. Nucl. Chem. Lett.*, **5**: 229 (1969)

150 I Bayat, Über Komplexe dreiwertiger Transurane mit Aminopolykarbonsäuren, German Report KFK-1291, 1970

151 a B F Myasoedov, M S Milyukova, and L V Ryzhova, On the Reaction of Trivalent Americium and Curium with the Reagent Arsenazo III, *Radiochem Radioanal Lett* 5: 19 (1970)

b M S Milyukova, B F Myasoedov, and L V Ryzhova, Spectrophotometric Study of the Reaction of Americium and Curium with Arsenazo III, *Zh Anal Khim* 27: 1769 (1972)

152 E Akatsu, M Hoshi, R Ono, and K Ueno, Some Complexes of Americium and Curium with Oxine, Cupferron and N-Benzoylphenylhydroxylamine, *J Nucl Sci Technol (Tokyo)* 5: 252 (1968)

153 C Keller and H Schreck, Die Chelatbildung und Extraktion des Dreiwertigen Actinimuns, Americums, Curiums und Californiums mit Acetylacetone und Einigen Seiner Derivate, *J Inorg Nucl Chem*, 31: 1121 (1969), West German Report KFK-672, December 1967

154 S H Eberle and F Moattar, Die Komplexe des Am(III) Mit Zitronensaure, *Inorg Nucl Chem Lett*, 8: 265 (1972)

155 I Moattar, Compounds of Trivalent Transuranium Compounds Appearing in Mixtures of Complexing Agents, German Report KFK-1416, June 1971

156 E Ohyoshi and A Ohyoshi, Study of Complexes with a Polybasic Acid Am(III) Citrate Complexes, *J Inorg Nucl Chem*, 33: 4265 (1971)

157 A I Moskvin, G V Khalturin, and A D Gel'man, Determination of the Composition and Instability Constants of Citrate and Tartrate Complexes of Americium(III) by the Ion Exchange Method, *Radiokhimiya* 4: 162 (1962) through Sov *Radiochem (Engl Transl)* 4: 145 (1962)

158 G Marcu and K Samochocka, On the Formation of Complex Combinations of ^{241}Am and ^{246}Cm in Citric Acid Media by Electrophoresis on Paper, *Stud Univ Babes Bolyai Ser Chem* 11 15(1966)

159 a R Guillaumont and L Bourderie, Complexe Citrique d'Elements 4f et 5f, *Bull Soc Chim France*, 8: 2806 (1971)

b S Hubert, M Hussonnois, L Brillard, G Goby, and R Guillaumont, Determination Simultanee de Constante de Formation de Complexes Citrique de l'Americium, du Curium, du Californium, de l'Einsteinium, et du Fermium, *J Inorg Chem.*, 36: 2361 (1974)

160 A V Stepanov, Comparative Stability of Complex Compounds of Yttrium, Some Rare Earths, and Actinide Elements with Anions of Oxalic, Citric, Ethylenediaminetetraacetic, and 1,2-Diaminocyclohexanetetraacetic Acids, *Zh Neorg Khim*, 16: 2981 (1971)

161 V G Voden, M. E Obukhova, and M F Puchlenokov, Complex Formation of Americium with Decanohydroxyamic Acid, *Radiokhimiya* 11: 644 (1969) through Sov *Radiochem (Engl Transl)*, 11: 633 (1969)

162 A V Stepanov, T P Makarova, A M Maksimova, and A B Shalinets, Investigation of the Complex Formation of Ce(III), Am(III), and Cm(III) with 1,2-Diaminocyclohexanetetraacetic Acid by the Electromigration Method, *Radiokhimiya*, 9: 710 (1967) through Sov *Radiochem (Engl Transl)*, 9: 667 (1967)

163 R D Baybarz, Dissociation Constants of the Transplutonium Element Chelates of 1,2-Diaminocyclohexanetetraacetic Acid, *J Inorg Nucl Chem.*, 28: 1055 (1966)

164 A A Elesin and A A Zaitsev, Complex Formation of Americium, Curium, and Promethium with 1,2-Diaminocyclohexanetetraacetic Acid, *Radiokhimiya* 13: 902 (1971) through Sov *Radiochem (Engl Transl)*, 13: 931 (1966)

165 I Stary, Investigation of the Complex Formation of Americium and Promethium by the Extraction Method, *Radiokhimiya*, 8: 504 (1966) through Sov *Radiochem (Engl Transl)* 8: 467 (1966)

166 P Zur Nedden, Komplexe dreiwertiger Lanthaniden und Actiniden mit Dialkyl-(PP')-athans-(1,2)-diphosphonsauren, *Z Anal Chem.*, 247: 236 (1969)

167 C Keller, S H Eberle, and K Mosdzelewski, Verbindungen des dreiwertigen Plutoniums, Americums, and Curiums mit 8-Hydroxychinolin und einiger seiner Derivative, *Radiochim Acta*, 5: 185 (1966)

168 S H Eberle, Über die Reaktionen der Elemente Neptunium, Plutonium, und Americium mit 8-Hydroxychinolin und Einiger Seiner Derivate, German Report KFK-281, 1965

169 R D Baybarz, Dissociation Constants of the Transplutonium Element Chelates of Diethylenetriaminepentaacetic Acid (DTPA) and the Application of DTPA Chelates to Solvent Extraction Separations of Transplutonium Elements from the Lanthanide Elements, *J Inorg Nucl Chem*, 27: 1831 (1965)

170 I A Lebedev, V T Ilimonov, A B Shalinets, and G N Yakovlev, Investigation of the Formation of Complexes of Americium, Curium, Cerium, and Promethium with Diethylene triaminepentaacetic Acid, *Radiokhimya*, 10: 93 (1968) through *Sov Radiochem (Engl Transl)* 10: 87 (1968)

171 W D Burch (Comp.), Transuranium Quarterly Progress Report for Period Ending February 29, 1963, USAEC Report ORNL-3651, Oak Ridge National Laboratory, 1964

172. M B Hafez, Spectrophotometric Study of the Complexes of Cerium and Uranides with Diethylenetriaminepentaacetic Acid (DTPA), French Report CEA-R-3521, 1968, USAEC Report URCL-Trans 10336C, 1968

173 A Delle Site and R D Baybarz, A Spectrophotometric Study of the Complexing of Am^{3+} with Aminopolyacetic Acids, *J Inorg Nucl Chem*, 31: 2201 (1969)

174 E M Piskunov and A G Rykov, Investigation of Complex Formation with Diethylenetriaminepentaacetic Acid VI Americium(III), *Radiokhimya*, 14: 638 (1972) through *Sov Radiochem (Engl Transl)* 14: 656 (1972)

175 E Brandau, Stability Constants of the Complexes Formed by Am(III), Cm(III), and Cf(III) with Diethylenetriaminepentaacetic Acid, *Inorg Nucl Chem Lett*, 7: 1177 (1971)

176 A I Moskvin, Investigation of the Complex Formation of Pu(III), Am(III), and Cm(III) with Nitrilotriacetic and Diethylenepentaacetic Acids, *Radiokhimya* 13: 575 (1971) through *Sov Radiochem (Engl Transl)* 13: 570 (1971)

177 A I Moskvin, Complex Formation of the Actinides with Anions of Acids in Aqueous Solution, *Radiokhimya*, 11: 458 through *Sov Radiochem (Engl Transl)*, 11: 447 (1969)

178 a I L Moore, Liquid-Liquid Extraction of Anionic Americium and Europium Complexes of Hydroxyethylidenediaminetriacetic Acid and Diethylenetriaminepentaacetic Acid, *Anal Chem*, 38: 905 (1966)
b V B Nikolaevskii, V P Shilov, and N N Krot, Complex Compounds of Pentavalent Americium in Solutions of Ethylenediaminetetraacetic and Diethylenetriaminepentaacetic Acids, *Radiokhimya*, 16: 61 (1974) through *Sov Radiochem (Engl Transl)* 16: 57 (1974)

179 A A Elesin and A A Zaitsev, Complex Formation of Trivalent Americium, Curium, and Promethium Ions with Diethylphosphenylpropionic Acid, *Radiokhimya*, 14: 370 (1972) through *Sov Radiochem (Engl Transl)*, 14: 381 (1972)

180 C S Grigorescu-Sabau, Über die Temperaturabhängigkeit von Komplexgleichgewichten der Transplutone, German Report KFK 1620, June 1972

181 a J Goffart and G Duyckaerts, L'Extraction des Lanthanides et des Actinides par les Oxydes d'Alkylphosphine, *Anal Chim Acta*, 48: 99 (1969)
b V V Vorob'eva, A A Elesin, and A A Zaitsev, Complexing of Trivalent Americium, Curium, Californium, Promethium, and Yttrium Ions with Dioxymethylphosphinic Acid, Russian Report NIIAR-P-185, 1973

182 I A Lebedev and A V Shalinets, Investigation of Complex Formation of Trivalent Lanthanide and Actinide Elements with Ethylenediamino-bis-isopropylphosphonic Acid by the Method of Electromigration, *Radiokhimya* 10: 233 (1968) through *Sov Radiochem (Engl Transl)*, 10: 218 (1968)

183 A B Shalinets and V V Vorob'eva, Investigation of the Complex Formation of Am(III), Cm(III), and Ce(III) with Ethylenediamino-bis-methylphosphonic Acid by the Method of Electromigration, *Radiokhimya* 10: 102 (1968) through *Sov Radiochem (Engl Transl)* 10: 97 (1968)

184 A A Elesin, A A Zaitsev, G M Sergeev, and I I Nazarova, Complex Formation of Trivalent Americium, Curium, and Promethium Ions with Ethylenediamino bis methyl phosphonic Acid, *Radiochimica* 15: 64 (1973) through *Sov Radiochem (Engl Transl)* 15: 62 (1973)

185 J Luger, Ion Exchange Behavior and Dissociation Constants of Americium, Curium, and Californium Complexes with Ethylenediaminetetraacetic Acid, *J Inorg Nucl Chem* 5: 332 (1958)

186 A I Moskvin, G V Khalturin, and A D Gel'man, Investigation of Oxalate and EDTA Complexes of Trivalent Americium by Ion Exchange, *Radiochimica* 1: 141 (1959)

187 I A Lebedev, A M Maksimova, A V Stepanov, and A B Shalinets, Determination of the Stability Constants of Am and Cm with EDTA by the Method of Electromigration, *Radiochimica*, 9: 707 (1967) through *Sov Radiochem (Engl Transl)* 9: 664 (1967)

188 A A Elesin and A A Zaitsev, Ion-Exchange Behavior of Trivalent Americium, Curium, and Promethium Ions in the Presence of EDTA, *Radiochimica* 13: 775 (1971) through *Sov Radiochem (Engl Transl)* 13: 798 (1971)

189 A I Moskvin, Solubility and Ion Exchange Methods for Determining the Complex Formation of Plutonium and Americium in Aqueous Solution, *Radiochimica* 1: 430 (1959)

190 A B Shalinets, Investigation of the Complex Formation of Trivalent Actinide and Lanthanide Elements by the Method of Electromigration XVI Ethylenediaminetetraacetic Acid, *Radiochimica* 14: 275 (1972) through *Sov Radiochem (Engl Transl)*, 14: 285 (1972)

191 A B Shalinets, Investigation of the Complex Formation of Trivalent Actinide and Lanthanide Elements by the Method of Electromigration XV Ethylenediaminetetramethylphosphonic Acid, *Radiochimica* 14: 269 (1972) through *Sov Radiochem (Engl Transl)* 14: 279 (1972)

192 S P Tanner and G R Choppin, Lanthanide and Actinide Complexes of Glycine Determination of Stability Constants and Thermodynamic Parameters by a Solvent Extraction Method, *Inorg Chem* 7: 2046 (1968)

193 G R Choppin and G Degischer, Complexing of Trivalent Actinide Ions by Glycolate, *Inorg Nucl Chem*, 34: 3473 (1972)

194 B I Levakov and A B Shalinets, Investigation of the Complex Formation of Trivalent Actinide and Lanthanide Elements by the Method of Electromigration XVIII Hydrazine-iminodiacetic Acid, *Radiochimica*, 13: 295 (1971) through *Sov Radiochem (Engl Transl)*, 13: 301 (1971)

195 S H Eberle and I Bayat, Die Chelatbildung Dreiwertiger Transplutonium Elements mit N-2 Hydroxyethyl-Athyldiamen-N,N',N'-Triessigsäure, *Radiochim Acta*, 7: 214 (1967)

196 a E Mercing and E Duyckaerts, Separation Americium-Curium Constantes de Dissociation des Complexes avec l'Acide Hydroxyéthyléne-diaminetriacétique, *Anal Lett*, 1: 23 (1967)
b I A Lebedev, Yu F Mazur, and B J Myasoedov, Investigation of the Complex Formation of Americium and Europium with Hydroxylethylidenediphosphonic Acid, *Radiochimica*, 14: 759 (1972) through *Sov Radiochem (Engl Transl)*, 14: 782 (1972)

197 V A Ermakov, V V Vorob'eva, A A Zaitsev, and G N Yakovlev, Study of Complex-Formation by an Extraction Method II Complex-Formation of Americium, Curium, Californium, Promethium, and Europium with 2-Hydroxyethyliminodiacetic Acid, *Radiochimica*, 13: 840 (1971) through *Sov Radiochem (Engl Transl)*, 13: 866 (1971)

198 A B Shalinets, Investigation of the Complex Formation of Trivalent Actinide and Lanthanide Elements by the Method of Electromigration. XIV Hydroxyethylimino-N,N'-Diacetic Acid, *Radiochimica*, 14: 33 (1972) through *Sov Radiochem (Engl Transl)*, 14: 30 (1972)

199 V B Dedov, I A Lebedev, M N Ryzhov, P S Trakhlyayev, and G N Yakovlev Complex Formation Between Americium and Curium with α -Hydroxyisobutyric Acid, *Radiochimica* 3: 701 (1961) through *Radiochem (USSR) (Engl Transl)* 3(5) 197 (1961)

200 B Graus Odenheimer and G R Choppin, Stability Constants of Alpha-hydroxyisobutyric Acid Complexes with Actinide Elements, USAEC Report UCRL-3515, University of California, Berkeley, Radiation Laboratory, 1956

201 J Stary, Separation of Transplutonium Elements, *Talanta* 13: 421 (1965)

202 V V Vorob'eva, A A Elesin, and A A Zaitsev, Complexing Trivalent Americium Curium Californium, and Yttrium Ions with Bis(hydroxymethyl)phosphinic Acid, Russian Report SRARI-P-185, 1973, through USAEC Report AEC-tr-7474, 1973

203 A A Elesin, A A Zaitsev, N A Ivanovich, V A Karaseva, and G N Yakovlev Complex Formation of Trivalent Americium, Curium, and Promethium Ions with Hydroxymethyl phosphonic and Methylolethylphosphinic Acids, *Radiochimica* 14: 546 (1972) through *Sov Radiochem (Engl Transl)* 14: 563 (1972)

204 V A Ermakov, V V Vorob'eva, A A Zaitsev, and G N Yakovlev Study of Complex Formation by the Extraction Method I Complex Formation of Americium Curium Californium, and Promethium with α -Hydroxyphenylimidodiacetic Acid *Radiochimica* 13: 692 (1971) through *Sov Radiochem (Engl Transl)* 13: 710 (1971)

205 S Al Rifai, Complex Formation Between Trivalent Transuranium Elements and Ligands Which Contain the Pyridine or Quinoline Ring, German Report IRCH 10/70-2, 1970

206 J T Bell, R D Baybarz, and D M Helton, The Thermodynamics for the Formation of Americium Iminodiacetic Acid Complexes as Determined by Spectrophotometric and pH Techniques, *J Inorg Nucl Chem* 33: 3077 (1971)

207 I A Lebedev and G N Yakovlev, Determination of the Composition and Instability Constants of the Complex Lactates of Am(III) and Cm(III) by the Ion Exchange Method, *Radiochimica* 3: 455 (1961) through *Radiochem (USSR) (Jerusalem)* 3(3) 234 (1961)

208 a V A Ermakov and I Stary, Complex Formation of Am, Cm, Cf, and Fm with Lactic Acid *Radiochimica* 9: 197 (1967) through *Sov Radiochem (Engl Transl)* 9: 195 (1967)
b M Sakanque and M Nakatani, Determination of the Formation Constants of Actinoid and Lanthanoid Lactate Complexes by Means of Electrophoresis *Bull Chem Soc Jap* 45: 3429 (1972)

209 A A Elesin, A A Zaitsev, V A Karaseva, I I Nazarova, and I V Petukhova, The Synthesis of (Methylphenylphosphinyl)-methylphenylphosphonic Acid and Investigation of the Complex Formation of Trivalent Americium, Curium, and Promethium Ions, *Radiochimica* 14: 374 (1972) through *Sov Radiochem (Engl Transl)* 14: 385 (1972)

210 M S Borisov, A A Elesin, I A Lebedev, E M Piskunov, V T Ilimonov and G N Yakovlev, Complex Formation of Trivalent Americium, Curium and Promethium with Methylphosphinic Acid, *Radiochimica* 9: 166 (1967) through *Sov Radiochem (Engl Transl)* 9: 164 (1967)

211 S H Eberle and S Ali, Ionenaustauschverhalten und Chelatbildung dreiwertiger Transplutoniumelemente bei Gegenwart von nitrilotriessigsäure und eniger ihrer Derivate, *Z Anorg Allg Chem* 361: 1 (1968)

212 S Ali, Die Chelatbildung der Dreiwertigen Transplutoniumelemente mit Nitrilotriessigsäure und Ihren Derivaten, German Report KFK-580, 1967, USAEC Report ORNL-tr-1854, 1968

213 S H Eberle and S Ali, Die Chelatbildung des Americiums und Curiums mit Nitrilotriessigsäure, *Radiochim Acta* 5: 58 (1966)

214 S H Eberle and C S Sabau, The Thermodynamics of Am(III) Nitrilotriacetic Acid Complexes, *Radiochem Radioanal Lett*, 11: 77 (1972)

215 a I A Lebedev, S V Pirozhkov, V M Razbitnoi, and G N Yakovlev, On the Complex Formation of Am^{3+} with Oxalates *Radiochimica* 2: 351 (1960) through *Radiochem (USSR) (Jerusalem)* 2: 89 (1960)

b L I Gedeonov, I A Lebedev, A V Stepanov, A B Shalnets, and G N Yakovlev in *Chemistry of the Transuranium and Fission Elements* Izd, Nauka, p 140, Moscow-Leningrad, 1967

216 A V Stepanov and T P Makarova, Use of the Electromigration Method to Study Complex Oxalates of Am(III), *Radiokhimiya*, 7: 670 (1965) through *Sov Radiochem (Engl Transl)*, 7: 669 (1965)

217 a T Sekine, Solvent Extraction Study of Trivalent Actinide and Lanthanide Complexes in Aqueous Solutions III Oxalate Complexes of La(III), Eu(III), Lu(III), and Am(III) in 1M NaClO_4 , *Acta Chem Scand*, 19: 1476 (1965)

b V P Shilov, V B Nikolaevskii, and N N Krot, Am(V) Complex Formation with Oxalate Ions, *Zh Neorg Khim* 19: 469 (1974)

218 W Backer and C Keller, 4-Acyl-Substituted 1-Phenyl-3-Methyl-Pyrazolone-5 als Chelatbildner fur Actinideionen, *J Inorg Nucl Chem* 35: 2945 (1973), West German Report KFK-1504, December 1971

219 A A Elesin, A A Zaitsev, S S Kazakova, and G N Yakovlev, Complex Formation of Trivalent Americium, Curium, and Promethium Ions with Phosphonoacetic Acid, *Radio khimiya* 14: 541 (1972) through *Sov Radiochem (Engl Transl)*, 14: 558 (1972)

220 I Stronski and M Rekas, Determination of Distribution and Stability Constants of Americium and Curium Chelates with Aromatic Schiff Bases XV Radiotracer Studies on the Extraction of Metal Ions, *Radiochem Radioanal Lett*, 14: 297 (1973)

221 L G Cilandro, E Stadlbauer, and C Keller, Complexation of Some Actinide Ions with Squaric Acid, *J Inorg Nucl Chem*, 34: 2577 (1972)

222 G Marcu and K Samochocka, Paper Electrophoretic Study of the Formation of Complex Compounds of Europium, Promethium, Americium, and Curium in a Tartaric Acid Medium, *Stud Univ Babes Bolyai Ser Chem* 10: 71 (1965)

223 D Feinauer, Formation of Chelates and Adduct Chelates in the Extraction of Trivalent Americium and Californium, German Report KFK-1298, 1970

224. A E Martell and L G Sillen, *Stability Constants of Metal Ion Complexes*, Special Publication No 17, 2nd ed, The Chemical Society, London, 1964

225 a Y Marcus, M Givon, and M Shiloh, The Chemistry of the Trivalent Actinides in Aqueous Solutions and Their Recovery, *Proceedings of the Third International Conference on the Peaceful Uses of Atomic Energy Geneva 1964*, Vol 10, p. 588, United Nations, New York, 1965

b A D Gel'man, A I Moskvin, L M Zaitsev, and M P Mefod'eva, *Complex Compounds of Transuranides*, English translation, Israel Program for Scientific Translations, Jerusalem, 1967

226 C Musikas, Peroxyde d'Americium Pentavalent, *Radiochem Radioanal Lett*, 13: 255 (1973)

227 S Ahrland, J Chatt, and N R Davies, The Relative Affinities of Ligand Atoms for Acceptor Molecules and Ions, *Quart Rev (London)* 12: 265 (1958)

228 a R G Pearson, Hard and Soft Acids and Bases, *J Amer Chem Soc* 85: 3533 (1963)

b A I Moskvin, Complex Formation of Trivalent Plutonium, Americium, and Some Rare Earth Elements, *Radiokhimiya* 9: 718 (1967) through *Sov Radiochem (Engl Transl)*, 9: 677 (1967)

229 E K Hulet, R G Gutmacher, and M S Coops, Group Separation of the Actinides from the Lanthanides by Ion Exchange, *J Inorg Nucl Chem*, 17: 350 (1961)

230 F Z Weigel, Isolation of 100-mg Quantities of Americium-241 from Large Amounts of Impurities, *Z Anorg Allg Chem.*, 294: 294 (1958), USAEC Report UCRL 3934, University of California, Berkeley, Radiation Laboratory, 1957

231 F L Moore, New Technique for the Separation of Trivalent Actinide Elements from Lanthanide Elements, *Anal Chem* 33: 748 (1961)

232 R D Baybarz and B Weaver, Separation of Transplutoniums from Lanthanides by Tertiary Amine Extraction, USAEC Report ORNL-3185, Oak Ridge National Laboratory, 1961

233 Y Marcus, Anion Exchange of Metal Complexes XV Anion Exchange and Amine Extraction of Lanthanides and Trivalent Actinides from Chloride Solutions, *J Inorg Nucl Chem* 28: 209 (1966)

234 A A Elesin and A A Zaitsev, Some Regularities in Complexing Trivalent Ions of Americium, Curium, and Promethium with Phosphorus- and Carboxyl-Carrying Ligands, Russian Report SRARI-P-158, 1972

235 A B Shalimets, Investigation of the Complex Formation of Trivalent Actinide and Lanthanide Elements by the Method of Electromigration XII Additivity of the Strength of the Individual Rings, *Radiokhimiya*, 14: 20 (1972) through *Sov Radiochem (Engl Transl)* 14: 18 (1972)

236 A B Shalimets, Investigation of the Complex Formation of Trivalent Actinide and Lanthanide Elements by the Method of Electromigration XIII Relationship of the Structure and Selectivity of Chelate Complexes with the Additivity of the Strength of the Individual Rings, *Radiokhimiya*, 14: 29 (1972) through *Sov Radiochem (Engl Transl)* 14: 26 (1972)

237 A B Shalimets, Investigation of the Complex Formation of Trivalent Actinide and Lanthanide Elements by the Method of Electromigration XI Relationship of the Strength of Complexes to the Strength of the Acid, *Radiokhimiya* 13: 566 (1971) through *Sov Radiochem (Engl Transl)*, 13: 583 (1971)

238 A I Moskvin, Relations Between Successive Stability Constants of Complex Ions of Actinides, *Radiokhimiya*, 15: 497 (1973) through *Sov Radiochem (Engl Transl)* 15: 504 (1973)

239 R Munze, Thermodynamische Funktionen Der Komplexbildung und Ionenradien I Bestimmung der Freien Enthalpie, Entropie, und Enthalpie von Azetatokomplexen der Lanthaniden und Aktiniden aus Zwischenatomaren Donor-Akzeptorstanden, *J Inorg Nucl Chem*, 34: 661 (1972)

240 J Fugger and B B Cunningham, Microcalorimetric Determination of the Enthalpy of Formation of the Complex Ions of Trivalent Plutonium, Americium, and Lanthanum with EDTA, *J Inorg Nucl Chem* 27: 1079 (1965)

241 G R Choppin, unpublished, cited in Ref 47 b

242 D C Feay, Some Chemical Properties of Curium (Thesis), USAEC Report UCRL-2547, University of California, Berkeley, Radiation Laboratory, 1954

243 R G De Carvalho and G R Choppin, Lanthanide and Actinide Sulfate Complexes II Determination of Thermodynamic Parameters, *J Inorg Nucl Chem* 29: 737 (1967)

244 A I Moskvin, Thermodynamic Characteristics of Formation of Actinide Ions in Aqueous Solutions, *Radiokhimiya* 15: 504 (1973) through *Sov Radiochem (Engl Transl)*, 15: 511 (1973)

245 G R Choppin and K R Williams, The Kinetics of Exchange Between Americium(III) and Europium Ethylenediaminetetraacetate, *J Inorg Nucl Chem* 35: 4255 (1973)

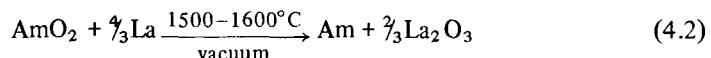
246 W D'Olieslager and G R Choppin, The Kinetics of Exchange Between Lanthanide Ions and Lanthanum Ethylenediaminetetraacetate, *J Inorg Nucl Chem* 33: 127 (1971)

247 W D'Olieslager, G R Choppin, and K R Williams, The Activation Parameters for the Exchange Reactions Between EuEDTA and Eu(III) and Am(III), *J Inorg Nucl Chem* 32: 3605 (1970)

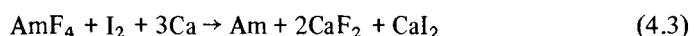
248 H El-Rawi, Complexing Kinetics of Transplutonium Elements, German Report KFK-1927, January 1974

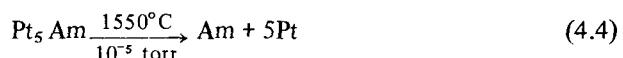
4 METAL, ALLOYS, AND COMPOUNDS

METAL


Preparation

Americium metal is usually prepared by one of the following four methods:


1. Vapor phase reduction of AmF_3 with barium (or lithium) metal


2. Reduction of AmO_2 with lanthanum metal

3. Bomb reduction of AmF_4 with calcium metal

4. Thermal decomposition of Pt_5Am

Westrum and Eyring¹ and later Graf et al.² made use of Eq. 4.1 to prepare the first microgram amounts of americium metal. Subsequently McWhan et al.³ and McWhan, Cunningham, and Wallmann⁴ prepared milligrams of americium metal by reduction of AmF_3 with barium. These workers stress that the AmF_3 be completely dehydrated, if it is not, the resulting metal will be contaminated with AmO . Also, according to McWhan, Cunningham, and Wallmann,⁴ well-agglomerated metal is obtained only when Eq. 4.1 is performed at temperatures above 1200°C.

Lanthanum reduction of AmO_2 (Eq. 4.2) and subsequent distillation of the americium metal from tantalum equipment yield americium of very high (99.9+%) purity. This scheme has been used by various workers³⁻⁶ to prepare milligram to gram quantities of americium metal. Equipment used by Wade and Wolf⁵ to produce 200 g of metal is shown in Fig. 4.1. Successful production of americium by Eq. 4.2 is enhanced by the 10^4 -fold difference in americium-lanthanum volatilities.

The bomb method (Eq. 4.3) was applied by Conner⁷ to prepare americium metal on a gram scale, AmF_4 for use in Eq. 4.3 was prepared by fluorination of AmO_2 with

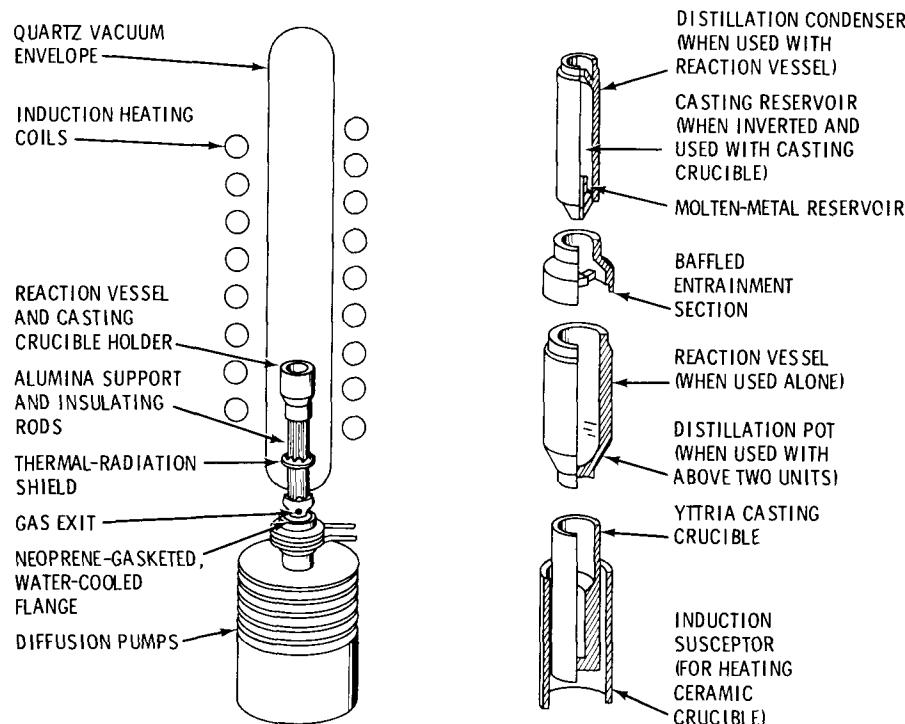


Fig. 4.1 Apparatus for preparation of americium metal by Eq. 4.2 [From W Z Wade and T Wolf, Preparation and Some Properties of Americium Metal, *Journal of Inorganic and Nuclear Chemistry*, 29: 2577 (1967)]

F_2 Reductions were performed in either tantalum or MgO crucibles in steel pressure vessels. Reduction yields of 34 to 64% of impure americium metal were obtained (The exothermic reaction between calcium and I_2 was used to supply the heat required for good metal coalescence) Conner believes that with further development the thermite bomb method will offer an inexpensive means for producing americium metal in good yield and of high purity

Preparation of americium metal by thermal decomposition of the intermetallic compound Pt_5Am (see page 129) is a very recent development⁸⁻¹⁰ In the tests of Muller, Reul, and Spirlet,⁸ 4 g of Pt_5Am were decomposed at $1550^\circ C$ and 10^{-6} torr, the resulting americium metal, after further distillation in tantalum equipment, was as pure as that obtained by Eq. 4-2

Properties

Americium metal is silvery, ductile, nonmagnetic, and very malleable Selected physical properties are listed in Table 4-1 Of the two definitely established crystalline forms of americium metal, the double hexagonal close-packed (dhcp) phase is the stable one at room temperature and is generally the one obtained by reduction of AmF_3 or by thermal dissociation of Pt_5Am The reaction between AmO_2 and lanthanum (Eq. 4-2) has been reported variously to yield pure dhcp phase,^{11a} pure face-centered cubic (fcc) phase,⁴ and a mixture of dhcp and fcc phases^{3,6} Workers at the European Institute for Transuranium Elements^{16f} recently prepared the fcc form by condensation of americium vapor on thin tungsten wires spot-welded behind a 1-mm slit in a tantalum disk The americium metal condensed on the tantalum disk showed the dhcp structure After storage at liquid-nitrogen temperatures for 3 weeks, the fcc phase started to transform into the dhcp modification McWhan et al³ also observed the fcc phase to transform to the dhcp on cooling the metal at dry-ice temperature

McWhan, Cunningham, and Wallmann⁴ originally reported that the melting point of americium metal is $994 \pm 7^\circ C$ and that the $dhcp \rightarrow fcc$ phase transition occurs between 600 and $700^\circ C$ Later work demonstrates that the melting point is about $1170^\circ C$ and that there is a solid-solid transition at about $1070^\circ C$ Sari, Muller, and Benedict,^{16a} in recent metallographic and differential thermal-analysis studies with high-purity americium metal, conclude that there is no phase transition between 600 and $700^\circ C$ Stephens, Stromberg, and Lilley¹² suggest that americium metal may undergo a $dhcp \rightarrow fcc$ phase transformation at 600 to $700^\circ C$ and an $fcc \rightarrow bcc$ (body-centered cubic) transformation at 994 to $1070^\circ C$ Confirmatory evidence for this hypothesis is lacking

In addition to the properties listed in Table 4-1, Stephens, Stromberg, and Lilley¹² have determined the phase diagram, compressibility, and electrical resistance of americium at room temperature over the range 35 to 120 kbars. Hall et al^{16e} used an adiabatic technique to measure the specific heat, C_p , of vapor-deposited²⁴¹ Am metal from 15 to $300^\circ K$ According to Hall et al^{16e} the temperature dependence of the

Table 4.1
SELECTED PROPERTIES OF AMERICIUM METAL

Property	Value(s)*	Refs.
Crystallographic data		
Symmetry	($<\sim 1070^\circ\text{C}$) dhcp ($\geq \sim 1070^\circ\text{C}$) fcc	2, 4 3, 4
Space group	$P6_3/mmc$	2-4
Lattice parameters	dhcp $a = 3.4681 \text{ \AA}$, $c = 11.241 \text{ \AA}$ fcc $a = 4.894 \text{ \AA}$	3, 4 3, 4
Density	13.671 g cm^{-3} (calculated) 13.671 g cm^{-3} (observed)†	4 5
Metallic radius (CN 12)	1.73 \AA	3, 4
Melting point	1176°C, 1173°C	12
Boiling point‡	2284°K	11a
Coefficient of thermal expansion	$\alpha_a = 7.5 + 0.2 \times 10^{-6} \text{ }^\circ\text{C}^{-1}$ $\alpha_c = 6.2 + 0.2 \times 10^{-6} \text{ }^\circ\text{C}^{-1}$	4 4
Compressibility at 1 atm	0.00277 kbar ¹ at 23°C	12
Vapor pressure	$\log p \text{ (atm)} = 6.578 + 0.046 - (14.315 + 55)T/(990 - 1358 \text{ }^\circ\text{K})$	11b, 13, 14
Magnetic susceptibility	$\chi_{20^\circ\text{C}} = (881 + 46) \times 10^{-6} \text{ cm}^3 \text{ mol}^{-1}$	4, 15a, 15b
Magnetic moment	1.36 Bohr magnetons	15a
Microhardness (Vickers) at 25°C	800 MN m^{-2}	16a
Electrical resistivity	68 $\mu\Omega \text{ cm}$ (300°C), 71 $\mu\Omega \text{ cm}$ (298°K)	16b, 16c
Crystal entropy (S_{298}^0)	13.2‡, 13.06 cal $\text{mol}^{-1}\text{K}^{-1}$	11b, 16d, 16e
Heat of vaporization at boiling point‡	55.021 kcal mol^{-1}	11b
Entropy of vaporization at boiling point‡	24.08 cal $\text{mol}^{-1}\text{K}^{-1}$	11b
Transformation temperature	(600-700°C), 1079°C, 1072°C, 1074, 1175°C	4, 5, 12, 16a
Heat of transformation	1.40 kcal mol^{-1}	5
Heat of fusion	3.44 kcal mol^{-1}	5
Heat of solution in aqueous HCl		
1M HCl	147.3 kcal mol^{-1}	11a
1.5M HCl	147.1 kcal mol^{-1}	11a
6M HCl	147.7 kcal mol^{-1}	11a

*For the double hexagonal close-packed form unless otherwise indicated

†By immersion in monobromobenzene

‡Calculated value

measured specific heat with minimum self-damage does not fit a simple Debye model. However, a reasonable assumption of the electronic contribution gives a strongly temperature-dependent Debye temperature. Schenkel, Schmidt, and Spirlet^{16c} used a potentiometric method to measure the electrical resistivity of a 1.89-μm-thick layer of americium metal between 300 and 360°K, up to 20°K the electrical resistivity varies with temperature as $T^{2.8}$. Ward, Muller, and Kramer^{11b} used the heats of transition and melting measured by Stephens et al¹² to arrive at the following equation for americium liquid $\log p \text{ (atm)} = 5.185 - 13.191/T$

Self-irradiation studies of ^{241}Am metal at 45 and 78°K were performed by Schenkel, Schmidt, and Spirlet^{16c} From the equation $\Delta p = 17.43 \mu\Omega\text{-cm} (1 - e^{\alpha t})$, the time constant, α , for the rate of self-damage was 0.0204 hr⁻¹ Hall et al^{16e} found that, for samples of ^{241}Am self-damaged below 10°K for times up to 112 hr, annealing takes place over the temperature range 50 to 250°K with three main stages clearly visible

Hexagonal americium metal¹⁷ shows no magnetic hyperfine coupling at temperatures as low as 17°K

When heated, americium metal reacts with halogens, H_2 , O_2 , N_2 , carbon, boron, antimony, etc., and with HgBr_2 and HgI_2 . These reactions are considered on pages 131 to 171. Americium also forms alloys with a number of metals (e.g., beryllium and platinum). These are discussed on pages 127 and 129. Americium dissolves^{1,11a} readily in aqueous HCl but is insoluble^{18,19} in liquid NH_3 .

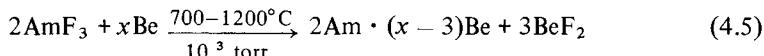
From considerations of its atomic radius, Zachariasen^{20,21a,21b} assigns a valency of four to americium metal—the so-called “thoride” hypothesis. Hill,^{22a,22b} Jullien, Galleani, D’Aghiano, and Coqblin,^{22c} and others, however, believe there is abundant evidence to adopt the viewpoint that americium metal is trivalent with an f^6 electronic configuration and is the first rare-earth-like metal in the transactinium series.

ALLOYS AND INTERMETALLIC COMPOUNDS

Preparation and properties of alloys and intermetallic compounds formed by americium with the metals Al, Be, Bi, Hg, Ir, La, Np, Ni, Os, Pd, Pt, Pu, Rh, and Th are reviewed here.* (For convenience, binary compounds of americium with the elements Sb, As, Se, and Te are discussed on pages 131 and 132 and 164 to 166.) A complete phase diagram is known only for the plutonium–americium system.

Aluminum–Americium System

Runnals²³ patented a method for making americium–aluminum alloys in which a mixture of aluminum metal and an americium halide is heated in a vacuum of 10^{-3} torr at 700 to 1200°C until the americium is reduced and alloyed.


Homogeneous americium–aluminum alloys containing 2 to 53 wt % americium can be prepared by reaction of aluminum, AmO_2 , and Na_3AlF_6 (cryolite) at 1100 to 1200°C (Refs. 24a and 24b). This technique is being used by German scientists at

*Preparation of the binary compounds Al_2Am , Fe_2Am , Co_2Am , and Ru_2Am has now been reported^{20,5} The first three of these compounds have the cubic Cu_2Mg type of structure, whereas Ru_2Am is isostructural with Os_2Am , which has the MgZn_2 type of structure. All these compounds, except Fe_2Am , exhibit almost temperature independent paramagnetism. Fe_2Am is ferromagnetic with an estimated curie temperature of $\sim 400^\circ\text{K}$.

Karlsruhe, as part of their Actinide Project, to prepare gram quantities of aluminum-5 to 10 wt % americium alloys for irradiation in various European reactors.^{25,26} Equipment used for preparation of such aluminum-americium alloys is described in Refs. 25 and 26.

Beryllium-Americium System

Runnals and coworkers^{23,27,28} used Eq. 4.5 to prepare milligram amounts of ²⁴¹Am-beryllium alloys for use as neutron sources

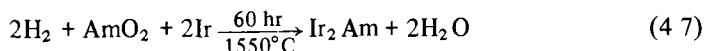
The BeF_2 readily distills leaving a fluoride-free alloy. Runnals and Boucher²⁸ prepared alloys with beryllium/americium atomic ratios of 263/1 and 14/1. The intermetallic compound, $\text{AmBe}_{1.3}$, is present in the 14/1 alloy. $\text{AmBe}_{1.3}$ is fcc with $a = 10.283 \text{ \AA}$.

Recently, Brachet and Vasseur²⁹ developed a method for making aluminum-beryllium neutron sources by reduction of AmO_2 with beryllium according to Eq. 4.6

Using Eq. 4.6, Brachet and Vasseur²⁹ obtained an alloy that emitted 3.75×10^6 neutrons $\text{g}^{-1} \text{ sec}^{-1}$. The yield of such a source was 2×10^6 neutrons $\text{sec}^{-1} \text{ Ci}^{-1}$ of emitter.

Bismuth-Americium System

Reaction³⁰ of metallic bismuth vapor with either americium metal or americium hydride in a sealed, evacuated quartz tube for 48 hr at 975°C produces AmBi . This metallide has the NaCl structure with $a = 6.338 \pm 0.0012 \text{ \AA}$, after annealing 14 days at 800°C , $a = 6.335 \pm 0.0019 \text{ \AA}$.


Mercury-Americium System

Boussières and Legoux^{31a} first prepared an amalgam of americium by equilibrating a sodium citrate solution of AmCl_3 ($10^{-1.2} M$ to $10^{-6} M$ americium) for 90 min in an H_2 atmosphere with a 0.027 wt % lithium amalgam. The yield of americium amalgam decreased steadily as the pH of the initial citrate solution increased from 2 to 8, reaching zero at the latter pH. In this latter respect the mercury-americium system resembles the mercury-lanthanum system.^{31b} David and Boussières^{31c} now find that amalgamation of americium by electrolytic reduction of $10^{-6} M \text{ Am}^{3+}$ in a lithium citrate solution at a mercury cathode is a first-order reaction. The time required to form the americium amalgam increases with increased lithium citrate concentration.

Reaction of Am^{3+} in 0.4M to 0.8M acetic acid with sodium amalgam results in rapid and almost complete ($\geq 98\%$) amalgamation of the americium³²

Iridium–Americium System

Reduction of AmO_2 with highly purified H_2 in the presence of iridium metal—the so-called coupled reduction^{33a-c}—yields at 1550°C the intermetallic compound Ir_2Am (Eq. 4.7)

The Ir_2Am phase has the cubic Cu_2Mg type of structure with $a = 7.55\text{ \AA}$.

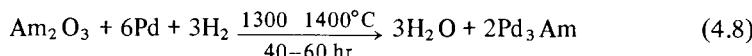
Lanthanum–Americium System

Lanthanum–americium alloys containing 0.92 to 2.37 at % americium dissolved in fcc β -lanthanum have been produced by arc-melting the constituent metals³⁴. The lattice parameters for these alloys deviate only slightly from the Vegard line, an indication that the effective size of americium in lanthanum is very close to that of elemental americium (1.73 Å radius). Small amounts of americium (<1.5 at %) dissolved in β -lanthanum produce an unusually weak depression of the superconducting transition temperature T_c of β -lanthanum.³⁵ To account for this latter observation, Hill et al.³⁵ suggest that americium atoms in lanthanum are likely to be trivalent and to possess the f^6 electron configuration, which has no first-order magnetic moment.

Neptunium–Americium System

Through alpha decay, ^{241}Am metal automatically becomes a neptunium–americium alloy. The magnetic behavior of such an alloy (≈ 0.5 wt.% neptunium) was studied recently by Dunlap et al.^{36a} using the Mossbauer effect of the 59.6-keV X-ray in ^{237}Np . A small local moment on neptunium in americium was found.

Nickel–Americium System

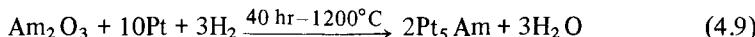

Lam and Mitchell^{36b} prepared Ni_2Am by arc-melting the requisite amount of the pure elements in an argon–helium atmosphere for several hours at 800 to 1000°C. Cubic Ni_2Am has the Cu_2Mg type of structure (space group $Fd3m$) with $a = 6.99\text{ \AA}$.

Osmium–Americium System

Hexagonal Os_2Am (space group Pb_3/mmc) was prepared by Lam and Mitchell^{36b} by the same method used to make Ni_2Am . Lattice constants of Os_2Am are $a = 5.320 \text{ \AA}$ and $c = 8.849 \text{ \AA}$

Palladium–Americium System

Coupled reduction of Am_2O_3 with palladium, according to the conditions of Eq. 4.8, yields the compound Pd_3Am , which has the ordered Cu_3Au structure



The lattice constant of Pd_3Am is 4.158 \AA

Platinum–Americium System

Pt_2Am . When performed at 1400°C , Eq. 4.7, with platinum substituted for iridium, yields pure Pt_2Am .³³ This alloy phase has the cubic Cu_2Mg structure with $a = 7.615 \text{ \AA}$.

Pt_5Am . Intermetallic Pt_5Am , which is obtained^{33a,33b} by Eq. 4.9,

has the orthorhombic Pt_5Sm type of structure with $a = 5.319 \text{ \AA}$, $b = 9.09 \text{ \AA}$, and $c = 26.42 \text{ \AA}$. Mention has already been made (see pages 122 to 124) of the preparation of americium metal by thermal decomposition of Pt_5Am in a vacuum. Interestingly, for the noble metals iridium, palladium, platinum, and rhodium, the M_5Am compound is known only for platinum.

Plutonium–Americium System

The plutonium–americium phase diagram is shown in Fig. 4.2. This diagram was constructed by Ellinger, Johnson, and Struebing³⁷⁻³⁹ from X-ray diffraction studies of plutonium–americium alloys containing 1.48 to 95 ± 1 at.% americium. The principal feature of the plutonium–americium system is the continuous series of solid solutions between δ -plutonium and β -americium which are stable at room temperature in the composition range from about 6 to 80 at.% americium. In contrast to the extensive solid solubility of americium in δ -plutonium, the solubility of americium in bcc ϵ -plutonium is about 8 at.% at $665 \pm 15^\circ\text{C}$. The maximum solubility of plutonium in americium appears to be less than 5 at.%.

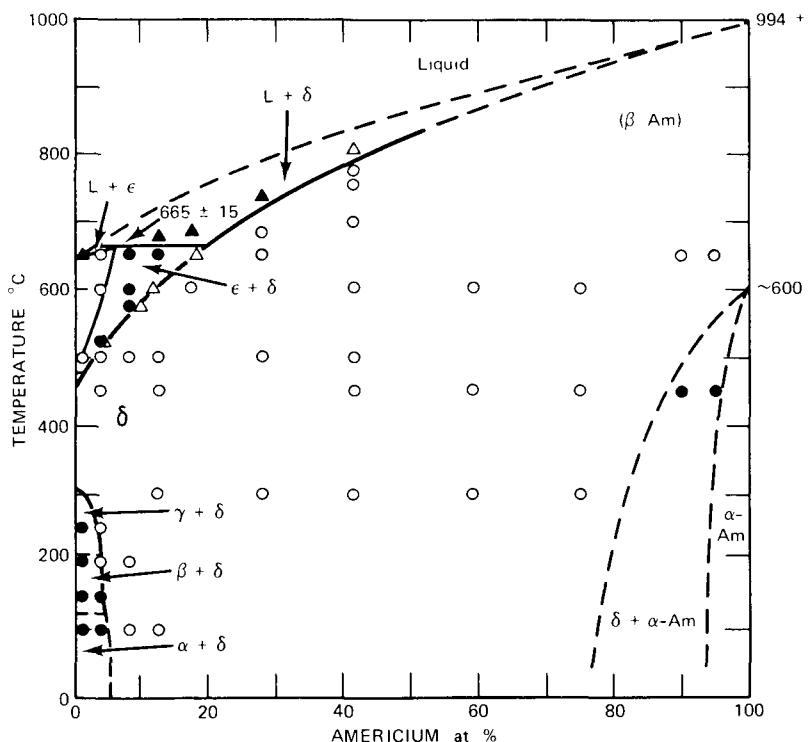


Fig. 4.2 The plutonium-amerium phase diagram. Unlabeled Greek letters refer to plutonium phases: \circ , one-phase alloy; \bullet , two-phase alloy; \blacktriangle , liquid present; \triangle , X-ray parametric. [From F. H. Ellinger, K. A. Johnson, and V. O. Struebing, The Plutonium-Amerium System, *Journal of Nuclear Materials*, 20: 83 (1966).]

Rhodium-Amerium System

Rh₂Am. This intermetallic phase is prepared^{33b} by the same coupled reduction technique (see Eq. 4.7) used to make Ir₂Am and Pt₂Am. Also, like Ir₂Am and Pt₂Am, the cubic Rh₂Am phase has the Cu₂Mg structure with $a = 7.548 \text{ \AA}$.

Rh₃Am. This intermetallic compound has the ordered Cu₃Au type of structure with $a = 4.098 \text{ \AA}$. It is made by coupled reduction of AmO₂ with rhodium for 60 hr at 1550°C in a H₂ atmosphere.

Thorium-Amerium System

For use as Mossbauer sources, Adair⁴⁰ prepared thorium-0.54 to 5.0 wt.% americium alloys by both levitation and arc melting of prepressed mixtures of

americium and thorium metals. The high vapor pressure of americium metal at the melting point of thorium dictates that the levitation process be carried out in an inert atmosphere rather than in vacuum to avoid loss of americium

COMPOUNDS

Inorganic Compounds of Americium

The known (January 1976) inorganic compounds of americium, for which compositions are established, are listed in Table 4.2 along with some of their properties (Compounds of americium with organic ligands including acetate and oxalate are discussed on pages 166 to 171). Other properties and methods of preparing these compounds are discussed in the accompanying text. A few additional inorganic compounds whose compositions have not been definitely established are also mentioned

Generally, the compounds listed in Table 4.2 have been arranged in alphabetical order of the inorganic ligand. Oxyhalides are included with the corresponding binary halides, as are the ternary halides. Following the practice established by Keller,⁴¹ ternary and polynary oxides of americium containing one or more of the elements Na, K, Ba, Sr, Cm, Zr, Hf, Th, Ta, Nb, and Pa are included with the binary oxides. Certain other ternary oxides (AmAsO₄, AmBO₃, AmVO₄, etc.), however, are discussed separately

Some of the compounds listed in Table 4.2 (e.g., oxides and binary halides) are well-characterized, gram amounts having been prepared by many investigators in several countries using both ²⁴¹Am and ²⁴³Am. Conversely, only microgram or milligram quantities of many of these compounds have been synthesized and these by a single scientist using ²⁴¹Am. Verification of the procedures used to prepare these latter compounds and their properties should be provided by programs currently under way both abroad and in U. S. Energy Research and Development Administration laboratories.

Aluminate. *AmAlO₃* Hexagonal AmAlO₃ crystals^{41,42} are produced when coprecipitated Am(OH)₃ and Al(OH)₃ (1:1) are heated in H₂ for 2 to 8 hr at 1250°C. The crystals have the distorted perovskite structure of LaAlO₃

Antimonide. *AmSb.* Mitchell and Lam⁴³ prepared AmSb by heating equimolar amounts of ²⁴¹Am metal and high-purity antimony under vacuum for 1 hr at 630°C. The temperature was gradually raised to 850°C, and the AmSb was held at this temperature for 7 hr before cooling to room temperature. Subsequently the AmSb was heat-treated at 100°C for 24 hr, furnace cooled, and then heated at 400°C for 10 days. Roddy³⁰ also prepared AmSb by reacting ²⁴³Am metal with antimony metal for 24 hr at 775 to 900°C in an evacuated quartz bulb. The lattice parameter measured by

Roddy ($a = 6.240\text{\AA}$) was in excellent agreement with that ($a = 6.238\text{\AA}$) reported by Mitchell and Lam.⁴³

Magnetic susceptibility measurements⁴⁴ on AmSb give a temperature-independent value of $(1250 \pm 100) \times 10^{-6}$ emu mol⁻¹ for the range $4.2^\circ\text{K} < T < 320^\circ\text{K}$.

Am₄Sb₃. Charvillat et al.^{44b} prepared Am₄Sb₃ by heating ²⁴¹AmH₃ in a Pyrex tube at 550°C with a quantity of elemental antimony corresponding to the stoichiometry 4 : 3. The resulting product contained two phases, AmSb and a second phase with the bcc structure of anti-Th₃P₄ type. The lattice parameter of Am₄Sb₃ is $a = 9.2392 \pm 0.0005\text{\AA}$.

Arsenate. *AmAsO₄*. Light-pink AmAsO₄ is produced by heating at 1000°C the residue obtained from evaporation^{41,45} of a 1 : 1 solution of Am(NO₃)₃ and (NH₄)₂HAsO₄.

Arsenide. *AmAs*. Vapor-phase reaction of excess metallic arsenic with ²⁴¹AmH₃ for a week at 330°C yields AmAs.⁴⁶ The resulting product contains two phases—metallic arsenic and a cubic NaCl-type phase that Charvillat and Damien⁴⁶ label AmAs by analogy with the corresponding plutonium and neptunium monoarsenides. A single AmAs phase is obtained by heating the mixture AmAs + arsenic at 330°C in a high vacuum.

The lattice parameter ($a = 5.880 \pm 0.0012\text{\AA}$) of AmAs prepared by Roddy³⁰ by heating ²⁴³Am metal and arsenic metal for 24 hr at 675°C and then 7 days at 400°C was somewhat larger than the value of 5.8753\AA measured by Charvillat and Damien. Roddy found that heating samples of AmAs for 10 hr at 1000°C produced a slight decrease in the lattice parameters. Weak lines corresponding to AmO were observed in the X-ray pattern of the resulting material. According to Roddy, the reduction in size of the unit cell suggests the possibility of the existence of solid solution between AmAs and AmO; this phenomenon may have occurred in the preparation of Charvillat and Damien, or the slight difference in lattice parameters may be the result of isotope effects.

Kenellakopulos et al.^{15a} measured the magnetic susceptibility of AmAs between liquid helium and room temperature. The effective magnetic moment of AmAs is 1.14 Bohr magnetons; AmAs exhibits an antiferromagnetic transition at 13°K .

Borate. *AmBO₃*. Orthorhombic AmBO₃ results from the solid-state reaction^{41,42} of stoichiometric amounts of AmO₂ and B₂O₃ or H₃BO₃ for 12 hr in air at 900°C . The light-pink borate is soluble in concentrated mineral acids. It has the aragonite structure of the low-temperature modification of LaBO₃ and NdBO₃.

Borides. *AmB₄*. Tetragonal AmB₄ forms when a mixture of americium metal and boron in the atomic ratio 33 : 67 is heated in a vacuum at 800 to 2100°C in a ZrB₂ crucible.⁴⁷ Uranium, neptunium, and plutonium all form diborides, but americium does not. Eick and Mulford⁴⁷ attribute this to the large metallic radius of americium.

(Text continues on page 138.)

Table 4.2 INORGANIC COMPOUNDS OF AMERICIUM

Type	Formula	Color	Density, g cm ⁻³	Symmetry	Crystal structure			
					Space group or structure type	Lattice constants		
						a, Å	b, Å	c, Å
Aluminate	AmAlO ₃	Pink	9.40	Hexagonal	<i>R</i> 3 <i>m</i>	5.336		12.91
Antimonide	AmSb			fcc	<i>Fm</i> 3 <i>m</i>	6.239		
Arsenate	AmAsO ₄	Pink	8.13	Monoclinic	<i>P</i> 2 ₁ / <i>n</i>	6.89	7.06	6.62 105.5
Arsenide	AmAs			fcc	<i>Fm</i> 3 <i>m</i>	5.880		
Beryllide	AmBe _{1.3}		4.38	fcc	<i>Fm</i> 3 <i>c</i>	10.283		
Bismuthide	AmBi			fcc	<i>Fm</i> 3 <i>c</i>	6.338		
Borate	AmBO ₃	Pink	8.48	Orthorhombic	<i>Pn</i> am	5.053	8.092	5.738
Borides	AmB ₄ AmB ₆			Tetragonal Simple cubic	<i>P</i> 4/ <i>mbm</i> <i>Pm</i> 3 <i>m</i>	7.105 4.115		4.006
Bromides	AmBr ₂ AmBr ₃ AmBr ₃ · 6H ₂ O [(C ₆ H ₅) ₃ PH] ₃ AmBr ₆	Black White Light brown	6.79 3.51	Tetragonal Orthorhombic Monoclinic	<i>P</i> 4/ <i>n</i> <i>C</i> 2 <i>mm</i> <i>P</i> 2/ <i>n</i>	11.59 12.66 9.955	4.064 6.783	7.121 9.144 8.166 92.75
Carbide	Am ₂ C ₃	Black		bcc	<i>I</i> 43 <i>d</i>	8.276		
Carbonates	Am ₂ (CO ₃) ₃ · 2H ₂ O Am ₂ (CO ₃) ₃ · 4H ₂ O NH ₄ AmO ₂ CO ₃ CsAmO ₂ CO ₃ KAmO ₂ CO ₃ K ₃ AmO ₂ (CO ₃) ₂ K ₅ AmO ₂ (CO ₃) ₃ RbAmO ₂ CO ₃	Pink Pink Tan Light (?) Tan		Hexagonal Hexagonal Hexagonal	<i>C</i> 6/ <i>mmc</i> <i>C</i> 6/ <i>mmc</i> <i>C</i> 6/ <i>mmc</i>	5.123 5.112		11.538 9.740
			6.06	Orthorhombic Hexagonal	<i>C</i> 6/ <i>mmc</i>	5.12		10.46
Chlorides	AmCl ₂ AmCl ₃ AmCl ₃ · 6H ₂ O AmOCl	Black Pink Yellow rose Pink	5.78	Orthorhombic Hexagonal Monoclinic Tetragonal	<i>P</i> bn <i>m</i> <i>P</i> 6 ₃ / <i>m</i> <i>P</i> 2/ <i>n</i> <i>P</i> 4/ <i>nmm</i>	8.963 7.382 9.702 4.00	7.573 4.214 6.567 6.78	4.532 4.214 8.009 93.62

(Table continues on next page)

Table 4.2 (Continued)

Type	Formula	Color	Density, g/cm ³	Symmetry	Crystal structure			
					Space group or structure type	a, Å	b, Å	c, Å α(β), deg
Chloride complexes	CsAmCl ₄	Yellow						
	CsAmCl ₄ · 4H ₂ O	Yellow						
	Cs ₃ AmCl ₆	Yellow						
	Cs ₂ NaAmCl ₆	Yellow		fcc	<i>Fm</i> 3 <i>m</i>	10.86		
	AmCl ₃ · 2(C ₂ H ₅) ₄ NCl							
	[(C ₆ H ₅) ₃ PH] ₃ AmCl ₆							
	Cs ₃ AmO ₂ Cl ₄	Green						
Fluorides	Cs ₂ AmO ₂ Cl ₄	Dark red		Cubic*		15.1		
	AmF ₃	Pink	9.56	Hexagonal	<i>P</i> 3 <i>c</i> 1	7.004		7.225
	AmF ₄	Rose tan	7.34	Monoclinic	<i>C</i> 2/ <i>c</i>	12.56	10.58	8.25
Fluoride complexes	AmO ₂ F ₂	Brown	6.50	Hexagonal†	<i>R</i> 3 <i>m</i>	4.136		125.9
	NaAmF ₄	Pink	7.02	Hexagonal	<i>P</i> 6	6.109		3.731
	KAmF ₄					5.857		
	KAm ₂ F ₇	Pink		Cubic				
	(NH ₄) ₄ AmF ₈	Red						
	LiAmF ₅	Pink	6.19	Tetragonal	<i>I</i> 4 ₁ / <i>a</i>	14.63		6.449
	K ₇ Am ₆ F ₃₁		6.09	Hexagonal†	<i>R</i> 3̄	14.938		10.293
	Na ₇ Am ₆ F ₃₁		6.23	Hexagonal†	<i>R</i> 3̄	14.48		9.665
	Rb ₂ AmF ₆	Pink	5.52	Orthorhombic	<i>Cmcm</i>	6.962	12.001	7.579
	KAmO ₂ F ₂	Tan	5.97	Rhombohedral	<i>R</i> 3̄ <i>m</i>	6.78		36.25
Germanate	RbAmO ₂ F ₂	Yellow	6.90	Rhombohedral	<i>R</i> 3̄ <i>m</i>	6.789		36.25
	AmGeO ₄	Dark brown	8.95	Tetragonal	<i>I</i> 4 ₁ / <i>a</i>	5.04		11.03
Hydrides	AmH ₂	Black	10.55	fcc	<i>Fm</i> 3 <i>m</i>	5.348		
	AmH ₃		9.32	Hexagonal	<i>P</i> 3̄ <i>c</i> 1	6.68		6.75
Hydroxide	Am(OH) ₃	Pink	7.24	Hexagonal	<i>Pb</i> ₃ / <i>m</i>	6.426		3.745
Iodides	AmI ₂	Black		Monoclinic		7.677	8.311	7.925
	α AmI ₃			Orthorhombic	<i>C</i> mm	4.31	14.03	9.92

	β AmI ₃ AmOI	Yellow	6 04	Hexagonal Tetragonal	<i>R</i> 3	7 42 4 011	20 55 9 204	
Iridium	Ir ₂ Am			Cubic	<i>Fd</i> 3 <i>m</i>	7 55		
Molybdates	α Am ₂ (MoO ₄) ₃			Tetragonal	<i>I</i> 4 ₁ /a	5 24	11 52	
	β Am ₂ (MoO ₄) ₃			Orthorhombic		9 095	10 527	10 820
	LiAm(MoO ₄) ₂			Tetragonal	<i>I</i> 4 ₁ /a	5 20	11 39	
	NaAm(MoO ₄) ₂			Tetragonal	<i>I</i> 4 ₁ /a	5 25	11 55	
	Na ₅ Am(MoO ₄) ₄					11 515	11 429	
	K ₂ Am ₂ (MoO ₄) ₄							
	K _{1.0} Am ₂ (MoO ₄) ₈							
Nickel	Ni ₂ Am			Cubic	<i>Fd</i> 3 <i>m</i>	6 99		
Nitride	AmN	Black	13 53	fcc	<i>Fm</i> 3 <i>m</i>	5 000		
Osmium	Os ₂ Am			Hexagonal	<i>P</i> 6 ₃ /mmc	5 320	8 849	
Oxides, binary	AmO	Black	13 6	fcc	<i>Fm</i> 3 <i>m</i>	5 045		
	A-Am ₂ O ₃	Tan	11 68	Hexagonal	<i>P</i> 3 <i>m</i> 1	3 817	5 971	
	B-Am ₂ O ₃		11 89	Monoclinic	<i>C</i> 2/m	14 38	3 52	8 92
	C-Am ₂ O ₃	Red brown	10 49	Cubic	<i>I</i> a3	11 03		100 4
	AmO ₂	Dark brown	11 66	fcc	<i>Fm</i> 3 <i>m</i>	5 377		
Oxides, ternary								
Lithium and sodium	LiAmO ₂							
	Li ₂ AmO ₃							
	Li ₈ AmO ₆			Hexagonal	<i>Li</i> ₈ PbO ₆	5 62	15 96	
	Li ₃ AmO ₄	Brown	6 52	Tetragonal	<i>I</i> iUO ₄	4 459	8 355	
	Li ₇ AmO ₆	Brown	4 62	Hexagonal	<i>R</i> 3̄	5 54	15 65	
	Li ₄ AmO ₅	Black brown	5 91	Tetragonal	<i>I</i> 4/m	6 666	4 415	
	Li ₆ AmO ₆			Hexagonal	<i>Li</i> ₆ ReO ₆	5 174	14 59	
	Na ₂ AmO ₃	Black brown	6 63	Monoclinic	<i>C</i> 2/c	5 92	10 26	11 23
	Na ₃ AmO ₄			fcc	<i>Fm</i> 3 <i>m</i>	4 757		100 12
	Na ₄ AmO ₅		5 27	fcc	<i>Fm</i> 3 <i>m</i>	4 70		
	Na ₆ AmO ₆			Hexagonal	<i>Li</i> ₆ ReO ₆	4 76	16 10	
Barium and strontium	BaAm ₂ O ₄							
	BaAmO ₃	Black brown	8 51	Cubic	Perovskite	4 356		
	Ba ₃ AmO ₆	Dark brown	7 28	Cubic	<i>F</i> 43 <i>m</i>	8 81		

(Table continues on next page)

COMPOUNDS

Table 4.2 (Continued)

Type	Formula	Color	Density, g/cm ³	Symmetry	Crystal structure				
					Space group or structure type	Lattice constants			α(β), deg
						a, Å	b, Å	c, Å	
	SrAm_2O_4			Cubic	Perovskite	4.23			
	SrAmO_3			Cubic	Ba_3WO_6				
	Sr_3AmO_6								
Curium		See Table 4.3							
Zirconium, hafnium, and thorium		See Figs. 4.10 and 4.11							
Niobium, tantalum, and protactinium	αAmNbO_4	Light brown	8.43	Monoclinic	$I2$	5.444	11.25	5.141	94.95
	βAmNbO_4 (660°C)	Light brown	8.30	Tetragonal	$I4_1/a$	5.30		11.34	
	$\text{Am}_{0.33}\text{NbO}_3$	Yellow brown	6.19	Pseudo tetragonal	$P4/mmm$	3.819		7.835	
	$\text{Ba}_2\text{AmNbO}_6$	Brown	7.57	Cubic	$F\bar{4}3m$	8.520			
	AmNbTiO_6	Yellow brown	7.18	Orthorhombic	$Pnam$	5.34	11.00	7.53	
	AmTaO_4		10.3	Monoclinic	$I2$	5.489	11.21	5.115	95.37
	$\text{Am}_{0.33}\text{TaO}_3$		8.69	Tetragonal	$I4_1/a$	3.889		7.820	
	$\text{Ba}_2\text{AmTaO}_6$		8.54	Cubic	$F\bar{4}3m$	8.518			
	AmTaTiO_6		8.54	Orthorhombic	$Pnam$	5.33	10.95	7.49	
	AmPaO_4	Pink	10.95	fcc	$Fm\bar{3}m$	5.458			
	$\text{Ba}_2\text{AmPaO}_6$		8.23	Cubic	$F\bar{4}3m$	8.793			
Palladium	Pd_3Am	Metallic		Simple cubic	$Pm\bar{3}m$	4.158			
Phosphates	AmPO_4	Pink	7.91	Monoclinic	$P2_1/n$	6.73	6.93	6.41	103.5
	$\text{AmPO}_4 \cdot 0.5\text{H}_2\text{O}$	Pink	6.70	Hexagonal	$C\bar{6}_2$	6.99		6.39	
Platinum	Pt_2Am	Metallic		Cubic	$Fd\bar{3}m$	7.66			
	Pt_5Am	Metallic			Pt_5Sm	5.319	9.090	26.42	
Rhodium	Rh_2Am	Metallic		Cubic	$Fd\bar{3}m$	7.548			
	Rh_3Am	Metallic		Simple cubic	$Pm\bar{3}m$	4.098			
Scandate	AmScO_3	Pink		Orthorhombic	$P6nm$	5.540	5.785	8.005	

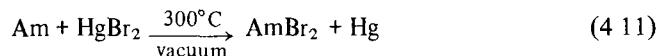
Selenides	$\text{AmSe}_{1.8}$ Am_3Se_4	Black		Tetragonal bcc	$I\bar{4}3d$	4 096 8 728	8.347		
Silicate	AmSiO_4	Dark brown	7 56	Tetragonal	$I4_1/amd$	6 87	6 20		
Sulfates	$\text{Am}_4(\text{SO}_4)_3 \cdot 8\text{H}_2\text{O}$ $\text{Am}_2(\text{SO}_4)_3$ $\text{KAm}(\text{SO}_4)_2$ $\text{NaAm}(\text{SO}_4)_2 \cdot 2\text{H}_2\text{O}$ $\text{KAm}(\text{SO}_4)_2 \cdot \text{H}_2\text{O}$ $\text{RbAm}(\text{SO}_4)_2 \cdot 3\text{H}_2\text{O}$ $\text{CsAm}(\text{SO}_4)_2 \cdot 4\text{H}_2\text{O}$ $\text{TlAm}(\text{SO}_4)_2 \cdot 4\text{H}_2\text{O}$ $\text{K}_3\text{Am}(\text{SO}_4)_3 \cdot \text{H}_2\text{O}$ $\text{K}_8\text{Am}_2(\text{SO}_4)_7$ $\text{Cs}_8\text{Am}_2(\text{SO}_4)_7$ $\text{Tl}_8\text{Am}_2(\text{SO}_4)_7$ $\{[\text{Co}(\text{NH}_3)_6]\text{HSO}_4\}_2 \cdot \{[\text{AmO}_2(\text{SO}_4)_3]\} \cdot n\text{H}_2\text{O}$	Yellow pink White		Monoclinic	$C2/c$	13 619	6 837	18 405	102 7
Sulfides	AmS $\text{AmS}_{1.9}$ $\alpha\text{-Am}_2\text{S}_3$ $\gamma\text{-Am}_2\text{S}_3$ $\text{Am}_{1.0}\text{S}_{1.4}\text{O}_{3.5} \ddagger$	Black		fcc	$Fm\bar{3}m$	5 592			
		Black	8 50	Tetragonal	$Pnma$	3 938	7 981		
				Orthorhombic	$I\bar{4}3d$	3 98	7 39	15 36	
				bcc		8 434			
				Tetragonal	$I4_1/acd$	14 87	19 73		
Tellurides	AmTe_2 AmTe_3 Am_2Te_3 Am_3Te_4			Tetragonal		4 366	8 969		
				Orthorhombic	$Bmmb$	4 399	4 339	25.57	
				Orthorhombic	$Pbnm$	11 93	12 12	4.33	
				bcc	$I\bar{4}3d$	9 394			
Tungstate	$\text{Am}_2(\text{WO}_4)_3$			Tetragonal	$I4_1/a$				
Vanadates	AmVO_3 AmVO_4	Ochre Red brown	9 57 6 89	Orthorhombic Tetragonal	$Pbnm$ $I4/amd$	5 45 7 31	5 58 6 42	7 76	
Xenates	$\text{Am}_4(\text{XeO}_6)_3 \cdot 4\text{OH}_2\text{O}$	Orange							

*Monoclinic form also known

†Hexagonal-rhombohedral

‡Also referred to as $\beta\text{-Am}_2\text{S}_3$

Eick and Mulford⁴⁷ point out that the AmB_4 phase exhibits a wide range of stoichiometry.


When heated, AmB_4 decomposes according to the reaction

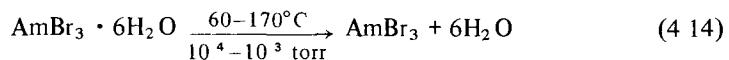
AmB_6 Arc-melting a mixture of the elements in the americium/boron atomic ratio 10/90 in an argon atmosphere produces simple cubic AmB_6 (Ref. 47) This compound evaporates congruently

Bromides. The only reported solid compounds of americium with bromine are AmBr_2 , AmBr_3 , $\text{AmBr}_3 \cdot 6\text{H}_2\text{O}$, and $[(\text{C}_6\text{H}_5)_3\text{PH}]_3\text{AmBr}_6$

AmBr_2 Synthesis of AmBr_2 can be accomplished^{48,49} on a multimilligram scale by oxidation of americium metal with HgBr_2 in accordance with Eq. 4.11

Stoichiometric amounts of americium metal and HgBr_2 are placed in a quartz tube, sealed in vacuum, and heated at 300°C for 4 days. Subsequently the mercury is distilled to the opposite end of the tube and sealed off. The AmBr_2 is then annealed 10 days at 400°C . Black AmBr_2 is isostructural with EuBr_2 and, at room temperature, is stable in an argon atmosphere for at least 4 weeks.

AmBr_3 Americium(III) bromide is a high-melting solid that can be purified by vacuum sublimation at temperatures above 850°C . It can be prepared

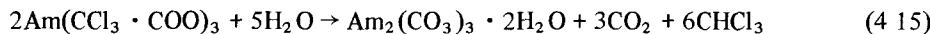

1. By reaction^{50,51} of AmO_2 with AlBr_3 at 500°C according to Eq. 4.12

2. By the metathetical reaction⁵²

3. By controlled vacuum thermal decomposition⁵³ of $\text{AmBr}_3 \cdot 6\text{H}_2\text{O}$

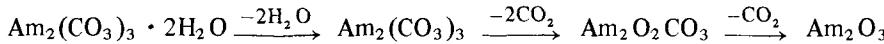
Zachariasen⁵⁴ and Asprey, Keenan, and Kruse⁵² have determined that orthorhombic AmBr_3 has the PuBr_3 type of structure. Visible and near infrared spectra⁵¹ have been recorded for solid AmBr_3 . Liquid bromine does not oxidize AmBr_3 in nonaqueous solvents.⁵⁵

$\text{AmBr}_3 \cdot 6\text{H}_2\text{O}$. Anhydrous AmBr_3 is hygroscopic and, when exposed to oxygen-free water vapor, takes up water corresponding to the formation of

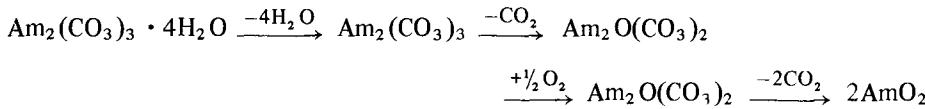

$\text{AmBr}_3 \cdot 6\text{H}_2\text{O}$ (Ref 53) Vacuum evaporation of aqueous HBr solutions containing trivalent americium yields a product of composition close to $\text{AmBr}_3 \cdot \text{H}_2\text{O}$

$/(C_6H_5)_3\text{PH}/_3\text{AmBr}_6$ The triphenylphosphonium salt of the AmBr_6^3 ion was prepared on a microscale by precipitation from a nearly anhydrous ethanol solution of AmBr_3 and $(C_6H_5)_3\text{PH}$ which was almost saturated with HBr (Ref 56) Properties of the precipitated salt have not been determined

Carbide. Am_2C_3 Americium sesquicarbide forms when americium metal is arc melted with high-purity graphite in an argon–helium atmosphere⁵⁷ The bcc crystal contains eight molecules per unit cell and is isostructural with Pu_2C_3


Nuclear gamma resonance spectra obtained using a source of Am_2C_3 show a pure quadrupole spectrum down to 18°K No magnetic ordering is seen⁴⁴

Carbonates. $\text{Am}_2(\text{CO}_3)_3 \cdot x\text{H}_2\text{O}$ Weigel and ter Meer⁵⁸ report that hydrolysis of an aqueous solution of Am(III) trichloroacetate yields $\text{Am}_2(\text{CO}_3)_3 \cdot 2\text{H}_2\text{O}$ (Eq 4.15)



Conversely, Fang⁵⁹ finds that addition of a CO_2 -saturated solution of NaHCO_3 to a solution of AmCl_3 and washing the filtered precipitate with a CO_2 -saturated aqueous solution produce $\text{Am}_2(\text{CO}_3)_3 \cdot 4\text{H}_2\text{O}$

According to Weigel and ter Meer,⁶⁰ thermal decomposition of $\text{Am}_2(\text{CO}_3)_3 \cdot 2\text{H}_2\text{O}$ in a vacuum proceeds as follows

Keller and Fang⁶¹ observed the following sequence for thermal decomposition of $\text{Am}_2(\text{CO}_3)_3 \cdot 4\text{H}_2\text{O}$ in air

$\text{NH}_4\text{AmO}_2\text{CO}_3$ Crystals of $\text{NH}_4\text{AmO}_2\text{CO}_3$ precipitate when a dilute solution of Am(III) in 1M $(\text{NH}_4)_2\text{CO}_3$ is oxidized to Am(V) with ozone or peroxydisulfate⁶²

$\text{CsAmO}_2\text{CO}_3$ Keenan⁶³ reports that $\text{CsAmO}_2\text{CO}_3$ precipitates when a slurry of pink $\text{Am}(\text{OH})_3$ in 0.5M CsHCO_3 is treated with 5% O_3 in O_2 for 1 hr at 92°C

$K_{2x+1}\text{AmO}_2(\text{CO}_3)_{1+x}$ Several different potassium Am(V) double carbonates can apparently be prepared depending on precipitation conditions of pH and K_2CO_3 concentration Thus KAmO_2CO_3 is precipitated^{64,65} from 0.03M to 0.1M KHCO_3 at pH 7 This compound⁶⁵ can be prepared most easily by O_3 oxidation of $\text{Am}(\text{OH})_3$ in

0.03M KHCO_3 . In an alternative synthesis, an Am(V) solution is first prepared by addition of a stoichiometric amount of KI to an $\text{AmO}_2(\text{NO}_3)_2$ solution. After benzene extraction of the liberated I_2 , KHCO_3 is added to neutralize acid and to make the final solution 0.1M KHCO_3 . The light-colored precipitate that forms is digested 3 to 4 hr at 90°C and is then washed with 0.1M KHCO_3 , absolute ethyl alcohol, and acetone.

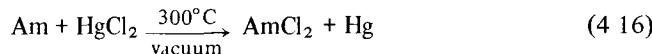
Tan, finely divided $\text{K}_3\text{AmO}_2(\text{CO}_3)_2$ precipitates⁶⁶ when a solution of Am(III) in 3.5M K_2CO_3 is oxidized with O_3 , $\text{K}_2\text{S}_2\text{O}_8$, or KClO_2 . The solubility of $\text{K}_3\text{AmO}_2(\text{CO}_3)_2$ in 3.5M K_2CO_3 at 23°C corresponds to 10 to 40 mg Am liter⁻¹.

According to Yakovlev and Gorbenko-Germanov,⁶⁷ the compound $\text{K}_5\text{AmO}_2(\text{CO}_3)_3$ precipitates when Am(III) in concentrated (>5M) K_2CO_3 is oxidized with ozone, $\text{K}_2\text{S}_2\text{O}_8$, or HClO .

Nigon et al.⁶² also obtained a potassium Am(V) double carbonate by heating a K_2CO_3 solution containing Am(III) and KCl to 80°C. Neither the K_2CO_3 concentration nor the composition of the resulting orthorhombic bisphenoids was stated.

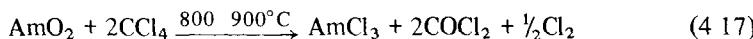
RbAmO₂CO₃. Crystals of $\text{RbAmO}_2\text{CO}_3$ precipitate when a dilute solution of Am(III) in 10M Rb_2CO_3 is oxidized to Am(V) with ozone or peroxydisulfate.^{62,68}

$\text{Na}_{2x+1}\text{AmO}_2(\text{CO}_3)_{1+x}$. Werner and Perlman⁶⁹ obtained a sodium Am(V) double carbonate of unknown composition by oxidizing Am(III) in K_2CO_3 solution with NaClO . Later, in a slightly modified procedure, Nigon et al.⁶² also prepared a sodium Am(V) double carbonate of unknown composition by adding NaClO to a solution of Am(III) in Na_2CO_3 and digesting the resulting solution at 80°C. The refractive index of the resulting crystals (probably belonging to the monoclinic system) was between 1.58 and 1.60. More recently, Coleman et al.⁶⁵ state that, when Am(VI) in 2M Na_2CO_3 (previously prepared at a lower temperature) is heated to 90°C even with O_3 present, it is largely reduced to Am(V) within 1 hr, and sodium Am(V) carbonate precipitates. These workers did not establish the composition of the double carbonate but noted that it is readily oxidized to Am(VI) by O_3 at room temperature or by 0.001M $\text{Na}_2\text{S}_2\text{O}_8$ at 90°C in NaHCO_3 solutions ≤1M.

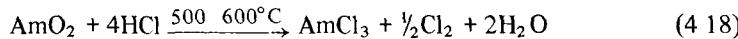

Barium Am(VI) Carbonate. Addition of $\text{Ba}(\text{NO}_3)_2$ to Am(VI) carbonate solution precipitates a red-brown barium americium carbonate of undetermined composition.⁶⁵

Calcium Am(VI) Carbonate. This salt precipitates when $\text{Ca}(\text{NO}_3)_2$ is added to Am(VI) carbonate solution,⁶⁵ its composition has not been determined.

Sodium Am(VI) Carbonate. A crystalline Am(VI) carbonate forms when 1 ml of saturated $\text{Na}_2\text{CO}_3 \cdot \text{NaHCO}_3$ solution is added to 0.2 mmol of solid sodium Am(VI) acetate.⁶⁵ The same compound can be prepared by adding methanol to a solution of Am(VI) in 0.1M NaHCO_3 . Other syntheses of sodium Am(VI) carbonates were performed by O_3 oxidation of $\text{Am}(\text{OH})_3$ slurries in the presence of about 1 to 8 mols of NaHCO_3 per mol of Am(III). Solid sodium Am(VI) carbonates were obtained⁶⁵ by


evaporation of the resulting solutions in a stream of O_3 . The infrared spectra of solid sodium Am(VI) carbonate establishes the presence of the oxygen–americium–oxygen group in the carbonate complex

Chlorides. $AmCl_2$ Oxidation of americium metal with $HgCl_2$ in a vacuum at $300^\circ C$ produces $AmCl_2$ (Eq 4 16) ^{48,49}



$AmCl_3$ Four methods of preparing anhydrous $AmCl_3$ are known

1 Reaction of AmO_2 with CCl_4 at 800 to $900^\circ C$ (Refs 50, 51, and 70),

2 Reaction of AmO_2 with HCl (Refs 71 and 72),

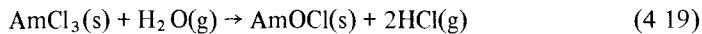
3 Evaporation to dryness of an HCl solution of Am^{3+} containing NH_4Cl and subliming NH_4Cl from the residue ⁵²

4 Dehydration⁷³ of $AmCl_3 \cdot 6H_2O$ by heating in a stream of HCl followed by vacuum sublimation of $AmCl_3$

The enthalpy of formation^{73,74} of $AmCl_3$ at $209^\circ C$ was originally reported at -249 ± 3 kcal mol⁻¹. A more accurate value¹¹ for the enthalpy of formation is -233.7 ± 0.4 kcal mol⁻¹. The anhydrous trichloride sublimes at about $800^\circ C$

Zachariasen⁵⁴ and subsequently Asprey, Keenan, and Kruse⁵² and Fugger⁷⁵ determined the lattice constants and crystal symmetry of $AmCl_3$ using powder methods. A refined crystal structure for $AmCl_3$ has recently been worked out by Burns and Peterson⁷² using single-crystal data. Their lattice constants are listed in Table 4 2. Burns and Peterson⁷² calculate from their data the ionic radius of Am^{3+} to be $0.984 \pm 0.003 \text{ \AA}$

The coefficients of the thermal expansion of the lattice constants⁷⁵ of $AmCl_3$ between $20^\circ C$ and $608^\circ C$ are $\alpha_a = (2.40 \pm 0.1) \times 10^{-5}^\circ C^{-1}$ and $\alpha_c = (1.38 \pm 0.1) \times 10^{-5}^\circ C^{-1}$


Gruber and Conway⁷⁶ have measured the absorption spectrum and Zeeman effect of Am^{3+} in $LaCl_3$. The absorption spectrum of $AmCl_3$ at liquid N_2 temperatures has been determined by Pappalardo, Carnall, and Fields⁵¹

The solubility⁷⁷ of $AmCl_3$, at either 25 or $40^\circ C$, decreases from about $0.11M$ in $9M$ $LiCl$ to about $0.04M$ in $13M$ $LiCl$

$AmCl_3 \cdot 6H_2O$ For use in single-crystal X ray diffraction studies, Burns and Peterson⁷⁸ prepared $AmCl_3 \cdot 6H_2O$ crystals by dissolving about 100 mg of AmO_2 in excess $6M$ HCl and allowing the solution to evaporate. Stover and Conway⁷⁹

published part of the absorption spectrum of $\text{AmCl}_3 \cdot 6\text{H}_2\text{O}$ at room temperature and at liquid N_2 temperature

AmOCl Templeton and Dauben⁸⁰ state that americium oxychloride was first prepared by L B Asprey by accidental contamination in an experiment designed to yield Am_2O_3 by H_2 reduction of AmO_2 . Normally AmOCl is prepared by vapor-phase hydrolysis^{81a} of AmCl_3 according to Eq. 4.19

Koch is also reported^{81a} to have prepared AmOCl by heating Am_2O_3 at 500°C in a mixture of HCl and H_2O vapors

Equilibrium constants for Eq 4.19 at various temperatures between 682 and 800°K were initially measured in 1953 by Koch and Cunningham.^{81a} From their results, Koch and Cunningham derived the expression ΔG° (kcal) = $22.38 + 6.4 \times 10^{-3}T \log T + 1.8 \times 10^{-7}T^2 - 22/T - 52.31 \times 10^{-3}T$ for the free-energy function of Eq. 4.19. Weigel, Wishnevsky, and Hauske^{81b} (in 1975) redetermined equilibrium constants for Eq. 4.19 using both ^{241}Am and ^{243}Am . Weigel and coworkers report the heat of formation of AmOCl at 298°K is $225.7 \text{ kcal mol}^{-1}$. This value is in excellent agreement with the value $226.0 \pm 0.2 \text{ kcal mol}^{-1}$ calculated by Fuger, Spirlet, and Muller^{11a} from the earlier data of B. B. Cunningham, A. Broido, and C. W. Koch.

Chloride Complexes. Solid chloride complexes of Am(III) , (V), and (VI) were synthesized by Bagnall, Laidler, and Stewart,^{82,83a} by Ryan,⁵⁶ and by Marcus and Shiloh.⁸⁴

CsAmCl₄ · 4H₂O Hydrated cesium tetrachloroamericate(III) precipitates from concentrated solutions of Am(III) in HCl saturated with gaseous HCl on addition of CsCl .^{83a} The americium–chlorine stretching frequencies occur at 235 and 197 cm^{-1} . X-ray powder results for $\text{CsAmCl}_4 \cdot 4\text{H}_2\text{O}$ are listed in Ref. 83a but have not been interpreted.

CsAmCl₄. Bagnall, Laidler, and Stewart^{83a} prepared CsAmCl_4 by heating $\text{CsAmCl}_4 \cdot 4\text{H}_2\text{O}$ in a stream of HCl at approximately 320°C for 1 hr. The americium–chlorine stretching frequency of the anhydrous compound occurs at 218 cm^{-1} . Marcus and Shiloh⁸⁴ also prepared CsAmCl_4 by evaporating together aqueous $3M$ HCl solutions of CsCl and AmCl_3 at a 1 : 1 mol ratio.

Cs₃AmCl₆. A compound of this composition was obtained by evaporating aqueous $3M$ HCl solutions of CsCl and AmCl_3 at a 3 : 1 mol ratio.⁸⁴ Conversely, Bagnall, Laidler, and Stewart^{83a} also prepared Cs_3AmCl_6 by adding the stoichiometric amount of CsCl in $6M$ HCl to an ethanolic solution of hydrated AmCl_3 saturated with gaseous HCl . The americium–chlorine stretching frequency of Cs_3AmCl_6 occurs at 214 cm^{-1} . X-ray powder results for Cs_3AmCl_6 have not been interpreted.

Cs₂NaAmCl₆. Face-centered cubic $\text{Cs}_2\text{NaAmCl}_6$ is obtained^{83a} when an HCl solution of Am(III) and a 2 : 1 mol mixture of CsCl and NaCl is evaporated to dryness

According to Bagnall, Laidler, and Stewart,^{83a} this mixed cation complex is unique in that no other combinations of alkali metal cations yield analogous products. From 15 to 70°K, $\text{Cs}_2\text{NaAmCl}_6$ has temperature-independent paramagnetism with $\chi_m = 5400 \times 10^{-6}$ emu mol⁻¹. Below 15°K the susceptibility increases slightly, presumably due to the presence of some additional paramagnetic impurity.^{83b}

$\text{AmCl}_3 \cdot 3\text{CsCl} \cdot y\text{LiCl}$ ($y \approx 20$) Marcus and Shiloh⁸⁴ prepared this solid by evaporating aqueous 3M HCl solutions of AmCl_3 and CsCl (mol ratio = 3 : 1) containing excess LiCl .

$\text{AmCl}_3 \cdot x(\text{C}_4\text{H}_9)_4\text{NCl} \cdot y\text{LiCl}$ ($x \approx 17$, $y \approx 260$) Marcus and Shiloh⁸⁴ find that two liquid phases are produced from ethanol solutions of hydrated AmCl_3 and $(\text{C}_4\text{H}_9)_4\text{NCl}$ which contain a large excess of LiCl . A yellow solid of the above-mentioned composition is formed from the upper liquid phase upon evaporation of the ethanol.

$\text{AmCl}_3 \cdot 2(\text{C}_2\text{H}_5)_4\text{NCl} \cdot y\text{LiCl}$ ($y \approx 0, 1$, and y) Yellow solids precipitate⁸⁴ when acetone is added to ethanol solutions of hydrated AmCl_3 and $(\text{C}_2\text{H}_5)_4\text{NCl}$. In the absence of LiCl , $\text{AmCl}_3 \cdot 2(\text{C}_2\text{H}_5)_4\text{NCl}$ precipitates, whereas $\text{AmCl}_3 \cdot 2(\text{C}_2\text{H}_5)_4\text{NCl} \cdot \text{LiCl}$ precipitates in the presence of stoichiometrically equal amounts of LiCl . When excess LiCl is present, the yellow precipitate is $\text{AmCl}_3 \cdot 2(\text{C}_2\text{H}_5)_4\text{NCl} \cdot y\text{LiCl}$.

$\text{AmCl}_3 \cdot x(\text{C}_{12}\text{H}_{25})_3\text{NHCl}$ ($x \approx 25$) From a saturated solution of hydrated AmCl_3 in trilaurylammonium hydrochloride in toluene, Marcus and Shiloh⁸⁴ obtained $\text{AmCl}_3 \cdot x(\text{C}_{12}\text{H}_{25})_3\text{NHCl}$ as a yellow waxlike solid upon evaporation of the toluene. This material can be recovered unchanged after dissolution in benzene.

$[(\text{C}_6\text{H}_5)_3\text{PH}]_3\text{AmCl}_6$ Analogous to the corresponding bromide compound (see page 139), the triphenyl phosphonium salt of AmCl_6^{3-} can be prepared^{56,85} by precipitation from nearly anhydrous ethanol solutions of AmCl_3 and $(\text{C}_6\text{H}_5)_3\text{PH}$ which are almost saturated with HCl. Quantities of $[(\text{C}_6\text{H}_5)_3\text{PH}]_3\text{AmCl}_6$ that contain 3 to 4 mg of americium are stable to radiation damage for about 2 days and then turn dark yellow and char.⁸⁵

$\text{Cs}_3\text{AmO}_2\text{Cl}_4$ * Green cesium dioxotetrachloroamericate(V), isostructural with $\text{Cs}_3\text{NpO}_2\text{Cl}_4$, is precipitated by ethanol from a solution of Am(V) hydroxide and CsCl in 6M HCl and also by treating $\text{CsAmO}_2\text{CO}_3$ with concentrated HCl saturated with CsCl .^{83a} Previously, $\text{Cs}_3\text{AmO}_2\text{Cl}_4$ was erroneously formulated as the trimeric cluster $\text{Cs}_8(\text{AmO}_2)_3\text{Cl}_{11}$ (Ref. 82). The americium-chlorine stretching frequency for $\text{Cs}_3\text{AmO}_2\text{Cl}_4$ occurs at 290 cm⁻¹.

$\text{Cs}_2\text{AmO}_2\text{Cl}_4$. A dark-red solid, $\text{Cs}_2\text{AmO}_2\text{Cl}_4$, is obtained when $\text{Cs}_3\text{AmO}_2\text{Cl}_4$ is treated with concentrated HCl.⁸² Brown⁸⁶ states that this unusual oxidation is

*Additional studies of the preparation and properties of $\text{Cs}_3\text{AmO}_2\text{Cl}_4$ have been reported recently by Vodovatov and his Russian colleagues.²⁰⁶

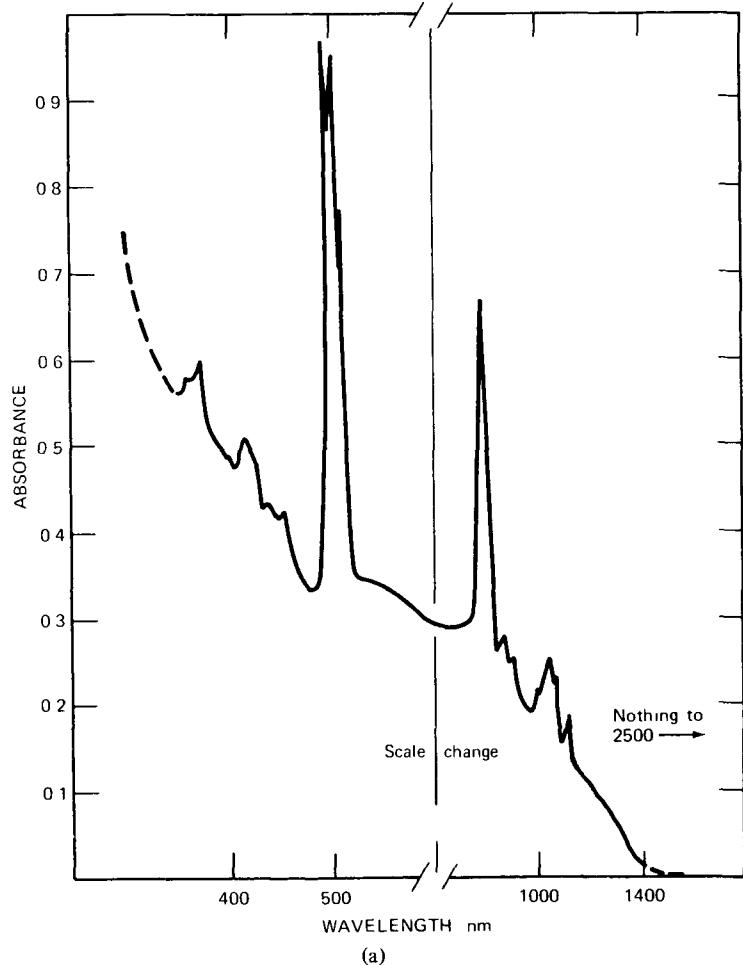



Fig. 4.3 Spectra of (a) solid AmF_3 and (b) solid AmF_4 [From L B Asprey and T K Keenan, Tetravalent Americium and Curium, The Absorption Spectra of the Tri- and Tetrafluorides of These Elements, *Journal of Inorganic and Nuclear Chemistry*, 7: 27 (1958)]

probably due to the high-lattice-energy stabilization of $\text{Cs}_2\text{AmO}_2\text{Cl}_4$. The cubic form of $\text{Cs}_2\text{AmO}_2\text{Cl}_4$, when washed repeatedly with small volumes of concentrated HCl, is reported^{8,3a} to transform to a monoclinic form.

Fluorides. AmF_2 Stable AmF_2 is unknown. Formation of divalent americium in single crystals of CaF_2 has been reported, however.^{8,7,8,9} Single crystals of CaF_2 grown with 0.1 to 0.2 wt % Am are initially light pink, but they darken to a brown color on standing. Visible and electron paramagnetic resonance spectroscopic examination of the resulting crystals indicates the presence of Am^{2+} in an f^7 configuration. Americium(III) incorporated in the CaF_2 lattice may also be reduced with calcium metal or electrolytically.

AmF_3 The anhydrous trifluoride can be prepared by

1 Hydrofluorination at 600 to 700°C for 1 hr of either Am(OH)_3 or AmO_2 (Refs 1, 50, and 86)

2 Drying of hydrated AmF_3 precipitated from aqueous solution (Refs 4, 52, and 90)

3 Heating hydrated AmF_3 precipitated from aqueous solution^{9,1} with an excess of $\text{NH}_4\text{F} \cdot \text{HF}$ at 700°C

4 Metathesis of AmCl_3 with NH_4F according to Eq. 4.20

Hydrated AmF_3 can be satisfactorily dried and dehydrated by washing with ethanol or ether and heating in air at 85°C under an infrared lamp.^{9,0} Alternatively, dehydration can also be effected successfully by flowing HF or a mixture of H_2 and HF at 400 to 500°C over the hydrated fluoride.^{5,2}

The melting point^{9,1} of AmF_3 is $1393 \pm 20^\circ\text{C}$. Americium(III) fluoride has the LaF_3 structure, its crystal structure has been determined by Templeton and Dauben^{8,0} and most recently by Asprey, Keenan, and Kruse.^{5,2} Magnetic susceptibilities for AmF_3 at 295, 199, and 77°K are^{9,2} 1040×10^{-6} , 1290×10^{-6} , and $1740 \times 10^{-6} \text{ cm}^3 \text{ mol}^{-1}$, respectively. The solid state spectrum of AmF_3 , as determined by Asprey and Keenan,^{9,3} is given in Fig. 4.3(a). The Mossbauer spectrum for AmF_3 has also been reported.^{9,4,9,5}

Vapor-pressure data for AmF_3 ^{9,6-9,8} are represented reliably^{9,7} by the equation

$$\log P_{\text{torr}} = -(34628/T) + 34.007 - 7.048 \log T (1126-1469^\circ\text{K})$$

The free energy of sublimation (kcal mol⁻¹) is given by $\Delta G = 112.65 + 32.34T \log T - 155.5T$. Ryan^{9,9} estimates the heat of formation of solid AmF_3 as $-380 \text{ kcal mol}^{-1}$.

Reduction of AmF_3 to americium metal is discussed on page 122. Americium(III) trifluoride^{5,2} is stable in H_2 at 500°C.

AmF₄ Reaction of either AmF₃ or AmO₂ with F₂ at 400 to 500°C yields AmF₄ (Refs 90, 93, and 100) Conner¹⁰¹ recently used this approach to prepare multigram quantities of AmF₄. Fried⁵⁰ showed that AmF₄ cannot be prepared by heating AmF₃ in O₂–HF mixtures

Lattice constants of AmF₄ have been measured by Asprey,⁹⁰ by Keenan and Asprey,^{102a} and most recently by Asprey and Haire,^{102b} AmF₄ is isomorphous with UF₄, NpF₄, and PuF₄. Gas evolves when water is added to AmF₄, and the tetrafluoride is converted into birefringent aggregates that give the characteristic spectrum of Am(III). The solid state spectrum⁹³ of AmF₄ is shown in Fig 4 3(b)

The vapor pressure of AmF₄ in the range 729 to 900°C can be represented^{100,103} by the equation $\log P_{\text{torr}} = -(11911.5/T) + 9.337$ AmF₄ is thermodynamically unstable above 635°C. The estimated⁹⁹ heat of formation of AmF₄ is -399 kcal mol⁻¹

AmF₆ All attempts^{104,105} to prepare AmF₆ have been unsuccessful

AmO₂F₂ Keenan¹⁰⁶ prepared americium fluoride by the reaction (at -196°C) of solid sodium americium acetate with anhydrous HF containing a small amount of F₂. The hexagonal AmO₂F₂ is isostructural with other actinyl(VI) difluorides

Fluoride Complexes Various fluoride complexes of Am(III) (NaAmF₄, KAmF₄, and K₂AmF₇) and Am(IV) [(NH₄)₄AmF₈, K₇Am₆F₃₁, and Na₇Am₆F₃₁] are known. Two complexes of Am(V) (KAmO₂F₂ and RbAmO₂F₂) are also known

NaAmF₄ Keller and Schmutz report^{107,108} that NaAmF₄ can be synthesized by heating AmO₂ with either NaF or Na₂CO₃ in an HF–H₂ mixture at 450 to 650°C (According to these workers, NaAmF₄ is the first fluoride complex of americium to be prepared by a high-temperature solid state reaction) Keenan¹⁰⁹ showed later that exposure of Na₇Am₆F₃₁ to H₂ for 16 hr at 300°C converts it to NaAmF₄. Lattice constants of hexagonal NaAmF₄ have been measured,¹⁰⁸ but other details of the chemistry of this compound are lacking

KAmF₄ Solid-state reaction of equimolar amounts of KF and AmF₃ at 350 to 650°C in an HF–H₂ atmosphere produces¹⁰⁸ KAmF₄. X-ray diffraction and other properties of this compound have not been reported

KAm₂F₇ Pink, cubic KAm₂F₇ is reported to result from reaction of 2 mols of KF with 1 mol of AmF₃ at 350 to 650°C in an HF–H₂ atmosphere¹⁰⁸

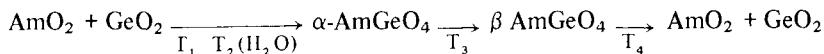
(NH₄)₄AmF₈ Freshly prepared Am(OH)₄ dissolves in 13M NH₄F solution up to an Am(IV) concentration of 5 g liter⁻¹. When this solubility is exceeded at room temperature, red crystals precipitate¹¹⁰. These crystals, by analogy with the isostructural tetravalent uranium compound, are formulated as (NH₄)₄AmF₈. The solubility of (NH₄)₄AmF₈ in 13M NH₄F is about 0.02M. No further studies of this compound have been made

LiAmF₅ This compound results¹¹¹ when the residue from evaporation of an HCl solution containing stoichiometric (1:1) amounts of lithium and americium is treated with F₂ at 350°C for ≈16 hr. Lattice constants of tetragonal LiAmF₅ have been measured by Keenan.¹¹¹ LiXF₅-type compounds are known for X = Th, Pu, U, Np, Pu, and Cm also.¹¹²

K₇Am₆F₃₁ Preparation of K₇Am₆F₃₁ is by evaporation of a 7:1 mixture of potassium/americium from HF solution, subsequently the dried residue is treated¹¹³ with F₂ for 16 hr at 350°C. (At the time of its original preparation,⁹⁰ K₇Am₆F₃₁ was formulated as "KAmF₅") Trends in the 7:6 potassium/actinide(IV) series for actinides from thorium to curium inclusive are discussed by Keenan.¹¹³

Na₇Am₆F₃₁ This compound is completely analogous to the K₇Am₆F₃₁ described above and is prepared in a similar manner.¹⁰⁹ A 7:6 sodium/actinide(IV) series analogous to the 7:6 potassium/actinide(IV) series is also known.^{109,113} Reduction of Na₇Am₆F₃₁ with H₂, as noted earlier, produces NaAmF₄.

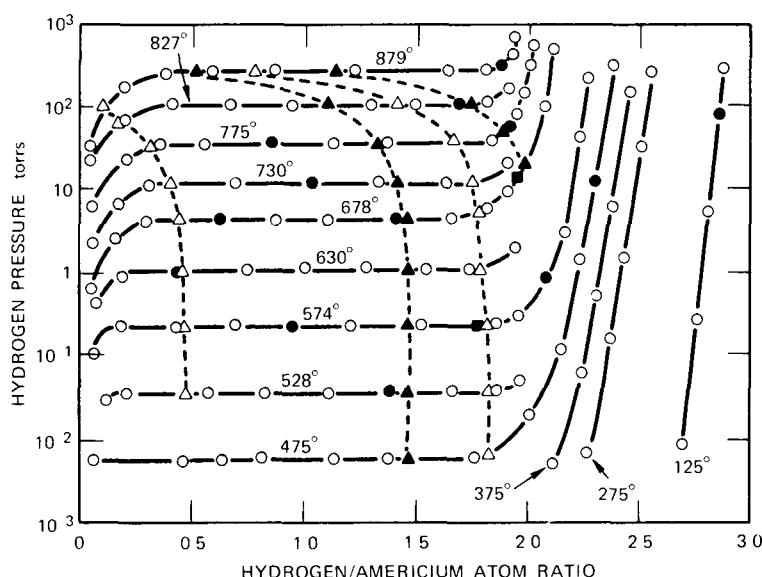
Rb₂AmF₆ The procedure recommended by Keenan¹¹⁴ for preparation of Rb₂AmF₆ involves equilibration of freshly prepared Am(OH)₄ with aqueous RbF and HF at 0°C. The precipitate so formed is heated for about 70 hr at 150°C in F₂. Synthesis of Rb₂AmF₆ from RbAmO₂CO₃ has also been accomplished.¹¹⁵ Optical properties and the solid absorption spectrum of Rb₂AmF₆ were determined by Kruse and Asprey.¹¹⁵ The lattice parameters of orthorhombic Rb₂AmF₆ have been measured by Keenan.¹¹⁴


Keenan points out that, although Rb₇Am₆F₃₁ is not known, the 7:6 rubidium compounds are known from thorium to plutonium. Conversely, the 2:1 Rb₂MF₆ series includes americium and curium but not Th(IV) and Pu(IV).

KAmO₂F₂ Addition of a saturated solution¹¹⁶ of KF to an acid solution of AmO₂⁺ (prepared by dissolution of KAmO₂CO₃ in dilute HNO₃) precipitates tan KAmO₂F₂. The rhombohedral crystal (CaUO₄ type) contains AmO₂⁺ ions and is built up of layers containing AmO₂F₂⁻ ions held together by potassium ions.

RbAmO₂F₂ Keenan¹¹⁷ made RbAmO₂F₂ by addition of saturated RbF solution to AmO₂⁺ in 0.01M HCl. On standing overnight in contact with an acidic RbF solution, RbAmO₂F₂ is reduced to Rb₂AmF₆ (Ref. 115).

Germanate. AmGeO₄ Both thermal and hydrothermal methods^{41,118} can be used to prepare AmGeO₄. Pure, dark-brown AmGeO₄ is produced when Am(OH)₄ and excess GeO₂ in a 1M NaHCO₃ solution are heated 7 days at 230°C. Bright-brown AmGeO₄, contaminated with AmO₂ and Am₂O₃, results when AmO₂ and GeO₂ are heated 8 hr in O₂ at 1000°C.


The thermal decomposition of AmGeO₄ starts at about 1050°C. Keller¹¹⁸ suggests formation and decomposition of AmGeO₄ can be represented by the reaction sequence

where $T_2 \ll T_1 < T_3 > T_4 \gg T_2$ Alpha AmGeO₄ has the scheelite structure, and β AmGeO₄ has the zircon structure

Hydrides. That americium metal reacts with H₂ to form hydrides has been known almost since the discovery of americium^{11,19} Only recently, however, has a detailed study^{120,121} of the americium–hydrogen system shown the existence of two hydride phases fcc AmH_{2+x} ($0 \leq x \leq 0.7$) and hexagonal AmH₃. Pressure isotherms for the composition AmH₂ to AmH₃ are shown in Fig. 4.4. Conversion of AmH₂ to AmH₃ is sluggish. At hydrogen to americium < 2 , a two-phase region consisting of AmH₂ and americium metal exists.

According to Olson and Mulford,¹²⁰ the partial pressure of H₂ above AmH₂ between 773 and 1073°K follows the relation $\log p \text{ (atm)} = 7.190 - 8812/T$ For the reaction

Fig. 4.4 Family of isotherms in the solid solution–dihydride–trihydride region of the americium–hydrogen system. Solid lines, varying hydrogen at constant temperature (○, hydrogen added, ●, hydrogen removed) Dashed lines, varying temperature with prehydrided samples (△, increasing temperature series, ▲, decreasing temperature series) [From J W Roddy, The Actinide Hydrides The Americium–Hydrogen System, *Journal of Inorganic and Nuclear Chemistry*, 35 4141 (1973)]

Olson and Mulford¹²⁰ reported $\Delta H = -40.3$ kcal mol⁻¹ and $\Delta S = -30.0$ cal mol⁻¹ deg⁻¹. Recent work¹²¹ at Oak Ridge National Laboratory puts these values at $\Delta H = -45.5$ kcal mol⁻¹ and $\Delta S = 37.3$ cal mol⁻¹ deg⁻¹.

Utilizing the Solution Theory, Messer and Park¹²² have calculated the excess heat and entropies of mixing in the americium-hydrogen system.

Hydroperoxide. Slow neutralization with NH₄OH of a 0.1*N* acid solution of Am(III), which is also 0.2*N* H₂O₂, leads to a yellow-brown color at a pH of about 5. Further addition of NH₄OH yields a yellow-brown precipitate, which, according to Buys and Louwrier,¹²³ is quite distinct from Am(OH)₃ and is probably a hydroperoxide of Am(III). The hydroperoxide is insoluble in saturated NH₄F but converts to Am(OH)₄ when treated at 90°C with 10*N* KOH for 1 day.

Hydroxides. Am(OH)₃ An amorphous hydrous gel precipitates when ammonia or alkali is added to a solution of an Am(III) salt.¹²⁴⁻¹²⁶ This precipitate consists of particles about 15 to 20 Å in diameter.¹²⁵ Aging of this gel in water for 1 hr at 80°C yields rod-like or scroll-like particles of crystalline Am(OH)₃ which are isostructural with hexagonal Nd(OH)₃ (Refs 124, 126). After several months of aging in water, the Am(OH)₃ structures disintegrate to give small amorphous particles. In the solid state, Am(OH)₃ converts to crystalline AmO₂. The rate of conversion to the dioxide is dependent on storage conditions.

Weaver and Shoun¹²⁷ find that Am³⁺ can be completely precipitated from chloride or nitrate media at an NaOH/amerium ratio of 2.4. For this stoichiometry, they calculate, at NaOH/amerium ratios of 1.0 to 1.5, that K_{SP} is $[Am^{3+}][OH]^{2.4} = (3.4 \pm 0.3) \times 10^{-18}$ and that the solubility in water is $(K_{SP}/2.4^{2.4})^{1/3.4} = 3.9 \times 10^{-6} M$.

Figure 45 is a thermogram of a sample of Am(OH)₃ heated in oxygen, the Am(OH)₃ contained small amounts of nitrate and carbonate.¹²⁴ Although the DTA (differential thermal analysis) peaks and TGA (thermogravimetric analysis) changes are only tentatively assigned, the change at 1000°C is believed to be due to the decomposition of carbonate, whereas the change at about 300°C is thought to result from a loss of nitrate. Changes below 300°C are assigned to loss of water. The final product obtained after cooling to room temperature was confirmed by X-ray analysis to be AmO₂.

Am(OH)₄ A brown-black precipitate forms when a slurry of Am(OH)₃ is oxidized either with hypochlorite in weak base or with peroxydisulfate in strong (7*M*) base.^{128,129} This precipitate is referred to as Am(OH)₄ by Penneman, Coleman, and Keenan¹²⁹ but is perhaps better termed hydrous AmO₂. Treatment¹²⁵ of americium "hydroperoxide" (this page) with strong KOH also yields Am(OH)₄. The estimated solubility¹²⁹ product (K_{SP}) of Am(OH)₄ is about 10^{-5.6}.

When tetravalent americium is precipitated with hydroxide, the resulting crystalline material gives electron diffraction patterns identical¹²⁵ to those obtained for AmO₂. When a mixture of Am(III) and (IV) hydroxides is precipitated, the crystalline

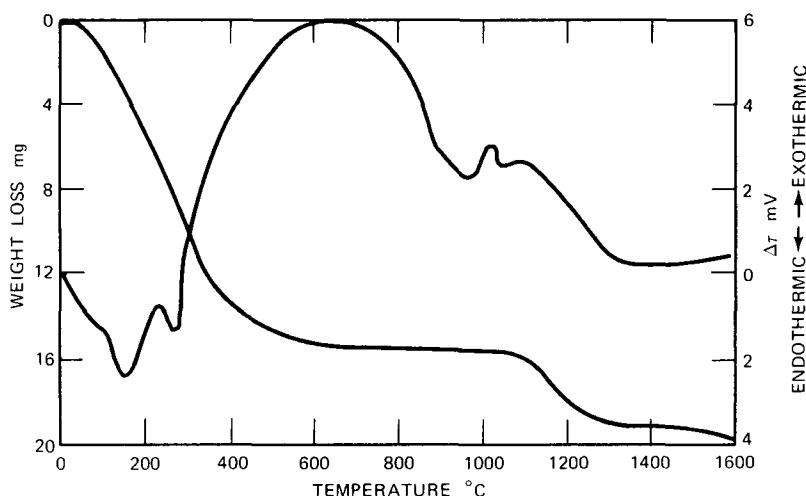
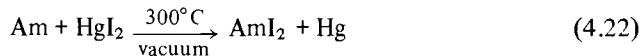
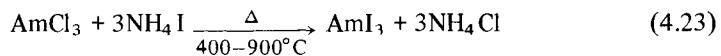



Fig. 4.5 Thermogram of Am(OH)_3 .

products consist of mixtures of rod-like Am(OH)_3 particles and symmetrical particles of hydrous dioxide


Iodides. AmI_2 . Combining americium metal with HgI_2 according to Eq. 4.22 (Refs. 48 and 130) gives AmI_2

Reaction conditions are identical to those used to prepare AmBr_2 (see page 138) except that the black granular AmI_2 is annealed 3 days at 550°C rather than for 10 days at 400°C . The americium–iodine distance in AmI_2 is in the range 3.28 to 3.40 Å. The only notable feature of the absorption spectrum of AmI_2 is a weak, very broad band peaking at 837 nm. Americium(II) iodide melts with decomposition at about 700°C . Its effective magnetic moment is $\mu_{\text{eff}} = 6.7 \pm 0.7$ Bohr magnetons.¹²¹

AmI_3 . What is termed $\alpha\text{-AmI}_3$ is prepared⁵¹ by heating AmO_2 at 500°C with either AlI_3 or a mixture⁵⁰ of aluminum metal and I_2 and separating the reaction products by fractional sublimation. Zachariasen⁵⁴ found the resulting AmI_3 to have an orthorhombic structure

Americium(III) triiodide can also be made by Eq. 4.23 (Refs. 52 and 131)

where a flow system is used to sweep volatile NH_4Cl from the reaction zone. The triiodide ($\beta\text{-AmI}_3$) made by Eq. 4.23 has a hexagonal structure and cannot be

converted to an orthorhombic form even on annealing at various temperatures.¹³¹ Treatment of β -AmI₃ with H₂ at 900°C does not yield AmI₂.

Pappalardo, Carnall, and Fields⁵¹ have measured the visible and near infrared spectra of AmI₃ at low temperatures. Maslov and Maslov¹³² estimate that the heat of formation for AmI₃ from americium and I₂ is -146 ± 5 to 10 kcal mol⁻¹. (From recent thermochemical data, Ryan⁹⁹ calculates a value of -139 ± 3 to 5 kcal mol⁻¹.)

AmOI Pure AmOI can be obtained by heating AmI₂ in moist air at 400°C (Ref. 130). Its properties have not yet been determined.

Molybdates. $Am_2(MoO_4)_3$. Solid-state reaction^{133,134} between MoO₃ and AmO₂ at 700 to 900°C yields a ternary oxide of the empirical composition Am₂Mo₃O₁₂. X-ray diffraction data show that the low-temperature ($\leq 850^\circ C$) α -form of this compound has the vacancy scheelite structure whereas the stable high-temperature β -form has an orthorhombic form.

LiAm(MoO₄)₂ The compound LiAm(MoO₄)₂ results when an equimolar mixture of Li₂MoO₄ and Am₂(MoO₄)₃ is heated¹³⁴ at 550°C. This compound has the scheelite structure and is isostructural with LiGd(MoO₄)₂.

NaAm(MoO₄)₂ Two phases result from solid-state reaction¹³⁴ of Na₂MoO₄ and Am₂(MoO₄)₃ at 550°C. One of these is NaAm(MoO₄)₂ which, like LiAm(MoO₄)₂, has the scheelite structure.

Na₅Am(MoO₄)₄ This compound,¹³⁴ which also forms when Na₂MoO₄ and Am₂(MoO₄)₃ are heated 24 hr at 550°C, melts congruently at 654°C. The crystal structure of Na₅Am(MoO₄) is the same as that of Na₅La(WO₄)₄.

K₂Am₂(MoO₄)₄ and K_{1.0}Am₂(MoO₄)₈. Two homogeneous phases of the empirical composition K₂Am₂(MoO₄)₃ and K_{1.0}Am₂(MoO₄)₈ apparently form when K₂MoO₄ and Am₂(MoO₄)₃ are heated¹³⁴ at 600°C. X-ray diffraction data indicate that these compounds are not isostructural with those of sodium and lithium.

Nitrate. $Am(NO_3)_3 \cdot xH_2O$ Several reports, e.g., Ref 70, cite use of solid Am(NO₃)₃ \cdot xH₂O [made by thermal evaporation of a purified Am(NO₃)₃–HNO₃ solution] as an intermediate in preparation of other americium compounds. But, surprisingly, the chemical and physical properties of solid Am(NO₃)₃ \cdot xH₂O, including its crystal structure, have apparently not been determined.

Nitride. *AmN* Akimoto^{135-137a} prepared micrograms of AmN by reacting AmH₃ for 30 min at 800°C and also by direct reaction of americium metal and N₂ at 750°C. Potter and Tennery^{137b} disclosed a cyclic process for the preparation of finely divided AmN which involves incrementally dehydrating AmH₃ and nitriding the metal.

Milligram amounts of AmN have been recently synthesized by Charvillat et al.^{137c} by heating AmH₃ under a high-purity N₂ atmosphere in a sealed tube. The AmN thus

produced has the cubic NaCl structure. Its effective magnetic moment is 136 Bohr magnetons.¹⁵

Tagawa¹³⁸ has recently reviewed the phase behavior and crystal structure of the actinide nitrides.

Binary Oxides. *AmO.* Zachariasen¹³⁹ in a 1949 article reported the lattice constant of impure cubic AmO but did not give any details of how the compound is made. Akimoto^{135-137a} claims to have prepared microgram amounts of AmO by reacting metallic americium at 850°C with the stoichiometric amount of oxygen gas generated by thermal decomposition of Ag₂O. He reports AmO is a brittle material with a grayish metallic luster. Attempts to prepare milligram to gram amounts of AmO have apparently not been made.

In connection with studies of the vaporization behavior of substoichiometric PuO₂, Ackermann, Faircloth, and Rand¹⁴⁰ found the vapor pressure of AmO between 1600 and 2200°K to obey the relation

$$\log p \text{ (atm)} = (8.19 \pm 0.41) - (25,650 \pm 760)/T$$

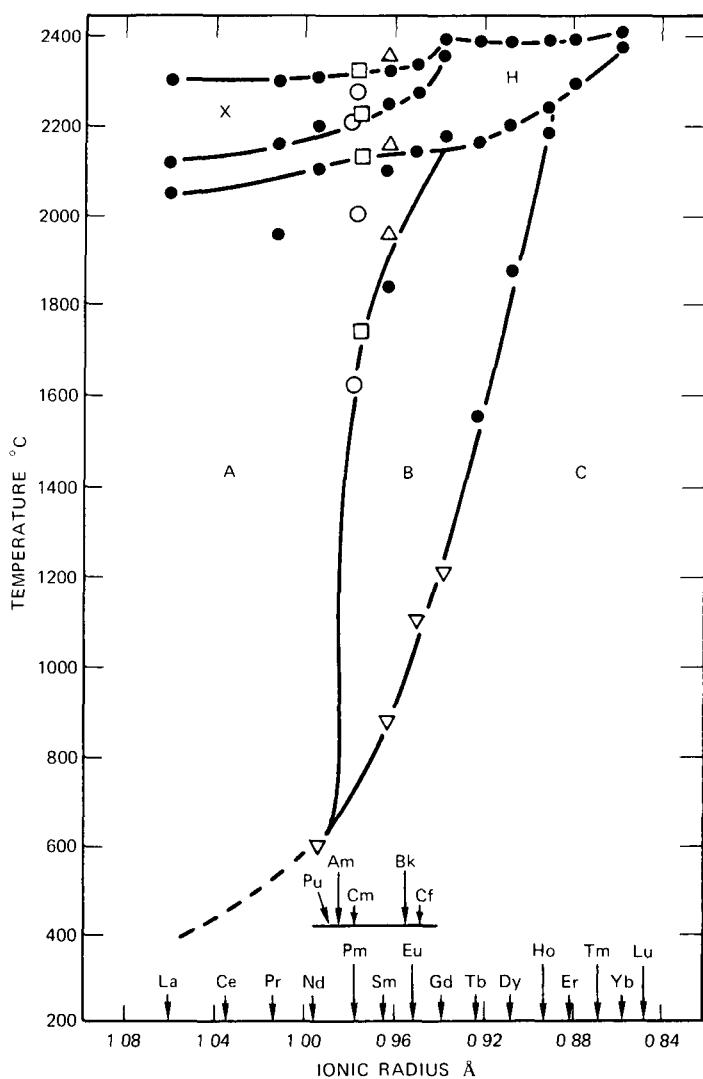
Am₂O₃. Americium sesquioxide is obtained by reduction of AmO₂ with H₂ at 600 to 1000°C. The crystal structure of the resulting Am₂O₃ depends on the reduction temperature. Cubic (Mn₂O₃-type structure), red-brown C-type Am₂O₃ is produced at 600°C (Refs. 80 and 141), and hexagonal (La₂O₃-type structure), tan A-type Am₂O₃ is obtained⁸⁰ at 800°C. The melting point of hexagonal Am₂O₃ is 2205 ± 15°C (Ref. 142); the cubic-to-hexagonal transition occurs at about 800°C (Ref. 143). Chikalla and Eyring¹⁴⁴ state that cubic Am₂O₃ is capable of dissolving excess oxygen and exists, at room temperature, over a wide range of stoichiometry. The upper boundary is at about AmO_{1.67}.

It is not yet clear whether or not monoclinic sesquioxide (B-type Am₂O₃) can be prepared. Chikalla and Eyring¹⁴⁴ interpreted some of their X-ray data to indicate that B-type Am₂O₃ forms when oxide samples with oxygen/amerium ratios between 1.51 and 1.54 are quenched from 800°C or above. In subsequent work, Berndt et al.^{145a} and Maier^{145b} were unable to confirm the earlier observations of Chikalla and Eyring.¹⁴⁴ Their results show that only A-type Am₂O₃ exists in the range 900 to 1500°C. Berndt et al. note, however, that in the americium-samarium-oxygen system, pure B-type Am₂O₃-Sm₂O₃ exists at 1250 to 1550°C at 8 to 10 mol % Sm₂O₃. They suggest, therefore, that the diffraction lines observed by Chikalla and Eyring¹⁴⁴ might have originated from a small amount of samarium impurity in their americium oxide sample.

On the basis of their recent studies with carefully purified ²⁴¹Am, Keller and Berndt^{146a} state that B-type monoclinic sesquioxide with the exact stoichiometry Am₂O₃ does not exist. These workers report that hexagonal Am₂O₃ is the only stable modification for <700°C ≤ T ≤ 1550°C. Keller and Berndt,^{146a} in agreement with the observations of Maier et al., note that a monoclinic form of Am₂O₃ can be stabilized by incorporation of small amounts of lanthanum oxides.

Chikalla et al.¹⁴² have drawn up a stability diagram for actinide sesquioxides (Fig. 4.6). Their diagram includes transformation temperature data obtained by Foex and Traverse^{146b} and Warshaw and Roy^{146c} for lanthanides Baybarz^{146d} has also given a stability diagram for several of the actinide sesquioxides including Am_2O_3 . Chikalla and Turcotte^{146e} note that the resin-bead technique used by Baybarz to obtain data for berkelium and californium can result in large amounts of residual impurities and, for that reason, question the validity of Baybarz's diagram.

AmO_2 . Thermal decomposition in air or oxygen at 700 to 900°C of such americium compounds as $\text{Am}(\text{NO}_3)_3$ (Refs. 70 and 147), $\text{Am}(\text{OH})_3$ (Ref. 123), $\text{Am}_2(\text{CO}_3)_3 \cdot 4\text{H}_2\text{O}$ (Ref. 61), or $\text{Am}_2(\text{C}_2\text{O}_4)_3$ (Ref. 141) produces dark-brown AmO_2 . Cubic AmO_2 crystallizes with a fluorite structure. The lattice constant of $^{241}\text{AmO}_2$ has been determined by Zachariasen et al.,^{139,148a} Dauben and Templeton,⁸⁰ and most recently by Keller⁴¹ Keller and also Chikalla and Eyring¹⁴⁴ note that, because of the high alpha activity of ^{241}Am , a continuous destruction of the lattice of $^{241}\text{AmO}_2$ takes place with the formation of Frenkel defects. According to Keller,⁴¹ the lowest value of the lattice constant of $^{241}\text{AmO}_2$, obtained immediately after preparation, is $a = 5.377 \text{ \AA}$. After 3 months' storage, the lattice constant is 5.395 \AA . The lattice constant of $^{243}\text{AmO}_2$ at 25°C is 5.3743 \AA (Ref. 148a). [Thermal expansion of AmO_2 can be calculated from the expression $a_t = 5.3733 + 4.34 \times 10^{-5} t + 14.3 \times 10^{-9} t^2$, where a_t is the lattice constant (\AA) at any temperature t (°C)^{148b}]


McHenry¹⁴⁹ observed that the melting point of a composition near AmO_2 , when heated in helium, increased with increasing rate of heating. Melting points of 1750 and 2120°C, respectively, were noted at heating rates of 0.3 and 1.50°C min⁻¹. According to Chikalla and Turcotte,^{146e} McHenry's results must certainly refer to a grossly substoichiometric oxide since the oxygen dissociation pressure over $\text{AmO}_{2.00}$ is 1 atm at about 1000°C (Ref. 150). However, on the basis of an extrapolation of other actinide dioxide data, Chikalla and Turcotte^{146e} state that the expected melting point of AmO_2 is 2175°C.

The vapor pressure of AmO_2 between 1600 and 2200°K is given by the relation¹⁴⁰

$$\log p \text{ (atm)} = (7.28 \pm 0.19) - (28260 \pm 360)/T$$

The dioxide dissolves readily in aqueous HCl solutions with evolution of chlorine and in aqueous HNO_3 and H_2SO_4 solutions with evolution of oxygen, particularly when heated. Using data obtained originally by Eyring, Lohr, and Cunningham¹⁴¹ for the heat of solution of AmO_2 in 6.02M HNO_3 –0.1M HBF_4 , Fuger, Spirlet, and Muller^{11a} calculate the enthalpy of formation of AmO_2 at 298°K as $\Delta H_f^\circ = -224.3 \pm 0.6 \text{ kcal mol}^{-1}$.

Chikalla and Eyring¹⁵⁰ used a thermogravimetric isopiestic technique to measure the oxygen dissociation pressures over stoichiometric americium dioxide. Their results (Fig. 4.7) show that the partial pressure of oxygen above AmO_{2-x} increases sharply

Fig. 4.6 Stability diagram of polymorphic forms of lanthanide and actinide sesquioxides. ● and ▽ are results of Foex and Traverse^{146b} and Warshaw and Roy^{146c} respectively ○, □, and △ are transformation temperatures in Cm_2O_3 , Pm_2O_3 , and Sm_2O_3 found by Chikalla et al¹⁴² (from T D Chikalla, C E McNeilly, J L Bates, and J J Rasmussen, High Temperature Phase Transformations in Some Lanthanide and Actinide Oxides, in *Proceedings of the International Colloquium on High Temperature Phase Transformation*, Centre National de la Recherche Scientifique, Publication No 205, 1973)

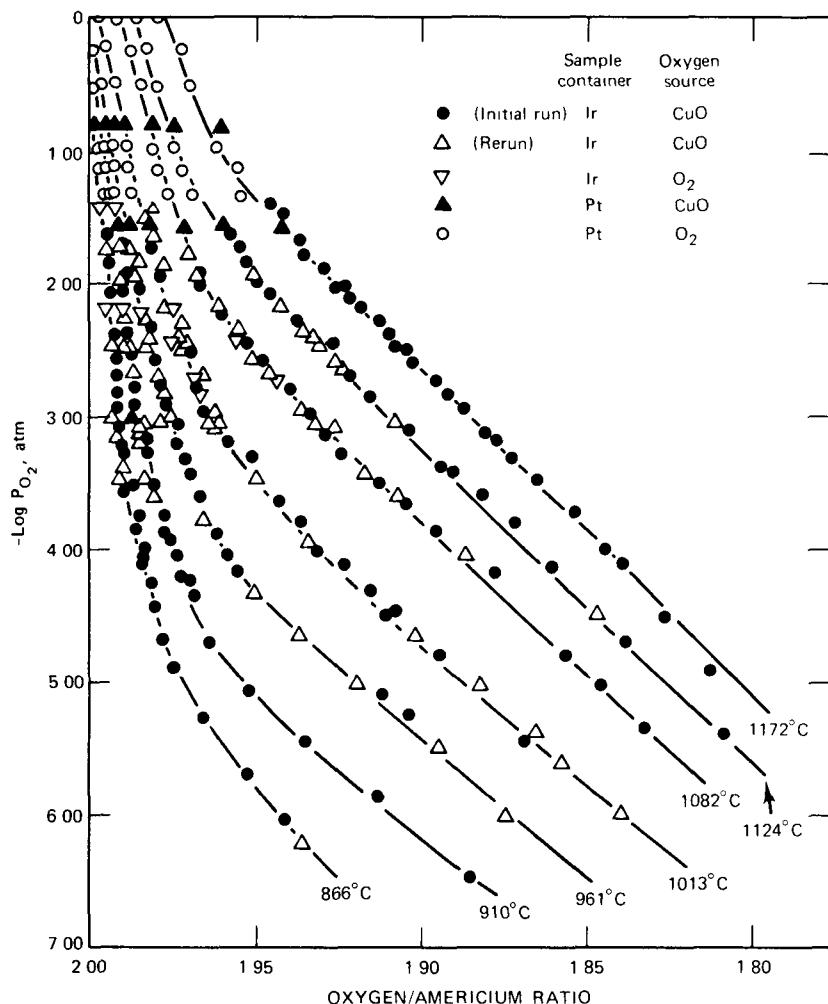
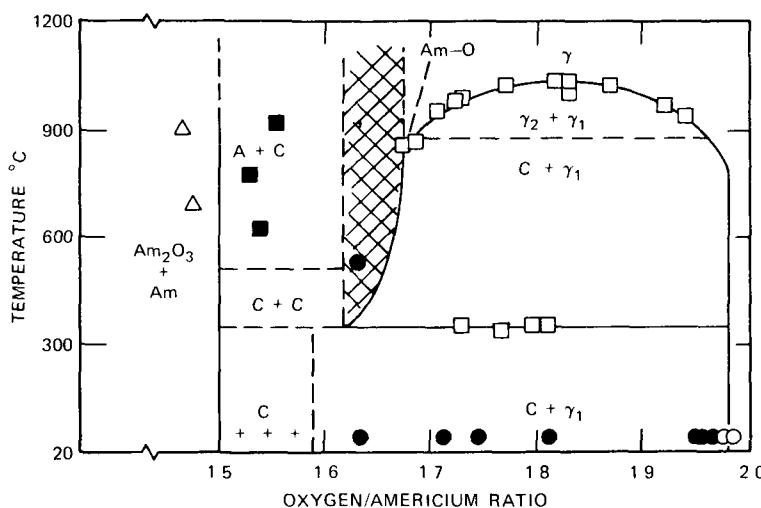



Fig. 4.7 Dissociation-pressure isotherms for AmO_x [From T D Chikalla and L Eyring Dissociation Pressures and Partial Thermodynamic Quantities for Americium Oxides, *Journal of Inorganic and Nuclear Chemistry*, 29: 2281 (1967)]

both with the temperature and with the oxygen/amerium ratio. Asprey and Cunningham¹⁵¹ also studied the thermal decomposition of AmO_2 . The relative partial molar enthalpy and entropy of solution of O_2 in AmO_{2-x} calculated from the results of both sets of investigators are in reasonable agreement.

Figure 4.8 is the phase diagram for the americium–oxygen system derived by Sari and Zamorani^{152a} and Sari, Tebaldi, and Pietra^{152b} using DTA and ceramographic procedures. According to this diagram an oxygen-deficient fcc single-phase AmO_{2-x}

Fig. 4.8 Low-temperature americium-oxygen phase diagram. A = hexagonal Am_2O_3 , C = low-temperature bcc Am_2O_3 , C' = high-temperature bcc Am_2O_3 , γ , γ_1 , γ_2 , = fcc AmO_2 . \square = results of DTA measurements. All other points represent results of micrographic analysis [From C Sari and E Zamorani, An Investigation in the Americium Oxide System, *Journal of Nuclear Materials*, 37, 324 (1970)]

exists at temperatures above 1020°C and for $1.7 \leq \text{oxygen/amerium} \leq 2.0$. At room temperature the compound $\text{AmO}_{1.98}$ is in equilibrium with a bcc phase of the approximate composition $\text{AmO}_{1.59}$. The low-temperature bcc phase takes up additional oxygen at temperatures higher than 350°C and extends into a region of composition $1.63 \leq \text{oxygen/amerium} \leq 1.68$. For higher oxygen/amerium ratios, this phase is in equilibrium with $\text{AmO}_{2.0}$ up to 1020°C , whereas, for lower oxygen/amerium ratios, it is in equilibrium with a hexagonal Am_2O_3 .

Chikalla and Eyring¹⁴⁴ analyzed (X-ray diffraction) quenched samples taken across the entire compositional width $1.50 < \text{oxygen/amerium} < 2.00$, their results show the formation of bcc phase (α) in the range $1.50 < \text{oxygen/amerium} < 1.67$. Samples annealed in the higher oxygen/amerium region could not be quenched but always gave a two-phase mixture of $\text{AmO}_{2.00}$ and a phase of estimated composition $\text{AmO}_{1.8}$. By implication it is suggested that another diphase region must exist in the interval $1.67 < \text{oxygen/amerium} < 1.8$.

Chikalla and Turcotte^{153a} have suggested that there is a greater complexity in the 1.67 to 1.80 region of the americium-oxygen system than indicated in Fig. 4.8. More recently, on further consideration of the Sari-Zamorani phase diagram for AmO_2 , Chikalla and Turcotte^{146c} state, "The partial pressure data in Fig. 4.7 and the phase diagram suggested by Sari and Zamorani are in direct conflict. The thermodynamic data suggest that the region $\text{AmO}_{1.95}$ – $\text{AmO}_{1.85}$ is single-phased to temperatures below 900°C , whereas the diphase dome reported by Sari and Zamorani

extends to well above 1000°C. In the other fluorite-related systems examined in this region, including plutonium, berkelium (Turcotte, unpublished), cerium, and praseodymium, there is indeed evidence of a diphasic region but only at temperatures near or below 600°C.

"With the exception of the diphasic dome at high temperatures, which is a dome that we believe is disproved by the equilibrium thermodynamic studies, there are no real data presented which justify construction of any detailed phase diagram. That given by Sari and Zamorani relies entirely on the hope that AmO_x is much like PuO_x ."

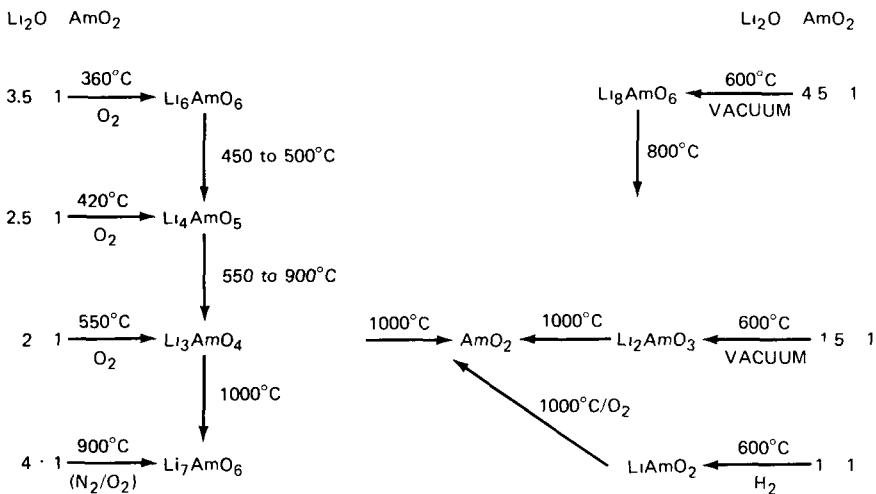
Karraker^{153b} studied the magnetic properties of AmO_2 , over the temperature ranges 15 to 50°K and 50 to 100°K, $\mu_{\text{eff}} = 1.3$ and 1.53 Bohr magnetons, respectively. Karraker also notes that AmO_2 is antiferromagnetic at temperatures below about $8.5 \pm 0.5^{\circ}\text{K}$.

Ternary Oxides with Lithium and Sodium. *Lithium.* Solid-state reaction of Li_2O and AmO_2 in various proportions at temperatures in the range 350 to 1000°C leads to a variety of brown-colored ternary oxides.^{41,154,155} The following compounds are known

- Am(VI) Li_6AmO_6 and Li_4AmO_5
- Am(V) Li_7AmO_6 and Li_3AmO_4
- Am(IV) Li_8AmO_6 and Li_2AmO_3
- Am(III) LiAmO_2

Figure 4 9, due to Keller,⁴¹ summarizes the thermal stability of these compounds and the conditions for their preparation.

Sodium. The following listed ternary oxides of americium with sodium can be prepared by solid-state reaction of Na_2O or Na_2O_2 with AmO_2 ^{41,154,155}


- Am(VI) Na_6AmO_6 and Na_4AmO_5
- Am(V) Na_3AmO_4
- Am(IV) Na_2AmO_3

Conditions for preparation of these compounds and their thermal stability were reported by Keller⁴¹ and are shown in Fig 4 10


Ternary Oxides with Barium and Strontium. *Barium.* The following ternary oxides are known in the barium–americium–oxygen system^{41,156}

- Am(VI) Ba_3AmO_6
- Am(IV) BaAmO_3
- Am(III) BaAm_2O_4 ($\text{BaO} \cdot \text{Am}_2\text{O}_3$)

Medium-brown Ba_3AmO_6 is obtained by heating a finely pulverized mixture of BaO and AmO_2 (3.05:1) in O_2 for 8 hr at 800 to 1000°C (Refs 41, 156) This compound dissolves in dilute acids

Fig. 4.9 Preparation conditions and thermal stability of compounds in the system lithium–americium–oxygen. [From C. Keller, The Solid State Chemistry of Americium Oxides, in *Lanthanide/Actinide Chemistry*, R. F. Gould (Ed.), Advances in Chemistry Series, American Chemical Society, Washington, 1967.]

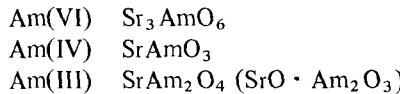


Fig. 4.10 Preparative conditions and thermal stability of compounds in the system sodium–americium–oxygen. [From C. Keller, The Solid State Chemistry of Americium Oxides, in *Lanthanide/Actinide Chemistry*, R. F. Gould (Ed.), Advances in Chemistry Series, American Chemical Society, Washington, 1967.]

Dark brown BaAmO_3 forms when a mixture⁴¹ of BaO (or BaCO_3) and AmO_2 (1 09 1) is heated in air at 1250°C for 30 hr. Synthesis of BaAmO_3 can also be effected by thermal decomposition of Ba_3AmO_6 at temperatures above 1100°C . BaAmO_3 dissolves in dilute acids with disproportionation of Am(IV) .

Reduction⁴¹ of BaAmO_3 with H_2 at 1250°C produces BaAm_2O_4 ($\text{BaO} \cdot \text{Am}_2\text{O}_3$), which has the structure of CaFe_2O_4 .

Strontium In the strontium–americium–oxygen system, the following compounds exist^{41, 156}

These compounds are completely analogous to those in the barium–americium–oxygen system and are prepared by similar solid-state reactions.

Ternary Oxides with Curium. Curium(IV) is stabilized¹⁵⁷ by formation of solid solutions of CrO_x in AmO_2 . Table 4 3 lists the phases known in the americium–curium–oxygen system for oxygen/americium + curium > 1.5 .

Ternary Oxides with Zirconium, Hafnium, and Thorium *Zirconium* A one-phase solid solution with the fluorite structure exists above 18 mol % AmO_2 in the $\text{AmO}_2\text{--ZrO}_2$ system at 1200 to 1400°C (Fig 4 11).

Figure 4 12 shows the phases present in the $\text{AmO}_{1.5}\text{--ZrO}_2$ system at 1200°C (Refs 41, 158). Besides the pure starting components, two one-phase regions exist: a tetragonal solid solution of 0 to 6 mol % $\text{AmO}_{1.5}$ and a cubic solid solution of about 32 to 55 mol % $\text{AmO}_{1.5}$. According to Keller,⁴¹ "In the cubic solid solution, in whose region exists $\text{Am}_2\text{Zr}_2\text{O}_7$ with the pyrochlore-type structure, a continuous transition from the fluorite phase to the pyrochlore phase can be observed."

Hafnium. The americium–hafnium–oxygen system has not been studied as intensively as the corresponding americium–zirconium–oxygen system. Qualitatively,^{41, 158} a one phase solid solution with the fluorite structure exists in the $\text{AmO}_2\text{--HfO}_2$ system, but the extent of the solid-solution region is unknown. Keller⁴¹ reports that the $\text{AmO}_{1.5}\text{--HfO}_2$ system is considerably more simple than the $\text{AmO}_{1.5}\text{--ZrO}_2$ system. According to Keller, a 1 : 1 compound $\text{Am}_2\text{Hf}_2\text{O}_7$ with the pyrochlore structure exists in the $\text{AmO}_{1.5}\text{--HfO}_2$ system.

Thorium. Thoria and AmO_2 form a complete series of solid solutions^{41, 158}. Keller⁴¹ states, "The solubility of $\text{AmO}_{1.5}$ in ThO_2 at 1300°C is about 50 mol %. In this case the pure fluorite structure remains, the lack of oxygen is balanced by the formation of statistically distributed oxygen holes. An exact determination of the solubility of $\text{AmO}_{1.5}$ in ThO_2 is possible in practice only by quoting a large margin of error because the lattice constants of ThO_2 ($a = 5.599 \text{ \AA}$) and those of the cubic $\text{AmO}_{1.5}$ ($a/2 = 5.515 \text{ \AA}$) are relatively close to each other, and, moreover, the quality

Table 4.3
PHASES IN THE SYSTEM AMERICIUM-CURIUM-OXYGEN

Composition*	Cations present	Formula	Symmetry	Phase				Conditions
				a	b	c	β	
2.00 \leq O/M \leq 1.98	Am ⁴⁺ , Cm ⁴⁺	(Am _{0.30} , Cm _{0.70})O _{2.00}	fcc	5.368				350°C in O ₂
1.93 \leq O/M \leq 1.80	Am ⁴⁺ , Cm ⁴⁺ , Cm ³⁺	(Am _{0.30} , Cm _{0.70})O _{1.83}	fcc	5.433				550°C in O ₂
1.80 \leq O/M \leq 1.68	Am ⁴⁺ , Cm ⁴⁺ , Cm ³⁺	(Am _{0.30} , Cm _{0.70})O _{1.685}	Rhombohedral	6.687			99.47°	760°C in He
1.72 \leq O/M \leq 1.52	Am ⁴⁺ , Am ³⁺ Cm ⁴⁺ , Cm ³⁺	(Am _{0.30} , Cm _{0.70})O _x	bcc	10.935				990°C in He 915°C in 4% H ₂ /He
O/M = 1.50	Am ³⁺ , Cm ³⁺	(Am _{0.64} , Cm _{0.36})O _{1.5}	Monoclinic	14.321	3.665	8.926	100.17°	1100°C in 4% H ₂ /He
O/M = 1.50	Am ³⁺ , Cm ³⁺	(Am _{0.64} , Cm _{0.36})O _{1.5}	Hexagonal	3.980		5.980		1500°C in 4% H ₂ /He

*M = americium + curium

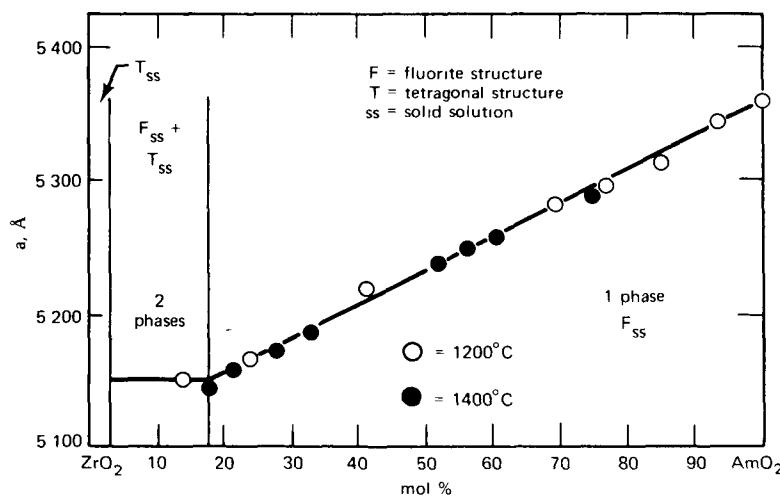


Fig. 4.11 The AmO_2 – ZrO_2 system. [From C. Keller, The Solid State Chemistry of Americium Oxides, in *Lanthanide/Actinide Chemistry*, R. F. Gould (Ed.), Advances in Chemistry Series, American Chemical Society, Washington, 1967.]

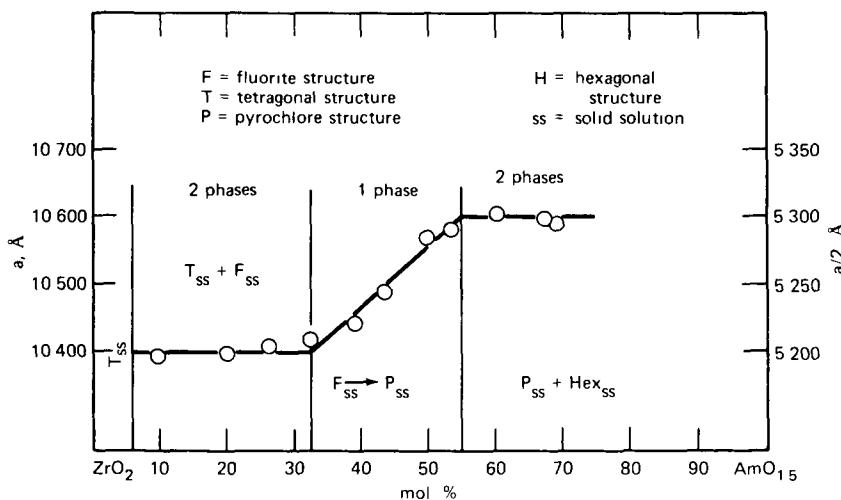


Fig. 4.12 The $\text{AmO}_{1.5}$ – ZrO_2 system—lattice constants and solid solutions at 1200°C [From C. Keller, The Solid State Chemistry of Americium Oxides, in *Lanthanide/Actinide Chemistry*, R. F. Gould (Ed.), Advances in Chemistry Series, American Chemical Society, Washington, 1967.]

of X-ray powder patterns of samples above 50 mol % $\text{AmO}_{1.5}$ leaves much to be desired."

Oxides with Niobium, Tantalum, and Protactinium *Niobium* AmNbO_4 Monoclinic α AmNbO_4 is produced by the solid-state reaction of AmO_2 and Nb_2O_5 ($2\text{AmO}_2 + \text{Nb}_2\text{O}_5$) for 24 hr at 1200°C (Refs 41, 45). When heated, α AmNbO_4 transforms to β AmNbO_4 at $600 \pm 20^\circ\text{C}$ (Ref 45), β AmNbO_4 , which has the tetragonal scheelite structure, is unstable below 660°C and cannot be stabilized even by fast quenching.

$\text{Am}_{0.33}\text{NbO}_3$ When mixed in the proportions $2\text{AmO}_2 + 3\text{Nb}_2\text{O}_5$, AmO_2 and Nb_2O_5 react at 1200°C in H_2 , air, or a vacuum to produce pale-rose $\text{Am}_{0.33}\text{NbO}_3$ (Refs 41 and 42). This compound is isostructural with tetragonal $\text{La}_{0.33}\text{TaO}_3$.

$\text{Ba}_2\text{AmNbO}_6$ At 1300°C , α - AmNbO_4 reacts with BaO to form $\text{Ba}_2\text{AmNbO}_6$ (Refs 41 and 45). This latter compound has the "ordered" perovskite structure. This compound can also be synthesized by direct solid-state reaction of AmO_2 , Nb_2O_5 , and BaO (Ref 45).

AmNbTiO_6 Yellow-brown orthorhombic AmNbTiO_6 is easily prepared by reaction of α - AmNbO_4 with TiO_2 at 1150°C for 24 hr in air.^{41,45}

Tantalum. Solid-state reactions between Ta_2O_5 and AmO_2 yield α - AmTaO_4 , β - AmTaO_4 , and $\text{Am}_{0.33}\text{TaO}_3$ (Refs 41, 42, and 45); these compounds and the conditions for their preparation are completely analogous to those already described for the americium-niobium-oxygen system. The compounds $\text{Ba}_2\text{AmTaO}_6$ and AmTaTiO_6 are also known^{41,45} and are prepared like the corresponding niobium compounds.

Protactinium AmPaO_4 The solid-state reaction⁴⁵ between AmO_2 and Pa_2O_5 ($2\text{AmO}_2 + \text{Pa}_2\text{O}_5$) for 8 hr at 1100°C results in a double oxide $[\text{Am}_{0.5}(\text{III}),\text{Pa}_{0.5}(\text{V})]\text{O}_2$ (= AmPaO_4) that, according to Keller,⁴¹ has a fluorite-type structure with a statistical distribution of metal ions. The double oxide⁴⁵ is insoluble in acids but can be solubilized by fusion with $\text{K}_2\text{S}_2\text{O}_7$.

$\text{Ba}_2\text{AmPaO}_6$ At 1350 to 1400°C ($\text{Am}_{0.5},\text{Pa}_{0.5}\text{O}_2$) reacts with BaO or BaCO_3 to form $\text{Ba}_2\text{AmPaO}_6$ (Refs 41, 45, 159). The latter compound has an ordered perovskite type of structure.⁴¹

Phosphate $\text{AmPO}_4 \cdot x\text{H}_2\text{O}$ Light pink Am(III) phosphate precipitates when a dilute solution of either H_3PO_4 , Na_2HPO_4 , or $(\text{NH}_4)_2\text{HPO}_4$ is added to a weakly acidic ($[\text{H}^+] < 0.1\text{M}$) Am^{3+} solution.⁴⁵ Hexagonal $\text{AmPO}_4 \cdot 0.5\text{H}_2\text{O}$ is obtained when the precipitate is dried at 200°C or lower temperature. Anhydrous AmPO_4 is obtained at higher drying temperatures. The anhydrous compound⁴⁵ is stable up to 1000°C and can also be obtained by direct reaction of stoichiometric amounts of AmO_2 and $(\text{NH}_4)_2\text{HPO}_4$ at 600 to 1000°C . Dilute acid solutions readily dissolve $\text{AmPO}_4 \cdot 0.5\text{H}_2\text{O}$, but monoclinic AmPO_4 dissolves only in boiling acid solution.

Phosphide AmP Charvillat et al^{44b,137c} synthesized AmP by reaction at 580°C of red phosphorus on AmH_3 in a sealed quartz tube. The monophosphide has the cubic NaCl structure with $a = 5.7114 \pm 0.0003 \text{ \AA}$

Scandate $AmScO_3$ Pink $AmScO_3$ forms when stoichiometric proportions of AmO_2 and Sc_2O_3 are heated in highly purified H_2 at 1100 to 1700°C (Ref 160). A convenient starting material for the solid state reaction is obtained by coprecipitation of the hydroxides of americium and scandium.

According to Keller and Berndt¹⁴⁶ oxidation of $AmScO_3$ or the solid-state reaction of AmO_2 – Sc_2O_3 mixtures results in the formation of a fluorite phase. Keller and Berndt also find that AmO_2 takes up small amounts of Sc_2O_3 into solid solution, 0.5 mol % at 1100°C to 4.7 mol % at 1550°C. But even in this system there is some loss of oxygen of AmO_2 at high temperatures leading to an increased solubility of Sc_2O_3 in AmO_{2-x} .

Selenides $AmSe$ Charvillat et al^{137c} prepared $AmSe$ by reacting AmH_3 with a stoichiometric amount of selenium at 800°C in a vacuum. The resulting product after pelletizing and further heating at 1100 to 1200°C contained two phases— Am_3Se_4 (Th_3Pu_4 structures) and a second phase (NaCl structure) that Charvillat et al identified as cubic $AmSe$.

$AmSe_{2-x}$ Nonstoichiometric black $AmSe_{2-x}$ is prepared by heating an excess of selenium metal with AmH_3 for 1 week at 400°C under high vacuum¹⁶¹. X-ray diffraction analyses indicate the resulting product is a nonstoichiometric compound with a composition near $AmSe_{1.8}$. Roddy³⁰ has also prepared what appears to be tetragonal $AmSe_2$ by heating ²⁴³Am metal or hydride with selenium metal for 24 hr at 950°C. His results also suggest that a range of homogeneity may exist in the americium–selenium system.

Am_3Se_4 Body-centered cubic Am_3Se_4 results when a mixture of 50 wt % americium metal and 50 wt % selenium metal is heated for 1 hr at 217°C and then 7 hr at 850°C before furnace cooling to room temperature⁴³. Roddy³⁰ also prepared Am_3Se_4 by heating ²⁴³Am metal with metallic selenium 24 hr at 950°C. X-ray diffraction measurements show that the products of such preparations contain at least two phases that persist even after heat-treating for 10 to 14 days at 750 to 800°C. The major phase⁴⁴ in the final product is Am_3Se_4 , which is isostructural with Th_3P_4 and is without magnetic ordering down to 4.2°K.

Silicate $AmSiO_4$ Hydrothermal reaction of $Am(OH)_4$ with excess SiO_2 in 1M $NaHCO_3$ solution for 1 week at 230°C yields brown $AmSiO_4$ that has the zircon structure¹¹⁹. On heating, $AmSiO_4$ decomposes to AmO_2 and SiO_2 without forming intermediate silicates. A process for manufacturing alpha sources has been patented¹⁶² which consists of fixing onto a metallic or ceramic support a layer of an enamel containing ²⁴¹Am SiO_4 . This layer is obtained by melting an enamel powder containing ²⁴¹Am on the surface of the support.

Sulfates. $Am_2(SO_4)_3 \cdot xH_2O$. Evaporation of a neutral solution of Am(III) sulfate yields thick, tabular, pale yellow-pink crystals of $Am_2(SO_4)_3 \cdot 8H_2O$ of lengths up to 0.5 mm.¹⁶³ Crystals of the octahydrate, after being dried in air, are stable for several days.

On the basis of analyses for americium, sulfate, and water, Yakovlev et al¹⁶⁴ assign the formula $Am_2(SO_4)_3 \cdot 5H_2O$ to the precipitate obtained by adding ethanol to a solution of Am(III) in 0.5M H_2SO_4 .

Hall and Markin⁷⁰ prepared white anhydrous $Am_2(SO_4)_3$ by heating hydrated americium sulfate to a temperature of 550 to 650°C in air. Thermogravimetric data obtained by these workers are shown in Fig. 4.13. Anhydrous $Am_3(SO_4)_3$ does not take up water when cooled to room temperature in air.

Am(III) Double Sulfates The following double sulfates^{100,164,165} can be prepared by addition of an alkali metal sulfate solution to a solution of Am(III) in 0.5M H_2SO_4 .

$KAm(SO_4)_2$	$TlAm(SO_4)_2 \cdot 4H_2O$
$NaAm(SO_4)_2 \cdot H_2O$	$K_3Am(SO_4)_3 \cdot H_2O$
$KAm(SO_4)_2 \cdot 2H_2O$	$K_8Am_2(SO_4)_7$
$RbAm(SO_4)_2 \cdot 4H_2O$	$Cs_8Am_2(SO_4)_7$
$CsAm(SO_4)_2 \cdot 4H_2O$	$Tl_8Am_2(SO_4)_7$

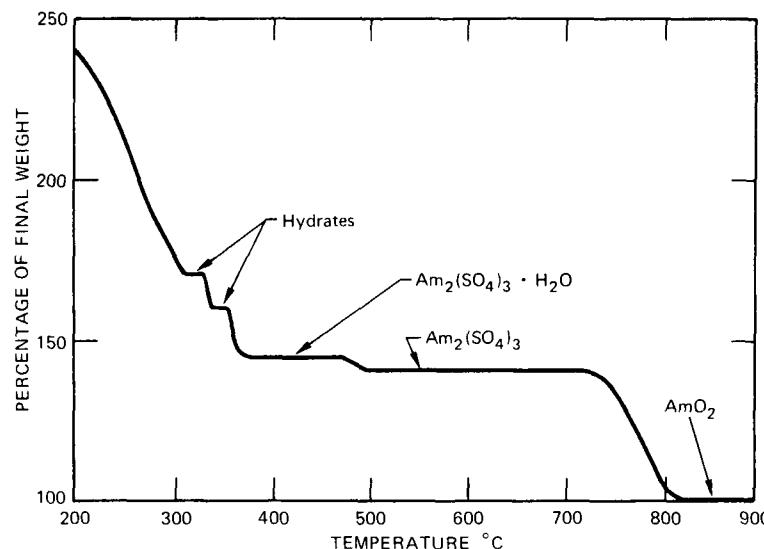


Fig. 4.13 Thermogravimetric analysis of $Am_2(SO_4)_3 \cdot xH_2O$ [From G. R. Hall and T. L. Markin, The Alpha Half-Life of Americium-241, *Journal of Inorganic and Nuclear Chemistry*, 4: 137 (1975).]

Ratios of $[M^+]/[Am^{3+}]$ ($M = Na, K, Rb, Cs$, or Tl) at which the various double sulfates precipitate are given in Ref 164. The absorption spectra of certain of the crystalline double salts between 400 and 800 nm at 80, 200, and 300°K have also been reported,¹⁶⁴ but, apparently, X ray diffraction data for the double sulfates have not been obtained. Coprecipitation of trace amounts of Am^{3+} with K_2SO_4 and $La_2(SO_4)_3$ has also been studied.^{166, 168}

$\{Co(NH_3)_6/HSO_4\}_2\{AmO_2/SO_4\}_3 \cdot nH_2O$ Hexammine cobalt(III) americyl(VI)-sulfate is prepared by addition of hexammine cobalt(III) ions to an aqueous sulfate solution containing AmO_2^{2+} (Ref 169). The orange cubic crystals (diamond type structure) are isostructural with the corresponding UO_2^{2+} and NpO_2^{2+} compounds. No precipitate forms, however, in an ammonium sulfate solution containing $Am^{(III)}$ and hexammine cobalt(III) ions.¹⁷⁰

Sulfides Am_2S_3 The alpha form of americium sesquisulfide is obtained¹⁷¹ by vapor phase reaction for 4 days of a stoichiometric amount of sulfur with AmH_3 in a quartz and Pyrex tube sealed under high vacuum. The quartz end of the tube is kept at 500°C, and the Pyrex part is maintained at 300°C to prevent sulfur from condensing.

When heated in a vacuum¹⁷¹ at 1300°C, α - Am_2S_3 changes to pure γ - Am_2S_3 . Pure γ - Am_2S_3 can also be prepared⁵⁰ by passing a mixture of H_2S and CS_2 gases over heated (1400 to 1500°C) AmO_2 for 5 min. The crystal structure of γ - Am_2S_3 has been determined by Zachariasen.¹⁷²

AmS Thermal decomposition¹⁷¹ of α - Am_2S_3 in vacuum at 650°C yields AmS as well as γ - Am_2S_3 . The americium-sulfur distance in cubic AmS is 2.796 Å.

AmS_2 \times Americium disulfide¹⁶¹ is prepared by the same procedure used to make $AmSe_2$ \times —namely, by heating under vacuum an excess of sulfur with AmH_3 for 1 week at 400°C. Analogous to $AmSe_2$ \times , the coarse black disulfide is a nonstoichiometric compound with a composition near $AmS_{1.9}$. The americium-sulfur distance is 2.93 Å in good agreement with an ionic binding between Am^{3+} and S^{2-} .

$Am_{10}S_{14}O/\beta Am_2S_3$ When heated¹⁷³ at 1100°C in a high vacuum, α - Am_2S_3 transforms into β - Am_2S_3 . The formula of the β - Am_2S_3 , according to Damien, Marcon, and Jove,¹⁷³ is more properly written $Am_{10}S_{14}O$. The tetragonal oxysulfide is isostructural with the rare earth and plutonium β sesquisulfides.

Tellurides $AmTe$ To prepare americium monotelluride, Charvillat et al.^{137c} heated milligram amounts of AmH_3 with a stoichiometric quantity of elemental tellurium at 800°C in a vacuum. The resulting product after pelletizing and further heating at 1100 to 1200°C contained two phases— Am_3Te_4 (Th_3Pu_4 structure) and a second phase ($NaCl$ structure) that Charvillat et al. identified as cubic $AmTe$.

$AmTe_3$ Americium tritelluride¹⁷⁴ is prepared by vapor-phase reaction (120 hr at 350°C in a sealed tube) of excess tellurium (americium/tellurium = 3.5) on AmH_3 . Orthorhombic $AmTe_3$ is isostructural with the corresponding rare-earth tritellurides.

AmTe₂ Thermal dissociation of AmTe₃ at 400°C in a high vacuum (<10⁻⁵ torr) yields tetragonal AmTe₂. The ditelluride is isostructural with the rare-earth ditellurides and likely has the Fe₂As type of structure. Damien¹⁷⁴ states that AmTe₂ prepared as described above is a tellurium-deficient compound, AmTe_{2-x}, with a rather large homogeneity range between 400 and 600°C.

Am₂Te₃ At temperatures¹⁷⁵ above 600°C, AmTe₂ dissociates into Am₂Te₃. By analogy with isostructural rare earth sesquitellurides, Damien and Charvillat¹⁷⁵ label Am₂Te₃ as an η form.

Am₃Te₄ The η -Am₂Te₃ phase is stable up to around 850°C, at 900°C, Am₃Te₄ is formed.¹⁷⁵ The latter compound was first prepared by Mitchell and Lam⁴³ using experimental procedures completely identical to those already described (see page 161) for preparation of Am₃Se₄. Body-centered cubic Am₃Te₄ is isostructural with Th₃P₄ and is without magnetic ordering⁴⁴ down to 4.2°K.

Oxytelluride? In the pattern of Am₃Te₄, Damien and Charvillat¹⁷⁵ assign four diffraction lines, which cannot be indexed in the bcc system, to an americium oxytelluride.

Tungstate. Analogous to the reaction with MoO₃ (see page 151), solid-state reaction of WO₃ and AmO₂ at 700 to 900°C yields a ternary oxide of the empirical composition Am₂W₃O₁₂ (Ref. 133). This compound has the scheelite structure corresponding to the formula Am₂(WO₄)₃.

Vanadates. Red-brown AmVO₄ forms when AmO₂ is heated (10 hr at 600°C followed by 10 hr at 1000°C) with V₂O₅ in air.^{41,42,45} AmVO₄ has the tetragonal zircon structure. Reduction with H₂ at 1200°C converts AmVO₄ to ochre-colored AmVO₃ with the GdFeO₃ structure.

Xenate. Addition of solid sodium perxenate to K₂CO₃ and Na₂CO₃ solutions of Am(III) precipitates Am(III) perxenate, Am₄(XeO₆)₃ · 40H₂O (Ref. 176). The color of the precipitate is orange when wet and orange tan when dried under vacuum at room temperature. The compound can be water washed without decomposition or loss by solubilization. Its solubility in distilled water at \approx 23°C is 4.6×10^{-5} M. Americium perxenate dissolves in acids with evolution of gas to form Am(V) and Am(VI). Marcus and Cohen¹⁷⁶ report that Am(III) perxenate shows the characteristic absorption bands of Am(III) in the visible and near-infrared regions, as well as the characteristic infrared absorption at 650 to 680 cm⁻¹ for the xenon-oxygen vibration in perxenate.

Compounds of Americium with Organic Ligands

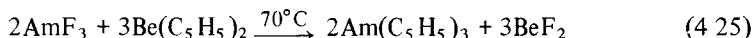
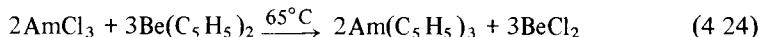
Relatively few solid compounds of americium with organic ligands have yet been prepared, those known as of January 1976 are listed in Table 4-4. As revealed in the

Table 4.4
COMPOUNDS OF AMERICIUM WITH ORGANIC LIGANDS

No.	Organic reagent ligand	Compound	
		Formula	Color
1	Acetate	$\text{NaAmO}_2(\text{OOCCH}_3)_3$	Lemon yellow
2	Acetylacetone	$\text{Am}(\text{C}_5\text{H}_7\text{O}_2)_3 \cdot \text{H}_2\text{O}$	Pale rose
3	Benzoyltrifluoroacetone	$\text{Am}(\text{C}_{10}\text{H}_6\text{I}_3\text{O}_2)_3 \cdot 3\text{H}_2\text{O}$	Pale rose
4	Cyclooctatetraene	$\text{KAm}(\text{C}_8\text{H}_8)_2 \cdot 2\text{THF}^*$	Yellow
5	Cyclopentadiene	$\text{Am}(\text{C}_5\text{H}_5)_3$	I flesh
6	Dipivaloylmethane	$\text{Am}(\text{C}_{11}\text{H}_{19}\text{O}_2)_3$	
7	Formate	$\text{Am}(\text{HCOO})_3 \cdot 2\text{H}_2\text{O}$	Pink
8	Hexafluoroacetylacetone	$\text{CsAm}(\text{C}_5\text{HF}_6\text{O}_2)_4 \cdot \text{H}_2\text{O}$	Yellow
9	8-Hydroxyquinoline	$\text{Am}(\text{C}_9\text{H}_8\text{NO})_3$	Yellow green
10	5-chloro-8-hydroxyquinoline	$\text{Am}(\text{C}_9\text{H}_5\text{ClNO})_3$	Dark green
11	5,7-dichloro-8-hydroxyquinoline	$\text{Am}(\text{C}_9\text{H}_4\text{Cl}_2\text{NO})_3$	Green
12	Oxalate	$\text{Am}_2(\text{C}_2\text{O}_4)_3 \cdot 10\text{H}_2\text{O}$	Pink
13	Phthalocyanine	$\text{Am}(\text{C}_{32}\text{H}_{16}\text{N}_2)_2$	Dark violet
14	Pyridine-2-carboxylic acid	$\text{AmO}_2(\text{C}_5\text{H}_4\text{NCOO})_2$	Red brown
15	Pyridine 2-carboxylic acid	$\text{HAmO}_2(\text{C}_5\text{H}_4\text{NCOO})_3$	Red brown
16	Pyridine <i>N</i> oxide carboxylic acid	$\text{AmO}_2[\text{C}_5\text{H}_4\text{N}(\text{O})\text{COO}]_2$	
17	Thenoyltrifluoroacetone	$\text{Am}(\text{C}_8\text{H}_4\text{F}_3\text{O}_2\text{S}_3)_3 \cdot 3\text{H}_2\text{O}$	Pale rose

*THF = tetrahydrofuran

ensuing discussion, aside from $\text{Am}_2(\text{C}_2\text{O}_4)_3$ which is well characterized, very little is known about either the preparation or properties of compounds of americium with organic ligands. This situation will surely change in the future as ^{243}Am becomes more available and as interest in the bonding parameters of americium in compounds with cyclopentadiene and similar ligands continues to build.



Acetate. Sodium Am(VI) acetate [$\text{NaAmO}_2(\text{OOCCH}_3)_3$] precipitates when sodium acetate is added to an acid solution of Am(VI) (Refs 177-179). The lattice constant of the lemon-yellow cubic crystals (space group = $P2_1/3$) is $10.653 \pm 0.002\text{\AA}$, and their refractive index is 1.528 ± 0.002 (Ref 178). From infrared measurements, Jones¹⁸⁰ has determined the force constant of the americium-oxygen bond in $\text{NaAmO}_2(\text{OOCCH}_3)_3$ to be 6.12 megadynes \AA^{-1} .

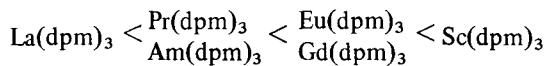
Acetylacetone Dropwise addition of ammonia to an aqueous Am^{3+} solution containing a small excess of acetylacetone precipitates at pH 6 to 6.3 pale-rose $\text{Am}(\text{C}_5\text{H}_7\text{O}_2)_3 \cdot \text{H}_2\text{O}$ (Ref 181a). The crystalline precipitate obtained after stirring for 24 hr is recrystallized from ethanol and dried in air over silica gel or P_2O_5 . It decomposes to AmO_2 when heated in air at 200 to 400°C.

Benzoyltrifluoroacetone. To prepare $\text{Am}(\text{C}_{10}\text{H}_6\text{F}_3\text{O}_2)_3 \cdot 3\text{H}_2\text{O}$, an aqueous Am(III) solution adjusted to pH 4.5 is added dropwise, with warming, to slightly less than the stoichiometric amount of $\text{NH}_4\text{C}_{10}\text{H}_6\text{F}_3\text{O}_2$ (Ref 181a). The pale-rose precipitate is recrystallized from ethanol and dried in air. When heated in air at 200 to 400°C, $\text{Am}(\text{C}_{10}\text{H}_6\text{F}_3\text{O}_2)_3 \cdot 3\text{H}_2\text{O}$ decomposes directly to AmO_2 .

Cyclooctatetraene. Karraker^{181b} has recently announced preparation of potassium *bis*(cyclooctatetraenyl)Am(III) by the reaction of $\text{K}_2\text{C}_8\text{H}_8$ in tetrahydrofuran (THF) solution with $^{241}\text{AmI}_3$. Metal analysis of the solid is consistent with the formula $\text{KAm}(\text{COT})_2 \cdot 2\text{THF}$, whereas X-ray powder-diffraction patterns show it to be isostructural with $\text{KPu}(\text{COT})_2 \cdot 2\text{THF}$. The compound $\text{KAm}(\text{COT})_2 \cdot 2\text{THF}$ decomposes in water and burns when exposed to air. The absorption spectrum of $\text{KAm}(\text{COT})_2 \cdot 2\text{THF}$ in THF solution shows the characteristic spectrum of Am^{3+} .

Cyclopentadiene. Tri(cyclopentadienide)Am(III), $\text{Am}(\text{C}_5\text{H}_5)_3$, is prepared by reacting either AmCl_3 (Refs 182, 183a, and 183b) or AmF_3 (Ref 183c) with molten $\text{Be}(\text{C}_5\text{H}_5)_2$ according to Eqs 4.24 and 4.25

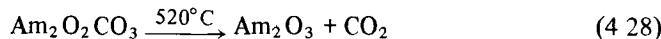
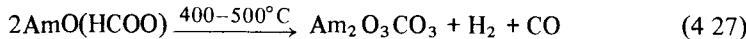
Baumgartner et al¹⁸² state that pure $\text{Am}(\text{C}_5\text{H}_5)_3$ can be obtained by fractional sublimation at 10^{-5} torr and 160 to 205°C. The flesh-colored compound does not melt below 330°C when heated in argon but darkens at higher temperatures. Unlike $\text{Pu}(\text{C}_5\text{H}_5)_3$, $\text{Am}(\text{C}_5\text{H}_5)_3$ is not pyrophoric, it decomposes only slowly in air.¹⁸² In water or dilute acids, the compound decomposes, with evolution of gas and deposition of white flocks, to give a rose-colored Am(III) solution.


The infrared spectrum of $\text{Am}(\text{C}_5\text{H}_5)_3$ shows characteristic absorption bands at 768/795 cm^{-1} , 841 cm^{-1} , 1007 cm^{-1} , 1448 cm^{-1} , and 3078 cm^{-1} (Ref 184). The room-temperature absorption spectrum of $\text{Am}(\text{C}_5\text{H}_5)_3$ between 4455 cm^{-1} and 40,000 cm^{-1} has been measured.¹⁸⁵ On the basis of the published absorption spectrum, Nugent et al¹⁸⁶ estimate that the organometallic bonding in $\text{Am}(\text{C}_5\text{H}_5)_3$ is highly ionic with a covalency only about $2.8 \pm 0.2\%$ relative to the corresponding bands of $\text{Am}_{\text{aq}}^{3+}$. For this reason they state that $\text{Am}(\text{C}_5\text{H}_5)_3$ should be designated as a tricyclopentadienide rather than as a tricyclopentadienyl.

The magnetic moment of $\text{Am}(\text{C}_5\text{H}_5)_3$ is reported¹⁸⁷ to be 1.74 Bohr magnetons.

Dipivaloylmethane. Danford et al¹⁸⁸ at Oak Ridge National Laboratory precipitate $\text{Am}(\text{C}_{11}\text{H}_{19}\text{O}_2)_3$ by adding aqueous Am(III) sulfate to a solution of dipivaloylmethane (dpm) (2,2,6,6-tetramethyl-3,5-heptanedione) and NaOH in 70% aqueous ethanol. Following the precipitation step, two-thirds of the mother liquor is removed by vacuum evaporation. The precipitate is extracted with ethanol, one-quarter volume

of water is added to the alcohol extracts, and the ethanol is evaporated in a stream of nitrogen to reprecipitate the complex. The precipitate, after drying in *vacuo* at room temperature, is purified by sublimation at 124 to 135°C at 10^{-5} torr for 1.5 hr. It melts at 215 to 218°C after softening at 205°C (Ref. 183c). Monoclinic unit-cell dimensions are ^{183c} $a = 12.2(2)$ Å, $b = 28.3(3)$ Å, $c = 22.4(3)$ Å, $\beta = 106.4(9)^\circ$.



Sakanoue and Amano¹⁸⁹ have recently determined the volatility of $\text{Am}(\text{C}_{11}\text{H}_{19}\text{O}_2)_3$ [$\text{Am}(\text{dpm})_3$] and various lanthanide dipivaloylmethanato complexes at 180°C and 10^{-3} torr. Their results yield the following order for the volatilities

Sakanoue and Amano¹⁸⁹ also determined that $\text{Am}(\text{dpm})_3$ was less volatile than $\text{Th}(\text{dpm})_3$, $\text{Pu}(\text{dpm})_3$, or $\text{Cs}(\text{dpm})_3$.

Formate Hydrated Am(III) formate $[\text{Am}(\text{HCOO})_3 \cdot 0.2\text{H}_2\text{O}]$ crystals form when $\text{Am}(\text{OH})_3$ is dissolved in concentrated formic acid at 50°C and the excess acid is evaporated⁵⁸. The lattice constants of the hexagonal pink crystals are $a = 10.55$ Å and $c = 4.07$ Å.

Weigel and ter Meer⁶⁰ report that thermal decomposition of $\text{Am}(\text{HCOO})_3$ proceeds according to the following reaction sequence

Hexafluoroacetylacetone. Yellow $\text{CsAm}(\text{C}_5\text{HF}_6\text{O}_2)_4 \cdot \text{H}_2\text{O}$ precipitates when an excess of $\text{CsC}_5\text{HF}_6\text{O}_2$ in 50 vol % ethanol is added to an AmCl_3 solution and the solution is evaporated to half its volume^{188,190}. A product melting at 189 to 191°C results when the yellow crystals are washed with water and dried in air. The melting point increases to 193 to 194°C after vacuum sublimation at 130 to 140°C at 10^{-6} torr (Ref. 188). According to Ref. 191, "It is not clear whether this increase in melting point is due to dehydration, for the pale-rose, anhydrous compound is obtained when the monohydrate is recrystallized from 1 butanol."

Hydroxyquinoline 8 Hydroxyquinoline Keller, Eberle, and Mosdzelewski¹⁹² report that yellow-green $\text{Am}(\text{C}_9\text{H}_6\text{NO})_3$ precipitates when an Am(III) solution is added dropwise to a pH 5.5 to 6.5 solution of 8-hydroxyquinoline in 0.1M ammonium acetate. At 25°C, $\text{Am}(\text{C}_9\text{H}_6\text{NO})_3$ is soluble in ether, acetone, methanol, dioxane, and chloroform to the extent of only 2.5×10^{-5} to 7×10^{-5} mols liter⁻¹.

5-Chloro-8-Hydroxyquinoline. Dark-green $\text{Am}(\text{C}_9\text{H}_5\text{ClNO})_3$ precipitates on addition of an Am(III) solution to a pH 5.1 to 5.9, 30 vol.% dioxane solution of 5-chloro-8-hydroxyquinoline in 0.1*M* ammonium acetate.¹⁹²

5,7-Dichloro-8-Hydroxyquinoline. Addition of an Am(III) solution to a 65 vol.% dioxane solution of 5,7-dichloro-8-hydroxyquinoline in 0.1*M* ammonium acetate at pH 5.7 to 6.0 precipitates green $\text{Am}(\text{C}_9\text{H}_4\text{Cl}_2\text{NO})_3$ (Ref. 192). This compound and also $\text{Am}(\text{C}_9\text{H}_5\text{ClNO})_3$ are about 1000-fold more soluble in ether, acetone, methanol, dioxane, and chloroform than is $\text{Am}(\text{C}_9\text{H}_6\text{NO})_3$. The absorption spectrum of $\text{Am}(\text{C}_9\text{H}_6\text{Cl}_2\text{NO})_3$ in CHCl_3 exhibits a band at 3900 Å characteristic of *tris* chelates.

Oxalate. Pink, monoclinic $\text{Am}_2(\text{C}_2\text{O}_4)_3 \cdot 10\text{H}_2\text{O}$ precipitates from a slightly acidic or neutral solution of Am^{3+} on addition of oxalic acid or suitable alkali oxalate solution (Refs. 100, 141, 150, 193, and 194). Lattice constants of the crystalline hydrate are $a = 11.19$ Å, $b = 9.63$ Å, and $c = 10.24$ Å with $\beta = 114.4^\circ$. The space group⁵⁸ is $P2/b$. The solubility product¹⁹⁵ of Am(III) oxalate in 0.2*M* to 0.3*M* HClO_4 is 2.2×10^{-3} . Attempts to measure the solubility product in water were unsuccessful. The solubility of Am(III) oxalate in nitric acid-oxalic acid solutions has been measured by Burney and Porter.¹⁹⁶

From their recent X-ray diffraction studies, Weigel and ter Meer⁵⁸ conclude that the value of x in $\text{Am}_2(\text{C}_2\text{O}_4)_3 \cdot x\text{H}_2\text{O}$ is 10. [Previously the number of water molecules in hydrated Am(III) oxalate was thought to vary with the conditions of precipitation and drying; values of $x = 7$ (Ref. 197), 9 (Ref. 100), and 11 (Ref. 193) were reported.] Weigel and ter Meer⁵⁸ note that Nd^{3+} and Am^{3+} have nearly the same ionic radius. Ollendorff¹⁹⁸ has shown that Nd(III) oxalate is $\text{Nd}_2(\text{C}_2\text{O}_4)_3 \cdot 10\text{H}_2\text{O}$. Plutonium(III) and Cm(III) are also decahydrates.¹⁹⁹

Weigel and ter Meer⁶⁰ studied the thermal decomposition of $\text{Am}_2(\text{C}_2\text{O}_4) \cdot 10\text{H}_2\text{O}$ in air using mass spectrometric identification of gaseous decomposition products and X-ray identification of solid residues. Their results, listed in Table 4.5, extend and modify those reported earlier by Markin¹⁹⁷ for decomposition of the "heptahydrate." Radiolytic decomposition of ^{241}Am (III) oxalate to yield first anhydrous Am(III) carbonate (15 to 20 days) and then its pentahydrate (50 to 60 days) is a first-order reaction with a rate constant of 0.22 d^{-1} (Ref. 200).

Phthalocyanine. Weighable amounts of $\text{Am}(\text{C}_{32}\text{H}_{16}\text{N}_8)_2$ have been prepared by reaction of AmI_3 at 200°C with phthalodinitrile in 1-chloronaphthalene.²⁰¹ According to Lux,²⁰² $\text{Am}(\text{C}_{32}\text{H}_{16}\text{N}_8)_2$ is the first Am(IV) compound with organic ligands to be prepared. Dark-violet $\text{Am}(\text{C}_{32}\text{H}_{16}\text{N}_8)_2$ sublimes without decomposition at 550°C at 10^{-5} torr and is stable in air.²⁰² Spectroscopic evidence also indicates²⁰² that americium also forms a mono(phthalocyaninato) compound which sublimes at 450 to 500°C at 10^{-5} torr.

Pyridine Carboxylates. *Pyridine-2-Carboxylates.* Addition of pyridine-2-carboxylic acid ($\text{C}_6\text{H}_5\text{NCOOH}$) to a solution of AmO_2^{2+} precipitates either americyl(VI)

Table 4.5
THERMAL DECOMPOSITION OF
 $\text{Am}_2(\text{C}_2\text{O}_4)_3 \cdot 10\text{H}_2\text{O}$

Initial phase	Temperature interval	Final phase
$\text{Am}_2(\text{C}_2\text{O}_4)_3 \cdot 10\text{H}_2\text{O}$	25–50°C	$\text{Am}_2(\text{C}_2\text{O}_4)_3 \cdot 6\text{H}_2\text{O}$
$\text{Am}_2(\text{C}_2\text{O}_4)_3 \cdot 6\text{H}_2\text{O}$	50–340°C (over 4 hydrate forms)	$\text{Am}_2(\text{C}_2\text{O}_4)_3$
$\text{Am}_2(\text{C}_2\text{O}_4)_3$	390–430°C	$\text{Am}_2(\text{CO}_3)_3$
$\text{Am}_2(\text{CO}_3)_3$	430–470°C	$\text{Am}_2\text{O}(\text{CO}_3)_2$
$\text{Am}_2\text{O}(\text{CO}_3)_2$	470–520°C	$\text{Am}_2\text{O}_2\text{CO}_3$
$\text{Am}_2\text{O}_2\text{CO}_3$	520–610°C	Am_2O_3

pyridine-2-carboxylate [$\text{AmO}_2(\text{C}_6\text{H}_5\text{NCOO})_2$] or a complex acid of the composition $\text{H}[\text{AmO}_2(\text{C}_6\text{H}_5\text{NCOO})_3]$ (Refs 203, 204). The particular compound precipitated depends, as discussed in Ref 203, upon solution pH and the concentration of the pyridine carboxylic acid. Both compounds are crystalline red-brown powders soluble in pyridine. The $\text{H}[\text{AmO}_2(\text{C}_6\text{H}_5\text{NCOO})_3]$ compound decomposes to AmO_2 at about 340°C.

Pyridine-N-Oxide-2-Carboxylate Americyl(VI) pyridine-N-oxide-2-carboxylate, $\text{AmO}_2[\text{C}_6\text{H}_5\text{N}(\text{O})\text{COO}]_2$, precipitates when pyridine-N-oxide-2-carboxylic acid is added to an aqueous AmO_2^{2+} solution.²⁰⁴ The precipitate is soluble in pyridine and dimethyl sulfoxide and, when heated, dehydrates at 100°C and decomposes at temperatures above 200°C.

Thenoyltrifluoroacetone Preparation of Am(III) thenoyltrifluoroacetone [$\text{Am}(\text{C}_8\text{H}_4\text{F}_3\text{O}_2\text{S})_3 \cdot 3\text{H}_2\text{O}$] is accomplished in exactly the same way (see pages xxx to xxx) as the benzoyltrifluoroacetone complex.¹⁸¹ The pale-rose precipitate decomposes directly to AmO_2 when heated in air at 200 to 400°C.

REFERENCES

- 1 E F Westrum, Jr., and L Fyring, The Preparation and Some Properties of Americium Metal, *J Amer Chem Soc* 73 3396 (1951), USAEC Report UCRL 1055, University of California Radiation Laboratory, March 1951
- 2 P Graf, B B Cunningham, C H Dauben, J C Wallmann, D H Templeton, and H Ruben, Crystal Structure and Magnetic Susceptibility of Americium Metal, *J Amer Chem Soc* 78 2340 (1956)
- 3 D B McWhan, J C Wallmann, B B Cunningham, L B Asprey, F H Ellinger, and W H Zachariasen, Preparation and Crystal Structure of Americium Metal, *J Inorg Nucl Chem* 15 185 (1960)

- 4 D. B. McWhan, B. B. Cunningham, and J. C. Wallmann, Crystal Structure, Thermal Expansion, and Melting Point of Americium Metal, *J. Inorg. Nucl. Chem.*, **24**: 1025 (1962)
- 5 W. Z. Wade and T. Wolf, Preparation and Some Properties of Americium Metal, *J. Inorg. Nucl. Chem.*, **29**: 2577 (1967).
- 6 K. W. R. Johnson and J. A. Leary, Preparation of Americium Metal, USAEC Report LA-2992, Los Alamos Scientific Laboratory, October 1963
- 7 W. V. Conner, Bomb Reduction of Americium Tetrafluoride to Metal, USAEC Report RFP-1188, Dow Chemical Co., November 1968
- 8 W. Muller, J. Reul, and J. C. Spirlet, Herstellung von Reinem Americium und Curium durch Zersetzen Intermetallischen Verbindungen, *Atomwirtschaft*, **17**: 415 (1972)
- 9 a. J. C. Spirlet and W. Muller, Gram-Scale Preparation of Americium, *Angew. Chem.*, **83**: 932 (1971) through *Angew. Chem. Int. Ed. Engl.*, **10**: 857 (1971)
b. J. C. Spirlet and W. Muller, The Preparation and Purification of Americium Metal by Evaporation, *J. Less-Common Metals*, **31**: 35 (1973).
- 10 U. Berndt, B. Erdmann, and C. Keller, Preparation of Non-Noble Metals (Li, Ca, Sr, Ba, Am, Cf) by Reduction of Their Oxides and Fluorides with Hydrogen, *Angew. Chem. Int. Ed. Engl.*, **11**: 515 (1972)
- 11 a. J. Fuger, J. C. Spirlet, and W. Muller, A New Determination of the Heat of Solution of Americium Metal and the Heat of Formation of Various Americium Ions and Compounds, *Inorg. Nucl. Chem. Lett.*, **8**: 709 (1972).
b. J. W. Ward, W. Muller, and G. F. Kramer, The Vapor Pressure of High-Purity Solid Americium, in *Transplutonium Elements*, Proceedings of the 4th International Symposium, Baden-Baden, Sept. 13-17, 1975, W. Muller and R. Lindner (Eds.), North-Holland Publishing Company, Amsterdam, 1976.
- 12 D. R. Stephens, H. D. Stromberg, and E. M. Lilley, Phase Diagram, Compressibility and Resistance of Americium as a Function of Pressure, *J. Phys. Chem. Solids*, **29**: 815 (1968)
- 13 S. C. Carniglia and B. B. Cunningham, The Vapor Pressure of Americium Metal, *J. Amer. Chem. Soc.*, **77**: 1502 (1955)
- 14 N. D. Erway and O. C. Simpson, The Vapor Pressure of Americium, *J. Chem. Phys.*, **18**: 953 (1950).
- 15 a. B. Kanellakopoulos, J. P. Charvillat, F. Maino, and W. Muller, The Magnetic Susceptibility of Americium and Curium Metals and Pnictides, in *Transplutonium Elements*, Proceedings of the 4th International Symposium, Baden-Baden, Sept. 13-17, 1975, W. Muller and R. Lindner (Eds.), North-Holland Publishing Company, Amsterdam, 1976
b. W. J. Nellis and M. B. Brodsky, Magnetic Properties, in *The Actinides: Electronic Structure and Related Properties*, A. J. Freeman and J. B. Darby, Jr. (Eds.), Vol. II, Academic Press, Inc., New York, 1974.
- 16 a. C. Sari, W. Muller, and U. Benedict, Phase Transition of Americium Metal, *J. Nucl. Mater.*, **45**: 73 (1972/1973).
b. M. B. Brodsky, A. J. Arko, A. R. Harvey, and W. J. Nellis, Transport Properties, in *The Actinides: Electronic Structure and Related Properties*, A. J. Freeman and J. B. Darby, Jr. (Eds.), Vol. II, Academic Press, Inc., New York, 1974.
c. R. Schenkel, H. E. Schmidt, and J. C. Spirlet, The Electrical Resistivity of ^{241}Am Americium Metal, in *Transplutonium Elements*, Proceedings of the 4th International Symposium, Baden-Baden, Sept. 13-17, 1975, W. Muller and R. Lindner (Eds.), North-Holland Publishing Company, Amsterdam, 1976.
d. J. W. Ward and H. H. Hill, An Entropy Correlation for the 4f and 5f Metals Correlation of Electronic Properties to Metallic Radii, Magnetic Transformations and Thermodynamics of Vaporization, in *Transplutonium Elements*, Proceedings of the 4th International Symposium, Baden-Baden, Sept. 13-17, 1975, W. Muller and R. Lindner (Eds.), North-Holland Publishing Company, Amsterdam, 1976.
e. R. O. A. Hall, M. J. Mortimer, D. L. McElroy, W. Muller, and J. C. Spirlet, The Specific Heat of Americium-241 Metal from 15 to 300°K, in *Transplutonium Elements*, Proceedings

of the 4th International Symposium, Baden-Baden, Sept. 13-17, 1975, W. Muller and R. Lindner (Eds.), North-Holland Publishing Company, Amsterdam, 1976.

f. R. D. Baybarz et al., Preparation and Structure Studies of Less-Common Actinide Metals, in *Transplutonium Elements*, Proceedings of the 4th International Symposium, Baden-Baden, Sept 13-17, 1975, W. Muller and R. Lindner (Eds.), North-Holland Publishing Company, Amsterdam, 1976.

17. B. D. Dunlap, M. B. Brodsky, G. M. Kalvius, G. K. Shenoy, and D. J. Lam, Hyperfine Interaction and Susceptibility in Some Actinide Metals and Intermetallic Compounds, *J. Appl. Phys.*, **40**: 1495 (1969).

18. J. C. Warf and W. L. Korst, Solutions of Europium and Ytterbium Metals in Liquid Ammonia, *J. Phys. Chem.*, **60**: 1950 (1956).

19. S. R. Gunn and R. J. Morrow, Insolubility of Americium in Liquid Ammonia, *Inorg. Nucl. Chem. Lett.*, **4**: 137 (1968).

20. W. H. Zachariasen, *The Metal Plutonium*, A. S. Coffinberry and W. N. Miner (Eds.), p. 99, University Chicago Press, Chicago, 1961.

21. a. B. T. Matthias, W. H. Zachariasen, G. W. Webb, and J. J. Engelhardt, Melting-Point Anomalies, *Phys. Rev. Lett.*, **18**: 781 (1967).

b. W. H. Zachariasen, Metallic Radii and Electron Configurations of the 5f6d Metals, *J. Inorg. Nucl. Chem.*, **35**: 3487 (1973).

22. a. H. H. Hill, Superconductivity in the 'Actinide' Elements, *Physica*, **55**: 186 (1971)

b. H. H. Hill, The Early 'Actinides'. The Periodic System's f Electron Transition Metal Series, in *Plutonium 1970 and Other Actinides*, Proceedings of the 4th International Conference on Plutonium and Other Actinides, Santa Fe, N. Mex., Oct. 5-8, 1970, W. H. Miner (Ed.), Nuclear Metallurgy, Vol. 17, USAEC Report CONF-701001 (Pts. I and II), 1970

c. R. Julhen, E. Galleani D'Aghiano, and B. Coqblin, Hybridized Nondegenerate 6d and 5f Virtual-Bound-States Model for Actinide Metals, *Phys. Rev. B*, **6**: 2139 (1972)

23. O. J. C. Runnals, Method of Alloying Reactive Metals with Aluminum or Beryllium, U. S. Patent No. 2,809,887, October 1975, British Patent No. 741,441, 1956

24. a. U. Wede, Herstellung von Americium-Aluminum-Legierung, *Radiochum Acta*, **15**: 102 (1971)

b. U. Wede, Application of Americium-Aluminum Alloys for the Production of Transuranium Nucleides and Method for the Production of Americium-Aluminum Alloys, German Patent No. 2,051,923, April 1972.

25. S. H. Eberle, W. Robel, W. Jung, and I. Bayat, in Projekt Actiniden Erster Halbjahresbericht 1971, West German Report KFK-1456, July 1971

26. W. Robel and W. Jung, in Projekt Actiniden 2. Halbjahresbericht 1971, West German Report KFK-1544, January 1972

27. O. J. C. Runnals, Method of Making Alloys of Beryllium with Plutonium and the Like, U. S. Patent No. 2,875,041, 1951, Canadian Patent No. 615,734, 1961.

28. O. J. C. Runnals and R. R. Boucher, Neutron Yields from Americium-Beryllium Alloys, *Nature*, **176**: 1019 (1955), *Can. J. Phys.*, **34**: 949 (1956)

29. G. Brachet and C. Vasseur, Reduction of Americium Oxide by Beryllium for Neutron-Source Production, French Report CEA-R-3875, October 1969

30. J. W. Roddy, Americium Metallides AmAs , AmSb , AmBi , Am_3Se_4 , AmSe_2 , *J. Inorg. Nucl. Chem.*, **36**: 2531 (1974)

31. a. G. Boussières and Y. Legoux, Amalgams of Actinide Elements, *Bull. Soc. Chim. Fr.*, **386** (1965).

b. G. Boussières, M. Haissinsky, and Y. Legoux, Formation of Actinium Amalgam and the Question of Bivalent Actinium, *Bull. Soc. Chim. Fr.*, **1028** (1961).

c. F. David and G. Boussières, Comparative Formation of Amalgams of Transuranium Elements and Rare Earths by Electrolysis, *Inorg. Nucl. Chem. Lett.*, **4**: 153 (1968)

32. Y. Kobayashi and A. Saito, The Extraction of Thorium, Neptunium, Plutonium, and Americium with Sodium Amalgam from Aqueous Solution, *J. Inorg. Nucl. Chem.*, **35**: 3605 (1973).
33. a. B. Erdmann, Darstellung von Actiniden/Lanthaniden-Edelmetall (Pt, Pd, Ir, Rh)—Legierungsphases durch Gekoppelte Reduktion, West German Report KFK-1444, October 1971
b. B. Erdmann and C. Keller, The Preparation of Actinide (+ Zirconium and Hafnium)—Noble Metal Alloy Phases by Coupled Reductions, *Inorg. Nucl. Chem. Lett.*, **7**: 675 (1971)
c. B. Erdmann and C. Keller, Actinide (Lanthanide)—Noble Metal Alloy Phases, Preparation and Properties, *J. Solid State Chem.*, **7**: 40 (1973).
34. H. H. Hill and F. H. Ellinger, Effective Size of Americium Dissolved in Lanthanum, *J. Less-Common Metals*, **23**: 92 (1971).
35. H. H. Hill, J. D. G. Lindsay, R. W. White, L. B. Asprey, V. O. Struebing, and B. T. Matthias, 5f Electrons and Superconductivity Dilute Alloys Formed Between Lanthanum and the Actinide Metals, *Physica*, **55**: 615 (1971).
36. a. B. D. Dunlap, M. B. Brodsky, G. M. Kalvius, and G. K. Shenoy, Magnetic Behavior of Np Metal and Dilute Np Alloys from Mossbauer Effect Studies, in *Plutonium 1970 and Other Actinides*, Proceedings of the 4th International Conference on Plutonium and Other Actinides, Santa Fe, N. Mex., Oct. 5-8, 1970, W. N. Miner (Ed.), *Nuclear Metallurgy*, Vol. 17, USAEC Report CONF-701001 (Pts I and II), 1970.
b. D. J. Lam and A. W. Mitchell, Laves Phases of Actinide Elements, *J. Nucl. Mater.*, **44**: 279 (1972).
37. F. H. Ellinger, K. A. Johnson, and V. O. Struebing, The Plutonium—Americium System, *J. Nucl. Mater.*, **20**: 83 (1966); USAEC Report LA-DC-7095, Los Alamos Scientific Laboratory, 1964.
38. Quarterly Status Report on Advanced Reactor Technology (ART) for Period Ending April 30, 1965, USAEC Report LA-3316, Los Alamos Scientific Laboratory, May 1965.
39. F. H. Ellinger, C. C. Land, and K. A. Gschneider, Jr., Alloying Behavior of Plutonium, in *Plutonium Handbook, A Guide to the Technology*, O. J. Wick (Ed.), Vol. I, p. 197, Gordon and Breach, Science Publishers, New York, 1967
40. H. L. Adair, Levitation-Melting and Americium-Reduction Techniques for Preparation of Thorium—Americium Alloys, *J. Inorg. Nucl. Chem.*, **32**: 1173 (1970).
41. C. Keller, The Solid-State Chemistry of Americium Oxides, in *Lanthanide/Actinide Chemistry*, R. F. Gould (Ed.), p. 228, Advances in Chemistry Series, American Chemical Society, Washington, 1967
42. C. Keller and K. H. Walter, Ternary Oxide des Americiums und Einiger Seltener Erden vom Typ $A_x^{III}BO_3$, *J. Inorg. Nucl. Chem.*, **27**: 1247 (1965).
43. A. W. Mitchell and D. J. Lam, Crystal Structures of Am—Sb, Am—Se, and Am—Te Alloys Near the Equiatomic Composition, *J. Nucl. Mater.*, **37**: 349 (1970).
44. a. B. D. Dunlap, D. J. Lam, G. M. Kalvius, and G. K. Shenoy, Investigation of the Magnetic Behavior of Some Conducting Am Systems, *J. Appl. Phys.*, **42**: 1719 (1971).
b. J. P. Charvillat, U. Benedict, D. Damien, and W. Müller, Preparation et Paramètres de Maille de Quelques Phases d'Americium et de Curium, *Radiochem. Radioanal. Lett.*, **20**: 371 (1975).
45. C. Keller and K. H. Walter, Darstellung, Gitterkonstanten und Chemische Eigenschaften Einiger Ternärer Oxide des Plutoniums, Americiums, und Curiums vom Typ $Me^{III}X^V O_4$, *J. Inorg. Nucl. Chem.*, **27**: 1253 (1965)
46. J. P. Charvillat and D. Damien, Americium Monoarsenide, *Inorg. Nucl. Chem. Lett.*, **9**: 559 (1973).
47. H. A. Eick and R. N. R. Mulford, Americium and Neptunium Borides, *J. Inorg. Nucl. Chem.*, **31**: 371 (1969).

- 48 J. R. Peterson, Compounds of Divalent Lanthanides and Actinides, in Proceedings of the Tenth Rare Earth Research Conference, Carefree, Ariz., Apr 30—May 3, 1973, C J Kevane and T. Moeller (Eds.), USAEC Report CONF-730402, Pt. 1, 1973.
49. R. D. Baybarz, The Preparation and Crystal Structures of Americium Dichloride and Dibromide, *J. Inorg. Nucl. Chem.*, **35**: 483 (1973).
50. S. Fried, The Preparation of Anhydrous Americium Compounds, *J. Amer. Chem. Soc.*, **73**: 416 (1951).
51. R. G. Pappalardo, W. T. Carnall, and P. R. Fields, Low-Temperature Optical Absorption of Americium Halides, *J. Chem. Phys.*, **51**: 1182 (1969).
- 52 L. B. Asprey, T. K. Keenan, and F. H. Kruse, Crystal Structures of the Trifluorides, Trichlorides, Tribromides, and Truodides of Americium and Curium, *Inorg. Chem.*, **4**: 985 (1965).
- 53 D. Brown, S. Fletcher, and D. G. Holah, The Preparation and Crystallographic Properties of Certain Lanthanide and Actinide Tribromides and Tribromide Hexahydrates, *J. Chem. Soc. A*, p 1889 (1968).
54. W. H. Zachariasen, Crystal Chemical Studies of the 5f Series of Elements I. New Structure Types, *Acta Crystallogr.*, **1**: 265 (1948).
- 55 D. Brown, D. G. Holah, and C. E. F. Rickard, Stabilization of Plutonium Tetrabromide and Uranium Pentabromide, *Chem. Commun.*, **11**: 651 (1968).
- 56 J. L. Ryan, Octahedral Hexahalide Complexes of the Trivalent Actinides, in *Lanthanide/Actinide Chemistry*, R. F. Gould (Ed.), p. 331, Advances in Chemistry Series, American Chemical Society, Washington, 1967.
57. A. W. Mitchell and D. J. Lam, The Crystal Structure of Americium Sesquicarbide, *J. Nucl. Mater.*, **36**: 110 (1970).
- 58 F. Weigel and N. ter Meer, The Unit Cells of Some Americium(III)-Salts with Organic Anions, *Inorg. Nucl. Chem. Lett.*, **3**: 403 (1967).
59. D. Fang, Karlsruhe, Dissertation, 1967, cited in Ref 61.
60. F. Weigel and N. ter Meer, Der Thermische Abbau von Americium(III)-Oxalat, -formiat und -Carbonate, *Z. Naturforsch.*, **B**, **26**: 504 (1971).
- 61 C. Keller and D. Fang, Über Karbonatokomplexe des driewertigen Americiums sowie des Vier- und Sechswertigen Urans und Plutoniums, *Radiochim. Acta*, **11**: 123 (1969).
62. J. P. Nigon, R. A. Penneman, E. Staritzky, T. K. Keenan, and L. B. Asprey, Alkali Carbonates of Np(V), Pu(V), and Am(VI), *J. Phys. Chem.*, **58**: 403 (1954).
- 63 T. K. Keenan, Lattice Constants of Some Alkali Metal Actinyl(V) Compounds, *Inorg. Chem.*, **4**: 1500 (1965).
64. T. K. Keenan and F. H. Kruse, Potassium Double Carbonates of Pentavalent Neptunium, Plutonium, and Americium, *Inorg. Chem.*, **3**: 1231 (1964).
65. J. S. Coleman, T. K. Keenan, L. H. Jones, W. T. Carnall, and R. A. Penneman, Preparation and Properties of Americium(VI) in Aqueous Carbonate Solutions, *Inorg. Chem.*, **2**: 58 (1963).
66. G. A. Burney, Separation of Americium from Curium by Precipitation of $K_3AmO_2(CO_3)_2$, *Nucl. Appl.*, **4**: 217 (1968).
- 67 G. N. Yakovlev and D. S. Gorbenko-Germanov, Coprecipitation of Americium(V) with Double Carbonates of Uranium(VI) or Plutonium(VI) with Potassium, in *Proceedings of the International Conference on the Peaceful Uses of Atomic Energy, Geneva, 1955*, Vol 7, p. 306, United Nations, New York, 1956.
68. F. H. Ellinger and W. H. Zachariasen, The Crystal Structure of $KPuO_2CO_3$, $NH_4PuO_2CO_3$, and $RbAmO_2CO_3$, *J. Phys. Chem.*, **58**: 405 (1954).
69. L. B. Werner and I. Perlman, The Pentavalent State of Americium, *J. Amer. Chem. Soc.*, **73**: 495 (1951).
70. G. R. Hall and T. L. Markin, The Alpha Half-Life of Americium-241, *J. Inorg. Nucl. Chem.*, **4**: 137 (1957).

71. A. Broido and B. B. Cunningham, Heat and Free Energy of the Reaction $\text{AmCl}_3(\text{c}) + \text{H}_2\text{O(g)} = \text{AmOCl}(\text{c}) + 2\text{HCl(g)}$, USAEC Report AECD-2918, University of California, Radiation Laboratory, July 1950.
72. J. H. Burns and J. R. Peterson, Refinement of the Crystal Structure of AmCl_3 , *Acta Crystallogr., B*, **26**: 1885 (1970).
73. J. Fugger and B. B. Cunningham, Heats of Formation of Pu^{3+} , $\text{PuCl}_3(\text{c})$, $\text{PuOCl}(\text{c})$, Am^{3+} , $\text{AmCl}_3(\text{c})$, and $\text{AmOCl}(\text{aq})$, *J Inorg Nucl. Chem.*, **25**: 1423 (1963).
74. H. R. Lohr and B. B. Cunningham, The Heat of Reaction of Americium Metal with 1.5M Hydrochloric Acid and a Note on the Heats of Formation of La^{+3} and Pr^{+3} (aq), *J. Amer. Chem. Soc.*, **73**: 2025 (1951); USAEC Report AECD-2902, University of California Radiation Laboratory, July 1950.
75. J. Fugger, Thermal Expansion Coefficients of the Anhydrous Trichlorides of Cerium, Plutonium, and Americium, *J Inorg. Nucl. Chem.*, **28**: 3055 (1966).
76. J. B. Gruber and F. G. Conway, The Absorption Spectrum and Zeeman Effect of Am^{3+} in LaCl_3 , *J Chem. Phys.*, **36**: 191 (1962).
77. Y. Marcus, The Solubility of Americium(III) Chloride in Concentrated Lithium Chloride Solutions, *Radiochim. Acta.*, **8**: 212 (1967).
78. J. H. Burns and J. R. Peterson, The Crystal Structures of Americium Trichloride Hexahydrate and Berkelium Trichloride Hexahydrate, *Inorg. Chem.*, **10**: 147 (1971).
79. B. J. Stover and J. G. Conway, The Absorption Spectrum of Hydrated Americium Chloride, *J. Chem. Phys.*, **20**: 1490 (1952), USAEC Report UCRL-1778, University of California Radiation Laboratory, May 1952.
80. D. H. Templeton and C. H. Dauben, Crystal Structure of Americium Compounds, *J Amer. Chem. Soc.*, **75**: 4560 (1953), USAEC Report UCRL-2101, University of California Radiation Laboratory, February 1953.
81. a. C. W. Koch and B. B. Cunningham, The Vapor Phase Hydrolysis of the Actinide Halides. I. Heat and Free Energy of the Reaction $\text{AmCl}_3(\text{s}) + \text{H}_2\text{O(g)} = \text{AmOCl}(\text{s}) + 2\text{HCl(g)}$, *J Amer. Chem. Soc.*, **76**: 1470 (1954); USAEC Report UCRL-2006, University of California Radiation Laboratory, November 1952
b. F. Weigel, V. Wishnevsky, and H. Hauske, The Vapor Phase Hydrolysis of $^{241}\text{AmCl}_3$ and $^{243}\text{AmCl}_3$, Heats of Formation of $^{241}\text{AmOCl}$ and $^{243}\text{AmOCl}$, in *Transplutonium Elements*, Proceedings of the 4th International Symposium, Baden-Baden, Sept. 13-17, 1975, W. Müller and R. Lindner (Eds.), North-Holland Publishing Company, Amsterdam, 1976.
82. K. W. Bagnall, J. B. Laidler, and M. A. A. Stewart, Americyl(V) and (VI) Chloro-Complexes, *Chem. Commun.*, **24**: (1967).
83. a. K. W. Bagnall, J. B. Laidler, and M. A. A. Stewart, Americium Chloro-Complexes, *J Chem. Soc., A*, p. 133 (1968).
b. M. E. Hendricks, E. R. Jones, Jr., J. A. Stone, and D. G. Karraker, Magnetic Properties of Trivalent Actinides in the Octahedral Compounds $\text{Cs}_2\text{NaMCl}_6$, *J. Chem. Phys.*, **60**: 2095 (1974).
84. Y. Marcus and M. Shiloh, A Spectrophotometric Study of Trivalent Complexes in Solution. IV. Americium with Chloride Ligands, *Israel J. Chem.*, **7**: 31 (1969).
85. Y. Marcus and M. Bomse, Octahedral Chloride Complexes of Trivalent Actinides and Lanthanides in Solution. *Israel J. Chem.*, **8**: 901 (1970).
86. D. Brown, *Halides of the Lanthanides and Actinides*, p. 122, John Wiley & Sons, Inc., New York, 1968.
87. N. Edelstein, W. Easley, and R. McLaughlin, Formation and Characterization of Divalent Americium in CaF_2 Crystals, *J. Chem. Phys.*, **44**: 3130, 1966.
88. N. Edelstein, W. Easley, and R. McLaughlin, Optical and Electron Paramagnetic Resonance Spectroscopy of Actinide Ions in Single Crystals, in *Lanthanide/Actinide Chemistry*, R. F.

Gould (Ed.), p 203, Advances in Chemistry Series, American Chemical Society, Washington, 1967

89 N Edelstein and W Easley, Zero Field Splittings of Am^{2+} and Cm^{3+} in Cubic Symmetry Sites in CaF_2 , *J Chem. Phys.* 48: 2110 (1968)

90 L B Asprey, New Compounds of Quadrivalent Americium, AmF_4 , KAmF_5 , *J Amer. Chem. Soc.* 76: 2019 (1954)

91 J L Burnett, Melting Points of CmF_3 and AmF_3 , *J Inorg. Nucl. Chem.*, 28: 2454 (1966), *Trans. Amer. Nucl. Soc.*, 8: 335 (1965)

92 W W T Crane, J C Wallmann, and B B Cunningham, The Magnetic Susceptibilities of Some Compounds of Americium and Curium, USAEC Report UCRL 846, University of California Radiation Laboratory, August 1950

93 L B Asprey and T K Keenan, Tetravalent Americium and Curium, The Absorption Spectra of the Tri- and Tetrafluorides of These Elements, *J Inorg. Nucl. Chem.*, 7: 27 (1958)

94 J A Stone and W L Pillinger, Mossbauer Effect with ^{241}Am Sources, USAEC Report CONF-661208-3, Savannah River Laboratory, November 1966

95 G M Kalvius, S L Ruby, B D Dunlap, G K Shenoy, D Cohen, and M B Brodsky, Mossbauer Isomer Shift in ^{243}Am , *Phys. Lett. B* 25: 489 (1969)

96 M E Jones, The Vapor Pressure of Americium Trifluoride (Thesis), USAEC Report UCRL-1438, University of California Radiation Laboratory, August 1951

97 S C Carniglia, Vapor Pressures of Americium Trifluoride and Americium Metal, USAEC Report UCRL 2389, University of California Radiation Laboratory, 1953

98 S C Carniglia and B B Cunningham, Vapor Pressures of Americium Trifluoride and Plutonium Trifluoride, Heats and Free Energies of Sublimation, *J Amer. Chem. Soc.*, 77: 1451 (1955)

99 J L Ryan, Battelle Pacific Northwest Laboratories, personal communication, 1974

100 G N Yakovlev and V N Kosyakov, An Investigation of the Chemistry of Americium, *Proceedings of the Second International Conference on the Peaceful Uses of Atomic Energy, Geneva, 1958*, Vol 28, p 373, United Nations, New York, 1958

101 W V Conner, Conversion of Multi-Gram Quantities of $^{241}\text{AmO}_2$ to $^{241}\text{AmF}_4$, *J. Less Common Metals* 25: 379 (1971), USAEC Report RFP-1188, Dow Chemical Co., Rocky Flats, November 1968

102 a T K Keenan and L B Asprey, Lattice Constants of Actinide Tetrafluorides Including Berkelium, *Inorg. Chem.*, 8: 235 (1969)
b L B Asprey and R G Haire, On the Actinide Tetrafluoride Lattice Parameters, *Inorg. Nucl. Chem. Lett.* 9: 1121 (1973)

103 E G Chudinov and D Ya Choporov, Sublimation of Americium Tetrafluoride, *At. Energ. (USSR)*, 28: 62 (1970) through *Sov. At. Energy (Engl. Transl.)* 28: 71 (1970)

104 B Weinstock and J G Malm, The Properties of Plutonium Hexafluoride, *J. Inorg. Nucl. Chem.*, 2: 380 (1956)

105 S Tsujimura, D Cohen, C L Chernick, and B Weinstock, The Attempted Preparation of AmF_6 , *J. Inorg. Nucl. Chem.*, 25: 226 (1963)

106 T K Keenan, Lattice Constants of AmO_2F_2 , *Inorg. Nucl. Chem. Lett.*, 4: 381 (1968)

107 C Keller and H Schmutz, Über Doppelfluoride der dreywertigen Lanthaniden und einiger Actiniden des typs NaMeF_4 , *Z. Naturforsch. B* 19: 1080 (1964)

108 H Schmutz, Untersuchungen in den Systemen Alkalifluorid-Lanthaniden/Actinidenfluorid (Li, Na, K, Rb-La, S E, Y/Np, Pu, Am), West Germany Report KFK-431, July 1966

109 T K Keenan, Lattice Constants of 7-6 Sodium-Actinide(IV) Fluorides, *Inorg. Nucl. Chem. Lett.*, 2: 211 (1966)

110 L B Asprey and R A Penneman, Preparation and Properties of Aqueous Tetravalent Americium, *Inorg. Chem.*, 1: 134 (1962)

111 T K Keenan, Lattice Constants of 1-1 Lithium Tetravalent Actinide Pentafluorides (1), *Inorg. Nucl. Chem. Lett.*, 2: 153 (1966)

- 112 R A Penneman, T K Keenan, and B Asprey, Tetra and Pentavalent Actinide Fluoride Complexes, in *Lanthanide/Actinide Chemistry* P F Gould (Ed.), p 248, Advances in Chemistry Series, American Chemical Society, Washington, 1967
- 113 T K Keenan, Lattice Constants of $K_7Cm_6I_{31}$, Trends in the 1 1 and 7 6 Alkali Metal-Actinide(IV) Series, *Inorg Nucl Chem Lett*, 3: 391 (1967)
- 114 T K Keenan, Lattice Constants of Rb_2M_6 M = Uranium Through Curium *Inorg Nucl Chem Lett*, 3: 463 (1967)
- 115 I H Kruse and L B Asprey, A Crystalline Fluoride Complex of Tetravalent Americium, *Inorg Chem*, 1: 137 (1962)
- 116 L B Asprey, I H Ellinger, and W H Zachariasen, Preparation, Identification, and Crystal Structure of a Pentavalent Americium Compound, $KAmO_2\Gamma_2$, *J Amer Chem Soc*, 76: 5235 (1954)
- 117 T K Keenan, Lattice Constants of Some Alkali Metal Actinyl(V) Compounds, *Inorg Chem*, 4: 1500 (1965)
- 118 C Keller, Untersuchungen über die Germanate und Silikate des Typs ABO_4 der Vierwertigen Elemente Thorium bis Americum, *Nukleonik* 5: 41 (1963)
- 119 J J Katz and G T Seaborg, *The Chemistry of the Actinide Elements* p 349, Methuen & Co, Ltd, London, 1957
- 120 W M Olson and R N R Multord, The Americium-Hydrogen System, *J Phys Chem*, 70: 2934 (1966)
- 121 J W Roddy, The Actinide Hydrides The Americium-Hydrogen System, *J Inorg Nucl Chem*, 35: 4141 (1973)
- 122 C E Messer and M K Park, Dissociation Pressures and Related Thermodynamic Functions and Hydrogen Solution Parameters in The System PrH_2 – PrH_3 , NdH_2 – NdH_3 , and SmH_2 – SmH_3 General Considerations for the Related Lanthanide and Actinide Hydride Systems, *J Less Common Metals*, 26: 235 (1972)
- 123 K Buijs and K P Louwrier, Peroxides of Am(III) and the Oxidation of Am(III) to Am(IV) by Hydrogen Peroxide, *J Inorg Nucl Chem*, 28: 2463 (1966)
- 124 Chemical Technology Division Annual Progress Report for Period Ending May 31, 1968, USAEC Report ORNL-4272, Oak Ridge National Laboratory, September 1968
- 125 W O Milligan, M L Beasley, M H Lloyd, and R G Haire, Crystalline Americium Hydroxide, *Acta Crystallogr Sect B*, 24: 978 (1968)
- 126 W O Milligan, Crystal Structure and Morphology of Hydrous Oxides and Hydroxides in the Lanthanide and Actinide Series, Final Report, June 1, 1969–May 31, 1972, USAEC Report ORO 3955-3, Oak Ridge National Laboratory, 1972
- 127 B Weaver and R R Shoun, Basicities of Trivalent Actinides and Lanthanides and Solubilities of Their Hydroxides, in Proceedings of the 9th Rare Earth Research Conference, Oct 10–14, 1971, Blacksburg, Va, USAEC Report CONF-711001-(Vol 1), p 322, 1971
- 128 B B Cunningham, The First Isolation of Americium in the Form of Pure Compounds, Microgram-Scale Observations on the Chemistry of Americium, in *The Transuranium Elements*, G T Seaborg and J J Katz (Eds.), p 1363, National Nuclear Energy Series, Div IV, Vol 14B, McGraw-Hill Book Company, Inc, New York, 1949.
- 129 R A Penneman, J S Coleman, and T H Keenan, Alkaline Oxidation of Americium, Preparation and Reactions of Am(IV) Hydroxide, *J Inorg Nucl Chem*, 17: 138 (1961)
- 130 R Baybarz, L B Asprey, C E Strouse, and E Fukushima, Divalent Americium The Crystal Structure and Magnetic Susceptibility of AmI_2 , *J Inorg Nucl Chem*, 34: 3427 (1972)
- 131 L B Asprey, T K Keenan, and F H Kruse, Preparation and Crystal Data for Lanthanide and Actinide Triiodides, *Inorg Chem*, 3: 1137 (1964)
- 132 R G Maslov and Yu P Maslov, Heat of Formation of Some Thorium, Protactinium, Uranium, Neptunium, and Americium Halides, *J Gen. Chem. USSR (Engl Transl.)*, 35: 2100 (1965)

133. W. Freundlich and M. Pages, Oxydes Ternaires de Neptunium(VI) et Americium(III) avec Molydène ou Tungstène NpM_2O_8 , $\text{Am}_2\text{M}_3\text{O}_{12}$ ($\text{M} = \text{Mo, W}$), *Compt. Rend., Ser. C*, **269**: 392 (1969).

134. A. Tabuteau, M. Pages, and W. Freundlich, Molybdate d'Americium(III) $\text{Am}_2(\text{MoO}_4)_3$ et Réactions avec les Molybdates Alcalins, *Radiochem. Radioanal. Lett.*, **12**: 139 (1972).

135. Y. Akimoto, A Note on AmN and AmO , *J. Inorg. Nucl. Chem.*, **29**: 2650 (1967).

136. Chemistry Division Semiannual Report [for] December 1958 Through May 1959, USAEC Report UCRL-8867, University of California Radiation Laboratory, May 1959

137. a. Chemistry Division Semiannual Report for June Through December 1959, USAEC Report UCRL-9093, University of California Radiation Laboratory, February 1960.

b. R. A. Potter and V. J. Tennery, Process for the Preparation of Uranium Nitride, U S. Patent No 3,758,669, September 1973.

c. J. P. Charvillat, U. Benedict, D. Damien, Ch. de Novion, A. Wojakowski, and W. Müller, Preparation and Lattice Parameters of Actinide Monochalcogenides and Monopnictides, in *Transplutonium Elements, Proceedings of the 4th International Symposium, Baden-Baden, Sept. 13-17, 1975*, W. Müller and R. Lindner (Eds.), North-Holland Publishing Company, Amsterdam, 1976

138. H. Tagawa, Phase Behavior and Crystal Structure of Actinide Nitrides, *Nippon Genshuryoku Gakkaishi*, **5**: 267 (1971).

139. W. H. Zachariasen, Crystal Chemical Studies of the 5f-Series of Elements XII New Compounds Representing Known Structure Types, *Acta Crystallogr.*, **2**: 288 (1949), *Phys. Rev.*, **73**: 1104 (1948).

140. R. J. Ackermann, R. L. Faircloth, and M. H. Rand, A Thermodynamic Study of the Vaporization Behavior of the Substoichiometric Plutonium Dioxide Phase, *J. Phys. Chem.*, **70**: 3698 (1966).

141. L. Eyring, H. R. Lohr, and B. B. Cunningham, Heat of Reaction of Some Oxides of Americium and Praseodymium with Nitric Acid and an Estimate of the Potentials of the $\text{Am(III)}-\text{Am(IV)}$ and $\text{Pr(III)}-\text{Pr(IV)}$ Couples, *J. Amer. Chem. Soc.*, **74**: 1186 (1952), USAEC Report UCRL-327, University of California Radiation Laboratory, 1949

142. T. D. Chikalla, C. E. McNeilly, J. L. Bates, and J. J. Rasmussen, High-Temperature Phase Transformations in Some Lanthanide and Actinide Oxides, in *Proceedings of the International Colloquium on High Temperature Phase Transformations*, Centre National de la Recherche Scientifique, Publication No. 205, 1973.

143. J. C. Wallmann, A Structural Transformation of Curium Sesquioxide, *J. Inorg. Nucl. Chem.*, **26**: 2053 (1964).

144. T. D. Chikalla and L. Eyring, Phase Relationships in the Americium-Oxygen System, *J. Inorg. Nucl. Chem.*, **30**: 133 (1968).

145. a. U. Berndt, R. Tanamas, D. Maier, and C. Keller, Zur Stabilität der Monoklinen Modifikation der Sesquioxide von Americium und Europium, *Inorg. Nucl. Chem. Lett.*, **10**: 315 (1974).

b. D. Maier, Polymorphy of Americium Sesquioxide and Contributions to the Stability of the Modifications of the Rare Earth Oxides, West Germany Report KFK-1844, July 1973.

146. a. C. Keller and U. Berndt, The Reaction of Americium Oxides with Trivalent Metal Oxides, in *Transplutonium Elements, Proceedings of the 4th International Symposium, Baden-Baden, Sept. 13-17, 1975*, W. Müller and R. Lindner (Eds.), North-Holland Publishing Company, Amsterdam, 1976.

b. M. Foex and J. P. Traverse, Polymorphism of Rare Earth Sesquioxides at High Temperatures, *Bull. Soc. Fr. Miner. Crist.*, **89**: 184 (1966).

c. I. Warshaw and R. Roy, Polymorphism of the Rare Earth Sesquioxides, *J. Phys. Chem.*, **65**: 2048 (1961).

d. R. D. Baybarz, High-Temperature Phases, Crystal Structures, and the Melting Points for Several of the Transplutonium Sesquioxides, *J. Inorg. Nucl. Chem.*, **35**: 4149 (1973).

e T D Chikalla and R P Turcotte, Battelle Pacific Northwest Laboratories, personal communication 1974

147 G R Hall and T L Markin, The Alpha Half Life of ^{241}Am *J Inorg Nucl Chem* **2** 202 (1955)

148 a L B Asprey, F H Ellinger, S Fried, and W H Zachariasen, Evidence for Quadrivalent Curium X Ray Data on Curium Oxides *J Amer Chem Soc* **77** 1707 (1965)
b J A Fahey, R P Turcotte, and T D Chikalla, Thermal Expansion of the Actinide Dioxides, *Inorg Nucl Chem Lett* **10**: 459 (1974)

149 R E McHenry, Melting Points of Curium and Americium Oxides, *Trans Amer Nucl Soc* **8**: 75 (1965)

150 T D Chikalla and L Eyring, Dissociation Pressures and Partial Thermodynamic Quantities for Americium Oxides, *J Inorg Nucl Chem* **29**: 2281 (1967)

151 L B Asprey and B B Cunningham, Equilibria in the Oxide Systems of Praesodymium and Americium, USAEC Report UCRL 329, University of California Radiation Laboratory, April 1949

152 a C Sari and E Zamorani, An Investigation in the Americium Oxide System, *J Nucl Mat* **37** 324 (1970)
b C Sari, V Tebaldi, I D Pietra, Ceramography of Americium Oxides, Report EUR-4413, September 1969

153 a T D Chikalla and R P Turcotte, Oxygen Dissociation Pressures and Phase Behavior in the Transplutonium Oxides, in *Solid State Chemistry* National Bureau of Standards, Publication No 364, Superintendent of Documents, U S Government Printing Office, Washington, 1972
b D G Karraker, Magnetic Susceptibility of $^{243}\text{AmO}_2$, USERDA Report DP-MS-75-1, E I du Pont de Nemours and Company by Savannah River Laboratory, 1975

154 C Keller, L Koch, and K H Walter, Die Reaktion der Oxide der Transurane mit Alkalioxiden I Ternare Oxide der Sechswertigen Transurane mit Lithium und Natrium, *J Inorg Nucl Chem* **27** 1205 (1965)

155 C Keller, L Koch, and K H Walter, Die Reaktion der Transuranoxide mit Alkalioxiden-II Ternare Oxide der Unwerten Transurane und des Protactiniums mit Lithium und Natrium, *J Inorg Nucl Chem*, **27**: 1225 (1965)

156 C Keller, Über die Festkörperchemie der Actinides Oxide, (The Solid State Chemistry of the Actinide Oxides), West Germany Report KFK 225, February 1964

157 W C Mosley, Studies of Mixed Actinide Oxides $\text{Am}_y\text{Cm}_{1-y}\text{O}_x$ and $\text{Pu}_y\text{Cm}_{1-y}\text{O}_x$, in *Plutonium 1970 and Other Actinides* Proceedings of the 4th International Conference on Plutonium and Other Actinides, Santa Fe, N Mex, Oct 5-9, 1970, W N Miner (Ed.), Nuclear Materials, Vol 17, USAEC Report CONF-701001 (Pts I and II), 1970

158 H Radzewitz, Festkörperchemische Untersuchungen über die Systeme $\text{SeO}_{1.5}-\text{ZrO}_2(\text{HfO}_2)$, $\text{AmO}_{1.5}-\text{ZrO}_2(\text{HfO}_2, \text{ThO}_2)$ O_2 und $\text{TiO}_2-\text{NpO}_2(\text{PuO}_2)$, [Solid Chemical Investigations of the Systems $\text{SeO}_{1.5}-\text{ZrO}_2(\text{HfO}_2)$, $\text{AmO}_{1.5}-\text{ZrO}_2(\text{HfO}_2, \text{ThO}_2)$ O_2 , and $\text{TiO}_2-\text{NpO}_2(\text{PuO}_2)$] West Germany Report KFK 433 July 1966

159 C Keller, Ternare and Polynare Oxides des Protactiniums mit Perowskitstruktur, *J Inorg Nucl Chem* **27**: 321 (1965)

160 C Keller, U Berndt, M Debbabi, and H Engerer, Phasengleichgewichte in den Systemen Scandiumoxid Oxide der Actiniden (Th Am), *J Nucl Mat* **42**: 23 (1972)

161 D Damien and I Jove, Americium Disulfide and Diselenide, *Inorg Nucl Chem Lett* **7** 685 (1971)

162 C Cimetiere, J Desroches and C Routier, *Process for Fabrication of Alpha Sources* French Patent No 2,041 947, 1971

163 J H Burns and R D Baybarz, Crystal Structure of Americium Sulfate Octahydrate, *Inorg Chem* **11** 2233 (1972)

164. G. N. Yakovlev, D. S. Gorbenko-Germanov, R. A. Zenkova, V. L. Razbitnoi, and K. S. Kazansku, Study of Double Sulfates of Americium by Absorption Spectra in Crystals, *J. Gen. Chem. USSR (Engl. Transl.)*, **28**: 2653 (1958).
165. E. Staritzky and D. I. Walker, Optical Properties of Some Compounds of Uranium, Plutonium, and Related Elements, USAEC Report LA-1439, Los Alamos Scientific Laboratory, June 1952.
166. V. I. Grebenschchikova and V. N. Babrova, Coprecipitation of Lanthanum, Cerium, and Americium, *Zhur. Neorg. Khim.*, **3**: 400 (1958)
167. V. I. Grebenschchikova and V. N. Babrova, Coprecipitation of Plutonium and Americium with Potassium Sulfate, *Radiokhimiya*, **3**: 544 (1961) through *Radiochemistry USSR* **3**: 32 (1961)
168. V. I. Grebenschchikova and N. B. Cheinyavskaya, Isolation of Np^{4+} , Pu^{4+} , and Am^{3+} from Solutions by the Sulfate Method, *Radiokhimiya*, **4**: 232 (1961) through *Sov. Radiochem (Engl. Transl.)*, **4**: 207 (1962)
169. K. Ueno and M. Hoshi, Precipitation of Some Actinide Element Complex Ions by Using Hexammine Cobalt (III) Cation III. The Precipitation of Neptunium(VI) and Americium(VI) Sulfate Complexes with Hexammine Cobalt(III) Cation, *J. Inorg. Nucl. Chem.*, **33**: 2631 (1971).
170. K. Ueno and M. Hoshi, II. The Precipitation of Thorium, Uranium(VI), and Plutonium(IV), (VI) Sulfate Complex Ions with Hexammine Cobalt (III) Cation, *J. Inorg. Nucl. Chem.*, **33**: 1765 (1971)
171. D. Damien, α Form of Americium Sesquisulfide and Americium Monosulfide, *Inorg. Nucl. Chem. Lett.*, **7**: 291 (1971).
172. W. H. Zachariasen, Crystal Chemical Studies of the 5f-Series of Elements. VI The Ce_2S_3 – Ce_3S_4 Type of Structure, *Acta Crystallogr.*, **2**: 57 (1949)
173. D. Damien, J. P. Marcon, and J. Jove, The β Form of Americium Sesquisulfide, *Inorg. Nucl. Chem. Lett.*, **8**: 317 (1972)
174. D. Damien, Americium Tritelluride and Ditelluride, *Inorg. Nucl. Chem. Lett.*, **8**: 501 (1972)
175. D. Damien and J. P. Charvillat, Americium Sesquitellurides, *Inorg. Nucl. Chem. Lett.*, **8**: 705 (1972).
176. Y. Marcus and D. Cohen, Americium(III) Perxenate, *Inorg. Chem.*, **5**: 1740 (1966).
177. L. B. Asprey, S. E. Stephanou, and R. A. Penneman, A New Valence State of Americium, Am(VI), *J. Amer. Chem. Soc.*, **72**: 1425 (1950)
178. L. B. Asprey, S. E. Stephanou, and R. A. Penneman, Hexavalent Americium, *J. Amer. Chem. Soc.*, **73**: 5715 (1951)
179. L. B. Asprey, S. E. Stephanou, and R. A. Penneman, Compounds of the Element Americium, U.S. Patent No. 2,681,924, June 1954.
180. L. L. Jones, Infrared Spectra and Structure of the Crystalline Sodium Acetate Complexes of U(VI), Np(VI), Pu(VI), and Am(VI). A Comparison of Metal–Oxygen Bond Distance and Bond Force Constant in This Series, *J. Chem. Phys.*, **23**: 2105 (1953)
181. a. C. Keller and H. Schrock, Die Chelatbildung und Extraktion des Dreibwertigen Actiniums, Americums, Curiums, und Californiums mit Acetylacetone und Einiger Seiner Derivate, *J. Inorg. Nucl. Chem.*, **31**: 1121 (1969).
b. D. G. Karraker, Potassium *Bis*(Cyclooctatetraenyl) Americium(III), in *Transplutonium Elements*, Proceedings of the 4th International Symposium, Baden-Baden, Sept. 13–17, 1975, W. Müller and R. Lindner (Eds.), North-Holland Publishing Company, Amsterdam, 1976
182. F. Baumgartner, E. O. Fisher, B. Kanellakopulos, and P. Laubereau, Tri(Cyclopentadienyl)-Americium(III), *Angew. Chem.*, **78**: 112 (1966), *Angew. Chem. Int. Ed. Engl.*, **5**: 134 (1966)
183. a. G. T. Seaborg, Recent Advances in the Chemistry of Organometallic Compounds of the Actinide Elements, *Pure Appl. Chem.*, **30**: 539 (1972)

b. B Kanellakopulos, Cyclopentadienyl-Complexes of the Actinide Elements, in *Symposium on the Transuranium Elements*, Liege, Belgium, Apr 21-22, 1969, Report CONF-690426, 1969

c. G. E. Moore (Ed.), *Chemistry Division Annual Progress Report for Period Ending May 20, 1970*, USAEC Report ORNL-4581, Oak Ridge National Laboratory, September 1970

184 B Kanellakopulos, E O Fisher, E Dornberger, and F Baumgartner, Über Tricyclopentadienyluran (III) und Seine Addukte mit Tetrahydrofuran, Cyclohexylisonitril, und l-Nicotin, *J. Organometal. Chem. (Amsterdam)*, 24: 507 (1970)

185. R. Pappalardo, W. T. Carnall, and P R Fields, Absorption Spectrum of Americium Trichloropentadienide, *J. Chem. Phys.*, 51: 842 (1969)

186. L. J. Nugent, P G. Laubereau, G K Werner, and K. L. Vander Sluis, Noncovalent Character in the Chemical Bonds of the Lanthanide(III) and the Actinide(III) Tricyclopentadienides, *J. Organometal. Chem. (Amsterdam)*, 27: 365 (1971)

187. R D Fischer, P. Laubereau, and B. Kanellakopulos, in *Third International Transplutonium Element Symposium*, Argonne, Ill., Oct 20-22, 1971, Report CONF-711078 (Abstracts), 1971.

188 M D Danford, J H Burns, C E Higgins, J R Stokeley, Jr., and W H Baldwin, Preparation and Properties of Some Rare Earth and Americium Chelates, *Inorg. Chem.* 9: 1953 (1970)

189 M Sakanoue and R Amano, Preparation of Americium and Californium Dipivaloylmethanato Complexes and Their Volatilities as Compared with Plutonium and Lanthanoid Complexes, in *Transplutonium Elements*, Proceedings of the 4th International Symposium, Baden-Baden, Sept 13-17, 1975, W Muller and R Lindner (Eds.), North-Holland Publishing Company, Amsterdam, 1975

190 J H Burns and M D Danford, The Crystal Structure of Cesium Tetrakis(hexafluoroacetylacetylacetonato)europate and -americiate Isomorphism with the Yttrate, *Inorg. Chem.* 8: 1780 (1969)

191 K W Bagnall, Complex Compounds with Neutral and Chelating Ligands, in *Transuranium Elements Part C Compounds*, G Koch (Ed.), Gmelins Handbook of Inorganic Chemistry, New Supplement Series, Vol 4, Verlag Chemie GmbH, Weinheim, Germany, 1972, p 264

192 C Keller, S H Eberle, and K Mosdzelewski, Die Verbindungen des Dreiwertigen Plutoniums, Americium, und Curiums mit 8-Hydroxychinoline und einiger Seiner Derviate, *Radiochim. Acta*, 4: 141 (1965)

193 E Staritzky and A L Truitt, Optical Properties of Some Compounds of Uranium, Plutonium, and Related Elements, in *The Actinide Elements*, G T Seaborg and J J Katz (Eds.), Chap 19, National Nuclear Energy Series, Div IV, Vol 14A, McGraw-Hill Book Company, Inc., New York, 1954

194 R D Baybarz, Preparation of Americium Dioxide by Thermal Decomposition of Americium Oxalate in Air, USAEC Report ORNL-3003, Oak Ridge National Laboratory, December 1960

195 I A Lebedev, S V Pirozhkov, V M Razbitnoi, and G N Yakovlev, Studies on Complex Formation Between Am^{3+} and Oxalate Ions, *Radiochimica* 2: 351 (1960) through Sov *Radiochem. (Engl. Transl.)*, 2: 89 (1960)

196. G. A. Burney and J A Porter, Solubilities of Pu(III), Am(III), and Cm(III) Oxalates, *Inorg. Nucl. Chem. Lett.*, 3: 79 (1967)

197 T L Markin, The Thermal Decomposition of Americium(III) Oxalate, *J. Inorg. Nucl. Chem.*, 7: 290 (1958)

198 F Weigel, W Ollendorff, V Scherer, and R Hagenbruch, Structure Investigations on Lanthanide Oxalates I Single-Crystal Investigations on Neodymium(III) Oxalate Decahydrate and Samarium(III) Oxalate Decahydrate The Elementary Cell of Promethium Oxalate Decahydrate, *Z. Anorg. Allg. Chem.*, 345: 119 (1966)

199 C Keller, *Chemistry of the Transuranium Elements*, pp. 503 and 542, Verlag Chemie GmbH, Weinheim, Germany, 1970

200 I A Lebedev, S V Pirozhkov, V M Razbitnol, and G N Yakovlev, Investigation of the Decomposition of Americium Oxalate Under the Action of Its Own α Radiation, *Radio khimya* 4: 308 (1962) through *Sov Radiochem (Engl Transl)* 4: 276 (1962)

201 W Hagenberg, Dissertation, Technische Universität München, 1973

202 I Lux, Lanthanide and Actinide Phthalocyaninato Complexes, in Proceedings of the Tenth Rare Earth Research Conference, Carefree, Ariz, Apr 30 May 3, 1973, C J Kevane and T Moeller, (Eds), p 871, USAEC Report CONI-730402(Pt 2), 1973

203 S H Eberle and W Robel, Normale und Solvatisierte Chelate Sechswertiger Actiniden mit *a* Picolinsaure, *Inorg Nucl Chem Lett* 6: 369 (1970)

204 W Robel, Complex Compounds of Hexavalent Actinides with Pyridine Carboxylic Acids, West Germany Report KFK-1070, December 1970

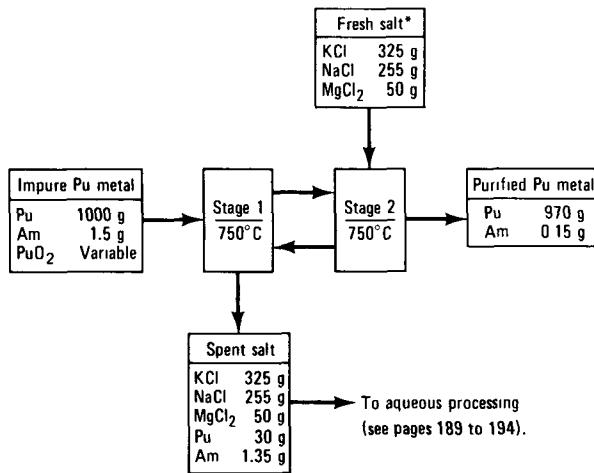
205 A T Aldred, B D Dunlap, D J Lam, and G K Shenoy, Crystal Structure and Magnetic Properties of Americium Phases, in *Transplutonium Elements* Proceedings of the 4th International Symposium, Baden-Baden, Sept 13-17, 1975, W Müller and R Lindner (Eds), North Holland Publishing Company, Amsterdam, 1976

206 V A Vodavatov, V G Kolokoltsov, T V Kovaleva, L G Mashirov, D N Suglobov, and V G Sles, Coordinating Properties of Actinide(V) Dioxocations, in *Transplutonium Elements* Proceedings of the 4th International Symposium, Baden-Baden, Sept 13-17, 1975, W Müller and R Lindner (Eds), North-Holland Publishing Company, Amsterdam, 1976

5 RECOVERY; SEPARATION; PURIFICATION

INTRODUCTION

Present-day technology for recovery and purification of americium involves principally aqueous ion exchange and solvent extraction methods supplemented, in some cases, by precipitation processes. Using the chemistry discussed in Chaps. 3 and 4, these procedures are applied not only to recover and separate americium from a variety of aqueous feedstocks, including high-level Purex-process waste, but also to purify it from curium and lanthanides. Although methods used primarily for analytical purposes or tested only on a laboratory-scale are cited, emphasis in this review is on those aqueous procedures used either currently or previously to recover and purify gram to kilogram amounts of americium.


Only little use has thus far been made of nonaqueous methods for separating and purifying americium—a notable exception is the pyrochemical process used at the Energy Research and Development Administration (ERDA) Rocky Flats Plant to remove ^{241}Am from molten plutonium metal. The pyrochemical process, as well as significant features of americium chemistry in other nonaqueous processes, is described in the first part of this chapter.

PYROCHEMICAL PROCESSES

Rocky Flats Americium Extraction Processes

Currently at the ERDA Rocky Flats Plant, a countercurrent molten-salt extraction process is used to purify multikilogram amounts of plutonium metal from ^{241}Am which grows in by beta decay of ^{241}Pu (Refs. 1 to 4). This two-stage batch purification scheme, which is based partly on earlier molten salt—molten metal studies at Los Alamos Scientific Laboratory (LASL)⁵ and Argonne National Laboratory (ANL),⁶ removes about 90% of the americium from plutonium metal typically contaminated with 200 to 2000 ppm ^{241}Am .

The charge to the first stage of this Rocky Flats process (Fig. 5.1) consists of plutonium metal contaminated with ^{241}Am and gram quantities of PuO_2 and a salt initially composed of KCl—47.1 mol % NaCl—5.8 mol % MgCl_2 which has previously been contacted in Stage 2 with plutonium metal partially depleted in americium.* This charge, contained in a tantalum crucible, is heated under an argon atmosphere in a resistance furnace at 750°C; the molten phases are stirred 1 hour at 750°C with a flat-bladed tantalum stirrer and then cooled to room temperature. [A specially designed tilt-pour furnace is being tested for use in the molten-salt extraction

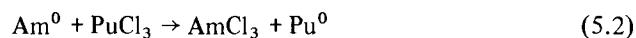
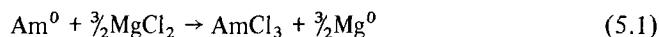


*Salt/metal ratio variable, depending on ^{241}Am content of Pu metal

Fig. 5.1 Rocky Flats molten-salt americium extraction process.

*According to Knighton et al.,^{3,8,2} the MgCl_2 content of the salt has been increased from 8 to 30 mol %, whereas the salt/metal ratio has been decreased from 0.56 to 0.056.

process.⁷] Plutonium metal resulting from Stage 1 is contacted in Stage 2 with fresh KCl-NaCl-MgCl₂ salt under the same conditions as in Stage 1. The particular salt/metal ratio used depends on the ²⁴¹Am content of the feed plutonium and is chosen to ensure removal of about 90% of the americium; a typical salt/metal ratio is² 0.56.* Salt from Stage 1, which has had two contacts with plutonium metal, is currently processed by aqueous methods (see pages 190 to 194) for recovery of americium and plutonium values. Originally^{3,4} the process was operated in a cross-current mode with a salt composed of KCl-49.1 mol % NaCl-1.8 mol % MgCl₂. Countercurrent operation with a salt phase containing 5.8 mol % MgCl₂ reduces the amount of americium-bearing salt which must be subsequently processed.

In the Rocky Flats process, americium is oxidized by MgCl₂ and PuCl₃ by the following reactions:

Knighton⁸ notes that distribution of americium between metal and salt phases correlates with the $\frac{3}{2}$ power of the MgCl₂ mole fraction. This indicates that americium in the salt phase is present in the trivalent state (Eq. 5.1) rather than as Am²⁺, which might be expected from the work of Mullins, Beaumont, and Leary.^{9a,9b} Plutonium oxide has also been shown to extract americium from plutonium metal;^{9c} the side reaction between PuO₂ and americium in Stage 1 (Fig. 5.1) enhances removal of americium from the metal phase.

Current research effort by personnel at the Rocky Flats Plant on the americium extraction process is centered on reducing still further the salt/metal ratio and in developing nonaqueous methods of recovering americium and plutonium values from spent salt.* With respect to the former objective, recent tests⁸ (Table 5.1) show that, at corresponding MgCl₂ contents, the value of the americium distribution coefficient is much higher with an NaCl-CaCl₂-MgCl₂ salt than with the NaCl-KCl-MgCl₂ mixture. In verification of these distribution data, countercurrent, two-stage production-scale tests with a 45 mol % NaCl-50 mol % CaCl₂-5 mol % MgCl₂ salt demonstrated satisfactory (>90%) removal of americium from plutonium metal containing about 1500 ppm ²⁴¹Am at a salt/metal ratio of 0.2.

A potential disadvantage of substituting CaCl₂ for KCl is that the aqueous methods (see pages 190 to 194 and 233 to 243) currently used to process spent extraction salt will not easily separate americium from large amounts of calcium. A pyrochemical procedure involving reduction with calcium metal appears suitable, however, for recovery of americium and plutonium values from both spent NaCl-CaCl₂-MgCl₂ and NaCl-KCl-MgCl₂ salts.⁸ In addition to a metal button containing plutonium and americium contaminated with magnesium and calcium, the

*See footnote on page 185.

Table 5.1
AMERICIUM PARTITION BETWEEN MOLTEN PLUTONIUM AND
NaCl-CaCl₂-KCl-MgCl₂ SALTS

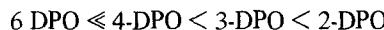
MgCl ₂ , mol %	Americium distribution coefficient (K _d)*	
	NaCl-KCl-MgCl ₂	NaCl-CaCl ₂ -MgCl ₂
5	3.1	13
10	8.7	20
15	15.9	29
20	24.5	39
30	45.0	60
40	69.2	85
50	97.0	112

*K_d = wt.% Am in salt/wt.% Am in metal.

products of the reduction reaction are a white salt (four parts) and a black salt (one part) with some metallic modular inclusions. Preliminary indications are that the white salt contains sufficiently small amounts of americium and plutonium (typically 10^{-4} – 10^{-3} g Pu/g salt and 10^{-5} g Am/g salt) that it can be discarded without further processing or, possibly, reused. Hydroxide precipitation methods (pages 190 to 194) can be used to recover and purify americium and plutonium from acid solutions of the metal button and black salt.

Also under development for removing plutonium and americium from chloride melts is a pyrochemical process that involves scrubbing the molten salt with an Mg–90 wt.% Zn alloy. The resulting scrub alloy buttons can be satisfactorily dissolved in 4M HNO₃–0.2M HF solution to prepare feedstock for further aqueous processing.

Americium Chemistry in Other Pyrochemical Systems


Mullins and Leary¹⁰ patented a method of separating americium from plutonium which involves bubbling a mixture of oxygen and argon gas into a molten salt containing both elements. Plutonium precipitates as PuO₂, whereas americium stays in solution.¹¹

In connection with their studies of salt transport processes,¹² ANL investigators¹³ determined distribution coefficients of americium and other actinides between molten MgCl₂ and liquid zinc–magnesium alloys at 800°C. On the basis of these and other data, pyrochemical processes for separating americium from curium have been patented.^{14,15} These processes involve contacting a molten halide salt containing americium, curium, and at least 50 wt.% MgCl₂ with either magnesium–zinc or a magnesium–cadmium alloy; curium is taken up by the alloy, whereas americium remains in the salt phase.

Studies in support of the development of a Molten Salt Breeder Reactor (MSBR) are currently under way in the United States.¹⁶⁻¹⁸ One method considered for the processing of MSBR fuel involves selective reduction of protactinium and rare earths from the molten fluoride salt into liquid bismuth, followed by the preferential transfer of the rare earths into an acceptor salt, such as LiCl or LiBr. Ferris and his coworkers¹⁹⁻²² in their studies of this process have determined the equilibrium distribution of americium (and other transuranium elements) between liquid bismuth and molten LiCl, LiBr, and several LiF-BeF₂-ThF₄ solutions at temperatures in the range 600 to 750°C. At each temperature the distribution coefficients (mole fraction in the bismuth phase divided by mole fraction in the salt phase) for most of the solutes obeyed the relation $D_M = (N_{L_1}^n)(K_M)$, in which the superscript n is the oxidation number of solute Mⁿ⁺ in the salt phase and N_{L₁} is the mole fraction of lithium in the bismuth phase. For N_{L₁} ranging from 10⁻⁵ to 0.3, the oxidation number of americium in the salt varied between 3+ and 2+, depending on temperature and salt-phase composition. In molten LiCl and in 66.7 mol % LiF-33.3 mol % BeF₂ at 600°C, however, a significant fraction of the americium appears to be present in the divalent state. This evidence for existence of Am²⁺ parallels the observations of Mullins, Beaumont, and Leary^{9a} for the Am-PuCl₃ system.

The distribution coefficient, $D = (g \text{ Am/g metal phase}) / (g \text{ Am/g salt phase})$, of americium between molten aluminum metal and molten AlCl₃-KCl is²³ 1.96. * McKenzie, Fletcher, and Bruce²⁴ measured the distribution of plutonium, americium, and certain fission products between neutron-irradiated aluminum-plutonium alloys and molten bismuth. An equal volume of bismuth extracts 75% of the plutonium and 93% of the americium.

Foos, Guillaumont, and Mesplede have measured the partition of americium at 150 to 160°C between molten LiNO₃-KNO₃ phases and solutions of either tri-n-butyl phosphate (TBP),²⁵⁻²⁷ triphenyl phosphonate (TPPO),²⁵⁻²⁷ tri-n-octylphosphine oxide (TOPO),²⁸ or a series of diphenyldiphosphine dioxides²⁸⁻²⁹ [(C₆H₅)₂PO(CH₂)_nPO(C₆H₅)₂ = n-DPO, where n = 2, 3, 4, and 6] in a eutectic of polyphenyls. (The spectrum of Am³⁺ in molten LiNO₃-KNO₃ is shown in Chap. 3, Fig. 3-7c.) From logarithmic plots of distribution ratio vs. organophosphorus extractant concentration, the following organic species were identified: Am(NO₃)₃ · 2TBP, Am(NO₃)₃ · 2TPPO, Am(NO₃)₃ · TOPO, Am(NO₃)₃ · 2-DPO, Am(NO₃)₃ · 2(3-DPO), and Am(NO₃)₃ · 2(4-DPO). For the diphenyldiphosphine dioxides, the following order of extractant strength was observed:

In this system, 6 DPO does not extract americium. Foos, Guillaumont, and Mesplede²⁵⁻²⁹ note that TOPO extracts lanthanides very well from fused LiNO₃-KNO₃ but Am³⁺ only poorly, suggesting an effective separation scheme.

*At 275°C and an AlCl₃-KCl mole ratio of 1:14

Polish workers investigated the distribution at 180°C of uranium, plutonium, and americium between a KCl–CuCl eutectic melt and solutions of TBP, dibutylphosphoric acid (HDBP), and tri-*n*-octylamine in biphenyl.³⁰ Absorption spectra of Am(III) in molten pyridinium and some alkali metal chlorides indicate americium is present as the octahedral complex AmCl_6^{3-} (compare Chap. 3, pages 99 and 100) in such systems.³¹

PRECIPITATION PROCESSES

For the first 15 years or so after its discovery, many different precipitation processes were used extensively to recover and purify microgram to gram amounts of americium. Highlights of these processes, which are now primarily only of historical interest, are presented here; amplified discussion of several early precipitation schemes is given in articles by Penneman and Keenan³² and by Thompson et al.³³ Nowadays, of course, ion exchange and solvent extraction technology have largely supplanted precipitation processes for recovering americium. Even so, for special purposes, precipitation processes still find applications, and these are discussed on pages 190 to 194. Attention is also directed to the discussion in Chap. 4 of the properties of AmF_3 , $\text{Am}_2(\text{C}_2\text{O}_4)_3$, $\text{K}_3\text{AmO}_2(\text{CO}_3)_2$, and other insoluble compounds of Am(III) and Am(V).

Precipitation Processes: Historical

Important contributions in the very early days of americium chemistry were made by Cunningham,³⁴ Wallman,³⁵ Werner,³⁶⁻³⁸ and Thompson.³⁹ Cunningham isolated the first pure americium by precipitation of AmF_3 and $\text{Am}(\text{OH})_3$, and Werner and Thompson devised various schemes for isolation of trace quantities of americium including its precipitation as an insoluble Am(V) carbonate and by carrying on $\text{Ta}_2\text{O}_5 \cdot x\text{H}_2\text{O}$ precipitated by heating a carbonate solution containing Ta(V) and Am(V).

Subsequently workers in several countries used precipitation methods to purify milligram and even gram amounts of ^{241}Am from plutonium and other contaminants. For example, Milsted, Herniman, and Hall⁴⁰⁻⁴² in England devised methods for the separation of 10 to 25 mg ^{241}Am from aged plutonium stocks; their isolation scheme included steps in which americium was concentrated and purified by precipitation of AmF_3 and $\text{Am}_2(\text{C}_2\text{O}_4)_3 \cdot 10\text{H}_2\text{O}$. Later, in 1956, Butler and Merritt⁴³ in Canada combined precipitation [$\text{Am}(\text{OH})_3$ and AmF_3] and ion-exchange techniques to separate and purify 0.8 g of ^{241}Am from 2 kg of aged plutonium; as in the earlier British work, a gross separation from plutonium was first made by precipitating plutonium peroxide from acid solution. Yakovlev and Kosyakov⁴⁴ reported on the separation of a gram of ^{241}Am from plutonium and other impurities by precipitation of $\text{K}_8\text{Am}_2(\text{SO}_4)_7$ and $\text{K}_3\text{AmO}_2(\text{CO}_3)_2$. American scientists⁴⁵⁻⁴⁷ in the 1950s also

devised and tested several precipitation schemes for isolation and purification of macro amounts of americium. The precipitation process developed by LASL workers to concentrate americium from impure feedstocks is shown in Fig. 5-2.

Also in this early period, results obtained during the development of analytical procedures for and the fundamental chemistry of americium established that micro concentrations of Am(III) coprecipitate quantitatively with LaF₃ (Refs. 48 to 51), CeF₃ (Refs. 32 and 51 to 53), La₂(C₂O₄)₃ (Refs. 54 to 57), CaC₂O₄ (Ref. 46), K₂SO₄ (Ref. 58), KLa(C₂O₄)₂ (Refs. 59 and 60), and BiPO₄ (Refs. 32, 61, and 62). Yakovlev and Gorbenko-Germanov⁶³ also showed that Am(V) in alkaline medium is quantitatively coprecipitated with K₄UO₂(CO₃)₃ and K₄PuO₂(CO₃)₃. Hermann⁵⁶ also reported that a partial separation of americium from lanthanum could be obtained by fractional precipitation of La₂(C₂O₄)₃ from homogeneous solutions involving the slow hydrolysis of dimethyl oxalate to generate the precipitant, americium is enriched in the precipitate.

Pressly⁶⁴ devised an interesting precipitation process for separating Am(III) from Pm(III). In this scheme Am³⁺ and Pm³⁺ are coprecipitated as fluorides, which are then dissolved in a mixture of boric and nitric acids. The resulting solution is made 3M H₂SiF₆, on heating, H₂SiF₆ partially decomposes into volatile HF and SiF₄, whereby PmF₃ precipitates while Am³⁺ stays in solution. Earlier, Werner³⁸ and Thompson³⁹ also used to advantage the soluble complex formed by Am³⁺ with fluosilicate ions to isolate micrograms of americium from rare earths.

Kuznetsov and Akimova⁶⁵ found that microgram amounts of Am(III) coprecipitate with the black solids precipitated by the addition of the dyes methyl violet, crystal violet, or methylene blue to solutions containing americium and one of the compounds benzene-2 arsonic acid-*<1-azo-7>*1,8-dihydroxynaphthalene-3,6-disulfonic acid (Arsenazo), 2-hydroxy-5-nitro-naphthalene-4-sulfonic acid-*<1-azo-2>*1-hydroxynaphthalene (Eriochrome black T), or benzene-2-carboxyl-*<1-azo-7>*1,8-dihydroxynaphthalene-3,6-disulfonic acid. The extent of coprecipitation of Am³⁺ varies with pH but is essentially 100% at pH's ≥ 6.0 . Americium(III) is also carried by the precipitate formed by addition of 1,8-diaminonaphthalene chloride to a solution containing ammonium oxalate and oxalic acid.⁶⁵

Present-Day Precipitation Processes

Flow sheets currently used⁶⁶ at the Transuranium Processing Plant at Oak Ridge National Laboratory (ORNL) to purify the ²⁴³Am-²⁴⁴Cm fraction recovered from both High Flux Isotope Reactor (HFIR) and Savannah River reactor PuO₂ and/or AmO₂-CmO₂ targets include two cycles of oxalate precipitation to remove miscellaneous metallic impurities. European workers^{67 68} have also used an oxalate precipitation process to purify americium and curium separated from irradiated ²⁴³Am targets.

A precipitation process for separating gram to kilogram amounts of curium from americium is still used occasionally.^{68 69 74} In this process (Fig. 5-3), Am(III) in

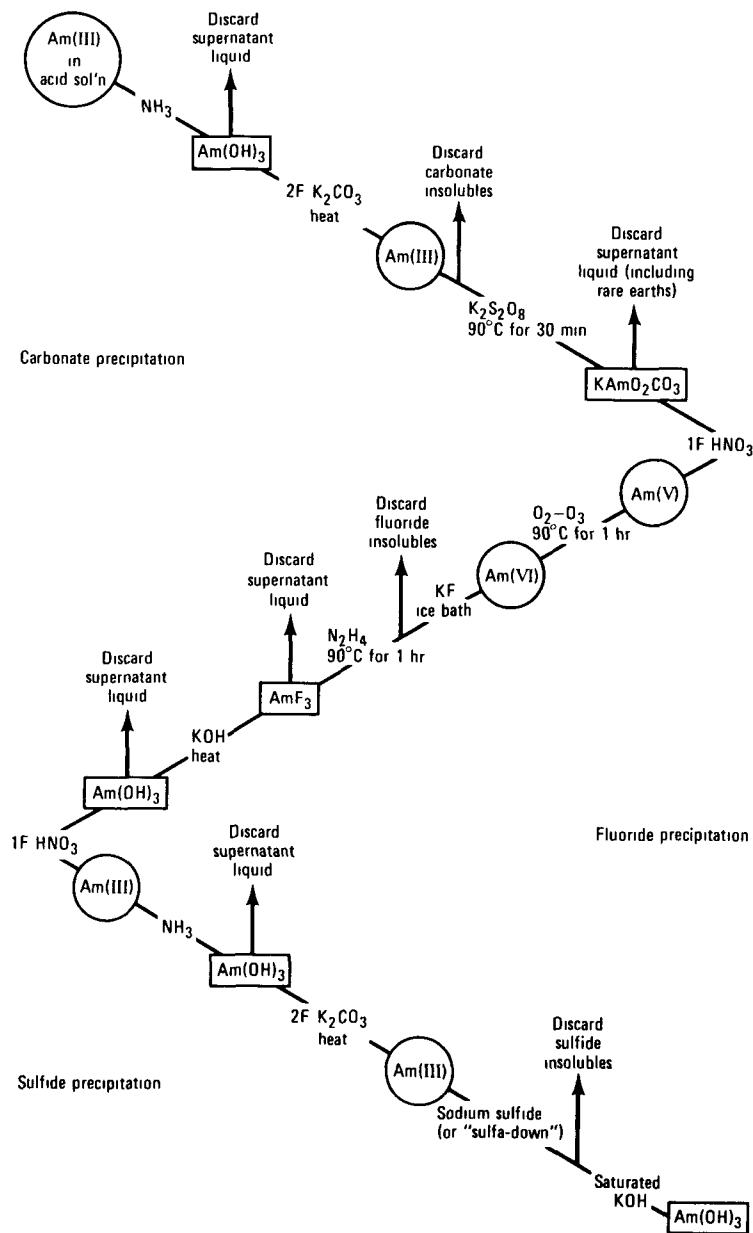


Fig. 5.2 Typical precipitation process developed for the recovery and purification of gram amounts of americium.⁴⁷

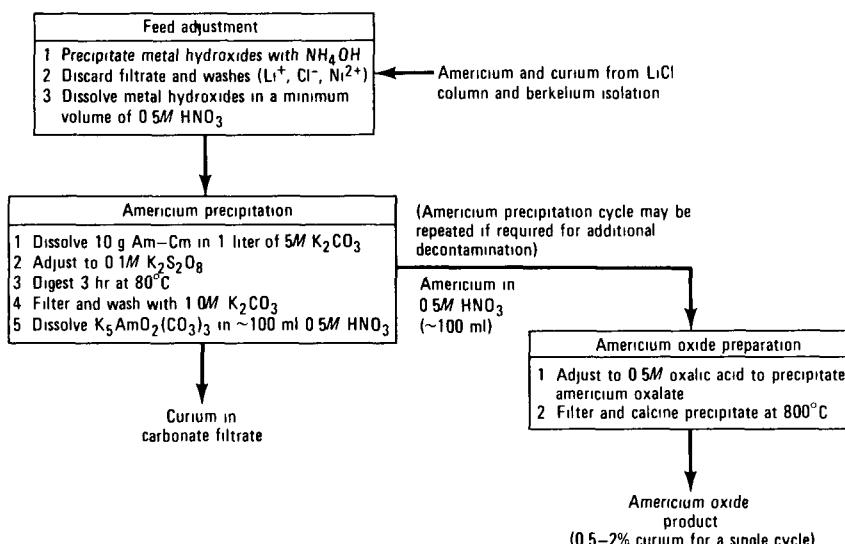


Fig. 5.3 Americium-curium separation by precipitation of $K_5AmO_2(CO_3)_3$. [From R. E. Leuze and M. H. Lloyd,⁷⁴ Processing Methods for the Recovery of Transplutonium Elements, in *Progress in Nuclear Energy, Process Chemistry*, Series III, C. E. Stevenson, E. A. Mason, and A. T. Gresky (Eds.), Vol. 4, page 549, Pergamon Press, Inc., New York, 1970.]

concentrated ($\geq 3M$) K_2CO_3 solution is oxidized to Am(V) at $80^\circ C$ with ozone, $NaOCl$, or $K_2S_2O_8$ and subsequently precipitated as $K_5AmO_2(CO_3)_3$; Cm(III) is not oxidized and remains as a soluble complex in the carbonate solution. [As early as 1952, Stephanou and Penneman⁴⁹ found that Cm(III) could be separated from americium by oxidizing the latter to Am(VI) with $K_2S_2O_8$ and precipitating CmF_3 .] Equipment used at the Savannah River Plant for large-scale precipitation separation of americium and curium has been described by Kishbaugh et al.⁷³

A process based on precipitation of the double sulfate $Am_2(SO_4)_3 \cdot Na_2SO_4 \cdot H_2O$ (compare pages 164 and 165) with lanthanum as carrier was successfully used^{75,76} at the Savannah River Plant to recover 200 g of americium and curium from the aqueous raffinate remaining after solvent extraction recovery of plutonium from highly irradiated plutonium-aluminum alloy (see Chap. 2, Fig. 2.2). Solutions of $NaHSO_4$, $NaOH$, and $La(NO_3)_3$ were added to the nitrate-based raffinate to adjust its composition to approximately $5.5M Na^+$, $0.5M Al^{3+}$, $1M SO_4^{2-}$, $5M NO_3^-$, $0.5 g La^{3+} liter^{-1}$, $<25 mg Am^{3+} liter^{-1}$, and $<25 mg Cm^{3+} liter^{-1}$ at pH 0.5. Best results for recovering americium and curium were obtained by adding $La(NO_3)_3$ carrier and then adjusting the sulfate concentration to $1.0M$ to $1.5M$ by addition of $NaHSO_4$. Subsequently the solution was adjusted to pH 0.5 to 1.0 by adding 50 wt.% $NaOH$ and digested 6 hr at $70^\circ C$ to form the double sulfates. After centrifugation, the sulfate precipitate was washed with dilute Na_2SO_4 solution and then metathesized to hydroxides by treatment with $NaOH$ solution. The resulting hydroxides were washed

and dissolved in HNO_3 to provide a concentrated americium-curium fraction for further purification at the Oak Ridge Transuranium Processing Plant.

Variables affecting carrier precipitation of americium and curium double sulfates were studied by Burney; his results, including data for solubility of carrier-free americium and curium double sulfates, have been summarized by Leuze and Lloyd.⁷⁶ On the basis of experience at the Savannah River Plant, the double sulfate precipitation process provides an adequate way of concentrating americium and purifying it from gross amounts of such impurities as iron and aluminum. Its principal disadvantage, as noted by Leuze and Lloyd⁷⁶ is that the americium-curium product is contaminated with gross amounts of lanthanum which must be removed in further purification steps.

Until very recently when it was replaced by a cation-exchange process, a hydroxide precipitation process was routinely used at the Rocky Flats Plant to recover americium and plutonium values from the spent $\text{NaCl}-\text{KCl}-\text{MgCl}_2$ mixture obtained from pyrochemical extraction of ^{241}Am from aged plutonium metal (pages 185-187).⁷⁷ The chloride salt residue was dissolved in hot 1*M* HCl, and the plutonium and americium precipitated as hydroxides with 3*M* KOH. After the precipitate was washed with 0.5*M* KOH, it was filtered and then dissolved in 3*M* HNO_3 in preparation for separating americium and plutonium by an ion-exchange process. This precipitation process had several deficiencies: (1) slow filtration because of the gelatinous nature of the precipitate, (2) carry-over of magnesium that caused inefficiency in subsequent processing, and (3) a high carry-over of chloride ion that caused equipment corrosion. To circumvent these difficulties, Miner and Hogan⁷⁸ developed a new selective, hydroxide precipitation process based on the slow decomposition of urea; the precipitate formed from the slow release of hydroxyl ions is fairly crystalline, easily filtered, and substantially free of magnesium and chloride. This latter homogeneous precipitation process has not been operated under plant-scale conditions.

Proctor et al.⁷⁹⁻⁸¹ at the Rocky Flats Plant use precipitation processes to purify gram quantities of production-grade AmO_2 from cerium and other rare earths. In one process, adopted from the work of Zaozerskii and Patkin,⁸² an americium solution of 30 g liter⁻¹ is prepared by dissolving the impure AmO_2 in 6*M* HCl. After the addition of 20 vol.% NH_4OH to adjust the solution pH to 5, Ce(IV) peroxide is precipitated by adding 2*M* H_2O_2 . Subsequently $\text{Am}_2(\text{C}_2\text{O}_4)_3$, precipitated from the peroxide filtrate, is digested 16 hr at 60°C, washed, dried, and calcined to AmO_2 . Two cycles of peroxide precipitation and supplemental oxalate precipitation reduce the cerium content of the AmO_2 from as much as 50,000 ppm to <500 ppm. A more general precipitation process patented by Proctor⁸¹ for preparing high-purity AmO_2 is depicted in Fig. 5.4. This scheme makes use of the fact that Am(VI) is soluble in the hydrofluoric acid solution used to precipitate rare earths. Coupling of the fluoride precipitation step with tail-end precipitation of $\text{Am}_2(\text{C}_2\text{O}_4)_3$ to remove lead and silver impurities yields AmO_2 containing only 500 to 600 ppm total impurities. The scheme shown in Fig. 5.4 was used by Proctor⁸³ recently to purify 57 g of americium from 200 g of a composite of aluminum metal; in this case aluminum was first separated by dissolution in an $\text{NaOH}-\text{NaNO}_3$ solution.

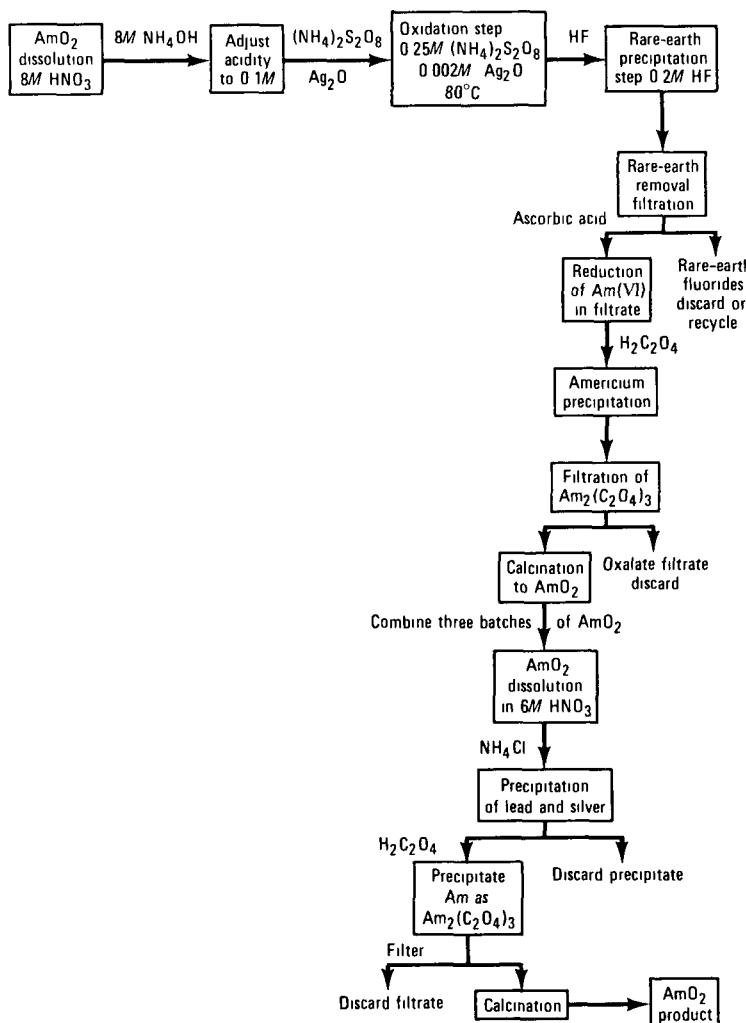


Fig. 5.4 Precipitation process used at Rocky Flats Plant to make high-purity AmO_2 .

Precipitation processes still figure prominently in new analytical methods for the determination of trace amounts of americium in process and environmental samples. Iyer and Kamath⁸⁴ have developed a novel method of analyzing for americium in urine which involves coprecipitation of Am^{3+} with BiOCl . Sill and Williams⁸⁵ carry Am^{3+} and other actinides on BaSO_4 to analyze for trace amounts of these elements in various matrices; recent physicochemical studies of coprecipitation of americium with BaSO_4 and with BaC_2O_4 have been reported by Ginzburg, Karantsevich, and Maksimov⁸⁶ and by Bykhovskii and Petrova,⁸⁷ respectively.

SOLVENT EXTRACTION PROCESSES

Introduction

Solvent extraction technology is widely used for the recovery, separation, decontamination, and analysis of both trace and macro amounts of americium. In particular, solvent extraction processes and systems using amine and organophosphorus extractants are extensively used for the initial recovery and separation of gram amounts of americium from a wide variety of aqueous solutions; the discussion here is restricted primarily to their technology. Weaver⁸⁸ has recently published an excellent up-to-date general review of the solvent extraction chemistry of trivalent americium; Weaver's paper includes much information previously reviewed earlier by other authors.⁸⁹⁻⁹⁴ Solvent extraction systems for the analysis of americium have been discussed by Myasoedov et al.⁹⁵

Organophosphorus Extractants

Tri-*n*-Butyl Phosphate. Extraction of Am^{3+} from nitrate media by tri-*n*-butyl phosphate (TBP) conforms to the reaction:^{88,96-100}

The value of the equilibrium constant, $K_{\text{ex}} = [\text{Am}(\text{NO}_3)_3 \cdot 3\text{TBP}] / [\text{Am}^{3+}] [\text{NO}_3^-]^3 [\text{TBP}]^3$, for Eq. 5.3 at zero ionic strength is¹⁰⁰ 0.4. [Russian investigators¹⁰¹ have compiled a list of equilibrium constants for the extraction of americium by several neutral organophosphorus compounds; Table 5.2 is abstracted from their compilation.]

Tri-*n*-butylphosphate, even undiluted, extracts americium only weakly from strong HNO_3 solutions (Fig. 5.5). [Throughout this book the americium distribution ratio, $D_{\text{Am}} \equiv \text{concentration of americium in organic phase}/\text{concentration of americium in aqueous phase}.$] However, TBP extracts americium quite strongly from neutral (or low-acid), highly salted nitrate solutions as shown by results listed in Table 5.3 and the more extensive data tabulated in Refs. 102 and 103. Highly hydrated ions such as Al^{3+} and Li^+ are particularly effective as salting agents. Reflecting its low TBP extractability from HNO_3 solutions, Am^{3+} in Purex-type extraction processes reports to the high-level aqueous waste stream; this latter solution then constitutes a valuable and important feedstock for recovering americium by the various solvent extraction processes described here and elsewhere in this chapter.

Batch TBP solvent extraction procedures have been successfully used recently at both the Hanford and Savannah River plants to recover hundreds of grams of ^{241}Am and ^{243}Am from fuel-reprocessing waste solutions. The Savannah River application involved isolating ~ 10 kg of ^{243}Am and ^{244}Cm from the aqueous solution remaining after dissolving an irradiated plutonium-aluminum alloy (see Chap. 2, Fig. 2.2) in

Table 5.2
EQUILIBRIUM CONSTANTS FOR THE EXTRACTION OF Am(III)
BY SOME NEUTRAL ORGANOPHOSPHORUS COMPOUNDS*

Reagent	K _{ex} †
(C ₄ H ₉ O) ₃ PO	0.4‡
(C ₄ H ₉ O) ₂ (C ₄ H ₉)PO	7.4
(C ₄ H ₉ O)(C ₄ H ₉) ₂ PO	1800.
(C ₄ H ₉)(C ₆ H ₅)(C ₄ H ₉ O)PO	45
(C ₈ H ₁₇ O) ₃ PO	0.3
(<i>t</i> C ₈ H ₁₇ O) ₃ PO	0.2
(C ₈ H ₁₇ O) ₂ (C ₈ H ₁₇)PO	4.2
(C ₈ H ₁₇ O)(C ₈ H ₁₇) ₂ PO	580.
(C ₈ H ₁₇) ₃ PO	3000
(<i>t</i> -C ₈ H ₁₇) ₃ PO	100.

*[From F. S. Gureev, V. B. Dedov, S. M. Karpacheva, I. K. Shvetsov, M. N. Ryhzov, P. S. Trukchilayev, G. N. Yakovlev, and I. A. Lebedev,¹⁰¹ Methods of Recovery and Some Chemical Properties of the Transplutonium Elements, in *Progress in Nuclear Energy, Process Chemistry*, Series III, C. E. Stevenson, F. A. Mason, and A. T. Gresky (Eds.), Vol. 4, p. 631, Pergamon Press, Inc., New York, 1970.]

†K_{ex} = [Am(NO₃)₃ · 30] org/[Am³⁺] aq[NO₃]³aq[O]³org, where O is the organophosphorus extractant, values listed are for zero ionic strength.

†Value from Ref. 100

HNO₃ and recovering the plutonium by TBP extraction. The solution was adjusted to 6.5M to 6.8M inextractable nitrate [$\sim 0.67M$ Al(NO₃)₃–4.5M NaNO₃] and 0.10M to 0.35M HNO₃ before extracting the americium and curium with two successive equal volume portions of 50 vol.% TBP in a hydrocarbon diluent. Subsequently the americium and curium were stripped into 0.2M HNO₃. Recovery was greater than 95% with 5680-liter batches on a plant scale, essentially no aluminum or fission products other than lanthanides, ⁹⁵Zr, and ¹⁰⁶Ru were extracted. Details of the Savannah River experience have been recounted by Henry⁷⁴ and others^{104–105b}

At Hanford, batch TBP extraction was used to recover about 1100 g of americium, 60 g of curium, and 200 g of promethium from the aqueous waste produced when Shippingport reactor fuel was processed in the Redox plant.^{106–109} This waste solution, after concentration, contained, typically, 1.6M Al(NO₃)₃–1.5M NaNO₃–0.2M Na₂Cr₂O₇ and 0.6M NaF. Feed (16,500 liters) for the batch TBP extraction step was prepared by reducing Cr(VI) to Cr(III) by adding NaNO₂ and adjusting the pH to the range 0.0 to 0.5. The solvent, 50 vol.% TBP in *n*-paraffin hydrocarbon (NPH) diluent, was contacted with successive equal-volume amounts (\sim 2650 to 3800 liters) of feed until excessive aqueous raffinate waste losses indicated the need to reduce the product loading. The loaded organic phase was then contacted with one-half of its

Fig. 5.5 Extraction of Am(III) by undiluted TBP [From V I Zemlyanukhin and G P Savoskina,⁹⁹ Extraction of Americium by Tributyl Phosphate, *Radiokhimiya* 3 411 (1961) through *Radiochemistry (USSR) (English Translation)* 3(4) 182 (1961), and G F Best, E Hesford, and H A C McKay,⁹⁸ Tributyl Phosphate as an Extracting Agent for Inorganic Nitrates VII, The Trivalent Actinide Nitrates *Journal of Inorganic and Nuclear Chemistry*, 12 136 (1959)]

volume of 1M HNO_3 to strip the americium and curium. The resulting aqueous product solution (Table 5.4) was scrubbed with NPH diluent to remove entrained TBP, recovery and purification of americium and curium from this crude concentrate by extraction with bis(2-ethylhexyl)phosphoric acid is described on pages 208 to 220. The TBP process recovered about 92% of the americium and curium in the Shippingport waste. Excessively long phase disengagement times encountered in some extraction contacts were attributed to the high solids content of the Shippingport waste solution. These solids were believed to be ZrO_2 fines left in the dissolver vessel after the decladding step and those formed during evaporation of the waste to a high salt concentration.

Batch TBP extraction procedures have also been developed and applied in France⁷¹ and Japan¹¹⁰ to recover small amounts of americium and curium from nuclear fuel-processing waste solutions. A continuous counter current TBP extraction process for the recovery of grams of americium from Hanford slag and crucible waste was developed by Rainey.¹¹¹ Following the dissolution of the slag and crucible in HNO_3 -HF media, Pu(IV) was first recovered by extraction with 30% TBP. In Rainey's process, excess (5M) HNO_3 in the aqueous waste from the plutonium extraction step was neutralized to 0.01M with gaseous NH_3 . The resulting feed

Table 5.3
DISTRIBUTION OF Am(III) BETWEEN 30 VOL.% TBP-*n*-PARAFFIN
AND AQUEOUS $\text{Al}(\text{NO}_3)_3$ - LiNO_3 - NaNO_3 SOLUTIONS*

$\text{Al}(\text{NO}_3)_3$, <i>M</i>	LiNO_3 , <i>M</i>	NaNO_3 , <i>M</i>	HNO_3 , <i>M</i>		D_{Am}
			Aqueous	Organic	
0.73	3.15	0	0.055	0.355	21.0
0.73	3.15	0	0.135	0.565	7.57
0.73	3.15	0	0.285	0.710	3.05
0.73	3.15	0	0.345	0.745	2.26
1.05	0	3.23	0.050	0.360	10.1
1.05	0	3.23	0.145	0.555	4.07
1.05	0	3.23	0.320	0.675	1.69
1.05	0	3.23	0.375	0.715	1.21
0	3.09	2.99	0.040	0.370	8.49
0	3.09	2.99	0.160	0.540	4.14
0	3.09	2.99	0.345	0.650	1.76
0	3.09	2.99	0.431	0.659	1.38
0.75	2.07	1.93	0.025	0.385	24.8
0.75	2.07	1.93	0.125	0.575	6.55
0.75	2.07	1.93	0.280	0.685	2.66
0.75	2.07	1.93	0.372	0.718	1.95

*From Ref. 103.

solution, which contained large amounts of Ca^{2+} , Mg^{2+} , and Al^{3+} , was contacted with a 30% TBP solution to extract the americium. Subsequently the organic extract was scrubbed with 3*M* NH_4NO_3 solution to remove any extracted calcium and magnesium, and the americium was then stripped into water. This process was satisfactorily tested in pulse column runs with actual slag and crucible waste solution but was never used at Hanford (compare pages 202 to 205).

Reflecting their chemical similarity, Am(III) and trivalent lanthanides extract about equally well from HNO_3 solutions into TBP solvents.^{112,113} Thus considerable effort has been expended to devise TBP extraction processes for purifying americium from lanthanum and other rare-earth elements. One such process (Fig. 5.6) developed by Lewis¹¹⁴ takes advantage of the fact that, in 17*M* HNO_3 , D_{Am} is 10-fold higher than D_{La} (Fig. 5.7). In the flow sheet of Lewis, undiluted TBP is used to extract the americium from the 17*M* HNO_3 feed. Small amounts of coextracted lanthanum and cerium are scrubbed with a small volume of 13.5*M* HNO_3 , and the americium is then stripped into 6*M* HNO_3 . In pilot-plant-scale tests of this flow sheet, americium recoveries were 99.5%, and the recovered americium contained less than 1% of the lanthanum and cerium in the feed. Satisfactory 17*M* HNO_3 feedstock containing only americium and rare earths can be prepared by preliminary TBP extraction from an $\text{Al}(\text{NO}_3)_3$ -salted low-acid feed. A TBP extraction process similar to that shown in

Table 5.4
 PRODUCT FROM TBP BATCH EXTRACTION
 OF AMERICIUM AND CURIUM FROM
 SHIPPINGPORT REACTOR FUEL-PROCESSING WASTE
 (Estimated Volume 1040 liters)

Component	Concentration
HNO_3	2 M
$\text{Al}(\text{NO}_3)_3$	0.3 M
NaNO_3	0.2 M
$\text{Cr}(\text{NO}_3)_3$	0.1 M
$\text{Fe}(\text{NO}_3)_3$	0.08 M
F	0.06 M
$\text{UO}_2(\text{NO}_3)_2$	0.06 M
Total rare earths*	34.6 g liter ⁻¹
^{241}Am	0.87 g liter ⁻¹
^{243}Am	0.25 g liter ⁻¹
^{242}Cm	0.00045 g liter ⁻¹
^{244}Cm	0.061 g liter ⁻¹
Np	0.024 g liter ⁻¹
Pu	0.016 g liter ⁻¹
^{147}Pm	238 Ci liter ⁻¹
^{144}Ce ^{144}Pr	235 Ci liter ⁻¹
^{154}Lu	12 Ci liter ⁻¹
^{106}Ru $-^{106}\text{Rh}$	5.5 Ci liter ⁻¹
^{137}Cs	2.1 Ci liter ⁻¹

*As oxides

Fig 5.6 was proposed by Leuze¹¹⁵ for the recovery and purification (from rare earths) of americium and curium from irradiated plutonium-aluminum alloy fuel. Neither this process nor that of Lewis has been used in routine plant-scale operation.

Both French¹¹⁶ and American workers¹¹⁷ have studied the effects of aminopoly carboxylic acids on TBP extraction of americium from low-acid LiNO_3 and $\text{Al}(\text{NO}_3)_3$ solutions. Formation constants of complexes formed by Am(III) with aminopoly-carboxylic acids (compare Table 3.11) are higher than those of complexes of the light lanthanides ($Z = 57$ to 61) with these ligands. Thus, addition of an aminopoly-carboxylic acid to an LiNO_3 [or $\text{Al}(\text{NO}_3)_3$]—Am(III)—rare earth (RE) solution enhances TBP extraction of the lanthanides relative to that of americium. Separation factors ($D_{\text{RL}}/D_{\text{Am}}$) measured by Koehly and coworkers¹¹⁶ for some typical aminopolycarboxylic acids are listed in Table 5.5. McKibben et al.¹¹⁷ at the Savannah River Plant devised a TBP extraction process (Fig 5.8) for separating americium and curium from large amounts of light lanthanides. Feedstock for this process is prepared by adding LiNO_3 and diethylenetriaminepentaacetic acid (DTPA) to the product solution obtained, as described earlier, by batch TBP extraction of americium and

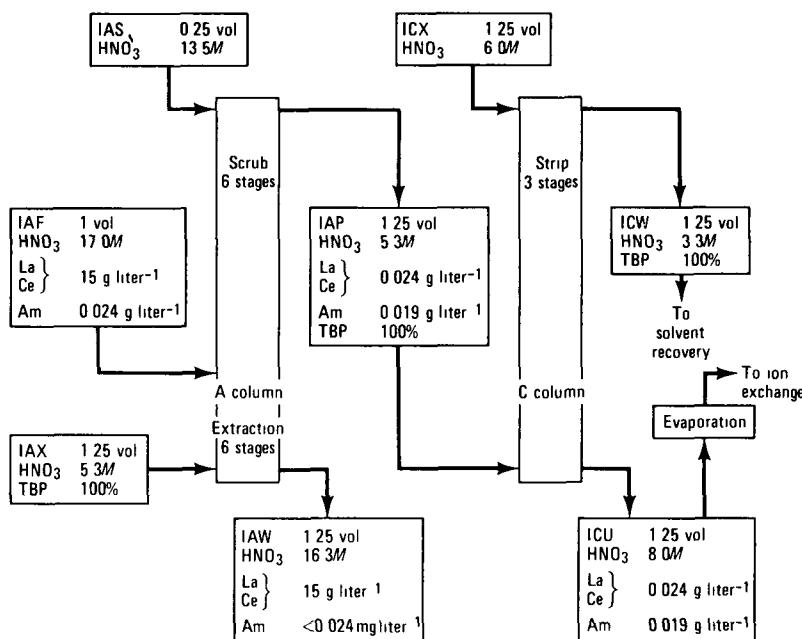


Fig. 5.6 TBP extraction flow sheet for the separation of americium from lanthanum and cerium (From W H Lewis,¹¹⁴ Americium and Neptunium Recovery Processes, in *Proceedings of the Second United Nations International Conference on the Peaceful Uses of Atomic Energy* Geneva, 1958, Vol 17, page 236, United Nations, New York, 1958)

curium from the waste solution resulting from the processing of irradiated ^{239}Pu fuel. Maleic acid is added to the extraction column via a scrub stream to buffer the aqueous phase and thereby decrease the sensitivity of the process to changes in aqueous acidity. The aqueous raffinate containing the actinides and residual lanthanides can be further processed by extraction with 30% TBP solvent to remove interfering salts (LiNO_3 and DTPA) prior to final separation and purification of ^{243}Am and ^{244}Cm by high-pressure ion-exchange procedures (compare pages 245 to 252). The lanthanide rejection process (Fig 5.8) has been satisfactorily demonstrated in miniature mixer-settler runs, but so far no production-scale use has been made of it.

An intensive effort was mounted at the Oak Ridge site in the 1960s to develop and demonstrate processes for separating and purifying transplutonium elements from highly irradiated HFIR (compare Chap 2) fuel elements. Various methods of separating americium and curium from lanthanides were investigated as part of this activity. One such scheme which provided reasonably good separation of the two actinides from europium and other rare earths involved preferential extraction of americium and curium from a 10M LiCl-0.1M HCl solution into 30% TBP solvent.¹¹⁸ Subsequent tests led, as described on pages 220 to 222, to the development of a more

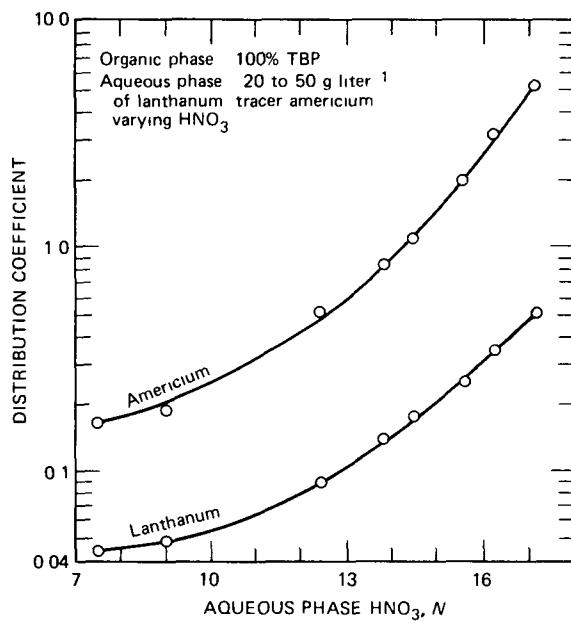


Fig. 5.7 TBP extraction of americium and lanthanum from concentrated HNO_3 solutions (From W H Lewis,¹¹⁴ Americium and Neptunium Recovery Processes, in *Proceedings of the Second United Nations International Conference on the Peaceful Uses of Atomic Energy, Geneva, 1958*, Vol 17, page 236, United Nations, New York, 1958)

efficient amine extraction process (Tramex process) for purifying americium and curium from rare earths

Penneman and Keenan³² report that Am(III) can be separated from rare earths by TBP extraction from 1M NH_4SCN solutions. The mechanism of extraction of Am(III) and Eu(III) from 1M NH_4SCN media by TBP both in the presence and in the absence of a quaternary ammonium thiocyanate was recently investigated by Indian scientists.¹¹⁹ Thiocyanate-TBP systems have not been used in production-scale recovery or purification of americium, thiocyanate solutions have been much used, however, in large-scale ion-exchange purification of americium from lanthanides and other contaminants (compare pages 234 to 237)

Chemistry involved in TBP extraction of Am(III) from molten (120°C) KNO_3 – LiNO_3 mixtures has been studied by Foos and Guillaumont,^{25 27} Isaak, Fields, and Gruen,¹²⁰ and Borkowska, Mielcarski, and Taube¹²¹, some of their results are discussed on pages 187 to 189. No large-scale application of this separation technology has been made.

Conflicting evidence has been obtained for TBP extraction of Am(VI) from HNO_3 solutions. Zangen¹²² found that TBP– CCl_4 solutions extract Am(VI) much more

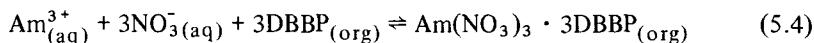
Table 5.5
EFFECT OF COMPLEXANTS ON TBP EXTRACTION OF AMERICIUM AND RARE EARTHS*
(Aqueous Phase: 4M LiNO₃—0.1M Al(NO₃)₃—0.1M Complexant,
pH 2.5 to 3.0; Organic Phase: 40% TBP in Dodecane)

Lanthanide	In absence of complexant	Separation factor D _{RE/DAm}				
		EDTA	DTPA	TTHA	DACTA	HPDTA
La		20.5	1200	52	45	
Ce	0.9	10.3	51	26	15	
Pr	1.07	3.81	12.5	7.8	3.5	
Pm	1.15	3.1	5.8	6.4	2.3	
Fu	1.35	2.9	1.96	3.1		1.44
Tb	1.55	0.62	1.03	1.5	0.80	
Er	1.03	0.04	1.00	0.62	0.55	
Tm	0.93	0.037	1.01	0.36	0.41	
Yb	0.73	0.006	1.07	0.23	0.32	

*[From G. Koehly and I. Hoffert,¹¹⁶ Separation of the Actinide Group from That of the Lanthanides in Nitric Medium, in Semiannual Report of the Chemistry Department, Center for Nuclear Studies at Fontenay-Aux-Roses, December 1966–May 1967, French Report CEA-N-856, through USAIC Report ANL-Trans-628, Argonne National Laboratory, 1967.]

†LDTA = ethylenediaminetetraacetic acid

DTPA = diethylenetriaminepentaacetic acid


TTHA = triethylenetetraminehexaacetic acid.

DACTA = 1,2-diaminocyclohexanetetraacetic acid.

HPDTA = 2-hydroxypropanediaminetetraacetic acid.

strongly than Am(III) from 0.05M HNO₃. Conversely, other workers^{41,123} report that TBP rapidly reduces Am(VI) to inextractable Am(III).

Dibutyl butylphosphonate. Dibutyl butylphosphonate [DBBP = (C₄H₉O)₂(C₄H₉)PO] extracts Am(III) from nitrate media according to the reaction:

This reaction stoichiometry is similar to that followed by TBP (compare Eq. 5.3) and other monofunctional neutral organophosphorus extractants.

Distribution data plotted in Fig. 5.9 show that DBBP extracts Am(III) more strongly than TBP from nitrate solutions (compare also Table 5.2); DBBP is a powerful extractant for Am(III) from low-acid highly salted nitrate solutions. Distribution ratio data for DBBP extraction of Am(III) from HNO₃–metal nitrate solutions are listed in Refs. 100, 102, 125, and 126.

A production-scale countercurrent DBBP solvent extraction process (Fig. 5.10) is currently operated at Hanford to recover plutonium and americium values from the acid aqueous waste (CAW) solution produced in the operation of the Hanford

Plutonium Reclamation Facility (PRF). [The PRF uses a reflux-type 20% TBP- CCl_4 solvent extraction process to recover and purify plutonium from HNO_3 and HNO_3 -HF solutions of a wide variety of metallurgical scrap.^{127,128}] The present Hanford DBBP americium-plutonium recovery process evolved from an earlier batch extraction process devised by Kingsley.^{129,130} Important contributions to the development of the flow sheet shown in Fig. 5.10 were made by Lorenzen and Speakman,¹³¹ Taylor,¹³² and Richardson.¹³³

Feed for the Hanford DBBP americium extraction process is prepared by adding NaOH to the PRF aqueous waste to adjust its acidity from $\sim 2M$ to $0.1M$ HNO_3 . Americium(III) and Pu(IV) in the adjusted feed are coextracted into the 30% DBBP- CCl_4 solvent. Subsequently the americium is preferentially stripped into dilute $0.1M$ HNO_3 ; Pu(IV) and residual americium are stripped with an HNO_3 -HF solution. The latter solution is recycled to the mainline TBP process in the PRF, whereas the americium is concentrated and purified by the ion-exchange process described on pages 245 to 252.

The Hanford DBBP americium extraction process is performed in three packed pulse columns; for the conditions shown in Fig. 5.10, the extraction column is



Fig. 5.8 Lanthanide rejection flow sheet-TBP extraction process for separating americium and curium from light rare earths.¹¹⁷

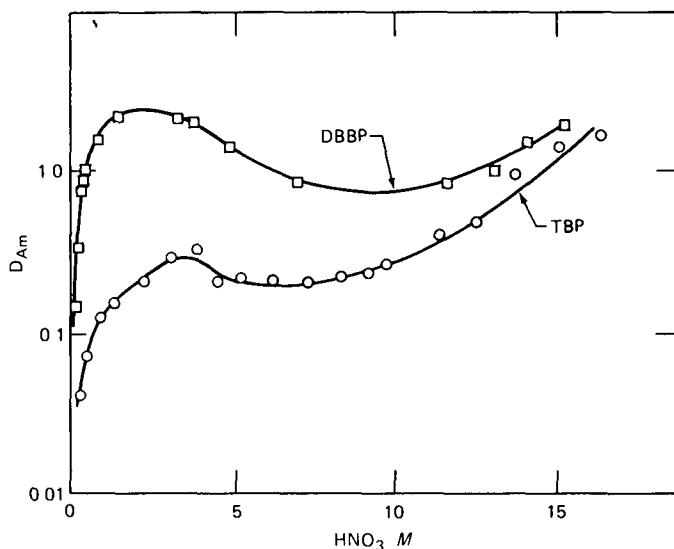
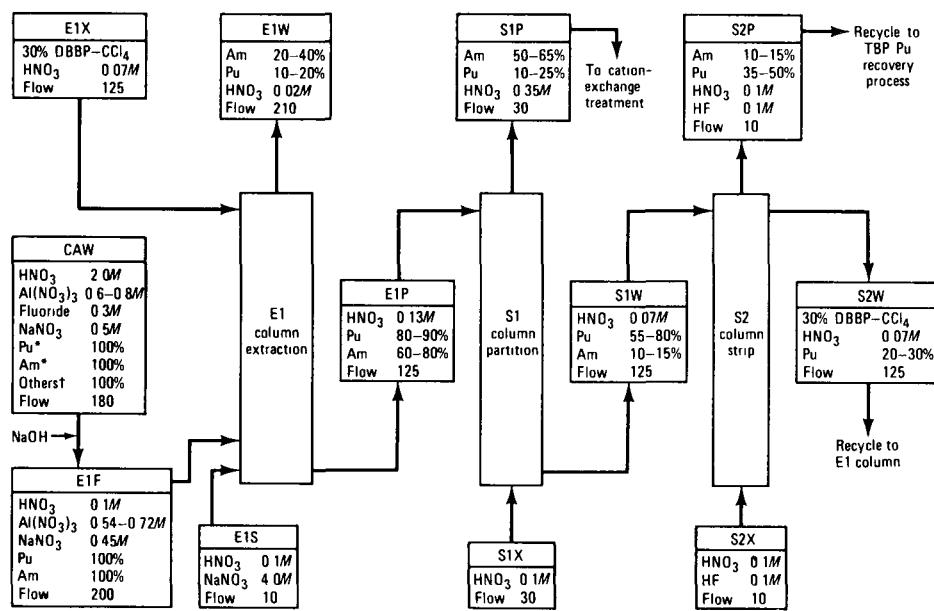
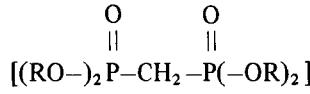



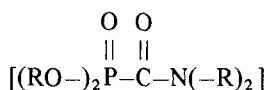
Fig. 5.9 Extraction of Am(III) from HNO_3 by TBP and DBBP [Adapted from V. I. Zemlyanukhin, G. P. Savoskina, and M. I. Pushlenkov,^{1,2,4} Complex Formation of Nitrates of Transuranium Elements with Neutral Organophosphorus Compounds, *Radiokhimiya*, 6: 714 (1964), through *Soviet Radiochemistry (English Translation)*, 6: 690 (1964).]

calculated to operate with one to two extraction stages and one scrub stage, and the partition and plutonium strip columns each operate with three stages. Overall, americium recovery in typical plant-scale operation with the DBBP extraction process ranges from 60 to 80%, the relatively poor americium recovery is attributed primarily to improper in-line neutralization of HNO_3 in the unbuffered CAW solution and to inadequate extraction-column equipment. The DBBP extraction process recovers essentially all the soluble plutonium in the feed to the process, however, any insoluble plutonium (e.g., finely divided PuO_2) is not recovered. The Hanford americium extraction process is operated with a small inventory of 30% DBBP- CCl_4 solvent which is replaced frequently, for this reason the process operates satisfactorily without routine washing of the solvent with Na_2CO_3 or NaOH solutions.

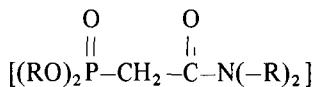
Aside from the Hanford application, no other plant-scale use has been made of DBBP (or any other neutral phosphonate) for the recovery of americium. From time to time, however, workers in several countries have proposed conceptual phosphonate solvent extraction processes for the recovery and/or purification of americium. For example, Schulz and Richardson^{1,3,4} suggested a DBBP solvent extraction process for the recovery of americium and other actinide elements from the high-level aqueous waste stream resulting from the processing of irradiated UO_2 - PuO_2 fuel in the Liquid Metal-Cooled Fast Breeder Reactor. The application of DBBP and other phosphonates


*CAW solution contains, typically, 0.005 to 0.01 g liter⁻¹ each of americium and plutonium

[†]Includes small concentrations of calcium, magnesium, iron, chromium, nickel, etc.


Fig. 5.10 Hanford DBBP americium extraction process flow sheet.

for extracting americium and curium from LiCl-HCl solutions was studied at Oak Ridge National Laboratory.¹¹⁸ Russian scientists^{101,135} have studied the extraction of Am(III) from HNO₃ and LiCl solutions by diisoamyl methylphosphonate, and Koehly and Hoffert¹¹⁶ have investigated the extraction of Am(III) from HNO₃ media by methyldibutylphosphonate.


Neutral Bifunctional Organophosphorus Compounds. Siddall^{136,137} in two papers published in the early 1960s reported that certain neutral bifunctional organophosphorus compounds effectively extract trivalent lanthanides and actinides from strong HNO_3 solutions. [This behavior contrasts sharply (Fig. 5.11) with that of such neutral monofunctional organophosphorus reagents as TBP and DBBP, which, as already noted, extract Am(III) only weakly from strong HNO_3 media.] In particular, Siddall synthesized various methylenediphosphonates

carbamyl phosphonates

and carbamyl methylenephosphonates

and determined their ability to extract Am^{3+} , Ce^{3+} , and Pm^{3+} from 0.1M to 12M HNO_3 solutions. On the basis of the favorable results of his exploratory studies, Siddall suggested such bidentate extractants could be used to remove trivalent lanthanides and actinides from high-level Purex process waste, this idea was eventually patented.¹³⁸

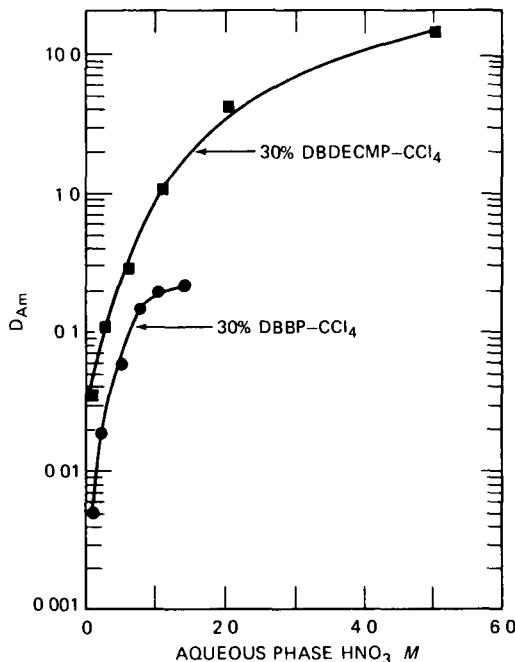


Fig. 5.11 Extraction of $Am(III)$ by typical neutral monodentate and bidentate extractants. DBBP = dibutyl butylphosphonate, DBDECMP = dibutyl-*N,N* diethylcarbamyl methylenephosphonate

Schulz¹³⁹ and McIsaac¹⁴⁰ at the Hanford and Idaho Falls sites, respectively, have recently revived interest in plant-scale application of neutral bidentate organophosphorus extractants, particularly dihexyl-*N,N*-diethylcarbamyl methyleneephosphonate (DHDECMP) and dibutyl-*N,N*-diethylcarbamyl methyleneephosphonate (DBDECMP). McIsaac and coworkers are concerned with developing a bidentate solvent extraction scheme to remove small amounts of neptunium, plutonium, americium, and other actinides from the high-level waste resulting from processing of irradiated ^{235}U -enriched fuels at the Idaho Chemical Processing Plant.

At Hanford, work is in progress to develop a solvent extraction process to replace the DBBP process (pages 202 to 205) presently used to recover americium and plutonium from neutralized (pH 1) aqueous waste (CAW solution) produced in operation of the Hanford Plutonium Reclamation Facility. A conceptual flow sheet for DBDECMP (or DHDECMP) extraction of Am(III) and Pu(IV) directly from the acid ($\sim 2M$ HNO_3) CAW stream is presented in Fig. 5.12; this flow sheet has been successfully demonstrated in miniature mixer-settler runs with an actual CAW solution.

Major deterrents to large-scale applications of carbamyl methyleneephosphonate extractants include their current limited availability and high cost (\$50 to \$100 per liter) and the need to purify them before use. As prepared by the Arbuzov or Michaelis reactions,^{136,137} both commercially available DHDECMP and DBDECMP contain an

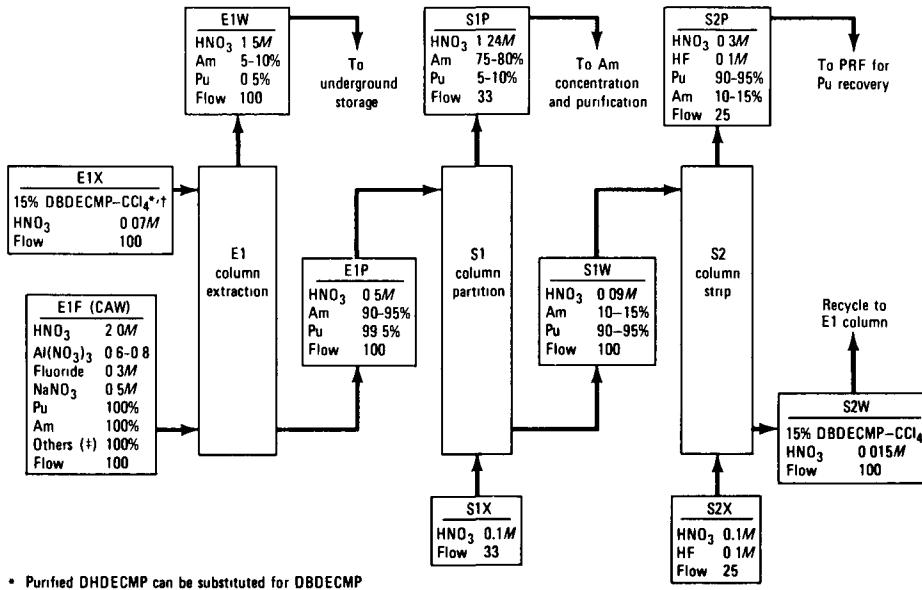
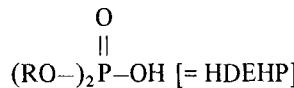
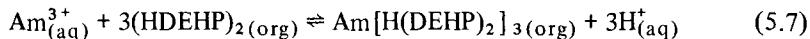



Fig. 5.12 A conceptual bidentate organophosphorus extraction process for the recovery and separation of americium and plutonium from Hanford CAW solution.¹⁴⁰

unidentified impurity with a very strong affinity for Am^{3+} at low aqueous-phase HNO_3 concentrations (Fig. 5.13); this impurity must be removed to permit the use of dilute aqueous acid solutions to strip americium and partition it from coextracted $\text{Pu}(\text{IV})$. Pure DBDECMP (Fig. 5.13) can be prepared by vacuum distillation of the technical-grade material at $\sim 180^\circ\text{C}$ and 0.1 torr. Schulz¹³⁹ claims that a satisfactorily pure DHDECMP extractant can be prepared from the commercially available material by contacting DHDECMP- CCl_4 solutions for 24 hr at 60°C with 6M HCl and subsequent washing of the organic solvent with NaOH and HNO_3 solutions.


Butler and Hall¹⁴¹ recommend the bidentate extractant, dibutyl-*N,N*-diethylcarbamyl phosphonate for use in determination of americium and other actinides in biological samples.

Bis(2-ethylhexyl)phosphoric Acid. Chemistry involved in the extraction of Am^{3+} by bis(2-ethylhexyl)phosphoric acid

has been intensively studied by scientists in many countries. This extractant is commercially available in large quantities, can be readily purified, and has been much used for both analytical and plant-scale recovery and purification of americium.

Ferraro, Mason, and Peppard^{142,143} at ANL have established that HDEHP, like other organophosphorus acids, exists as a dimer in nonpolar solvents and predominantly as the monomer in polar diluents. Extraction of small concentrations of trivalent americium by monomeric and dimeric HDEHP, respectively, conforms to the following equations:^{144,145}

Mason, Lewey, and Peppard¹⁴⁶ state that monomeric HDEHP may also extract Am^{3+} in the form of the species $[\text{Am}(\text{DEHP})_3(\text{HDEHP})_3]_{(\text{org})}$. Letting HX stand for HDEHP, the equilibrium constants for Eqs. 5.6 and 5.7 can be written as

$$K_{\text{ex}} = \frac{[\text{AmX}_3]}{[\text{Am}^{3+}] \cdot [\text{HX}]^3} \text{ and } K_{\text{ex}} = \frac{[\text{Am}(\text{HX}_2)_3]}{[\text{Am}^{3+}] \cdot [(\text{HX})_2]^3}$$

respectively. For Eq. 5.6, $K_{\text{ex}} = 0.27$ (Ref. 144), whereas for Eq. 5.7, $K_{\text{ex}} = 0.033$ (Ref. 112).

Data in Table 5.6 illustrate the profound effect of the nature of the carrier solvent on HDEHP extraction of $\text{Am}(\text{III})$. Corresponding to the inverse third-power

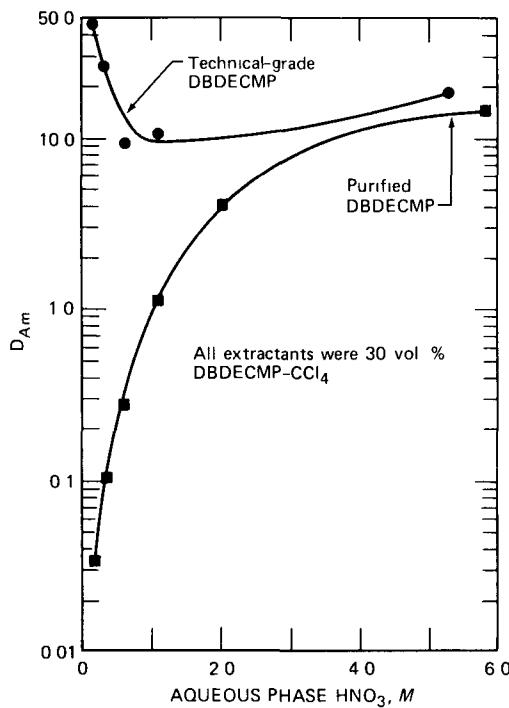


Fig. 5.13 Extraction of Am(III) by purified and unpurified DBDECMP¹⁴⁰

Table 5.6
EFFECT OF DILUENT TYPE ON HDEHP EXTRACTION OF Am(III)*
(Organic Phase: 0.5M HDEHP; Aqueous Phase: 0.5M HNO₃)

Diluent	D _{Am}
Isooctane	21.1
Decane	17.7
Cyclohexane	4.5
CCl ₄	0.49
Toluene	0.15
Benzene	0.092
Chloroform	0.0167

*[From E. S. Gureev, V. N. Kosyakov, and G N Yakovlev,¹⁴⁴ Extraction of Actinide Elements of Dialkylphosphoric Acids, *Radiokhimiya*, 6: 655 (1964), through *Soviet Radiochemistry (English Translation)*, 6: 639 (1964).]

dependency on hydrogen concentration (Eqs. 5.6 and 5.7), relatively dilute (1*M* to 2*M*) HNO₃ solutions readily strip Am³⁺ from HDEHP extractants (Fig. 5.14).

Kinetics of extraction of Am³⁺ from HClO₄ solutions by HEDHP-*n*-decane solutions follow the rate law:

$$\frac{d[\text{Am}^{3+}]}{dt} = \frac{k [\text{Am}^{3+}]_{(\text{aq})} \cdot [\text{HDEHP}]_{(\text{org})}^{1.5}}{[\text{H}^+]_{(\text{aq})}^2} \quad (5.8)$$

At 25°C and $\mu = 0.2M$, $k = 0.137 \pm 0.02 \text{ (mol)}^{0.5} \text{ sec}^{-1}$. According to Karpacheva and Ilozheva,¹⁴⁷ the limiting step in the extraction process is

which most likely takes place in the aqueous phase.

A countercurrent HDEHP extraction process was used at Hanford in the late 1960s as part of the processing sequence for recovering and purifying some 1000 g of Am and 50 g of Cu from irradiated Shippingport reactor fuel.^{106-109,148} This is by far the largest plant-scale application of HDEHP extraction technology for americium recovery and purification yet reported. Feed for the HDEHP extraction process used at Hanford was the crude concentrate (Table 5.4) obtained in prior TBP batch extractions. The crude concentrate was adjusted to pH 4 by the addition of NaOH. Hydroxyacetic acid and sodium nitrilotriacetate were added to complex aluminum, iron, and various other metallic impurities and to provide buffering capacity. Americium, curium, and lanthanides were extracted into a 0.4*M* HDEHP-0.2*M* TBP-NPH (Normal Paraffin Hydrocarbon, a mixture of C₁₀-C₁₄ normal paraffins) solvent using countercurrent equipment (pulse columns installed in the Hanford Semiworks). The actinide-lanthanide mixture was stripped into 2*M* HNO₃; the strip product was adjusted to 0.5*M* H⁺ by destruction of HNO₃ by reaction with sugar and thermally concentrated to a volume of about 570 liters. [Follow-on chromatographic ion-exchange procedures used to separate the americium from lanthanides and curium are described on pages 245 to 252.] This HDEHP extraction process proceeded extremely well; americium and curium recoveries exceeded 95%. A chemical flow sheet for the recovery-purification scheme is given in Fig. 5.15.

A simple HDEHP extraction-strip process (Dapex process) was also devised and used in the Curium Recovery Facility at Oak Ridge.^{76,149} This process was used to convert nitrate solutions containing americium, curium, and lanthanides to chloride media for subsequent amine extraction separations; it was also used with chloride feeds to separate americium and curium from aluminum. A flow sheet for the latter purpose is shown in Fig. 5.16; this flow sheet features coextraction of the americium, curium, and lanthanides into an 0.7*M* HDEHP solvent, scrubbing out of impurities with dilute HCl, and stripping of the actinides and lanthanides with 2*M* HCl. Leuze and Lloyd⁷⁶ state, "Plant operation of this process was satisfactory at a feed power density of 20 W/l; extraction losses were low, and decontamination factors of 540 and 24 were obtained for ¹⁰⁶Ru and ⁹⁵Zr-⁹⁵Nb, respectively."

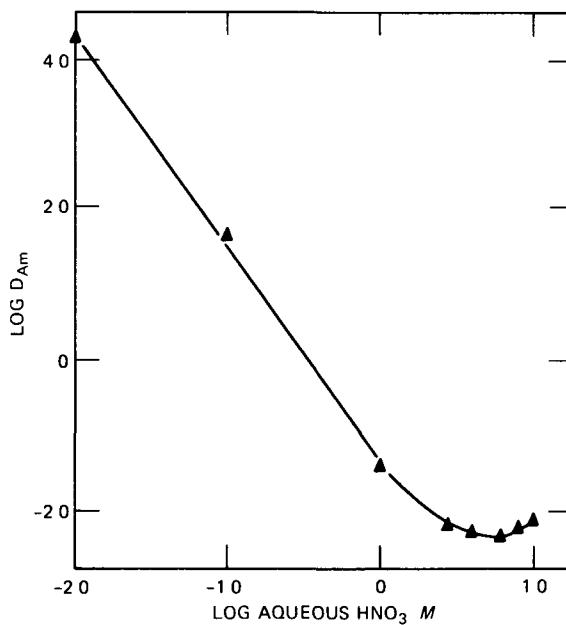


Fig. 5.14 Extraction of Am(III) by 0.5M HDEHP in isoctane [From E S Gureev, V N Kosyakov, and G N Yakovlev,¹⁴⁴ Extraction of Actinide Elements by Dialkylphosphoric Acids, *Radiokhimiya*, **6**: 655 (1964), through *Soviet Radiochemistry (English Translation)*, **6**: 639 (1964)]

Another simple HDEHP batch extraction-strip process (Cleanex process) is routinely used in the Transuranium Processing Plant at the Oak Ridge National Laboratory to reclaim americium, curium, and other transplutonium elements from rework solutions and/or to convert from nitrate to chloride media.¹⁵⁰ The Cleanex process is so named because it will clean up transplutonium elements from a great variety of corrosion products, floor sweepings, and other assorted contaminants. It involves extraction of the transplutonium elements from a dilute acid (<0.1M) feed into a 1M HDEHP-Amsco 125-82 solvent, the metallic impurities are left in the aqueous phase, which is discarded. Subsequently a 6N HCl solution is used to strip the actinides from the HDEHP phase. Advantages of the batch Cleanex process have been cited by Bigelow, Chattn, and Vaughan.¹⁵⁰

Various HDEHP extraction processes have been proposed and, in some instances, used to separate gram amounts of americium (and, usually, associated curium) from large quantities of lanthanides. These processes¹⁵¹⁻¹⁵⁶ take advantage of the results of Weaver and Kappelmann, who were the first to show that HDEHP extracts lanthanides much more strongly than actinides from aqueous carboxylic acid solutions containing an aminopolycarboxylic acid chelating agent. [Weaver and Kappelmann coined the acronym Talspeak (Trivalent Actinide Lanthanide Separation by Phos-

Fig. 5.15 Simplified HDEHP extraction process used at Hanford in recovering americium and curium from Shippingport reactor fuel.¹⁰⁶

phorus Reagent Extraction from Aqueous Komplexes) for this type of separation scheme.] Data in Table 5.7 and Fig. 5.17 are illustrative of the actinide-lanthanide separations that can be achieved by Talspeak-type processes. The actinides are so much more strongly complexed by diethylenetriaminepentaacetic acid (DTPA), the preferred complexing agent, that even the most extractable heavy actinides are only about one-tenth as extractable as the least extractable lanthanides.

Lactic acid is preferred for use in the Talspeak process over the other carboxylic acids listed in Table 5.7 because, of the hydroxyacids, it alone has a high enough solubility of its lanthanide salts to be useful in the separation of actinides from high concentrations of lanthanides. Lunichkina and Renard¹⁵⁷ have recently studied HDEHP extraction of lanthanum and neodymium from 1.0M lactic acid-0.5M NaNO_3 solutions containing 10 g liter⁻¹ La or Nd. Their results confirm earlier observations of Weaver and Kappelmann¹⁵¹ that the HDEHP phase resulting from contact with such

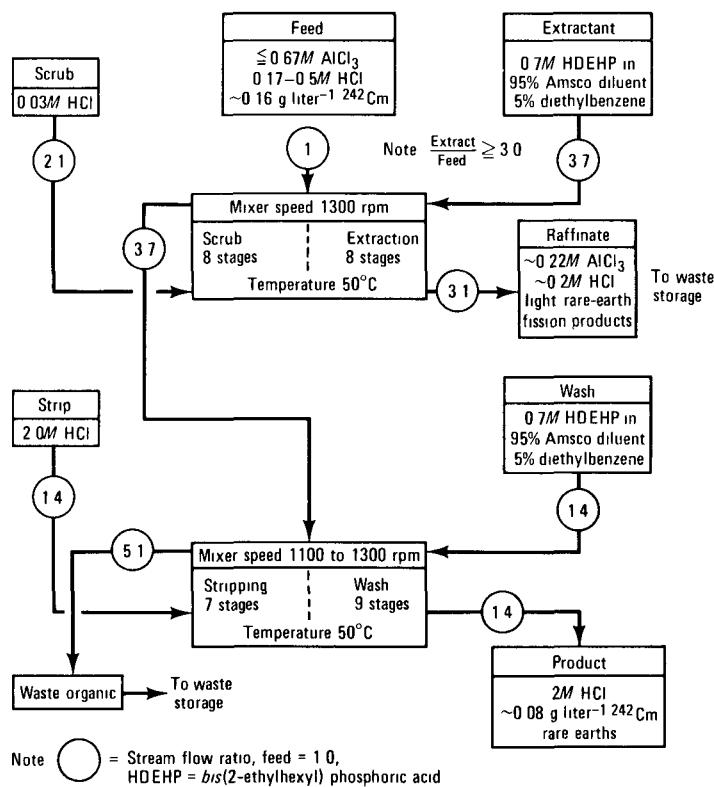


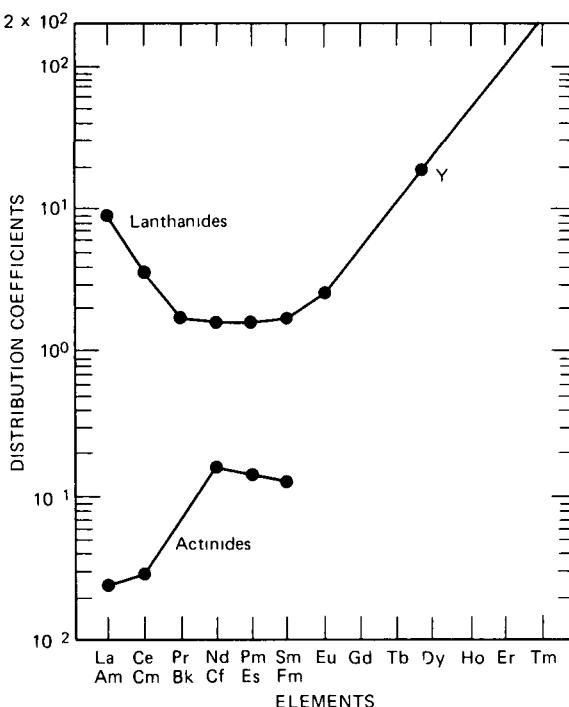
Fig. 5.16 Dapex process used at Oak Ridge to separate americium and curium from aluminum¹⁴⁹

aqueous solutions contains both metal and lactate species. Lunichkina and Renard suggest that HDEHP extraction of lanthanides (Ln) from lactate (L) media probably proceeds by the reaction:

Fardy and Pearson¹⁵⁸ found that the purity of HDEHP markedly influences the separation of cerium from americium in a lactic acid-DTPA solution but does not significantly affect separation of americium from europium or promethium. No explanation for this different behavior has been advanced.

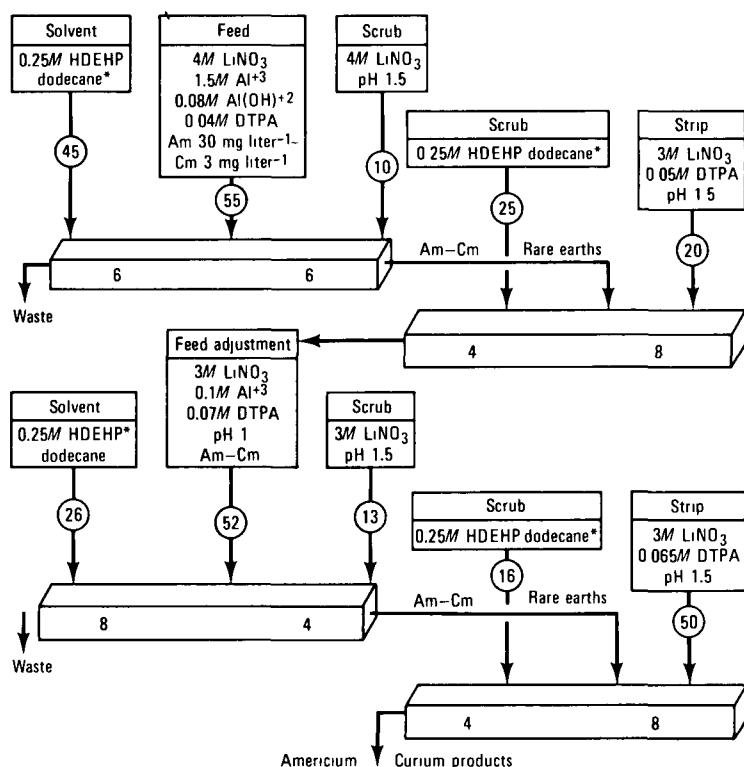
No plant-scale application of the Talspeak process in the form originally devised by Weaver and Kappelmann has yet been made. The Tramex process (compare pages 224 to 230) is currently used at Oak Ridge in the processing of HFIR targets for the separation of americium and curium from fission-product lanthanides. In this respect, Weaver⁸⁸ believes that the Talspeak process, although it gives a smaller intergroup separation factor than the Tramex process, has a distinct advantage in that its aqueous

Table 5.7


HDEHP EXTRACTION OF AMERICIUM AND LANTHANIDES
FROM MIXTURES OF DTPA AND CARBOXYLIC ACIDS*(Organic Phase: 0.2M HDEHP in Diisopropylbenzene;
Aqueous Phase: 1M Carboxylic Acid-0.05M DTPA, pH 3.0)

Acid	Distribution coefficient for americium	Separation factor		
		La/Am	Ce/Am	Eu/Am
Formic	0.0102	270	147	19
Acetic	0.0086	430	163	24
Propionic	0.0052	770	190	29
Butyric	0.0009		190	10
Glycolic	0.0124	145	97	84
Lactic	0.0085	380	140	91
Citric	0.0102	73	84	105
Malonic	0.0087	290	184	57
α -Hydroxyisobutyric	0.0132	370	144	62
Glycine-HNO ₃	0.0111	270	144	16

*[From B. Weaver and F. A. Kappelmann,¹⁵¹ Preferential Extraction of Lanthanides over Trivalent Actinides by Monoacidic Organophosphates from Carboxylic Acids and from Mixtures of Carboxylic and Aminopolyacetic Acids, *Journal of Inorganic and Nuclear Chemistry*, 30: 263 (1968).]


medium is sufficiently noncorrosive that it does not require special construction materials.

Berger et al.,¹⁵⁹ and other French investigators have applied a Talspeak-like process as part of a scheme for recovering milligrams of americium and curium from highly irradiated Al-10 wt.% Pu alloys. Following dissolution of the irradiated targets, two triaurylamine extraction cycles were used to recover plutonium from an HNO₃ solution. The plutonium-free raffinate was adjusted to 1M Al(NO₃)₃ and 1M to 2M HNO₃ and batch contacted with 0.25M DHEHP-*n*-dodecane to extract fission-product zirconium and ruthenium. Finally, two HDEHP extraction cycles (Fig. 5.18) were used to recover the americium and curium and to purify them from fission-product lanthanides. A distinguishing feature of the French flow sheet is the use of a concentrated LiNO₃ solution containing DTPA to selectively strip americium and curium from the HDEHP extract. Weaver⁸⁸ points out that 3M LiNO₃-0.05M DTPA solutions are less effective than carboxylic acid-DTPA solutions in separating transplutonium elements from rare earths. Anion-exchange procedures used for the final purification and separation of americium from curium are described on pages 239 to 243.

Fig. 5.17 Separation of actinides and lanthanides in the Talspeak process. Organic phase, 0.3M HDEHP in diisopropylbenzene, aqueous phase, 1M lactic acid-0.005M DTPA at pH 2.0 [From B. Weaver and F. A. Kappelmann,¹⁵¹ Preferential Extraction of Lanthanides over Trivalent Actinides by Monoacidic Organophosphates from Carboxylic Acids and from Mixtures of Carboxylic and Aminopolyacetic Acids, *Journal of Inorganic and Nuclear Chemistry*, 30: 263 (1968)]

Koch, Kolank, and coworkers in West Germany have been developing for some time now an HDEHP extraction scheme for the removal and separation of americium and curium from Purex-process high-level waste that incorporates both normal and "reverse" Talspeak processes.¹⁶⁰⁻¹⁶³ A simplified schematic of their current flow sheet is presented in Fig. 5.19, with pertinent stream compositions listed in Table 5.8 [An earlier HDEHP solvent extraction flow sheet^{164, 165} had to be abandoned since it produced a citrate-complexed waste in which vigorous and potentially explosive exothermic reactions occurred on calcination]. The initial process step involves denitration of the high-level waste (1WW solution) by reaction with formic acid. Conditions are maintained in this step under which americium and curium remain in solution while part of the fission and corrosion products are coprecipitated. The denitrated waste solution, which contains the americium, curium, fission-product rare earths, strontium, and cesium, is adjusted to extraction conditions.

Note Numbers in circles represent the flow rate in milliliters per hour.

* Solvent was mixed with 4M LiNO₃-pH 3 before being used

Fig. 5.18 HDEHP extraction process used in France in the recovery and purification of americium and curium from irradiated plutonium-aluminum alloy. [From R. Berger, G. Koehly, C. Musikas, R. Pottier, and R. Sontag,¹⁵⁹ Processing of Highly Irradiated Al-Pu Alloy, *Nuclear Applications and Technology*, 8: 371 (1970).]

The extraction cycle (Fig. 5.19) in the German process involves (1) coextraction of the americium, curium, and rare earths into an 0.3M HDEHP-0.2M TBP-NPH solvent (WA mixer-settler bank); (2) partitioning of americium and curium from rare earths (WB bank) using a 1M lactic acid-0.05M DTPA solution to preferentially strip the actinides (reverse Talspeak-type process); (3) stripping of rare earths with 5M HNO₃ (WC bank); and (4) further purification of the americium and curium by a normal Talspeak process (WD bank). The rare-earth-loaded solvent (WDW solution) from the WD bank is recycled to the WA bank. The spent solvent (WCW solution) from the WC bank after cleanup is recycled as extractant to the WA and WD banks and as organic scrub solution to the WB bank. The dilute americium and curium product from the WD bank is a 1M lactic acid-0.05M DTPA solution that is concentrated and purified further by the cation-exchange resin process discussed on pages 245 to 252.

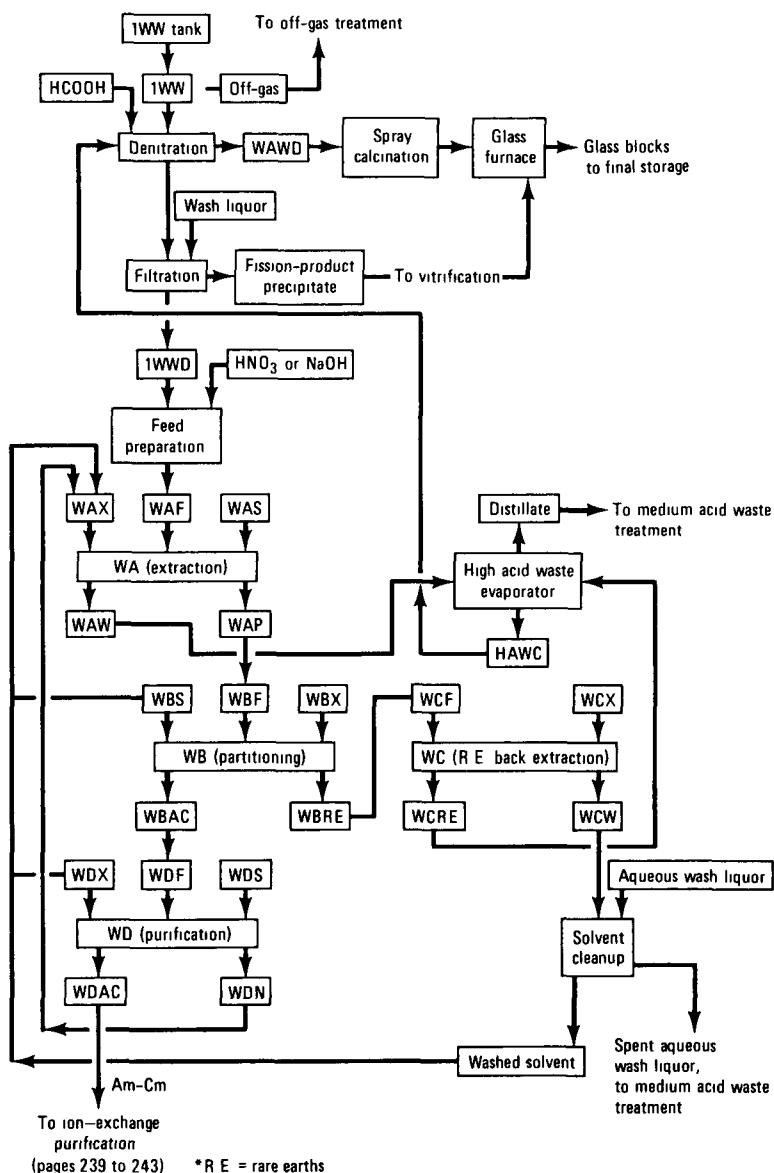


Fig. 5.19 German HDEHP extraction process for recovering americium and curium from high-level Purex-process waste (Stream compositions are listed in Table 5.8) [From G. Koch, Z. Kolarik, H. Haug, W. Hild, and S. Drobnik,¹⁶¹ Recovery of Transplutonium Elements from Fuel Reprocessing High-Level Waste Solutions, in Symposium on the Management of Radioactive Wastes from Fuel Reprocessing, Paris, France, November 27–December 1, 1972 (CONF-721107, pp. 1081–1110), also, German Report KFK-1651, November 1972.]

Table 5.8
GERMAN HDEHP AMERICIUM-CURIUM RECOVERY PROCESS: STREAM FLOWS AND COMPOSITION*

Stream designation†	Composition												
	Am g liter ⁻¹	Cm g liter ⁻¹	HNO ₃ M	RE‡ g liter ⁻¹	FP§ g liter ⁻¹	NaNO ₃ M	Ni(NO ₃) ₂ M	CP¶ g liter ⁻¹	H ₅ DTPA** M	HLAC†† M	HDEHP‡‡ M	TBP§§ M	pH
IWW	0.12	0.01	4		27	0.22		4					100
WAF	0.06	0.005		5	3¶¶	0.11	0.004					2	200
WAX				0.002						0.3	0.2		500
WAS			0.22										134
WAW					1.8	0.07	0.002					1.1	334
WB†	0.024	0.002		2						0.3	0.2		500
WBX								0.05	1			3.0	166
WBS										0.3	0.2		166
WDF	0.072	0.006		0.006				0.05	1			3.0	166
WCF				1.5						0.3	0.2		666
WCX			5										166
WCRE			4.9	6									166
WCW										0.3	0.2		166
WDX										0.3	0.2		125
WDS								0.05	1			3.0	42
WDAC	0.058	0.0048						0.05	1			3.0	208
WDW				0.008						0.3	0.2		125

*[From G. Koch, Z. Kolarik, H. Haug, W. Hild, and S. Drobnik,¹⁶¹ Recovery of Transplutonium Elements from Fuel Reprocessing High-Level Waste Solutions, in Symposium on the Management of Radioactive Wastes from Fuel Reprocessing, Paris, France, November 27-December 1, 1972 (CONF-721107, pp. 1081-1110), also, German Report KFK-1651, November 1971.]

†See Fig. 5.19.

‡Rare-earth fission products.

§Other fission products.

¶Corrosion products.

**Diethylenetriaminepentaacetic acid.

††Lactic acid.

‡‡Bis(2-ethylhexyl)phosphoric acid.

§§Tri-n-butyl phosphate.

¶¶Essentially rubidium, strontium, cesium, and barium.

Thus far the German HDEHP americium-curiump extraction process has been demonstrated only on a laboratory-scale with simulated Purex-process waste containing added radioisotopes. Although process performance was excellent under such conditions, it is clear, as Koch¹⁶¹ notes, that pilot-plant-scale tests with actual high-level waste are needed to determine fully the utility of this americium-curiump recovery scheme.

HDEHP extraction processes that make use of the differences in stability of the chloride and thiocyanate complexes of the lanthanides and actinides (compare Chap. 3) have been proposed^{95,101,166,167} for separating americium and curium from the rare earths. Such processes use concentrated LiCl (or CaCl₂) and NH₄SCN aqueous feedstocks. Gureev et al.¹⁶⁶ have described laboratory-scale mixer-settler tests in which an 0.74M HDEHP-dodecane solvent was used with either a 6M NH₄SCN or a 1M LiCl-0.4M HCl aqueous feed to extract rare earths away from americium. Decontamination factors of americium from rare earths of ~10 (Cl⁻ system) and ~1000 (SCN⁻ system) were realized in these tests. No industrial-scale application of such processes is anticipated, since they are less efficient than the Talspeak process (or modifications thereof)¹⁰¹ and involve the use of more corrosive and/or difficult-to-handle aqueous-phase compositions.

Similar to results with TBP (compare pages 201 and 202), there is conflicting evidence regarding HDEHP extraction of Am(VI) from HNO₃ solutions. Zangen¹²² states that HDEHP-CCl₄ solutions extract Am(VI) from 0.05M HNO₃ ~1000 times better than Am(III). Penneman and Asprey³² also found that an 0.3M HDEHP-toluene solution extracts Am(VI) quantitatively from 0.1M HNO₃-0.1M Na₂S₂O₈ solution and suggest this procedure for separating macro amounts of americium from Cm(III). On the other hand, workers at ORNL observe that HDEHP extracts Am(III) considerably better than Am(VI).^{156,168} Myasoedov et al.⁹⁵ suggest this latter result may have been obtained because of the reduction of Am(VI) to inextractable Am(V). Penneman and Keenan³² note tracer concentrations of americium are difficult to maintain in the hexavalent state. Definitive experiments are needed to resolve this conflict.

Watanabe and Sagawa¹⁶⁹ have devised an HDEHP extraction process for separating curium and plutonium from americium. This procedure involves reduction of Am(VI) to Am(V) with H₂O₂ in 0.1M HNO₃ solution, and extraction of plutonium and Cm(III) into a 50 vol.% HDEHP-xylene (or dodecane) solvent. A decontamination factor of ²⁴¹Am from ²⁴²Cm of 30 ± 10 is obtained in one cycle of solvent extraction. It is not clear why H₂O₂ does not reduce Am(V) to Am(III), nor is it clear whether plutonium is in the +4 or the +3 state. Lee¹⁷⁰ has reported on a study of the Am(III)-Cm(III) separation factors in HDEHP extraction systems.

Myasoedov et al.^{171,172} report that a 3:1 mixture of HDEHP and P₂O₅ in cyclohexane extracts Am³⁺ quantitatively from 1M to 12M HNO₃ solution (Fig. 5.20). Large concentrations of Al(NO₃)₃ do not interfere in the extraction of Am³⁺ by an 0.3M HDEHP-0.1M P₂O₅ solution. The Russian investigators postulate that an entity with a great affinity for trivalent transplutonium elements forms when P₂O₅ is dissolved in HDEHP solutions. Myasoedov and coworkers also report that the

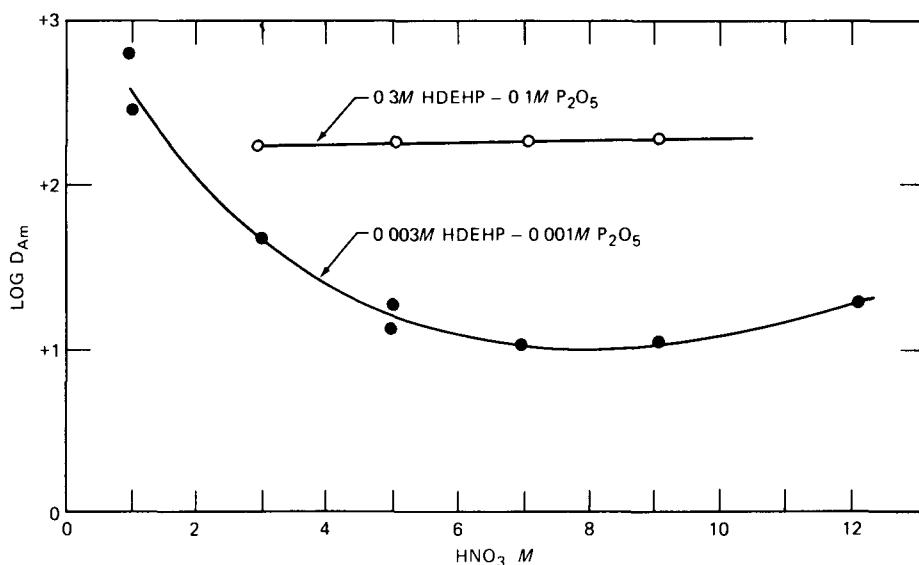
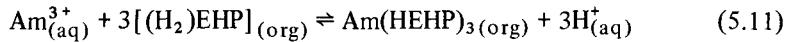


Fig. 5.20 Extraction of Am(III) by HDEHP-P₂O₅ solutions [From B F Myasoedov, M K Chmutova, N E Kochetkova, and G A Pribylova,¹⁷¹ Solvent Extraction of Trivalent Americium from Acid Media, *Radiochemical and Radioanalytical Letters*, 14: 63 (1973)]

extractive properties of HDEHP-P₂O₅ mixtures decrease with time. A satisfactory way of stripping metal values from the HDEHP-P₂O₅ extractant has not been reported.

Synergistic and antagonistic effects in the extraction of Am(VI) and Am(III) by HDEHP-TBP solvents have been reported by Zangen^{122, 173} and by Kolarik¹⁷⁴. In the system 0.03M HDEHP-0.1M TBP-CCl₄-0.05M HNO₃, Zangen noted a synergistic effect for the extraction of Am(VI) and an antagonistic effect for Am(III). Kolarik notes also that TBP causes only an antagonistic effect in HDEHP extraction of Am(III) from perchlorate, citrate, and nitrilotriacetate solutions.

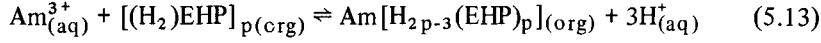
Other Organophosphorus Acid Extractants Only HDEHP has found large-scale use for the recovery and separation of americium, however much laboratory-scale work has been done to evaluate various other organophosphorus acids for their ability to extract americium from different aqueous media and to establish chemistry involved in such extraction systems. Several interesting and relevant features of this laboratory work are mentioned here, a more complete description of these studies is provided in Ref. 88.


Monoacidic phosphonates are obtained by substituting a phosphorus-bound alkyl or aryl group for an ester group of a monoacidic phosphate. The former compounds, as shown first by Peppard, Mason, and Hucher,^{175, 176} are considerably more powerful extractants for the actinides than are the corresponding monoacidic

phosphates. Taking advantage of this greater extractive power, Baybarz, Leuze, and Weaver^{177,178} devised a countercurrent extraction process using a 1*M* solution of HEHØP [*bis*(2-ethylhexyl) phenylphosphonic acid] in diethylbenzene as an extractant to separate americium and curium from transcurium elements contained in 1*M* HCl. Americium and curium remain in the aqueous phase while the transcurium elements are stripped from the organic phase with 4*M* HCl. Curium losses are about 0.1%, and the decontamination factor of transcurium elements from americium is $\sim 10^3$. Routine use of this process at ORNL in actinide processing operations was precluded by the presence of zirconium in feed solutions because of corrosion of zirconium-based equipment. Zirconium is strongly extracted by HEHØP (Ref. 179); such extraction adversely affects the separation of americium and curium from transcurium elements.

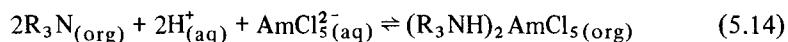
Separation of lanthanides and actinides in the Talspeak process (compare pages 208 to 220) is smaller when HDEHP is replaced by the more powerful HEHØP (Ref. 151). For example, extraction by 0.1*M* HEHØP in diisopropylbenzene from 1*M* lactic solutions 0.04*M* to 0.2*M* in Na₅DTPA gives separation factors of 100 for cerium and europium over americium, but the neodymium/californium separation factor is only about one-half as large as that obtained with HDEHP.

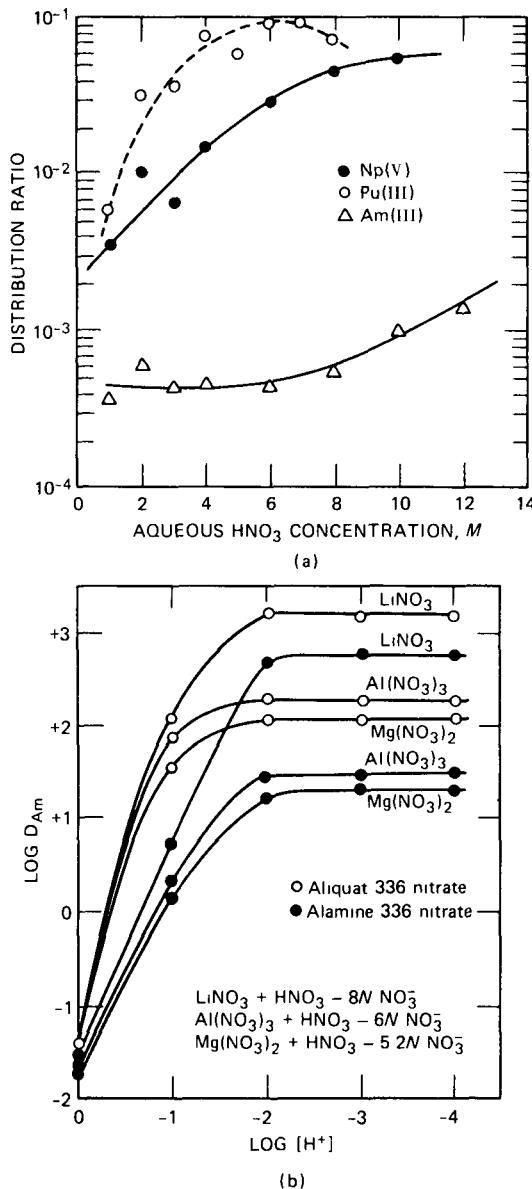
Mason, Bollmeier, and Peppard^{180,181} have used *bis*(2,6-dimethyl-4-heptyl) phosphoric acid, $[(i\text{-C}_4\text{H}_9)_2\text{CHO}]_2\text{PO}(\text{OH})$, to preferentially extract Am(VI) and thus partition americium from lanthanides and trivalent actinides. They report that, in the system 0.6*F* $[(i\text{-C}_4\text{H}_9)_2\text{CHO}]_2\text{PO}(\text{OH})$ -*n*-heptane-0.025*F* HNO₃-0.025*F* AgNO₃-0.185*F* K₂S₂O₈, the extraction constant for oxidized americium is greater than 40, whereas that for Cm(III) is $< 10^{-5}$. Mason, Bollmeier and Peppard recommend the use of *bis*(2,6-dimethyl-4-heptyl)phosphoric acid as the stationary phase in extraction chromatography systems (compare page 255), but thus far no such application has been reported.


Much interest has been shown in the chemistry and reaction mechanisms involved in the extraction of Am(III) by mono-(2-ethylhexyl)-phosphoric acid [(H₂)EHP].^{143,145,166,182-188} This reagent has a much higher tendency to polymerize than HDEHP. In alcohols where (H₂)EHP is monomeric, Am(III) extraction follows the mechanism:¹⁸⁶

Rao, Mason, and Peppard¹⁸³ give the following mechanism for the extraction of Am³⁺ by dimeric (H₂)EHP in hexane:

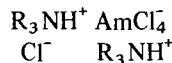
Finally the extraction of Am(III) by (H₂)EHP in nonpolar diluents (e.g., *n*-hexane) can be represented as:^{182,184,185}

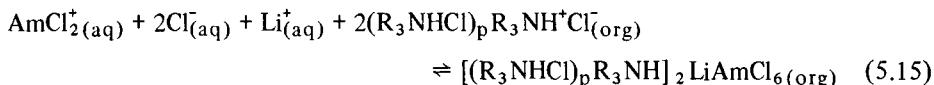

Because the extraction capacity of $(H_2)EHP$ is greater than that of HEDHP, considerable effort has been expended in devising $(H_2)EHP$ extraction processes for separating Am(III) from lanthanides. Systems studied in laboratory-scale batch and countercurrent tests involve the extraction of Am(III) from concentrated LiCl solutions¹⁸⁹⁻¹⁹¹ and from 0.1M to 10.3M NH_4SCN media.^{166,185} Although excellent separations have been obtained in some cases, none of these $(H_2)EHP$ extraction schemes have found any plant-scale use largely because of the required precise control of conditions.


In addition to those already cited, the following organophosphorus acids have also been used in laboratory-scale americium extraction studies: di[*para*(1,1,3,3-tetramethylbutyl)phenyl]-phosphoric acid;^{145,146,192} di(hexoxymethyl)phosphoric acid;^{193,194} di-*n*-octylphosphoric acid;¹⁹⁵ di-neooctylphosphoric acid;¹⁹⁶ *bis*(2,6-dimethyl-4-heptyl)phosphoric acid;¹⁹⁷ di-*n*-octylphosphinic acid;^{198,199} mono-*n*-octylphosphinic acid;²⁰⁰ 2-ethylhexylphosphinic acid;²⁰⁰ *n*-octylphenylphosphinic acid;²⁰¹ and cyclooctylphenylphosphinic acid.²⁰¹

Amine Extractants. Nitrogen-based extractants, particularly tertiary amines and quaternary ammonium compounds, have been widely studied and used for separating and recovering americium and other actinide elements from aqueous media. General reviews of amine extractants and extraction chemistry have been written by Schmidt,²⁰² by Coleman, Blake, and Brown,^{203,204} and by Müller.⁹³

Tertiary Amine Salts. Paralleling the behavior of neutral monodentate organophosphorus extractants, tertiary amine salts extract Am^{3+} only poorly from concentrated HNO_3 or HCl solutions but very strongly from concentrated nitrate or chloride solutions of low acidity (Fig. 5.21). Tertiary amine extraction of tracer amounts of americium from HNO_3 -metal nitrate [e.g., $Al(NO_3)_3$, $LiNO_3$, and $Mg(NO_3)_2$] solutions has been investigated in detail as a function of type and concentration of metal nitrate^{105,106,113,123} amine type and concentration;^{123,206-208} and diluent type.^{105,123} Similar studies have been made for tertiary amine extraction of tracer americium from HCl-metal chloride solutions: type and concentration of metal chloride;^{93,178,209-215} amine type and concentration;^{178,209,214-219a} and diluent effects.^{209,215,216} Results and findings of these studies are recounted in Refs. 88 and 95.


In tertiary amine extraction of americium from both nitrate and chloride solutions, D_{Am} varies with the square of the amine concentration.^{178,205,206,209,214,216,218} From this extraction dependency, Marcus, Givon, and Choppin²⁰⁶ and Horwitz et al.²⁰⁵ assume that Am^{3+} is extracted from nitrate media as the complex $(R_3NH)_2Am(NO_3)_5$. In a similar fashion, Moore²¹⁶ postulated that tertiary amines extract Am^{3+} from chloride solutions according to the reaction:


Fig. 5.21 Amine extraction of Am³⁺ from nitrate solutions. (a) Extraction from HNO₃ solutions by 10 vol.% tri-n-octylamine in xylene. [Adapted from W. E. Keder, J. C. Sheppard, and A. S. Wilson,²⁰⁷ The Extraction of Actinide Elements from Nitric Acid Solutions by Tri-n-Octylamine, *Journal of Inorganic and Nuclear Chemistry*, **12**: 327 (1960).] (b) Extraction from HNO₃-metal nitrate solutions by 0.59M Alamine 336 · HNO₃ in diisopropylbenzene and 0.39M Aliquat 336 · NO₃ · HNO₃ in xylene. [From E. P. Horwitz, C. A. A. Bloomquist, L. J. Sauro, and D. J. Henderson,²⁰⁵ The Liquid-Liquid Extraction of Certain Tripositive Transplutonium Ions from Salted Nitrate Solutions with a Tertiary and Quaternary Amine, *Journal of Inorganic and Nuclear Chemistry*, **28**: 2313 (1966).]

Müller, Duyckaerts, and Fuger²¹⁷ postulate that the complex extracted from chloride solutions is formed by association of the $(R_3NH)AmCl_4$ complex with tertiary amine salts R_3NHCl ; the resultant ionic quadrupoles

also contain two amine molecules per Am^{3+} ion.

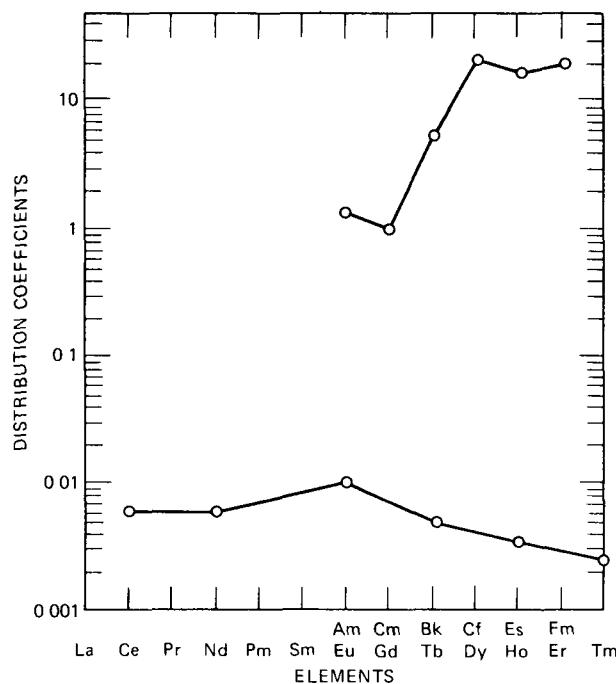
Marcus^{219a} has reported on results of studies of tri-*n*-octylamine extraction of macro amounts of Am^{3+} from 0.85M HCl–9.45M LiCl solutions. He observed coextraction of lithium with americium in a 1 : 1 mol ratio; lithium was not extracted in the absence of americium. To account for his results, Marcus suggested the following extraction mechanism:

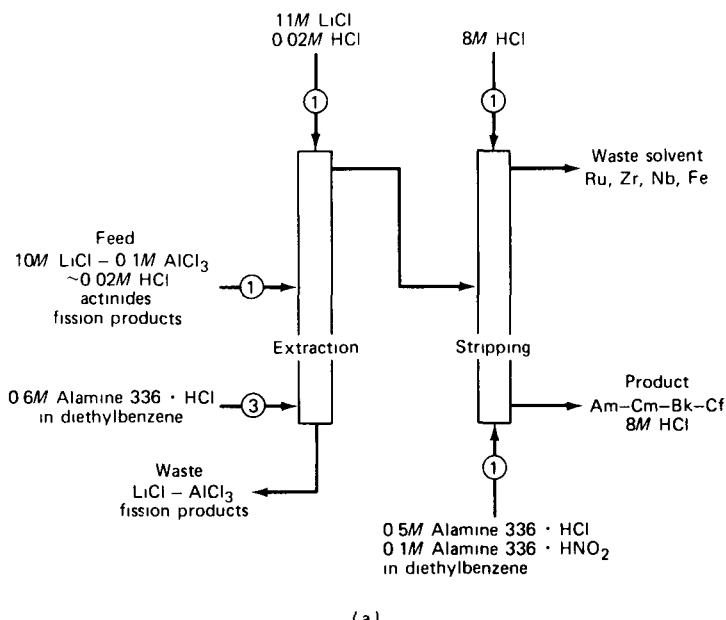
Weaver⁸⁸ mentions having heard doubts expressed about the coextraction of lithium and the validity of Eq. 5.15. In some recent related extraction studies, Harmon et al.^{219b} observed that 1M solutions of Adogen 464 (a quaternary ammonium salt available from Ashland Chemical Company) in xylene extract substantial amounts of lithium from 10M LiCl solutions.

Distribution coefficients of Am^{3+} and other trivalent transplutonium elements from concentrated LiCl solutions are 150- to >1000-fold higher than those of trivalent lanthanides (Fig. 5.22). This phenomenon was used by Moore^{216,220,221} in various analytical applications; it was also exploited by process chemists at ORNL in the development of the Tramex process^{123,178,209,215,222,223} for plant-scale separation of americium, curium, and other transplutonium elements from fission-product lanthanides and other contaminants.

The flow sheet in Fig. 5.23(a) illustrates the essentials of the Tramex process as originally devised,¹⁷⁸ whereas that in Fig. 5.23(b) shows the particular Tramex process used in the Curium Recovery Facility at Oak Ridge to recover 35 g each of ^{243}Am and ^{244}Cm and about 25 g of ^{242}Cm in a highly pure form.¹⁵⁰ The basic Tramex process [Fig. 5.23(a)] involves selective extraction of Am^{3+} and other transplutonium elements from 10M to 11M LiCl–0.02M to 0.25M HCl into the hydrogen chloride salt of a tertiary amine in an appropriate diluent. The organic extract is scrubbed with a small volume of 11M LiCl–HCl solution, stripped with 8M HCl, and discarded to waste without reuse. The strip product is scrubbed with amine extractant containing nitrous acid to improve decontamination from radioruthenium.

The chemistry involved in the Tramex process has been thoroughly worked out by ORNL chemists and engineers.^{123,178,209,215,223} Only highlights of this chemistry are mentioned here; much greater detail is provided in an article by Leuze and Lloyd.⁷⁶ Distribution coefficients in the Tramex system, in agreement with the earlier




Fig. 5.22 Relative extractability of actinides and lanthanides from 10M LiCl solution. Extractant, 0.6M Alamine 336 · HCl in diethylbenzene [From R. D. Baybarz, B. S. Weaver, and H. B. Kinser,²⁰⁹ Isolation of Transplutonium Elements by Tertiary Amine Extraction, *Nuclear Science and Engineering*, 17: 457 (1963).]

discussion in this chapter, are directly proportional to the second power of the amine concentration and also highly dependent on the type of diluent. Various tertiary amines were tested in laboratory-scale studies, but Alamine 336 (General Mills, Inc.) and Adogen 364HP (Archer Daniels Midland Company), both mixtures of octyl and decyl amines, because they are available in suitably pure form (particularly Adogen 364HP) in commercially available quantities, have been generally used in large-scale Tramex process operation. West and Navarez²²⁴ have published specifications for satisfactory tertiary amine extractants for use in the Tramex process. Because of its ready availability, high flash point, and high distribution coefficients for actinides, diethylbenzene is a preferred diluent.

Extractability of the transplutonium and lanthanide elements into the Tramex process solvent is strongly dependent on the chloride concentrations of the aqueous phase. Distribution coefficients increase with increasing LiCl concentration and decrease with an increasing concentration of free HCl. Mathematical representations for distribution data in the Tramex system have been derived by Roth and Henry²¹⁰ and by Agee and Roth.⁸⁹ Aluminum chloride is an effective salting agent in the

Tramex process, but its maximum solubility in 10M LiCl is 0.2M (Ref. 225). At these salt concentrations, AlCl_3 will precipitate when the HCl concentration is $>0.05M$. Actinide–lanthanide separation factors in the Tramex process are seriously compromised by the presence of nitrate in the adjusted feed; nearly complete nitrate removal is thus required. The Tramex process provides excellent decontamination from rare earths, aluminum, strontium, and, in general, all those impurities which do not form extractable anionic chloride complexes. Ruthenium, zirconium, niobium, and iron are extracted and remain in the organic. Good ruthenium decontamination is difficult to obtain because of slow conversion of the extracted species to an inextractable one.

Predominant radiolysis effects in the Tramex process are rapid destruction of HCl and generation of a strong oxidant in LiCl feed solutions which results in poor decontamination from cerium since Ce^{4+} extracts along with the actinides.^{76,123,149,150,154,226} To counteract these effects, methanol is added to the feed to suppress the loss of HCl, and 2,5-di-tert-butylhydroquinone (DBHQ), an organic-soluble reductant, is added to the Tramex process solvent to reduce any Ce^{4+} to Ce^{3+} (Ref. 150). In some early Tramex process operation [Fig. 5.23(b)], SnCl_2 was added to the feed to insure the presence of trivalent cerium.

(a)

Fig. 5.23 Tramex process flow sheets. (a) As originally devised. (b) As used in the Curium Recovery Facility at Oak Ridge. [From R. E. Leuze and M. H. Lloyd,⁷⁶ Processing Methods for the Recovery of Transplutonium Elements, in *Progress in Nuclear Energy, Process Chemistry*, Series III, C. E. Stevenson, E. A. Mason, and A. T. Gresky (Eds.), Vol. 4, page 549, Pergamon Press, Inc., New York, 1970.] See facing page for (b).

The Tramex process has been used routinely since 1967 at the Transuranium Processing Plant (TRU) at ORNL as part of the processing sequence (Fig. 5.24) involved in the recovery and purification of transplutonium elements from highly irradiated (High Flux Isotopes Reactor and/or Savannah River reactors) aluminum-clad ^{242}Pu -Al alloy, $^{242}\text{PuO}_2$, and $^{243}\text{AmO}_2$ - $^{244}\text{CmO}_2$ targets. [The Pubex process referred to in Fig. 5.24 involves HDEHP extraction of plutonium and zirconium from the dissolver solution; the Cleanex process (compare pages 208 to 220) is an HDEHP extraction process performed to separate the transplutonides from metallic impurities, and, if necessary, to convert from a nitrate- to a chloride-based system.] At the TRU the Tramex process has been operated satisfactorily in continuous countercurrent

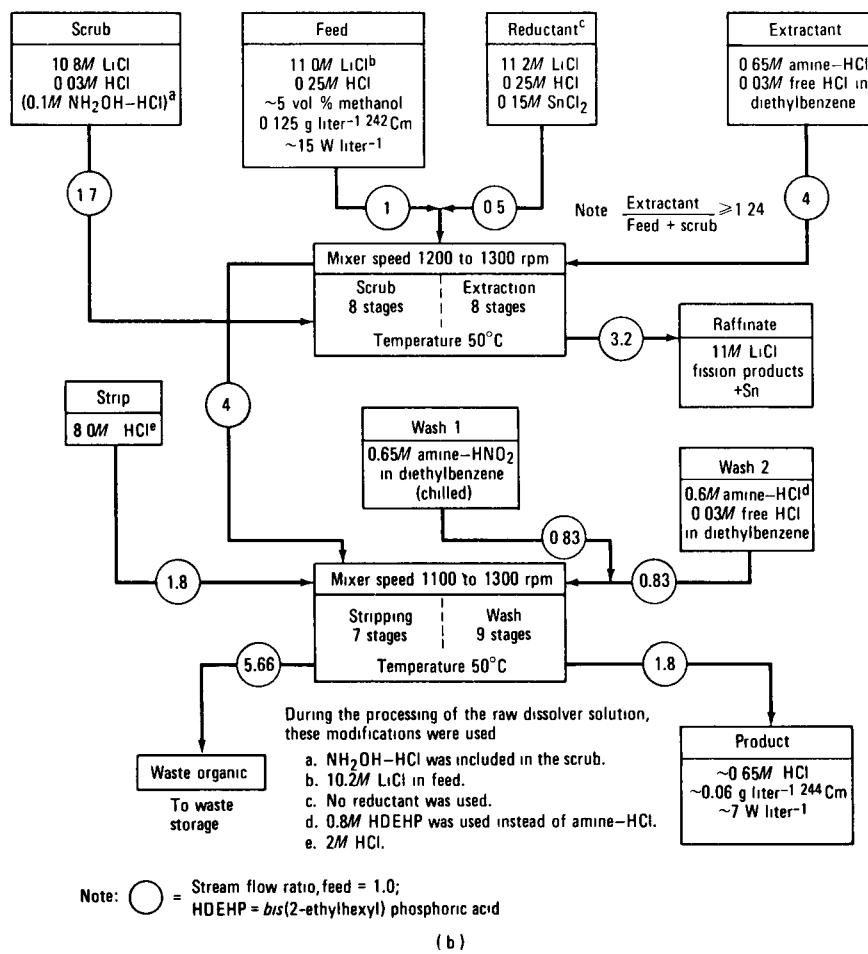
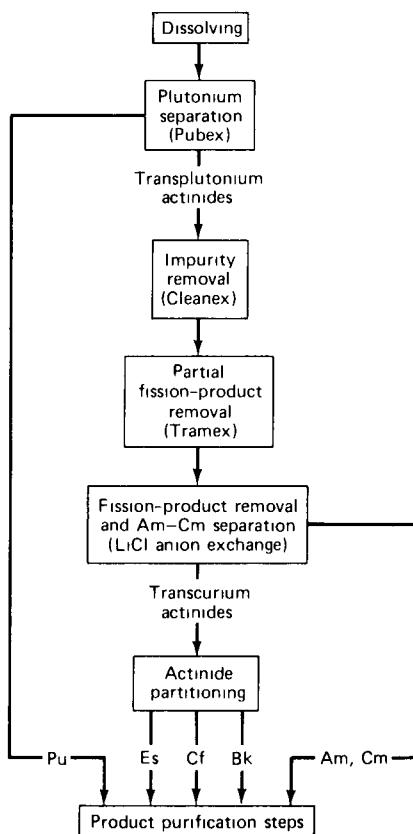



Fig. 5.23 (Continued; see facing page for caption.)

Fig. 5.24 Schematic of processing steps used in the Transuranium Processing Plant at Oak Ridge. Adapted from Ref. 66

equipment (pulse columns) constructed of Zircaloy under flow-sheet conditions very similar to those shown in Fig. 5.23(b) except for the substitution of DHBQ for SnCl_2 . Design details of the original pulse columns used in Tramex process operations are given in the paper by Leuze and Lloyd;⁷⁶ design changes made in second-generation Tramex process pulse columns are mentioned in Ref. 227. Continuous Tramex process operation has been generally satisfactory with feeds derived from PuO_2 and $\text{AmO}_2\text{--CmO}_2$ targets. In the initial processing of ^{242}Pu —Al alloy tubes irradiated at Savannah River, extensive carry-over of aluminum to the LiCl feed and attendant solids formation prohibited operation of the continuous Tramex process equipment;²²⁸ batch-type operation was necessary to process such feeds. Other details of the Oak Ridge experience with plant-scale Tramex process operation are provided in a paper by Bigelow, Chattin, and Vaughn.¹⁵⁰

The Tramex process was also used for a time at the Savannah River Laboratory as part of the process sequence²²⁹ carried out to produce and purify kilograms of

^{244}Cm and ^{243}Am . Savannah River Laboratory experience with continuous Tramex process operation in mixer-settlers has been summarized by Groh et al.^{105a} and Prout et al.²³⁰ The two-cycle Tramex process flow sheet shown in Fig. 5.25 was initially satisfactorily demonstrated in laboratory-scale facilities with miniature mixer-settlers. [The actinide-lanthanide concentrate ($\sim 2 \text{ g liter}^{-1}$ ^{244}Cm , $\sim 0.9 \text{ g liter}^{-1}$ ^{243}Am , $6M \text{NO}_3^-$, and $0.4M \text{H}^+$) used as feed to the process derived from the prior batch TBP extraction operations described on pages 195 to 202; the Clanex process described later in this chapter was used as a head-end step to prepare chloride-based feed to the Tramex process.] Subsequently this solvent extraction process (Fig. 5.25) was applied in a large pilot production facility⁷³ to purify $\sim 1.5 \text{ kg}$ of ^{244}Cm and $\sim 0.7 \text{ kg}$ of ^{243}Am . Prout et al.²³⁰ state: "The ^{244}Cm produced met the radioactive purity specifications given in the initial report of this series (DP-1009). Although product quality was good, the rate of production was slow. The exacting analysis requirements for process control, and maintenance problems caused by the high concentrations of chloride in the extraction system, made continuous multicycle operation *impractical . . .*" (author's italics). After their unpleasant and frustrating experience with a scaled-up Tramex process, the Savannah River group used a high-pressure displacement chromatographic cation-exchange process (compare pages 245 to 252) to purify the remaining ($\sim 3 \text{ kg}$) ^{244}Cm and ^{243}Am .

Nitrate ion in Tramex process chloride feedstock adversely affects the separation of actinides from lanthanides, as previously noted. A HDEHP solvent extraction process (Cleanex process) for converting from nitrate- to chloride-based systems has already been described (compare pages 195 to 202). The Clanex process (Fig. 5.26) is another such nitrate-to-chloride conversion process. In this process, americium, curium, and lanthanides in a $1M$ to $2M$ $\text{Al}(\text{NO}_3)_3$ or a $7M$ to $8M \text{NO}_3^-$ [mixed $\text{Al}(\text{NO}_3)_3$ and LiNO_3] solution are extracted into an $0.6M$ Alamine 336- HNO_3 -diethylbenzene solvent, scrubbed with $8M \text{LiNO}_3$, and stripped with $3M$ to $8M \text{HCl}$. The strip product is scrubbed with $0.6M$ Alamine 336- HCl -diethylbenzene to remove the last traces of nitrate. The rare earths coextract with the trivalent actinides, but most other contaminants are sufficiently inextractable that they remain in the aqueous raffinate. Applications of the Clanex process have been made both at Oak Ridge^{76,231} and at Savannah River.^{76,105a,231}

In other laboratory-scale investigations of tertiary amine extractants, Chmutova et al.²³² have studied extraction of Am^{3+} and other trivalent transplutonide elements by mixtures of trioctylamine with TBP, tri-*n*-octylphosphine oxide, and triphenylphosphine oxide. The synergistic effect with such solvents is sufficient according to these Russian scientists to permit quantitative extraction of Am^{3+} from $1M \text{HNO}_3$ - $7M \text{LiNO}_3$ solutions. Conversely Koehly, Madic, and Berger²³³ report that extraction of Am^{3+} from LiNO_3 solutions by triaurylamine nitrate solvent decreases when capric acid is added to the organic phase; the antagonistic effect of capric acid is accounted for by these workers on the basis of an addition reaction between one molecule of triaurylamine nitrate and one capric acid dimer.

Koehly and Berger²³⁴ have studied the effects of aminopolycarboxylic acids (e.g., DTPA and EDTA) on the extraction of Am^{3+} and lanthanides from low-acid LiNO_3

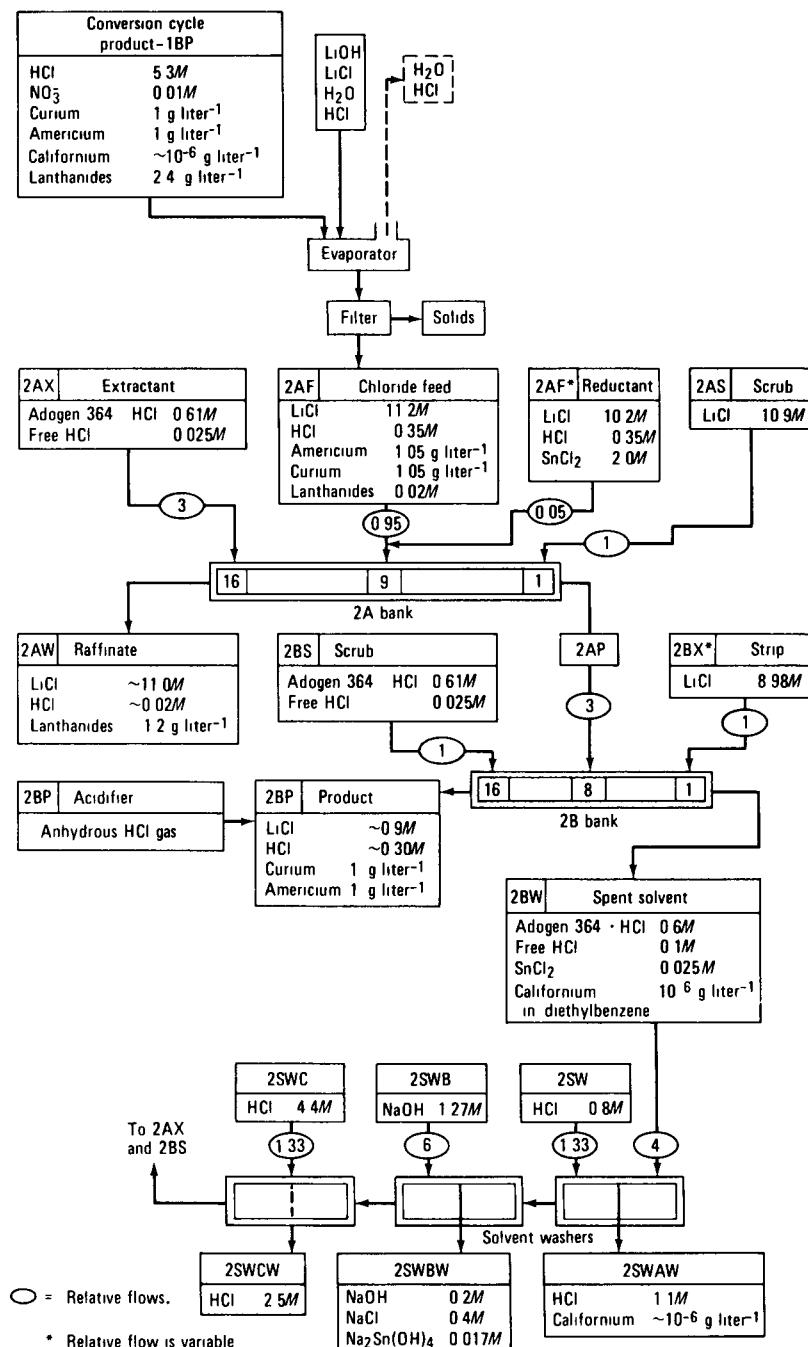


Fig. 5.25 Two-cycle Tramex process flow sheet used to recover americium and curium at the Savannah River Plant.²³⁰

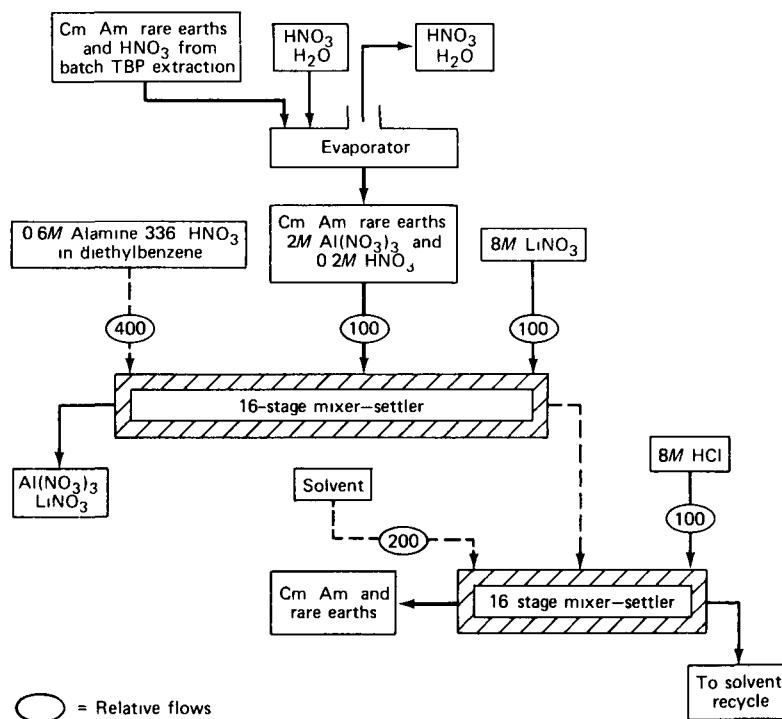


Fig. 5.26 Clancex process used for nitrate to chloride conversion [From H J Groh, R T Huntoon, C S Schlea, J A Smith, and F H Springer, ^{105a} ²⁴⁴Cm Production and Separation—Status of the Pilot Production Program at Savannah River, *Nuclear Applications* 1• 327 (1965)]

and $\text{Al}(\text{NO}_3)_3$ solutions by 0.64M triaurylamine in a dodecane-chlorobenzene diluent, separation factors (D_{RE}/D_{Am}) similar to those found (Table 5.5) in TBP extraction from similar solutions were observed. Koehly and Berger used their data to devise countercurrent extraction processes for separating Am^{3+} from Pm^{3+} and Cm^{3+} , these processes were subsequently satisfactorily demonstrated in miniature mixer-settler tests with aqueous LiNO_3 -DTPA solutions containing milligram amounts of ²⁴¹²⁴³Am and ²⁴⁴Cm (Refs 234 and 235).

Moore²³⁶ reported data for Alamine 336 extraction of Am^{3+} from 0.01M HNO_3 solutions containing citric, tartaric, oxalic, acetic, EDTA, or α -hydroxyisobutyric acids.

Weaver²³⁷ made a brief comparison of the extraction of Am(VI) and Am(III) from LiNO_3 solution by Alamine 336 nitrate in diisopropylbenzene. At low nitrate concentrations, Am(III) was less extractable than Am(VI) , but a difference in nitrate-concentration dependency reversed the preference at concentrations above 4M LiNO_3 .

Quaternary Ammonium Salts Quaternary alkyl ammonium nitrate salts extract Am^{3+} considerably more efficiently from low-acid, highly salted aqueous nitrate solutions than do tertiary alkyl amines, as shown by the data of Horwitz et al²⁰⁵ [Figure 5 21(b)] [Aliquat 336 is a mixture of trioctylmethyl- and tridecylmethylammonium salts made by General Mills, Inc] Moore²³⁸ also studied the extraction of $\text{Am}(\text{III})$ from LiNO_3 solutions, whereas Van Ooyen^{239 240} studied the extraction of Am^{3+} and other transplutonium elements from LiNO_3 solutions with trilaurylmethyl ammonium nitrate-xylene solutions Chudinov and Pirozhkov²⁴¹ investigated the effect of the type of metal nitrate salting agent on the extraction of $\text{Am}(\text{III})$ by xylene solutions of tetraoctylammonium nitrate Collectively these studies show that D_{Am} decreases rapidly at HNO_3 concentrations much higher than 0.01M because of the competition between excess HNO_3 and the americium nitrate complex for the extractant, D_{Am} also varies with diluent type and with the type and concentration of salting agent and appears to be a first-order function of quaternary ammonium extractant concentration The extracted species may be $\text{R}_4\text{NAm}(\text{NO}_3)_4$, but Horwitz et al²⁰⁵ and others are quick to point out that this empirical formula may well be too simple to account for the extraction process The extraction sequence for trivalent actinides into either Aliquat 336 · nitrate or trilaurylmethylammonium nitrate is $\text{Cm} < \text{Cf} < \text{Am} < \text{Es}$

Horwitz, Bloomquist, and Griffin²⁴² included an extraction step with Aliquat 336 in the preparation of 20 to 30 Ci of high-purity ²⁴²Cm Irradiated ²⁴¹AmO₂ encapsulated in aluminum was dissolved in an HNO_3 - $\text{Hg}(\text{NO}_3)_2$ solution, a xylene solution of Aliquat 336 was used to extract curium and americium from the $\text{Al}(\text{NO}_3)_3$ solution and from certain fission products

Koch and Schoen^{243 244} devised and tested on a laboratory scale a quaternary ammonium extraction process for the isolation of ²⁴¹Am from aged plutonium scrap Feed for the extraction process is the americium-containing raffinate resulting from anion-exchange recovery of the plutonium from a strong HNO_3 solution This raffinate is concentrated by evaporation, residual plutonium and, if present, uranium are extracted with Aliquat 336 nitrate in an aromatic diluent The aqueous solution free of plutonium and uranium is adjusted to 7M NH_4NO_3 and pH 1.5, and Am^{3+} is extracted with the Aliquat 336 solvent After the organic phase is scrubbed with 7M NH_4NO_3 , the purified americium is stripped with 3M HNO_3 No large-scale application of this process has been reported

Advantages of a quaternary ammonium nitrate extraction process over other schemes (e.g., Tramex process) for isolating trivalent actinide-lanthanide elements were discussed by Moore²³⁸ But again, no large-scale use of quaternary amines for the purpose has been made

Moore^{245 246} and later Gerontopoulos, Rigali, and Barbano²⁴⁷ found that the thiocyanate salt of Aliquat 336 preferentially extracts actinides over lanthanides from moderately concentrated NH_4SCN solutions Moore²⁴⁵ gives the order of extractability as $\text{Cf} > \text{Bk} > \text{Am} > \text{Cm} \geq \text{Yb} \geq \text{Tm} > \text{Eu} > \text{Pm} > \text{Y} > \text{Ce} > \text{La}$ Gerontopoulos et al report that distribution coefficients in this system are dependent on temperature, the presence of various contaminant anions, and the type of diluent but that

separation factors between americium and rare earths remain relatively constant. Several process-scale applications of the Aliquat 336-NH₄SCN system were suggested by Moore but none have been made.

Polish workers²⁴⁸ have reported on extraction of Am³⁺, Cm³⁺, and rare earths from LiNO₃-0.01M HNO₃ solutions by chloroform solutions of cetyltrimethylammonium bromide and cetylpyridinium bromide. Zaman, Merciny, and Duyckaerts²⁴⁹ investigated the extraction of americium-HEDTA complexes with Aliquat 336 chloride-benzene solution, whereas Moore^{250,251} discussed the extraction of americium-HEDTA and americium-DTPA complexes with xylene solutions of Aliquat 336.

ION-EXCHANGE PROCESSES

Introduction

Ion-exchange processes—both cation and anion—are extensively used to concentrate, separate, and purify both micro and macro amounts of americium from a whole host of inert and radioactive contaminants, including, particularly, Cm(III) and lanthanides. A recent innovation for this purpose has been the application of very finely divided resins and high-pressure techniques. Feedstock for the americium ion-exchange processes derives usually from prior solvent extraction (see preceding section), pyrochemical (pages 185 to 187), and even precipitation (pages 190 to 194) schemes.

Ryan²⁵² has recently completed a comprehensive review of the chemistry and principles involved in the sorption of americium from various aqueous media by both organic and inorganic exchangers. Other authors have reviewed use of ion-exchange materials for the analysis of americium²⁵³ and for studies of americium complexes.²⁵⁴ Rather than attempting to duplicate this excellent coverage, emphasis here is primarily on an account of the flow sheets, operating details, and performance of the ion-exchange processes used to routinely separate and purify kilograms of americium. Jenkins and Wain²⁵⁵ have recently authored a list of publications covering the use of ion exchange for recovering and purifying ²⁴¹Am and ²⁴³Am.

Anion-Exchange Resin Systems

Many different aqueous and mixed aqueous-organic media have been used in laboratory-scale studies of the absorption of americium by anion-exchange resins; results of these studies have been reviewed by Ryan.²⁵² For routine, large-scale purification of americium, however, application of anion-exchange resins is limited to sorption from thiocyanate, chloride, and, to a smaller extent, nitrate solutions.

Thiocyanate Solutions Americium(III) forms relatively strong complexes [AmSCN^{2+} , $\text{Am}(\text{SCN})_2^+$, $\text{Am}(\text{SCN})_3$] in concentrated aqueous thiocyanate solutions (compare Table 3-11). Thiocyanate species are sorbed on anion-exchange resins considerably more strongly^{47 256 258} than are the corresponding lanthanide thiocyanate complexes, as illustrated by the distribution data plotted in Fig. 5-27. Distribution coefficients and lanthanide-actinide separation factors decrease with an increase in temperature²⁵⁶ (Fig. 5-28). Ryan²⁵² has pointed out that the europium results of Fig. 2 of Ref. 258 are incorrectly plotted a factor of 10 higher than the true values.

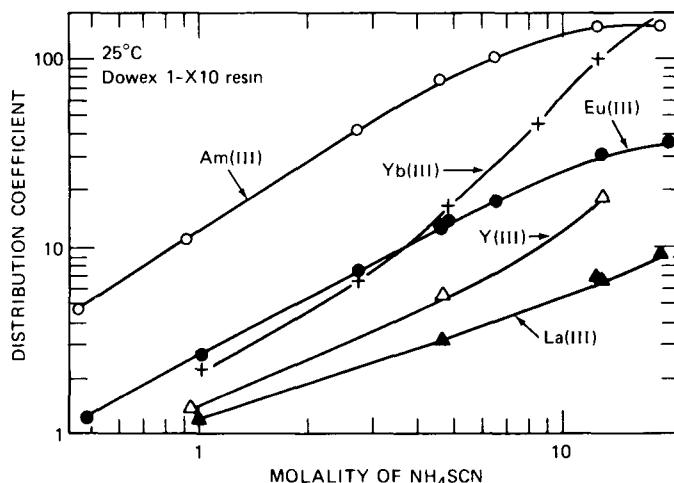


Fig. 5.27 Anion-exchange absorption of Am(III), Eu(III), Yb(III), and La(III) from aqueous NH_4SCN solutions [from J. S. Coleman, L. B. Asprey, and R. C. Chisholm,²⁵⁸ The Anion-Exchange Absorption of Americium, Yttrium, Lanthanum, Europium, and Ytterbium from Aqueous Ammonium Thiocyanate, *Journal of Inorganic and Nuclear Chemistry* 31: 1167 (1969).]

Much use has been made, particularly in the United States, of thiocyanate anion-exchange systems to purify americium from rare earths and other impurities. Figure 5-29 details in schematic form the thiocyanate ion-exchange process used at the Rocky Flats Plant for about 15 years (1960 to 1975) for routine purification of kilograms of ^{241}Am recovered from aged plutonium metal by the pyrochemical process discussed on pages 185 to 187. This purification scheme was developed originally by Coleman et al^{47 259} and Keenan²⁶⁰ at the Los Alamos Scientific Laboratory and applied there and also by Naito²⁶¹ at the University of California, Lawrence Radiation Laboratory, for purification of milligrams of americium.

Feedstock for the Rocky Flats thiocyanate ion-exchange process is derived from prior aqueous processing of the $\text{NaCl}-\text{KCl}-\text{MgCl}_2$ salt product of the pyrochemical process described on pages 185 to 187. For many years, as discussed on pages 190 to 194, a hydroxide precipitation scheme was used to isolate and concen-

trate americium from the chloride salt. The hydroxide precipitate was dissolved in nitric acid, and the resulting solution passes through a bed of Dowex 1 anion-exchange resin to remove the bulk of the plutonium. The 7M HNO_3 effluent from the anion-exchange column, after dilution to about 0.4M HNO_3 constituted feed to the thiocyanate process.

In the thiocyanate process, feedstock was loaded at 25°C and at a rate of about 100 liters hr^{-1} onto a 16.2-liter bed of 50-100 mesh H^+ -form Dowex 50-X8 resin (column 1) to sorb and concentrate the americium and plutonium. Feed to this first column contained, typically, 0.02 g Am liter $^{-1}$; 0.003 g Pu liter $^{-1}$; and varying amounts of lanthanum, other rare earths, iron, magnesium, and other metallic impurities. After washing with water and 0.5M NH_4SCN to remove the major part of the iron [as the $\text{Fe}(\text{SCN})_6^{3-}$ complex], americium, plutonium, and rare earths were eluted with a 6M NH_4SCN solution.

The 6M NH_4SCN eluate from the cation column, containing at this point approximately 1 g Am liter $^{-1}$ and 0.1 g Pu liter $^{-1}$, was loaded onto a 16.2-liter bed of 50-100 mesh SCN-form Dowex 1-X4 anion-exchange resin (column 2). To provide

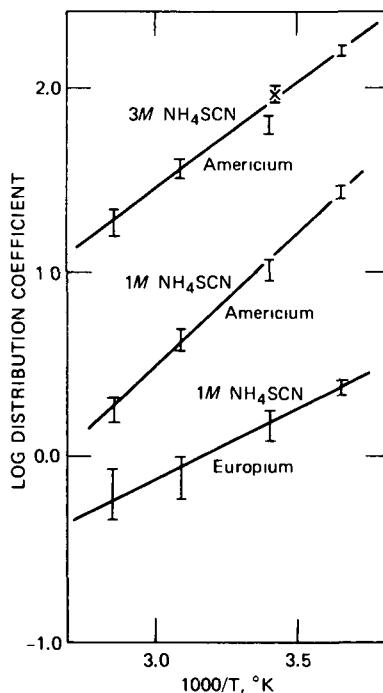


Fig. 5.28 Temperature dependence of distribution coefficients of Am(III) and Eu(III) into Dowex 1-X8 resin from aqueous NH_4SCN solutions. [From J. L. Ryan,²⁵² Ion Exchange, in *Gmelins Handbuch der Anorganischen Chemie*, Band 21, Transurane, Teil D2, G. Koch (Ed.), Verlag Chemie, G.m.b.H., Weinheim, Germany, 1974.]

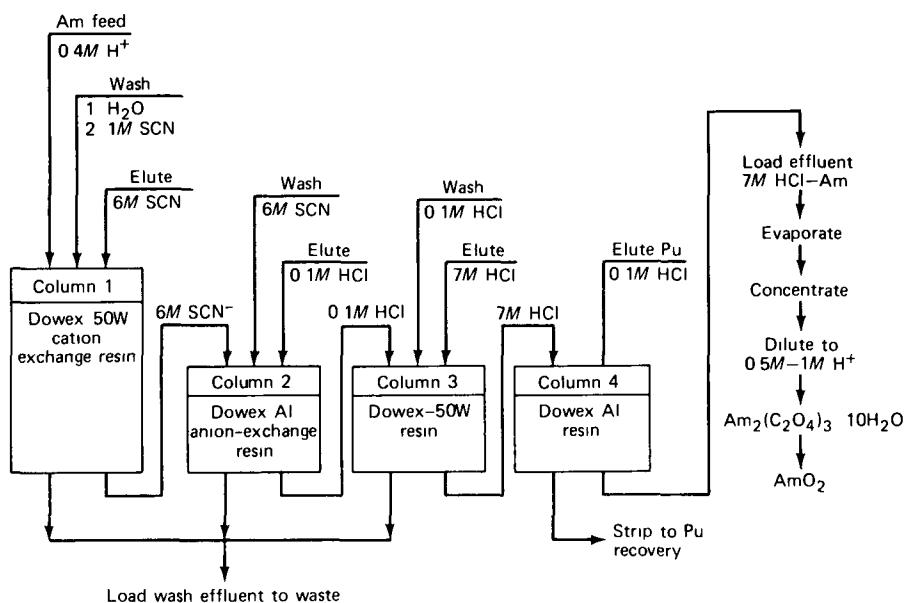


Fig. 5.29 Rocky Flats thiocyanate ion exchange americium recovery process. All columns are 15.2 cm in diameter.

decontamination from cosorbed rare earths, the loaded resin bed was washed with several column volumes of 6M NH_4SCN . This sorption-wash sequence was the key element in the overall americium purification scheme, providing separation not only from rare earths but also from iron, magnesium, bismuth, copper, potassium, nickel, and zinc.²⁶² Naito²⁶¹ and also Hagan and Miller²⁶³ have shown that some decontamination from aluminum and manganese is also obtained by washing the resin bed with a limited amount of 2M NH_4SCN after the lanthanides are removed.

The amount of resin required to achieve essentially complete separation of americium from rare earths in the thiocyanate ion-exchange process depends on the rare earth/americium ratio. For a lanthanide/americium ratio of 300:1, about 30 ml of resin per gram of lanthanide is required,^{47,259} whereas a loading of about 15 g Am liter⁻¹ resin can be used for the satisfactory purification of americium that is already largely free of rare earths.²⁶⁰

The final two ion-exchange columns in the Rocky Flats thiocyanate process served to further concentrate the americium and separate it from plutonium. To this end, americium and plutonium in the 0.1M HCl solution resulting from elution of the first Dowex 1 resin bed (column 2) were loaded onto a second bed of Dowex 50 resin. Subsequently americium and plutonium were eluted into a 7M HCl solution, and the plutonium then preferentially sorbed onto a bed of Dowex 1 resin. The effluent from the latter loading step containing purified americium was evaporated to yield a 6M HCl solution containing 25 to 30 g Am liter⁻¹ from which the americium was precipitated,

after adjustment of the acidity to 0.5*M* to 1*M*, as the oxalate. The oxalate precipitate was calcined to yield high-purity AmO_2 .

Some additional details of the Rocky Flats thiocyanate ion-exchange process for purifying americium were given in a paper by Ryan and Pringle.²⁶² Their report was published in 1960; however, Rocky Flats personnel state that the process was performed, with only minor modifications, much as outlined by Ryan and Pringle. Over 15 years' experience at Rocky Flats shows that the thiocyanate process can be operated successfully on a plant scale to purify americium from rare earths and other metallic impurities. Such experience has also disclosed several process disadvantages, including relatively low (60 to 70%) overall americium recovery, production of troublesome free sulfur from alpha radiolysis of SCN^- , and the general difficulties of handling and disposing of large volumes of viscous concentrated thiocyanate solutions. For these reasons the thiocyanate process has been replaced by a new cation-exchange process (compare pages 244 to 252) to recover and purify americium.

Enhanced anion-exchange resin separation of americium from rare earths can be achieved, according to Russian scientists,²⁶⁴⁻²⁶⁶ by adding various alcohols (methanol, ethanol, etc.) to aqueous 0.1*M* to 1.0*M* NH_4SCN solutions. Their results show that distribution coefficients of Am^{3+} increase much more rapidly than do those of lanthanides as the alcohol content of the solution increases. The nature of the resin phase complex in such systems is unknown; no large-scale use of such systems for purifying americium has yet been made.

Chloride Solutions. Distribution of $\text{Am}(\text{III})$ into anion-exchange resins is much higher from concentrated LiCl solutions^{267,268} than from concentrated HCl solutions.^{269,270} Moreover, $\text{Am}(\text{III})$ is sorbed much more strongly from concentrated LiCl solutions than are the lanthanides (Fig. 5.30a). Americium distribution ratios increase with increased LiCl concentration (Fig. 5.30b), whereas increased temperature enhances the separation of americium from rare earths (Fig. 5.31). Ryan²⁵² states that about 10*M* LiCl appears to be optimum for actinide-lanthanide group separations, with poorer separation at lower concentrations and inconveniently long elution times at higher concentrations. Ryan has also questioned the basis for the hypothesis of Marcus²¹⁹ that the complex species in the resin is AmCl_4^- .

An LiCl -based anion-exchange process (Fig. 5.32) for separating multigram amounts of americium and curium from transuranium elements is routinely and successfully operated at the Oak Ridge TRU facility.²⁷¹⁻²⁷³ Feedstock for this process is the chloride solution resulting from the Tramex process (compare pages 222 to 233). Satisfactorily pure actinide products are obtained by controlling the loading step (Fig. 5.32) so that the actinides load only onto the top 20% (~ 5 to 15 g liter⁻¹ of resin average loading) of the resin bed. Following the loading step the resin bed is washed with 5 to 8 column volumes of 10*M* LiCl -0.1*M* $\text{NH}_2\text{OH} \cdot \text{HCl}$ -5 vol.% CH_3OH to remove nickel and rare earths; hydroxylamine is used to maintain cerium in the trivalent state, whereas methanol^{76,226} is used to suppress the evolution of gas formed by radiolysis. The washed bed is then eluted, as shown in Fig. 5.32, with LiCl - HCl solutions to obtain, sequentially, an americium-curium fraction, a

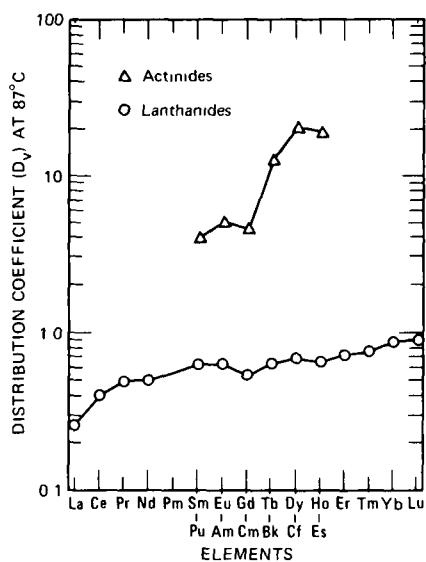


Fig. 5.30a Distribution coefficients of actinides and lanthanides into Dowex 1-X8 resin from 10M LiCl. [From E. K. Hulet, R. G. Gutmacher, and M. S. Coops,²⁶⁸ Group Separation of the Actinides from the Lanthanides by Anion Exchange, *Journal of Inorganic and Nuclear Chemistry*, 17: 350 (1961).]

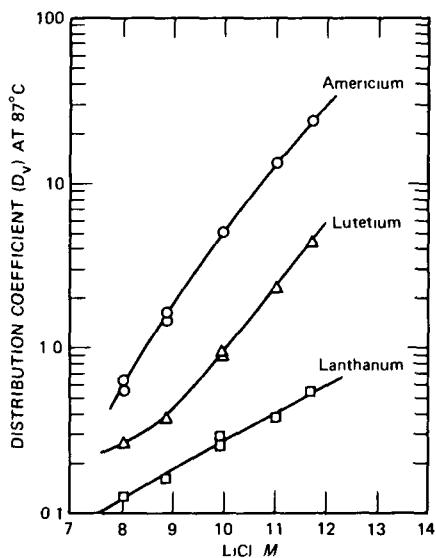


Fig. 5.30b Distribution of americium, lanthanum, and lutetium into Dowex 1-X8 resin as a function of LiCl concentration. [From E. K. Hulet, R. G. Gutmacher, and M. S. Coops,²⁶⁸ Group Separation of the Actinides from the Lanthanides by Anion Exchange, *Journal of Inorganic and Nuclear Chemistry*, 17: 350 (1961).]

Fig. 5.31 Distribution of americium, lanthanum, and lutetium into Dowex 1-X8 resin from 10M LiCl-0.1M HCl as a function of temperature. [From E. K. Hulet, R. G. Guttmacher, and M. S. Coops,²⁶⁸ Group Separation of the Actinides from the Lanthanides by Anion Exchange, *Journal of Inorganic and Nuclear Chemistry*, 17: 350 (1961).]

curium-berkelium fraction, and a berkelium-californium fraction. Currently in the TRU facility, the LiCl-based process is operated as a conventional low-pressure ion-exchange process.

Chemists^{67,68,274} at the European Transuranium Institute in Karlsruhe have successfully applied the LiCl-based anion-exchange process to isolate the americium-curiump fraction from irradiated ²⁴¹Am targets.

Morrow,²⁷⁵ Guseva and Tikhomirova,²⁷⁶ Orlandini and Korkisch,²⁷⁷ and Bochkarev and Lbov²⁷⁸ have all determined the distribution of Am³⁺ between anion-exchange resins and either HCl or LiCl-HCl aqueous solutions containing varying amounts of ethanol, methanol, acetone and other water-miscible organic components. For several of these mixed solvent systems, americium distribution coefficients were higher than for the corresponding aqueous solutions; better americium-lanthanide separation factors were also observed in some instances. No plant-scale application of these mixed solvent systems to isolate or purify americium has been reported.

Nitrate Solutions. Paralleling behavior in chloride solutions (compare preceding section), Am(III) sorbs only slightly²⁷⁹ ($K_D \sim 15$ at²⁸⁰ 20M HNO₃) onto anion-exchange resins from acidic nitrate solutions but moderately strongly²⁸¹⁻²⁸⁴ from neutral solutions of various metal nitrates. Data for the uptake of americium by

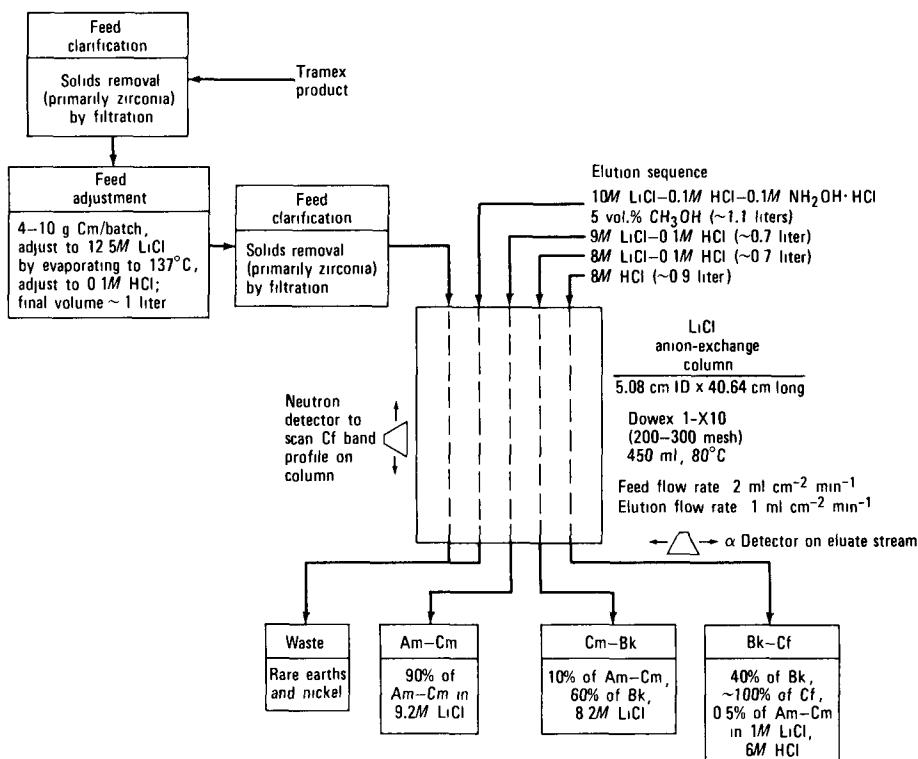


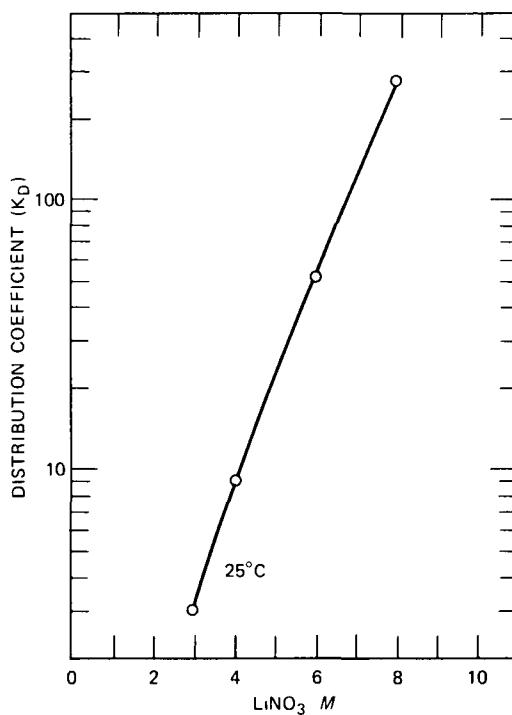
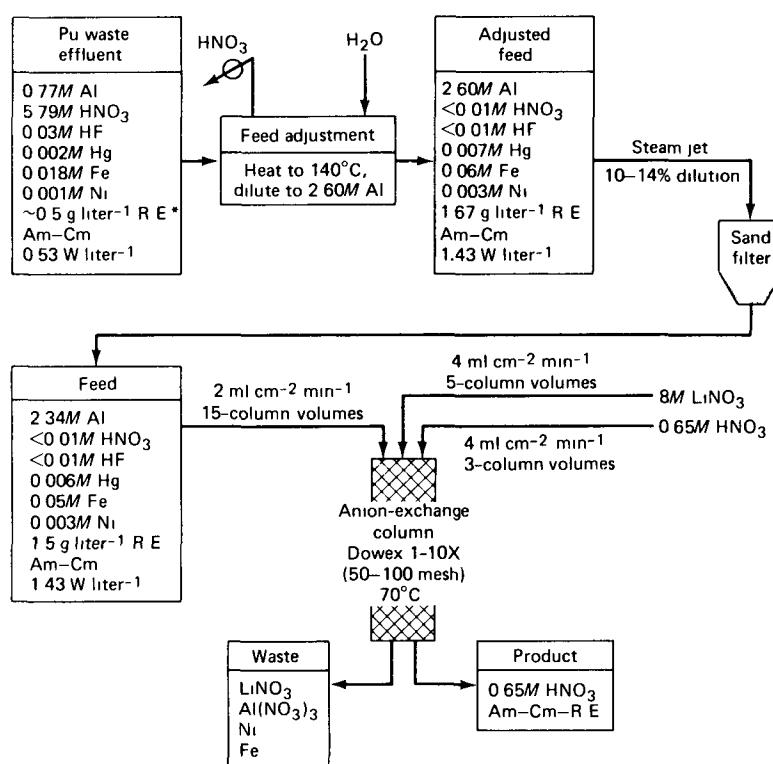
Fig. 5.32 LiCl-anion exchange process flow sheet used in the Transuranium Processing Plant at Oak Ridge. [From R. E. Leuze and M. H. Lloyd,⁷⁶ Processing Methods for the Recovery of Transplutonium Elements, in *Progress in Nuclear Energy, Process Chemistry*, Series III, C. E. Stevenson, E. A. Mason, and A. T. Gresky (Eds.), Vol. 4, page 549, Pergamon Press, Inc., New York, 1970.]

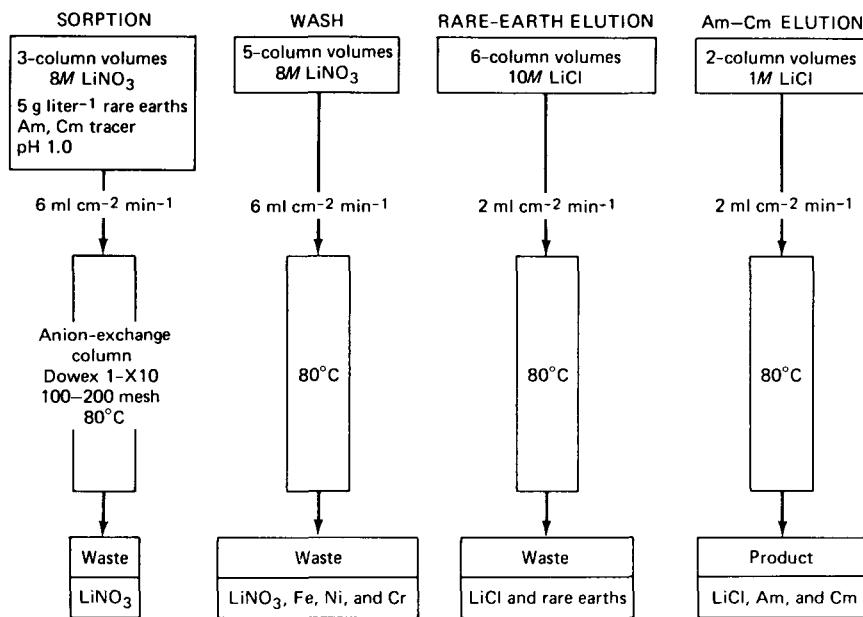
Dowex 1 resin from 3M to 10M LiNO₃-0.05M H⁺ solutions are²⁸⁵ shown in Fig. 5.33. Ryan²⁵² observes that, with due regard to the effects attributable to variations in cross-linkage, Am(III) sorbs about equally well from LiNO₃ and Al(NO₃)₃ solutions but less strongly from Ca(NO₃)₂ solutions. With Dowex 1-X8 resins, distribution coefficients of Am(III) from LiNO₃ solutions decrease both with an increase in temperature and an increase in acidity above ~0.01M H⁺ (Ref. 285).

Contrary to results obtained with either chloride or thiocyanate solutions, distribution ratios of Am(III) from nitrate solutions onto anion-exchange resins overlap those of the lanthanides. Plant-scale use of nitrate-based anion-exchange systems for purifying americium has been largely precluded by the inability to obtain satisfactory decontamination from rare earths. Lloyd²⁸⁶ devised an anion-exchange process (Fig. 5.34) for recovering americium, curium, and rare earths from the nitrate waste solution resulting from processing of highly irradiated plutonium-aluminum

alloys. Although recoveries of >95% were demonstrated in laboratory tests, only 30 to 40% of the americium-curium was recovered when this process was scaled up for use at Oak Ridge. Solids, mostly aluminum hydroxide, which formed during the feed preparation step, proved difficult to filter and restricted flow rates in the resin column. Lloyd and Leuze²⁸⁷ state that this anion-exchange process (Fig. 5.34) appears much more difficult to operate than the TBP extraction processes described earlier (compare pages 195 to 202).

Lloyd and Leuze²⁸⁷ also devised an alternate anion-exchange process for recovering americium and curium from irradiated plutonium-aluminum alloys and for separating them from rare earths. In this scheme (Fig. 5.35), americium, curium, and rare earths are sorbed on Dowex 1-10X resin from an 8M LiNO_3 solution, followed by selective elution of rare earths with 10M LiCl and elution of americium and curium with 1M HCl . Subsequently Kingsley²⁸⁸ modified this process for the purification and concentration of americium recovered at Hanford (compare pages 202 to 205). To date, however, no plant-scale use has been made of the flow sheet shown in Fig. 5.35.

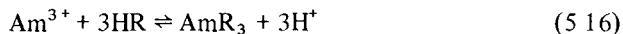




Fig. 5.33 Distribution coefficients of Am(III) between LiNO_3 (0.005M H^+) solutions and Dowex 1-X8 resin [From S. Adar, R. K. Sjoblom, R. F. Barnes, P. R. Fields, E. K. Hulet, and H. D. Wilson,²⁸⁵ Ion-Exchange Behavior of the Transuranium Elements in LiNO_3 Solutions, *Journal of Inorganic and Nuclear Chemistry*, 25: 447 (1963).]

*R E = rare earths

Fig. 5.34 Anion-exchange process for recovering americium and curium from NO₃ waste from plutonium-aluminum alloy processing. [From M. H. Lloyd,²⁸⁶ An Anion Exchange Process for Americium-Curium Recovery from Plutonium Process Waste, *Nuclear Science and Engineering*, 17: 452 (1963).]

Just as with chloride and thiocyanate solutions, anion-exchange resins sorb Am(III) much more strongly from mixtures of HNO₃ or LiNO₃ with methanol^{283,289,290} and other organic solvents²⁹¹ than from aqueous HNO₃ and LiNO₃ solutions. Russian scientists²⁹² have made use of this fact to develop what they claim is a very efficient ion-exchange process for separating and purifying americium from irradiated plutonium targets. In their scheme trivalent actinides and lanthanides are loaded onto a strong base anion-exchange resin from 1M HNO₃ in 90% methanol; inert iron and aluminum and fission-product cesium, strontium, zirconium, niobium, and ruthenium are not sorbed from this solution. Separation of rare earths from the americium and curium is accomplished by washing the former off with 0.5M NH₄SCN-0.1M HCl in 80% methanol (compare page 237). Americium and curium are then sequentially eluted with 0.5M HNO₃ in 80% methanol. Lebedev, Myasoedov, and

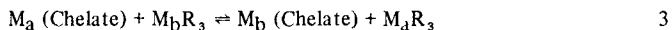

Fig. 5.35 LiNO₃–LiCl anion-exchange process for separating americium and curium from rare earths. [From M. H. Lloyd and R. E. Leuze,²⁸⁷ Anion Exchange Separation of Trivalent Actinides and Lanthanides, *Nuclear Science and Engineering*, 11: 274 (1961).]

Guseva²⁹² state: "The described process of americium–curium recovery is highly convenient for use in laboratory-scale work. . . . its obvious economic advantages and technological simplicity allow the expectation that the given method may be used on a larger scale."

Berger et al.¹⁵⁹ and his fellow Frenchmen used a nitrate-based anion-exchange system to separate americium and curium previously recovered from irradiated plutonium–aluminum alloy (compare pages 208 to 220) by a Talspeak-type HDEHP extraction process. The 3M LiNO₃–0.065M DTPA strip product (compare Fig. 5.18) from the HDEHP extraction step was adjusted to 6M LiNO₃ and 0.1M Al(NO₃)₃, and the americium and curium were batch extracted into a 40% TBP–dodecane solvent. Transplutonium elements were stripped into 1M HNO₃; an ethanolic (80 vol.%) solution containing 1.33M NH₄NO₃ and 0.05M to 0.1M HNO₃ was prepared from the strip solution as feed to a bed of 200-400 mesh Dowex 1-X8 resin. Subsequently curium was selectively eluted using an 80 vol.% ethanolic solution containing 1.33M NH₄NO₃, 0.025M DTPA, and 0.08M HNO₃. Following removal of the curium, americium was eluted either with 1M HNO₃ or a further portion of ethanolic 1.33M NH₄NO₃–0.025M DTPA–0.08M HNO₃ solution. This anion-exchange procedure permitted rapid and clean separation of milligram amounts of americium and curium.

Cation-Exchange Resin Systems

General. Cation exchange resins sorb Am^{3+} very strongly from dilute acid solutions according to the reaction


An important application of Eq 5 16 is to simply concentrate Am^{3+} and other trivalent and tetravalent ions from acid solutions obtained in prior solvent extraction or precipitation processes and to separate them, at least partially, from monovalent and divalent impurities that have less affinity for the resin Instances of such use of cation-exchange resins in americium recovery and purification schemes will be discussed later

A combination of chromatographic elution techniques with cation-exchange resins provides a powerful and sophisticated tool for purifying americium from lanthanides and other trivalent actinides Elution chromatography involves the use of organic chelating agents to produce the largest possible difference in the distribution coefficients of the metal ions to be separated

Both elution-development and displacement-development (also known as barrier-ion or retaining-ion) chromatography have been used in cation-exchange separation and purification of americium Ryan²⁵² points out that displacement-development chromatography is only capable of separating macro quantities, whereas, unless very large columns are used, elution-development chromatography is applicable only to the separation of tracer amounts Because of this limitation of the elution-development chromatographic method, its application to purification of americium is not discussed further here Helfferich²⁹³ has presented, in a comprehensive fashion, the theory of both the elution-development and displacement-development procedures

The basic principles of displacement chromatography have been stated by Ryan²⁵² as follows

In displacement development chromatography with a chelating agent, a macro-amount of the actinide or lanthanide is loaded onto the upper portion of a column, the rest of which initially contains a restraining or barrier ion This ion is one which in the presence of the complexant exhibits a much lower distribution coefficient than the actinide or lanthanide ion Elution is carried out with a complexant of such strength and concentration of the free ligand that the M^{3+} distribution coefficients are very low This is normally achieved by neutralizing complexants to a higher pH than would be used for elution development with the same complexant Under these conditions the distribution coefficient of the M^{3+} is lower than that of the NH_4^+ or Na^+ ion used in the neutralization, and the M^{3+} is displaced with a self sharpening boundary An eluant concentration such that there is an excess of the trivalent ion in the resin is used, for a mixture of actinides and/or lanthanides the reaction

occurs because of competition for the limited supply of the chelating agent Separation factors are related to complex formation constants in the same manner as discussed in the previous paragraph As the eluant reaches the retaining or barrier ion, it forms a stronger complex with it

than with the actinide or lanthanide, releasing the latter to be absorbed by the resin. Since the complexants are weak acids, H^+ ion is a satisfactory barrier ion unless the complex acid is not sufficiently soluble, in which case an appropriate metal ion is used. The actinides and lanthanides develop into discrete bands or zones in direct contact with each other, the resin in the bands being principally in the actinide or lanthanide form. The bands become resolved after a certain distance and travel with no further change after that.

The effectiveness of chelating agents in cation-exchange displacement elution systems for americium purification is conveniently evaluated in terms of separation factors. The separation factor between elements a and b is

$$\alpha_b^a = \frac{(K_D)_a}{(K_D)_b} = \frac{(D_V)_a}{(D_V)_b} \quad (5.17)$$

where $K_D = (\text{mg metal/g resin})/(\text{mg metal/ml solution})$ and $D_V = (\text{mg metal/ml resin})/(\text{mg metal/ml solution})$. Separation factors are commonly referred to one actinide, e.g., curium (α_{Cm}^M) or one lanthanide, e.g., gadolinium (α_{Gd}^M).

Distribution Coefficients Separation Factors Data for the distribution of Am^{3+} between cation-exchange resins and aqueous $HClO_4$, HNO_3 , HCl , HF , HBr , HI , oxalate, acetate, phosphate, and sulfate solutions have been collected and interpreted by Ryan.²⁵² Much of this information was gathered to determine formation constants of complex species (Table 3.11). Not surprisingly, cation-exchange systems for large-scale separation and purification of americium use only HNO_3 solutions as feeds. Extensive use has been made of HCl solutions in cation-exchange systems for laboratory- and analytical-scale separation of americium from trivalent lanthanides,^{91, 269, 294, 297} but no large-scale use has been made of such systems.

Distribution coefficients for Am^{3+} into Dowex-50 resin remain²⁸⁰ very low and essentially constant over the range 4M to 11M HNO_3 . Even so, the results of Starik and Ginzburg²⁸⁰ indicate that, from HNO_3 solutions, Am^{3+} sorbs slightly more strongly onto cation-exchange resins than do the lanthanides.

Solutions of α -hydroxycarboxylic and aminopolycarboxylic acids are commonly used to elute americium from cation-exchange resin. When these reagents are used in a displacement development elution system, they provide, as detailed on pages 245 to 252, excellent separation of americium from trivalent lanthanides and other trivalent actinides. Separation factors, α_{Cm}^{Am} and α_{Pm}^{Am} , provided by some of these compounds are listed in Tables 5.9 and 5.10. Ryan's review²⁵² furnishes additional information on the use of these organic chelating reagents in eluting transplutonium elements from cation-exchange resins.

Typical Cation-Exchange Americium Purification Processes. *Simple Load-Elution Concentration Processes* Relatively simple load-elute cation-exchange processes still find much use in concentrating (and purifying) americium from dilute feed solutions. At Hanford, for example, such a process is used to concentrate americium and plutonium in the dilute product stream from the DBBP solvent extraction process (see pages 205 to 208). After this solution (containing, typically, 10^{-4} to 10^{-3} g liter⁻¹ each

Table 5.9
SEPARATION FACTORS IN AMERICIUM CATION-EXCHANGE PURIFICATION
SYSTEMS: ELUTION WITH α -HYDROXYCARBOXYLIC ACIDS

Chelating agent	Cation resin	Solution composition	pH	Temp., °C	Separation factors			
					Am/Cm		Am/Pm	
α	Ref.	α	Ref.					
Citrate	Dowex 50 X12	0.25M NH_4 citrate	3.35	25	1.18	295	1.03	295
				87	1.17	269		
Glycolate	Dowex 50-X12	0.25M glycolic acid	4.0	25	1.31	298	0.98	299
			4.0	87	1.24	299	0.92	299
AHIB*	Dowex 50-X4	0.5M NH_4 AHIB		25	1.39	300	1.21	300
	Dowex 50-X12	0.4M NH_4 AHIB	3.8-4.8	78	1.45	301		
	Zeokarb-225	0.4M NH_4 AHIB	4.0	77	1.38	302		
	Dowex 50-X12	1.0M NH_4 AHIB	4.5-5.0	87	1.45	301		
					1.41	303		
Lactate	Dowex 50-X12	0.37M NH_4 lactate	4.1	25	1.21	304	0.97	304
		0.4M NH_4 lactate	4.0	87	1.23	269		
		0.4M NH_4 lactate	4.6	87	1.19	304	0.97	304
		1.0M NH_4 lactate	3.0	87	1.27	305	0.97	305
		0.4M NH_4 lactate	4.0-4.5	87	1.21	269		
		0.27M NH_4 lactate	4.2	87	1.16	303		
Tartrate	Dowex 50-X12	0.1M tartaric acid	4.0	25	1.30	304	0.89	304
		0.1M tartaric acid	4.3	87	1.07	304		
		0.8M tartaric acid	2.8	87	1.20	304		

*AHIB = α -hydroxyisobutyric acid

of americium and plutonium) is diluted with water to about 0.25M HNO_3 , it is then loaded at 25°C onto a 14-liter bed (15 cm in diameter) of H^+ -form Dowex 50-X8 cation-exchange resin. Considerable decontamination from sodium, calcium, magnesium, and other divalent cations is obtained in this step. Subsequently the americium and plutonium are eluted either upflow or downflow with about 6 column volumes of 7M HNO_3 , the eluate containing roughly 2 to 4 g liter⁻¹ each of americium and plutonium is used as feed to final ion-exchange purification as described subsequently.

A new³¹¹ cation-anion exchange process (Fig. 5.36) has recently replaced the hydroxide-precipitation (compare pages 190 to 194) and multistage thiocyanate ion-exchange (compare pages 234 to 237) systems formerly used at the Rocky Flats Plant for recovering ²⁴¹Am from solutions of spent $\text{NaCl}-\text{KCl}-\text{MgCl}_2$ salt residues. In this new process, americium and plutonium in an 0.5M H^+ feed solution containing, typically, 4 g Pu liter⁻¹ and 0.4 g Am liter⁻¹, are first loaded onto an 11-liter bed of 50-100 mesh Dowex 50-X8 resin. The loaded bed is washed with water and then eluted with 2.5 column volumes of 7M HNO_3 . [An earlier version of this separation process developed by Kudera and Guyer³¹² involved dissolving the $\text{NaCl}-\text{KCl}-\text{MgCl}_2$ mixture in 0.35M HNO_3 and subsequently loading the americium and plutonium onto a cation-exchange resin.]

Table 5.10
SEPARATION FACTORS IN AMERICIUM CATION-EXCHANGE PURIFICATION
SYSTEMS: ELUTION WITH AMINOPOLYCARBOXYLIC ACIDS

Chelating agent*	Cation resin	Solution composition	pH	Temp., °C	Separation factor Am/Cm	
					α	Refs.
NTA	Dowex 50-X12	0.001M NTA-0.1M NH ₄ ClO ₄ †	2.95	72	1.46	306
EDTA	Dowex 50-X12	0.001M EDTA-0.1M NH ₄ ClO ₄	2-3.5	25	2.04	307, 308
			2.35	80	1.1	308
			2.6	80	1.45	308
NHEDTA	Dowex 50-X12	0.001M NHEDTA-0.15M KCl	2.3	22	1.30	309
			2.3	80	1.30	309
			2.7	22	1.15	309
			2.7	80	1.25	309
			2.9	22	1.70	309
			2.9	80	1.30	309
DCTA	Dowex 50-X12	0.01M DCTA-0.1M NH ₄ ClO ₄	3.0	25	1.18	310

*NTA = nitrilotriacetic acid

EDTA = ethylenediaminetetraacetic acid

NHEDTA = *N*-(2-hydroxyethyl)ethylenediaminetriacetic acid.

DCTA = 1,2-diaminocyclohexanetetraacetic acid

†0.1M glycolic acid also present.

In the anion-exchange portion of the new Rocky Flats americium purification process, the 7M HNO₃ solution resulting from elution of the cation-exchange resin is passed through a bed of Dowex 1-X4 resin to sorb plutonium and separate it from americium. Americium in the 7M HNO₃ effluent from the anion-exchange load cycle is contaminated with only small amounts of magnesium, potassium, sodium, and plutonium; no chloride ion is present. Double oxalate precipitation of americium from this solution yields, after calcination, AmO₂ of a purity comparable to that obtained by the former thiocyanate ion-exchange process. The oxalate precipitation process involves evaporation of the 7M HNO₃ load-cycle effluent to achieve a 10-fold concentration, adjustment of acidity to 0.5M HNO₃, precipitation of Am₂(C₂O₄)₃ · 10H₂O, dissolution of the precipitate, and a second precipitation of americium oxalate.

Proctor⁷⁷ at the Rocky Flats Plant has also devised a cation-exchange procedure to recover and further purify americium from the 7M HNO₃ load-cycle effluent stream obtained in the plutonium removal step. In this process, after acidity adjustment, all the metal ions in the feed are absorbed onto a bed of Dowex 50 resin. Following the loading step, the bed is washed with 0.1M oxalic acid to remove >99% of any iron, nickel, cobalt, and plutonium and about 60% of any aluminum with minimal (<0.1%) loss of americium. The americium is then eluted with a 0.4M citric acid (pH 3) solution; the alkali and alkaline earth elements remain on the resin in this step. Americium can be precipitated directly from the citrate eluant by adding oxalic acid.

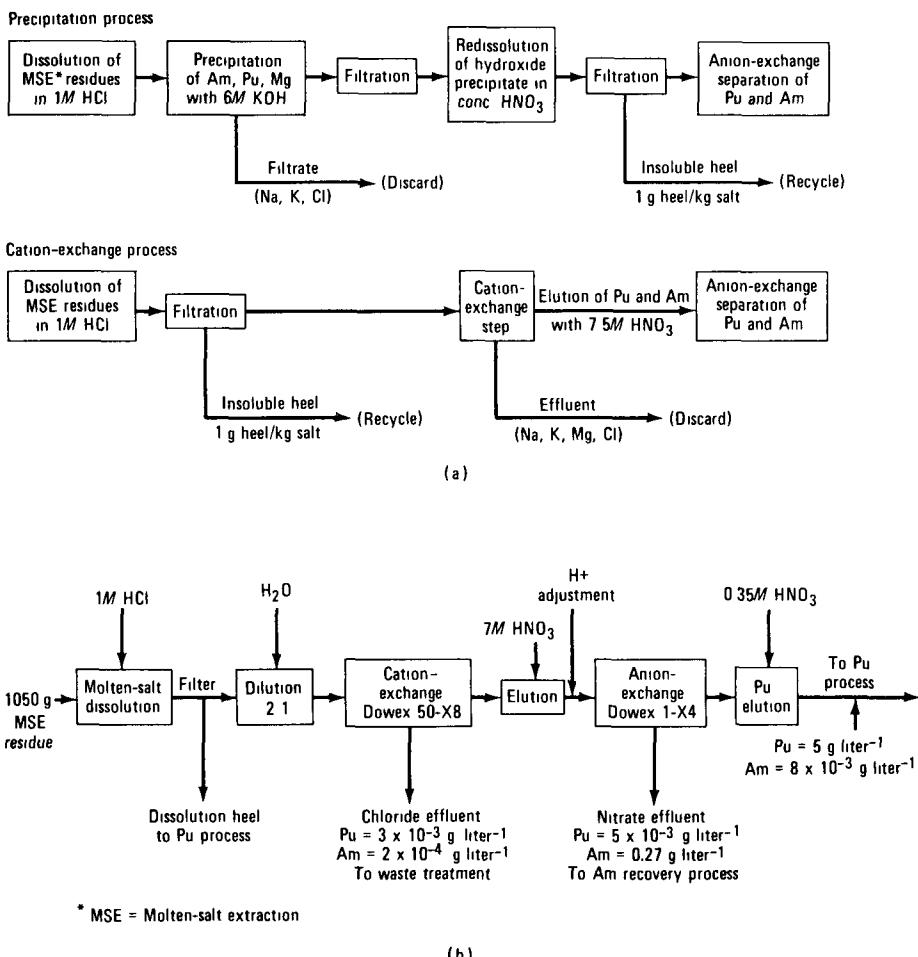
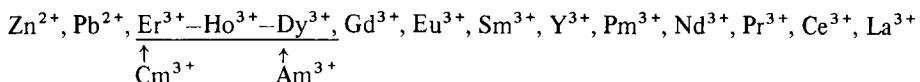


Fig. 5.36 New cation-exchange process used at the Rocky Flats Plant for recovering americium from molten-salt extraction process residues. (a) Ion exchange vs hydroxide precipitation head-end processes. (b) Ion-exchange process flow sheet.³¹¹

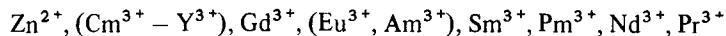
Preliminary laboratory-scale data indicated this cation-exchange process would recover 97% of the americium in the feed while generating only 40% of the waste produced by the thiocyanate process. When it was found that a double oxalate precipitation process could be used to purify the americium directly from the anion-exchange resin load-cycle effluent, this second cation-exchange purification cycle was unnecessary.

Americium recovery by the new cation-anion exchange process presently in use at Rocky Flats is considerably simpler than by the former precipitation-thiocyanate

ion-exchange system. It is anticipated that this process simplification will be reflected in greater americium throughput and generation of a substantially smaller volume of aqueous waste more amenable (no thiocyanate) to treatment and disposition.


Haug³¹³ and others^{160,161} in Germany have developed a cation-exchange cycle for the concentration and decontamination of americium and curium present in the 0.05M DTPA-1M lactic acid product solution resulting from prior HDEHP-TBP solvent extraction of actinides from Purex-process high-level waste (compare pages 208 to 220). Their scheme involves loading the americium and curium from the DTPA-lactic acid solution (adjusted to pH 1.0) onto the Dowex 50-X8 resin, washing the resin with several column volumes of 0.1M HNO₃, and then eluting the americium and curium with 3M HNO₃. In tracer-level tests, this purification scheme provided excellent decontamination of the americium and curium from DTPA, lactic acid, fission products, and other actinides.

Chromatographic Elution Schemes. In the past, α -hydroxycarboxylic acids were used extensively as eluting agents in cation-exchange processes for the separation and purification of milligram and even gram amounts of americium. For example, Campbell³¹⁴ in 1956 purified 9 g Am from kilograms of lanthanum by eluting the americium from a 25% loaded Dowex 50 resin column with 0.15M citric acid-0.1M diammonium citrate-0.3M NH₄NO₃ solution at pH 3.3. Workers at LASL also successfully purified gram quantities of americium from kilograms of lanthanum by displacement elution at 25°C with 0.1% ammonium citrate, pH 8 solution; the retaining ion was H⁺.


Both lactic and α -hydroxyisobutyric acids provide better separation (Table 5.9) of americium from curium than does citric acid. Higgins and Crane²⁶⁷ devised an ion-exchange scheme to isolate and purify thousand-curie quantities of ²⁴²Cm from irradiated ²⁴¹Am targets; one step in this process involved the use of lactic acid solution to selectively elute curium from a cation-exchange resin. Perdue and Hicks³¹⁵ separated americium from cerium by selective elution of the former from Dowex 50W resin with 1M lactic acid adjusted to pH 2.97 with NH₄OH. Both Russian²⁵⁷ and German³¹⁶⁻³¹⁸ workers have used α -hydroxyisobutyric acid in chromatographic cation-exchange separation and purification of ²⁴²Cm from solutions of neutron-irradiated ²⁴¹Am targets. Using chromatographic elution from Dowex 50-X12 resin with α -hydroxyisobutyric acid, Campbell³¹⁹ demonstrated the use of high-pressure ion-exchange methods for the rapid separation of americium from curium. Burney and Harbour³²⁰ separated milligram quantities of ²⁵²Cf from multigram quantities of ²⁴⁴Cm and ²⁴³Am using pressurized cation-exchange elution chromatography and α -hydroxyisobutyric acid as the eluent.

Highly efficient displacement chromatographic separation schemes that use nitrilotriacetic acid and/or diethylenetriaminepentaacetic acid as eluents have been developed and applied in the last 10 years by Wheelwright at Hanford and by Hale, Lowe, and others at Savannah River to purify kilograms of americium from curium and lanthanides. For Dowex 50 resin, Wheelwright et al.³²¹ report the following elution sequences:

With DTPA,

With NTA,

On the basis of these elution sequences, Wheelwright³²¹⁻³²⁴ successfully used a two-cycle cation-exchange process in conventional equipment to separate and purify 1 kg ²⁴¹Am and ²⁴³Am, about 60 g ²⁴⁴Cm, and 140 g ¹⁴⁷Pm recovered (by solvent extraction techniques, compare pages 202 to 205) from 13.5 tons of blanket fuel elements of the Shippingport reactor. In this process, Am^{3+} and Cm^{3+} (contained in the dilute HNO_3 feed solution) were initially loaded onto a 34.3-cm-diameter bed of H^+ -form Dowex 50W-X8 (50-100 mesh) resin. Subsequently the americium and curium were separated from promethium, other lanthanides, and other cosorbed impurities by displacement elution at 60°C through a series of seven Zn^{2+} -form Dowex 50-X8 (50-100 mesh) resin beds with a 0.05M DTPA solution buffered to pH 6.5 with NH_4OH ; the eluent was pumped through the column system at a flow rate of 4 ml $\text{cm}^{-2} \text{ min}^{-1}$. The americium-curiump product from the DTPA cycle was adjusted to 0.5M HNO_3 and loaded onto a 10.8-cm-diameter bed of H^+ -form Dowex 50 resin. Separated and highly purified americium and curium fractions were obtained by americium-curiump displacement elution at 60°C through a series of four Zn^{2+} -form Dowex 50 resin beds with a 0.105M NTA solution buffered to pH 6.5 with NH_4OH . Figure 5.37 illustrates simulated elution curves for Wheelwright's two-cycle americium purification process.

Ion-exchange technology developed by Wheelwright³²⁵ is currently used for the final purification of ²⁴¹Am recovered at Hanford by reprocessing of aged plutonium metallurgical scrap. Americium and plutonium in the 7M HNO_3 solution obtained in prior solvent extraction and ion-exchange (compare pages 202-204 and 245) steps are first separated by sorption of the plutonium on Dowex 1 resin. Subsequently the 7M HNO_3 waste stream containing the americium is diluted with water to yield a 1M HNO_3 solution containing 0.25 to 0.5 g Am liter⁻¹. Americium in this feed is loaded onto a 10.8-cm-diameter bed of H^+ -form Dowex 50-X8 (50-100 mesh) resin and then eluted through a series of four Zn^{2+} -form Dowex 50-X8 resin beds with a 0.105M NTA solution buffered to pH 6.5 with NH_4OH . Displacement elution is performed at 60°C at a flow rate of 8 ml $\text{cm}^{-2} \text{ min}^{-1}$. The center product cut from the final column contains 8 to 9 g liter⁻¹ of highly purified americium. Oxalic acid is added to this solution, and the resulting oxalate precipitate is calcined to AmO_2 . This ion-exchange scheme is used to purify about 1 kg ²⁴¹Am year⁻¹.

Lowe, Hale, Hallman, and others^{308,326-328} at the Savannah River Plant adapted Wheelwright's DTPA displacement elution scheme to pilot-scale operation in pressur-

*R denotes recycle solution for further product recovery.

Fig. 5.37 Typical elution curves for two-cycle chromatographic cation-exchange americium purification process. DTPA = diethylenetriaminepentaacetic acid; NTA = nitrilotriacetic acid.³²⁴

ized equipment. [Pressurization eliminates the bed disruptions caused by radiolytically produced gases in gravity-fed columns, and a severalfold increase in flow rate minimizes radiolytic resin degradation. Pressurization also allows the use of very finely divided resin, thereby improving sorption kinetics.] The pilot-scale system used by the Savannah River workers to successfully purify 3 kg ²⁴⁴Cm and ²⁴³Am consisted of four columns constructed of 304L stainless steel, Schedule 80 pipe; column diameters were nominally 10.2, 7.62, 5.08, and 2.54 cm, respectively, and each column was 122 cm long. All columns were filled with Dowex 50W-X8 (25- to 55- μ m) resin in the Zn²⁺-form. A typical batch of feed solution, obtained by prior solvent extraction (compare pages 202 to 205) processing of highly irradiated plutonium, contained 75 g ²⁴⁴Cm, 24 g ²⁴³Am, and \sim 1.6 mol of fission-product lanthanides. After loading this feed onto the top 30 to 40% of the 10.2-cm-diameter column, the americium, curium, and lanthanides were eluted at 70°C with a 0.05M DTPA solution adjusted to pH 6.0 with NH₄OH. The desired elution rate of 16 ml cm⁻² min⁻¹ was obtained on each column without exceeding the design pressure of 1000 psig. A typical elution diagram for product fractions collected from the final 2.54-cm-diameter column is shown in Fig. 5.38. Hale and Lowe³⁰⁸ note that, because the curium/americium ratio in the feed to the pressurized ion-exchange system was \sim 3 : 1, a large fraction of pure curium could be separated from both americium and lanthanides in a single DTPA ion-exchange cycle.

In further work at the Savannah River Plant, Kelly³²⁹ devised a pressurized cation-exchange system for separating and purifying ²⁴⁴Cm and ²⁴³Am from feed solutions with a lanthanide/actinide ratio of \sim 17 : 1. This process was developed as part of a program to produce gram amounts of ²⁵²Cf and was intended for use in the

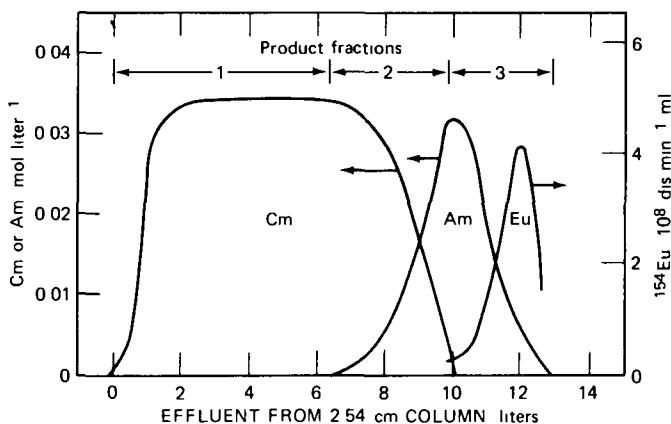


Fig. 5.38 Typical elution diagram for pressurized chromatographic ion-exchange separation of americium from curium Resin, Dowex 50W-X8, Eluent, 0.05M DTPA at pH 6.0 [From J T Lowe, W H Hale, Jr., and D F Hallman,³²⁶ Development of a Pressurized Cation Exchange Chromatographic Process for Separation of Transplutonium Actinides, *Industrial and Engineering Chemistry, Process Design and Development*, 10: 131 (1971)]

Multipurpose Processing Facility constructed at the Savannah River Plant, no large-scale use of this ion exchange process has yet been made. Wakat and Peterson³³⁰ have described an on-line radiochemical system for providing control information for pressurized cation-exchange chromatography processes.

Specht, Schutz, and Born³³¹ have reported on a laboratory-scale plant for separating 100 Ci of ²⁴²Cm from gram amounts of americium using high-pressure ion-exchange chromatography. Schutz, Specht, and Born used an 0.5M α -hydroxyisobutyric acid solution adjusted to pH 3.65 as the eluent.

Inorganic Exchangers

Several authors have reported results of studies of sorption of Am^{3+} from nitrate and chloride media by various inorganic exchangers (Table 5.11). Studied most intensively has been sorption of Am^{3+} by zirconium phosphate; distribution data for uptake at 75°C of Am^{3+} and other trivalent ions from nitric acid solutions are plotted in Fig. 5.39. The order of the distribution coefficients of trivalent actinides and lanthanides into zirconium phosphate is the reverse of the order observed with a typical strong base resin exchanger, indicating that the phosphate groups probably replace part of the water in the hydration sphere of the ions.³³² Equilibrium in the zirconium phosphate- HNO_3 - Am^{3+} system is established very slowly, even for tracer loading at 75°C^{332,335}; however, >99% absorption of tracer Am^{3+} occurs in 15 min at 75°C.

Table 5.11
SUMMARY OF SORPTION OF Am(III) BY INORGANIC EXCHANGERS

Exchanger	Media	Refs.
Zirconium phosphate	0.01M-1.0M HNO ₃	332-334
Zirconium phosphate	4M-11M LiCl-0.01M HCl	336
Zirconium phosphate-silicate*	0.01M-1.0M HNO ₃	335
Zirconium molybdate	pH 1-5 nitrate solutions	333
Zirconium tungstate	pH 1-5 nitrate solutions	333
Zirconium tungstate	11M LiCl-0.01M HCl	336
Zirconium oxide†	4M-11M LiCl-0.01M HCl	333, 336
Ammonium phosphomolybdate	10M LiCl-0.01M HCl	336
Permutit Decalso M-4‡	11M LiCl-0.01M HCl	336
Linde Molecular Sieve X-13§	11M LiCl-0.01M HCl	336
Linde Molecular Sieve AW 500§	11M LiCl-0.01M HCl	336
Chromatographic Al ₂ O ₃	11M LiCl-0.01M HCl	336

*Am K_D = 12,400 at 0.01M HNO₃, 7.8 at 1.0M HNO₃.

†Am K_D = 5.1 at 4M LiCl-0.01M HCl, 2300 at 11M LiCl-0.01M HCl.

‡Sodium aluminum silicate made by the Permutit Company.

§Aluminum silicate made by the Linde Division of Union Carbide Company

According to Ryan,²⁵² several of the eluting agents previously used successfully with resin exchangers have been tested with zirconium phosphate. Citrate, tartrate, and oxalate solutions dissolve zirconium phosphate, whereas 2M lactate solutions at pH's 3 and 5 and a 1.5M α -hydroxyisobutyrate solution at pH 4.2 do not elute trivalent actinides and lanthanides. Concentrated mineral acids elute M³⁺ ions without separation. Separation of americium from europium or cerium by elution from a zirconium phosphate column with a 10M LiCl solution (pH 2 to 3) has been reported by ORNL workers.³³⁶

Uptake of Am³⁺ from nitrate solutions by zirconium molybdate is similar to that by zirconium phosphate. With zirconium tungstate, K_D's for Am³⁺ and Cm³⁺ from 10M LiCl-0.01M HCl are higher by a factor of 2 than for any of the lanthanides. Absorption of Am³⁺ from 10M LiCl-0.01M HCl by ammonium molybdate-phosphate is fairly similar to that by zirconium phosphate.³³⁶ From the same chloride media, Permutit Decalso M-4 and Linde Molecular Sieves X-13 and AW 500 sorb Am³⁺ only weakly, whereas moderately strong absorption occurs with chromatographic alumina.³³⁶

Both American^{337 338} and Russian^{339 340} scientists have recently announced a new way of using a zirconium phosphate exchanger for separating americium from curium and other metal ions. This method takes advantage of the fact that the singly charged AmO₂⁺ ion is not sorbed by zirconium phosphate from dilute acid media. Also, unlike organic exchangers, the inorganic exchanger will not reduce the strongly

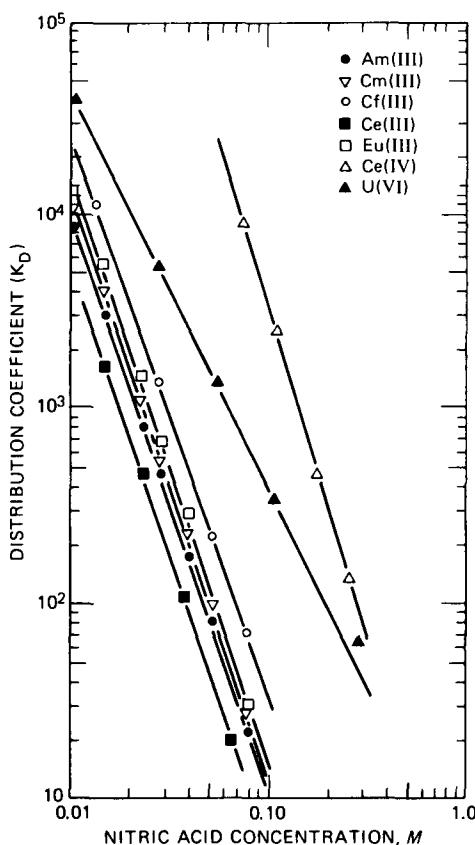


Fig. 5.39 Distribution coefficients (K_D) for several ions onto amorphous zirconium phosphate ($\text{PO}_4/\text{Zr} = 1.34$) sorbent from HNO_3 solution at 75°C . [From E. P. Horwitz,³³² The Sorption of Certain Transplutonium Ions on Amorphous Zirconium Phosphate, *Journal of Inorganic and Nuclear Chemistry*, 28: 1469 (1966).]

oxidizing AmO_2^+ . Shafiev, Efremov, and Andreev³⁴⁰ have recently separated milligram amounts of americium and curium on zirconium phosphate by sorbing curium preferentially from a pH 2.5 solution containing Am(V) and Cm(III) .

In the americium-curiump separation scheme patented by Moore,³³⁸ Am^{3+} in a $0.01M$ HNO_3 solution is oxidized to AmO_2^+ by heating at 80 to 90°C with $(\text{NH}_4)_2\text{S}_2\text{O}_8$; the oxidized solution is transferred to the zirconium phosphate exchanger, and the americium is eluted with $0.01M$ HNO_3 . If desired, a curium fraction can be eluted with $10M$ HNO_3 . The Russian procedure³⁴⁰ for separating americium from curium is essentially the same as that described by Moore, except for the use of $0.1M$ HNO_3 to elute the AmO_2^+ . The Russian scientists note that, in some cases, the oxidized solution may contain some AmO_2^{2+} as well as AmO_2^+ ; Am(VI) is

retained slightly more strongly than Am(V) but can be readily eluted with 0.05*M* to 0.15*M* HNO₃ solutions.

Chelating Resins

Ryan²⁵² observed that very little work has been done on the reaction of americium and other transuranium elements with chelating exchangers and gives reasons why this is so. Goya and Lai³⁴¹ report a value of K_D = 1.3 × 10⁴ for sorption of trace amounts of Am³⁺ from seawater into Chelex 100 resin. Myasoedov and Molochnikova³⁴² have used a chelating resin based on aminopolystyrene and Arsenazo I [2-arsonobenzene-(1-azo-2)-1, 8-dihydroxynaphthalene-3,6-disulfonic acid] to concentrate trace amounts of americium and curium and to separate them from plutonium and fission products. In this analytical procedure, Am³⁺ and Cm³⁺ are sorbed from a mineral acid solution of 0.1*N* to 1*N*; after washing the chelating resin with 0.5*M* oxalic acid and 1*N* H₂SO₄, americium and curium are eluted with 2*M* ammonium citrate solution.

EXTRACTION CHROMATOGRAPHIC PROCESSES

Extraction chromatography (reversed-phase partition chromatography in some of the older literature) combines the best features of solvent extraction and chromatographic separations techniques. Extraction chromatographic systems involve a mobile liquid phase and a stationary liquid phase on an inert support; separations are achieved by taking advantage of the difference in the distribution of ions between the two liquid phases.

Systems that have been studied for extraction chromatographic separation of americium from rare earths, Cm(III), and other transplutonium elements are briefly described in Table 5.12. Not surprisingly, most of the systems investigated have used either HDEHP or Aliquat 336 as the stationary phase. For the most part, the extraction chromatographic procedures listed in Table 5.12 have been tested only with tracer amounts of americium either to investigate americium chemistry in such systems or to develop analytical procedures. A notable exception is the Aliquat 336 (NO₃-form)-kieselguhr system that has been used recently both in the United States³⁵⁷ and in Europe^{359,360} to separate milligram and even gram amounts of americium from curium.

MISCELLANEOUS SEPARATION TECHNIQUES

Many of the solvent extraction, ion exchange, and precipitation processes described earlier in this chapter are used, as noted previously, for large-scale separation and purification of americium in the United States and elsewhere. Various other

Table 5.12
EXTRACTION CHROMATOGRAPHY SYSTEMS FOR AMERICIUM SEPARATION

Carrier	Mesh size	Stationary phase	Eluent	Temp., °C	Application	Refs.
Kieselguhr*	200-400	HDEHP	0.5M HCl	87	Separate Am(III) from Bk and Cf	343-345
Silica gel	12-18 μ	HDEHP	0.74M-1.02M HCl	25	Distribution coefficient data for Am(III)	346
Celite 545†		0.4M HDEHP-heptane	0.1N-0.6N HCl or HNO ₃	18-60	Distribution coefficient data for Am(III)	347
Celite 545†	25 μ	8.82 wt.% HDEHP	0.1N-0.6N HCl or HNO ₃	25-75	Separate Am(III) from Cm(III)	348
Kieselguhr*	100-400	HDEHP-xylene	0.1N-1N HNO ₃	20	Separate Am(III) from La and other rare earths	349
Filter Cel	200-400	HDEHP	0.3N, 0.5N, and 2.1N HNO ₃		Separate Am(III) from Pm	350
KEL-F‡	170-250	10% HDEHP-heptane	0.97N-3.6N HCl	20	Separate Am(III) from Eu	351
Tee-Six	70-80	0.45M HDEHP-heptane	1M monochloroacetic acid-0.025M DTPA	25	Separate Am(III) from rare earths	352
Teflon-6§	60-70	1M HDEHP-heptane	0.01M HNO ₃	25	Separate Am(V) from Cm(III)	353
Celite 545†	80-100	1M HDEHP	0.1M-2M HNO ₃	0.40	Study behavior of Am(III), (V), and (VI)	354
Celite 545†		0.2M HDEHP	0.1M HNO ₃	25	Study extraction behavior of Am(VI)	355

Kieselguhr*	100-400	Aliquat 336¶ -NO ₃ -form	3.6M LiNO ₃ - 0.01M HNO ₃	23-24	Separate Am(III) from Cm(III)	68, 70, 239, 240, 356-360
Plaskon- CTFE 2300**		Aliquat 336-SCN-form	0.1N-0.6N NH ₄ SCN	25	Separate Am(III) from rare earths	361
Celite	80-120	Aliquat 336-SCN-form	0.1N-9N NH ₄ SCN- 0.002N-0.1N H ₂ SO ₄	25	Separate Am(III) from rare earths	362
Paper		0.5M tri- <i>n</i> -octylamine-xylene	3M LiNO ₃ - 0.02M HNO ₃	25	Separate Am(III) from Cm(III)	363
Paper		0.02M-0.18M HTTA††- 0.02M TOP‡‡	0.05M HCl	25	Synergistic effect study	364
Kieselguhr*	100-400	0.8M TOPO§§-xylene	0.1M-1M HNO ₃	20	Separate Am(III) from Eu	349

*Commercially available diatomaceous earth.

†Product of the Johns-Manville Company.

‡Polytrifluoro- monochloroethylene.

§Polytetrafluoroethylene.

¶General Mills, Inc.; mixture of trioctylmethyl- and tridecylmethylammonium chloride.

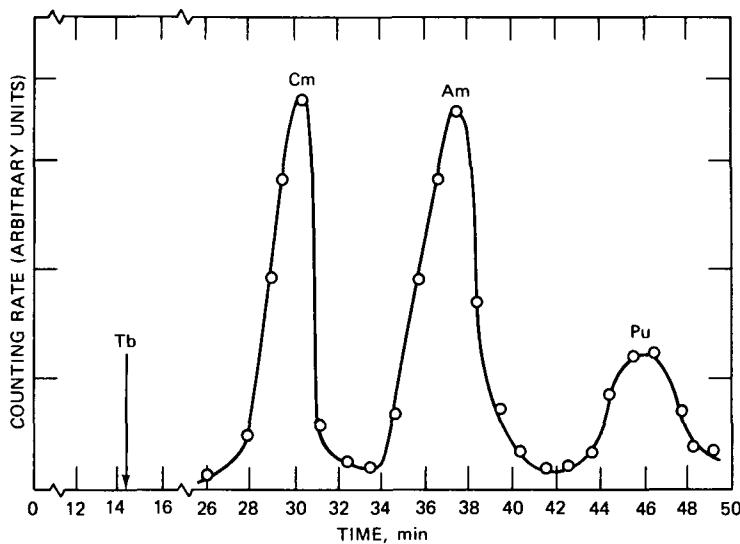
**Trifluorochloroethylene made by the Allied Chemical Company.

††Thenoyltrifluoroacetone.

‡‡Tri-*n*-octylphosphate.

§§Tri-*n*-octylphosphine oxide.

schemes have been proposed and/or used from time to time for recovery, purification, characterization, or analysis of, generally, micro amounts of americium.


Bilal and others³⁶⁵⁻³⁶⁸ in Germany, principally at the Hahn-Meitner Institute, suggest that counterflow ion-migration procedures are applicable to the recovery and purification of americium from Purex-process high-level waste as well as irradiated ²⁴¹Am and ²⁴³Am targets. These procedures involve a flow of a solvent counter to that of the ions of a mixture migrating in an electrical field; the velocity of this solvent compensates the mean migration velocity of the ions to be separated. The net result is to set up a stationary distribution of the mixture, within which the more rapid ions are transported upstream and the slower ions downstream. Separations of metal ions provided by counterflow ion-migration processes can be enhanced by the addition of ligands, which form complexes of different strengths with the various metal ions. In the favorable situation, one of the metal ions is converted to a neutral or anionic species, which is then transported out of the separation column by the counterflow liquid and is thus electrolytically extracted from the stationary mixture.

Counterflow ion-migration processes for separating large amounts of material are conveniently performed in troughs.^{367,368} Such troughs are divided by permeable diaphragms into compartments to avoid remixing caused by thermal convection and nonuniform flow profiles. Bilal et al.³⁶⁶ have described the successful application of the counterflow ion-migration technique to recover tracer amounts of ²⁴¹Am from synthetic denitrated Purex-process waste to which acetic acid had been added. Bilal et al.³⁶⁵ also applied this technique to cleanly separate americium and plutonium from a 2M acetic acid-0.05M HNO₃ electrolyte containing 40 g Pu(IV) liter⁻¹ and 0.15 g Am(III) liter⁻¹.

The extraction of americium from dilute acetic acid solutions by sodium amalgam has been reported by Kobayashi and Saito.³⁶⁹ In their experiments, 0.4M to 0.8M acetic acid solutions containing about 1 g Am³⁺ liter⁻¹ were contacted with sodium amalgam; 98 to 99% of the americium was in the amalgam phase. Most other actinide elements, as well as the lanthanides from lanthanum to europium, also extract under these conditions.

Other reported³⁷⁰ separation procedures include selective leaching of ²⁴¹Am from PuO₂ powder by 1.2M formic acid at 90°C; ~20% of the available americium extracts into the leach solution. Independent confirmation of this somewhat surprising leach behavior has not yet been reported. Zvarova, Zvára, and coworkers³⁷¹⁻³⁷³ have separated microgram amounts of americium, curium, and plutonium by gas chromatography of the volatile chloride complexes formed by the reaction of Al₂Cl₆ vapor with solid actinide chlorides at 250 to 500°C (Fig. 5.40).

Paper electrophoretic procedures using 6M to 12M HNO₃ (Ref. 374), HNO₃-EDTA solutions (Ref. 375), 0.2M citric acid (Ref. 376), and 0.07M α -hydroxyisobutyric acid at pH 2.1 (Ref. 377) have been described for separating Am(III) from Cm(III), Ac(III), Pb(II), Th(IV), and Pu(IV). So-called focusing electrophoretic techniques have been used to separate Am(III) and Cm(III) from La(III) and Ce(III) (Ref. 378), and to separate Am(III) from Cm(III) (Ref. 379); the latter separation was

Fig. 5.40 Gas chromatographic separation of a mixture of chlorides of plutonium, americium, and curium. Glass capillary column (2.5 m by 1 mm in inside diameter) at 250°C; Al_2Cl_6 partial pressure, ~100 torrs; helium flow, 8 ml min⁻¹. [From T. S. Zvarova and I. Zvára,³⁷¹ Separation of Transuranium Elements by Gas Chromatography of Their Chlorides, *Journal of Chromatography*, 49: 290 (1970).]

accomplished in a sodium polyphosphate solution at pH 7.0. Details of these electrophoretic methods are given in the text by Myasoedov et al.⁹⁵

Szeglowski and other Polish scientists^{380,381} have studied frothless ion flotation of anionic nitrate and citrate complexes of Am(III) from LiNO_3 and citric acid solutions, respectively. Cetylpyridinium bromide in isoctyl alcohol was used as a cationic collector. Americium recovery by ion flotation increases with increased LiNO_3 concentration but decreases linearly with increased citrate concentration. The Polish workers also studied the flotation of colloidal americium hydroxide from various aqueous solutions using sodium tetradecyl sulfate as an anionic collector; maximum recovery of americium was observed at pH 5.

REFERENCES

1. J. L. Long, Recovery of Americium from Plutonium, U. S. Patent No. 3,460,917, August 1969.
2. J. B. Knighton, J. L. Long, R. C. Franchini, R. G. Auge, J. C. Brown, and F. G. Meyer, A Batch Two-Stage Countercurrent Mode for Liquid Plutonium-Molten Salt Extraction of Americium, USAEC Report RFP-1875, Rocky Flats Plant, Dow Chemical Company, July 1973.

- 3 J Moseley and J B Knighton, Liquid-Liquid Extraction of Americium from Molten Plutonium Metal, USAEC Report RFP-1947, Rocky Flats Plant, Dow Chemical Company, August 1972
- 4 J L Long and C C Perry, Molten Salt Extraction of Americium from Plutonium Metal, *Nucl Met, Met Soc AIME*, 15: 385 (1969)
- 5 L J Mullins, J A Leary, and W J Maraman, Removal of Fission Product Elements by Slagging, *Ind Eng Chem*, 52: 227 (1960)
- 6 J B Knighton, J D Schilb, and J W Walsh, Separation of Rare Earths from Uranium and Plutonium by Molten Salt Extraction, in Chemical Engineering Division Summary Report, April-June 1962, USAEC Report ANL 6569, Argonne National Laboratory, August 1962
- 7 A R Teter, J L Long, R L Leggett, and C J Smith, Improved Resistance Furnaces for Molten Salt Extraction Processes, USAEC Report RFP 1513, Rocky Flats Plant, Dow Chemical Company, August 1970
- 8 J B Knighton, Dow Chemical Company, private communication, 1974
- 9 a L J Mullins, A J Beaumont, and J A Leary, Distribution of Americium Between Liquid Plutonium and a Fused Salt Evidence for Divalent Americium, *J Inorg Nucl Chem* 30: 147 (1968), also, USAEC Report LA-3562, Los Alamos Scientific Laboratory, May 1966
b J A Long and L J Mullins, Divalent Americium in Molten Salt + Molten Plutonium Systems, *J Chem Thermodyn* 6: 103 (1974)
- c W R Strickland, R G Auge, and J C Brown, Method of Precipitating Americium Oxide from a Mixture of Americium and Plutonium Metals in a Fused Salt Bath Containing PuO_2 , U S Patent No 3,804,939, April 1974
- 10 L J Mullins and J A Leary, Molten Salt Method of Separation of Americium from Molten Plutonium, U S Patent No 3,420,639, January 1969
- 11 G Landresse, Chemical Reactions in Fused Salts, *Ind Chim Belge*, 36: 843 (1971), also, USAEC Report RFP Trans-109, Rocky Flats Plant, Dow Chemical Company, 1972
- 12 R K Steunenberg, R O Pierce, and I Johnson, Status of the Salt Transport Process for Fast Breeder Reactor Fuels, in Symposium on Reprocessing of Nuclear Fuels, Ames, Iowa, August 25-27, 1969, USAEC Report CONF-690801, pp 325-336, 1969
- 13 J B Knighton and R K Steunenberg, Distribution of Transuranium Elements Between Magnesium Chloride and Zinc-Magnesium Alloy, *J Inorg Nucl Chem*, 27: 1457 (1965)
- 14 J B Knighton and R K Steunenberg, Separation of Plutonium, Uranium, Americium, and Fission Products from Each Other, U S Patent No 3,147,109, September 1964
- 15 S Lawroski, J B Knighton, and R K Steunenberg, Americium Curium Separation, U S Patent No 3,152,887, October 1964
- 16 Oak Ridge National Laboratory, Molten-Salt Reactor Processing, in Chemical Technology Division Annual Progress Report for Period Ending May 31, 1969, USAEC Report ORNL-4422, pp 1-47, October 1969
- 17 M E Whatley, Molten Salt Processing and Preparation, in Molten Salt Reactor Program Semiannual Progress Report for Period Ending August 31, 1969, USAEC Report ORNL-4449, p 214, Oak Ridge National Laboratory, February 1970
- 18 L E McNeese and L M Ferris, Molten-Salt Breeder Reactor Fuel Processing, *Trans Amer Nucl Soc*, 14: 84 (1971)
- 19 L M Ferris, J C Mailen, J J Lawrence, F J Smith, and E D Nogueira, Equilibrium Distribution of Actinide and Lanthanide Elements Between Molten Fluoride Salts and Liquid Bismuth Solutions, *J Inorg Nucl Chem*, 32: 2019 (1970)
- 20 L M Ferris, J C Mailen, and F J Smith, Chemistry and Thermodynamics of the Distribution of Lanthanide and Actinide Elements Between Molten $\text{LiF}-\text{BeF}_2$ and Liquid Bismuth Solutions, *J Inorg Nucl Chem*, 33: 1325 (1971)
- 21 J C Mailen and L M Ferris, Distribution of Transuranium Elements Between Molten Lithium Chloride and Lithium-Bismuth Solutions Evidence for Californium(II), *Inorg Nucl Chem Lett*, 7: 431 (1971)

22 L M Ferris, F J Smith, J C Mailen, and M J Bell, Distribution of Lanthanide and Actinide Elements Between Molten Lithium Halide Salts and Liquid Bismuth Solutions, *J Inorg Nucl Chem* 34: 2921 (1972)

23 R H Moore and W L Lyon, Distribution of the Actinide Elements in the Molten System KCl-AlCl₃-Al, USAEC Report HW-59147, General Electric Company, Hanford Atomic Products Operation, October 1959

24 D E McKenzie, J W Fletcher, and T Bruce, The Extraction of Plutonium from Plutonium Aluminum Alloys by Molten Bismuth, Canadian Report CRC 639, April 1956

25 J Foos, Solvent Extraction of 4f- and 5f-Series Elements in Fused Salt Medium (Thesis), USAEC file No NP-18827, 1970

26 J Foos and R Guillaumont, Solvent Extraction of 4f- and 5f-Series Elements from Alkaline Molten Nitrates, *Bull Soc Chim Fr*, 9: 3129 (1971)

27 a J Foos and R Guillaumont, Solvent Extraction from Molten Salts of Some 4f and 5f Elements, in *Proceedings of the International Solvent Extraction Conference The Hague April 19-23 1971* Vol 2, p 966, Society of Chemical Industry, London, 1971
b J Foos and R Guillaumont, Extraction par Solvent d'Elements *cis* et Transuraniens a Partir de Nitrates Alcalins Fondus, *J Inorg Nucl Chem* 36: 3833 (1974)

28 J Foos and J Mesplede, Solvent Extraction from Molten Eutectic LiNO₃-KNO₃ of Some "5f" Elements by Diphenyldiphosphine Dioxides and Tri-*n*-Octylphosphine Oxide, *J Inorg Nucl Chem* 34: 2051 (1972)

29 J Mesplede, Liquid-Liquid Extraction from Molten Alkali Nitrates Containing 4f and 5f Elements Using Diphosphine Dioxides (Thesis), French Report I RNC-Th-368, 1972

30 Z Borkowska, S Gutniak, M Mielcarski, and M Taube, Certain Physicochemical Properties of Uranium Chloride, Plutonium Chloride, Americium Chloride, and Curium Chloride in I used Salts, *Nucleonika*, 10(Suppl) 27(1965)

31 Yu A Barbanell, V P Kothin, and V R Klokman, Absorption Spectra of Americium(III) and Neodymium(III) in Molten Pyridinium and Alkali Metal Chlorides, *Radiokhimiya* 15: 366 (1973), through *Sov Radiochem (Engl Transl)*, 15: 368 (1973)

32 R A Penneman and T K Keenan, *The Radiochemistry of Americium and Curium*, National Academy of Sciences-National Research Council, NAS-NS 3006, 1960

33 S G Thompson, L O Morgan, R A James, and I Perlman, The Tracer Chemistry of Americium and Curium in Aqueous Solutions, in *The Transuranium Elements*, G T Seaborg, J. J. Katz, and W M Manning (Eds.), pp 1339-1361, McGraw-Hill Book Company, Inc., New York, 1949.

34 B Cunningham, The First Isolation of Americium in the Form of Pure Compounds, Microgram-Scale Observations on the Chemistry of Americium, in *The Transuranium Elements*, G T Seaborg, J J Katz, and W M Manning (Eds.), pp 1363-1370, McGraw-Hill Book Company, Inc., New York, 1949

35 J C Wallman, The First Isolation of the Transuranium Elements, *J Chem Educ* 36: 340 (1959)

36 L B Werner, Method for Separation of Americium from Solutions Containing the Same, U S Patent No 2,577,097, December 1951

37 L B Werner, Radioactive Product and Method of Producing the Same, U S Patent No 2,554,476, May 1951

38 L B Werner, Precipitation Method of Recovering Element 95 from Contaminants, U S Patent No 3,551,119, September 1970

39 S G Thompson, Method of Obtaining Americium, U S Patent No 3,554,867, January 1971

40 J Milsted, The Isolation of Americium, British Report AERE-C/R-1102, February 1953

41 P D Herniman, Separation and Purification of Milligram Quantities of Americium, British Report AERE-C/R-1113, January 1953

42 C R Hall and P D Herniman, The Separation and Purification of Americium-241 and the Absorption Spectra of Tervalent and Quinquevalent Americium Solutions, *J Chem Soc*, p 2214 (1954)

43 J P Butler and J S Merritt, A Batch Process for the Recovery of Am^{241} from Kilogram Amounts of Plutonium, Canadian Report CRC-661, August 1956

44 G N Yakovlev and V N Kosyakov, An Investigation of the Chemistry of Americium, in *Proceedings of the Second United Nations International Conference on the Peaceful Uses of Atomic Energy, Geneva 1958*, Vol 28, p 373, United Nations, New York, 1958

45 W J Maraman, A J Beaumont, E L Christensen, A V Hendrickson, J A Hermann, K W R Johnson, L J Mullins, and R S Winchester, Calcium Oxalate Carrier Precipitation of Pu, USAEC Report LA-1692, Los Alamos Scientific Laboratory, February 1954

46 F Weigel, The Isolation of Americium-241 in 100-Milligram Quantities from Large Amounts of Impurities, USAEC Report UCRL-3934, University of California, Lawrence Radiation Laboratory, September 1957, also, *Z Anorg Allg Chem*, 294: 294 (1958)

47 J S Coleman, D E Armstrong, L B Asprey, T K Keenan, L E LaMar, and R A Penneman, Purification of Gram Amounts of Americium, USAEC Report LA-1975, Los Alamos Scientific Laboratory, November 1955

48 L B Asprey, S E Stephanou, and R A Penneman, Hexavalent Americium, *J Amer Chem Soc*, 73: 5715 (1951)

49 S E Stephanou and R A Penneman, Observations on Curium Valence States, A Rapid Separation of Americium and Curium, *J Amer Chem Soc*, 74: 3701 (1952)

50 M Ward and G A Welch, Oxidation of Americium to the Sexivalent State, *J Chem Soc* p 4038 (1954)

51 A Chetham-Strode, Jr, The Determination of Americium in Plutonium Product Solutions, USAEC Report HW 25205, General Electric Company, Hanford Works, August 1952

52 A Chetham-Strode, Jr, The Analytical Chemistry of Americium and Curium, USAEC Report AECD-3559 (HW-28277), General Electric Company, Hanford Works, June 1953

53 H W Miller, The Quantitative Separation of Americium from Plutonium and Uranium, USAEC Report HW-22267, General Electric Company, Hanford Works, October 1951

54 J A Hermann, Coprecipitation of the Transuranium Elements with the Rare Earths Coprecipitation of Americium with Lanthanum Oxalates, *Diss Abstr*, 16: 1047 (1956)

55 J A Hermann, Coprecipitation of $\text{Am}^{(III)}$ with Lanthanum Oxalate, USAEC Report LA-2013, Los Alamos Scientific Laboratory, March 1956

56 J A Hermann, Separation of Americium from Lanthanum by Fractional Oxalate Precipitation from Homogeneous Solution, USAEC Report AECD-3637, Los Alamos Scientific Laboratory, July 1954

57 V I Grebenschikova and R V Bryzgalova, Co-Precipitation of Am and Eu with Lanthanum Oxalate, *Radiokhimiya*, 2: 152 (1960), through *Radiochemistry, USSR (Engl Transl)*, 2: 152 (1960)

58 V I Grebenschikova and V N Bobrova, Coprecipitation of Lanthanum, Cerium, and Americium with Potassium Sulfate, *Zh Neorg Khim* 3: 40 (1958), also, USAEC Report AEC-TR-3682, May 1959

59 V I Grebenschikova and N B Chernyavskaya, Coprecipitation of Am^{3+} with the Double Sulfate of Potassium and Lanthanum in Sulfuric Acid, *Radiokhimiya*, 3: 650 (1961), through *Sov Radio Chem (Engl Transl)*, 3: 142 (1961)

60 V I Grebenschikova and N B Chernyavskaya, Isolation of Np^{4+} , Pu^{4+} , and Am^{3+} from Solutions by the Sulfate Method, *Radiokhimiya* 4: 232 (1962), through *Sov Radiochem (Engl Transl)*, 4: 207 (1962)

61 D L Bokowski, The Radiochemical Determination of Americium in the Presence of Plutonium in Urine, USAEC Report RFP-279, Rocky Flats Plant, Dow Chemical Company, 1961

62 E N Jenkins and G W Snedden, The Analysis of Urine for Traces of Americium and Other Alpha Emitters, British Report AERE-C/R 1399, November 1954

63 G N Yakovlev and D S Gorbenko-Germanov, "Coprecipitation of Americium(V) with Double Carbonates of Uranium(VI) or Plutonium(VI) with Potassium, in *Proceedings of the International Conference on the Peaceful Uses of Atomic Energy, Geneva, 1955*, Vol 7, p 306, United Nations, New York, 1956

64 R S Pressly, Separation of Americium and Promethium, USAEC Report ORNL 2202, Oak Ridge National Laboratory, March 1957, U S Patent No 2,893,827, July 1959

65 V I Kuznetsov and T G Akimova, Organic Coprecipitants, *Radiokhimiya* 3 737 (1961), through *Sov Radiochem (Engl Transl)* 3. 234 (1961)

66 L J King, J E Bigelow, and E D Collins, Transuranium Processing Plant Semianual Report of Production, Status, and Plans for Period Ending June 30, 1972, USAEC Report ORNL-4833, Oak Ridge National Laboratory, January 1973

67 W Muller, F Maino, and J Cl Toussaint, Isolation of Americium and Curium from Irradiated ^{241}Am Targets, Euratom Report EUR-4232, December 1968

68 K Buijs, W Muller, J Reul, and J C Toussaint, Separation and Purification of Americium on the Multigramme Scale, Euratom Report EUR 5040, October 1973

69 G A Burney, Separation of Americium from Curium by Precipitation of $\text{K}_3\text{AmO}_2(\text{CO}_3)_2$, *Nucl Appl* 4: 217 (1968), also, USALC Report DP-1109, Savannah River Laboratory, February 1968

70 W Muller, F Maino, and J Cl Toussaint, Processing of Irradiated ^{241}Am Targets by Ion Exchange and Extraction, Euratom Report EUR-4409, January 1970

71 J Y Espie, B Poncet, and A Simon, Recovery of Trans-Plutonium Elements, French Report CEA-R-3744, March 1970

72 W D Burch (Comp), Transuranium Quarterly Progress Report for Period Ending February 28, 1965, USAEC Report ORNL-3880, Oak Ridge National Laboratory, January 1966

73 A A Kishbaugh, H Bull III, G W Gibson, Jr, and L F Landon, Curium Process Development IV Equipment Development and Testing, USAEC Report DP 1146, Savannah River Laboratory, September 1969

74 H E Henry, Isolating Americium and Curium from $\text{Al}(\text{NO}_3)_3\text{--NaNO}_3\text{--HNO}_3$ Solutions by Batch Extraction with Tributyl Phosphate, USAEC Report DP 972, Savannah River Laboratory, 1965

75 W P Overbeck, C H Ice, and G Dessauer, Production of Transplutonium Elements at Savannah River, USAEC Report DP 1000, Savannah River Laboratory, 1965

76 R E Leuze and M H Lloyd, Processing Methods for the Recovery of Transplutonium Elements, in *Progress in Nuclear Energy, Process Chemistry*, Series III, C E Stevenson, E A Mason, and A T Gresky (Eds), Vol 4, p 549, Pergamon Press, Inc, New York, 1970

77 S G Proctor, Dow Chemical Company, Rocky Flats Plant, private communication, 1974

78 F J Miner and P G Hogan, Dow Chemical Company, Rocky Flats Plant, private communication, 1974

79 S G Proctor and W V Connor Separation of Cerium from Americium, *J Inorg Nucl Chem*, 32 3699 (1970)

80 S G Proctor, Preparation of High Purity Americium Oxide, USAFC Report RFP 1857, Rocky Flats Plant, Dow Chemical Company, December 1972

81 S G Proctor, Rare Earth Removal from Americium Oxide, U S Patent No 3,723,594, March 1973

82 I N Zaozersku and P N Patkin, *Rare Earth Elements*, Academy of Sciences, Moscow, 1959

83 S. G. Proctor, Recovery and Purification of Americium-241 from an Aluminum-Americium Oxide Mixture, USAEC Report RFP-2206, Rocky Flats Plant, Dow Chemical Company, May 1974

84 R. S. Iyer and P R Kamath, Separation of BiPO_4 Carried Actinides by BiOCl Precipitation, in Proceedings of the Chemistry Symposium, Chandigarh, India, September 23-26, 1969 (CONF-690916, Vol 2, pp 169-173)

85 C W Sill and R L Williams, Radiochemical Determination of Uranium and the Transuranium Elements in Process Solutions and Environmental Samples, *Anal Chem*, 41: 1624 (1969)

86 F L Ginzburg, T S Karantsevich, and V F Maksimov, Coprecipitation of Plutonium and Americium with Barium Sulfate, *Radiokhimiya*, 15: 481 (1973), through *Sov Radiochem (Engl Transl)*, 15: 487 (1973)

87 D N Bykhovskii and I. K. Petrova, Role of Adsorption and Cocrystallization in Coprecipitation of Microamounts of Thorium(IV) and Americium(III) with Barium Oxalate, *Radiokhimiya*, 15: 605 (1973), through *Sov Radiochem (Engl Transl)*, 15: 604 (1973)

88 B Weaver, Solvent Extraction in the Separation of Rare Earths and Trivalent Actinides, in *Ion Exchange and Solvent Extraction, A Series of Advances*, Vol 6, J A Marinsky and Y Marcus (Eds.), Marcel Dekker, Inc., New York, 1974

89 J E Agee and J A Roth, Solvent Extraction of Transuranium Elements, *Separ Sci*, 2: 563 (1967)

90 W Kraak, Extraction of Transplutonium Elements, *Chem Weekbl*, 61: 377 (1965)

91 J Ulstrup, Methods of Separating the Actinide Elements, *At Energy Rev*, 4: 3 (1966)

92 R. Kroebel, Recovery of Transplutonium Elements, *Chem Weekbl*, 61: 389 (1965)

93 W Muller, The Extraction of Actinides by Alkyl-Substituted Ammonium Salts, *Actinides Rev*, 1: 71 (1967)

94 R D Baybarz, Recovery and Application of the Transuranium Elements ^{237}Np , ^{238}Pu , ^{241}Am , ^{242}Cm , ^{244}Cm and ^{252}Cf , *At Energy Rev*, 8: 327 (1970)

95 B F Myasoedov, L I Guseva, I A Lebedev, M S Milyukova, and M K Chmutova, *Analytical Chemistry of Transplutonium Elements*, John Wiley & Sons, Inc., New York, 1974

96 K A. Walsh, Extraction of Americium Nitrate with Tributyl Phosphate, USAEC Report LA-1861, Los Alamos Scientific Laboratory, January 1955

97 T V Healy and H A C McKay, Complexes Between Tributyl Phosphate and Inorganic Nitrates, *Rec Trav Chim*, 75: 730 (1956)

98 G F Best, E Hesford, and H A C McKay, Tri-n-Butyl Phosphate as an Extracting Agent for Inorganic Nitrates VII, The Trivalent Actinide Nitrates, *J Inorg Nucl Chem*, 12: 136 (1959)

99 V I Zemlyanukhin and G P Savoskina, Extraction of Americium by Tributyl Phosphate, *Radiokhimiya*, 3: 411 (1961), through *Radiochemistry (USSR) (Engl Transl)*, 3(4) 182 (1961)

100 V I Zemlyanukhin, G P Savoskina, and M F Pushlenkov, Complex Formation of Americium with Neutral Organophosphorus Compounds I, *Radiokhimiya*, 4: 570 (1962) through *Sov Radiochem (Engl Transl)*, 4: 501 (1962)

101 E S Gureev, V B. Dedov, S M Karpacheva, I K Shvetsov, M N Ryzhov, P S. Trukchayev, G N Yakovlev, and I A. Lebedev, Methods of Recovery and Some Chemical Properties of the Transplutonium Elements, in *Progress in Nuclear Energy, Process Chemistry*, Series III, C E Stevenson, E A Mason, and A T Gresky (Eds.), Vol 4, p 631, Pergamon Press, Inc., New York, 1970

102 V I Zemlyanukhin, G P Savoskina, and M F Pushlenkov, Investigation of Complex Formation of Americium with Neutral Organophosphorus Compounds II, *Radiokhimiya*, 6: 694 (1964), through *Sov Radiochem (Engl Transl)*, 6: 673 (1964)

103 M C Thompson, Distribution of Selected Lanthanides and Actinides Between 30% TBP in *n*-Paraffin and Various Metal Nitrate Solutions, USAEC Report DP-1336, Savannah River Laboratory, November 1973

104 J C Eargle, C W Swindell, and R I Martens, Large Scale Processing of Highly Irradiated Plutonium by Solvent Extraction and Ion Exchange, *Ind Eng Chem., Process Design Develop.*, 6: 348 (1967)

105 a H J Groh, R T Huntoon, C S Schlea, J A Smith, and F H Springer, ^{244}Cm Production and Separation—Status of the Pilot Production Program at Savannah River, *Nucl Appl.*, 1: 327 (1965)
b D A Orth, J M McKibben, W E Prout, and W S Scotten, Isolation of Transplutonium Elements, in *Proceedings of the International Solvent Extraction Conference, The Hague, April 19-23, 1971*, Vol 1, p 534, Society of Chemical Industry, London 1971

106 A L Boldt and G L Ritter, Recovery of Am, Cm, and Pm from Shippingport Reactor Fuel Reprocessing Wastes by Successive TBP and D2EHPA Extractions, USAEC Report ARH-1354, Atlantic Richfield Hanford Company, October 1969

107 F P Roberts and L A Bray, Solvent Extraction of Transplutonium Elements from Redox Shippingport Waste, USAEC Report BNWL-CC-956, Battelle Memorial Institute, Pacific Northwest Laboratories, December 1966

108 C E Stevenson and D M Paige, Research and Development on Aqueous Processing, *Reactor Fuel Process Technol.*, 11(4) 201 208 (Fall 1968)

109 F P Roberts and L A Bray, Recovery of Transplutonium Elements from Redox Waste, USAEC Report BNWL-CC-907, Battelle Memorial Institute, Pacific Northwest Laboratories, December 1966

110 J Akatsu, Recovery of Pu and Am from Alpha-Bearing Aqueous Wastes, *Radiochem Radioanal Lett.*, 19: 25 (1974)

111 R H Rainey, *Development of the Amex Process for Americium Recovery*, USAEC Report ORNL-1697, Oak Ridge National Laboratory, May 1954

112 J Stary, Separation of Transplutonium Elements, *Talanta*, 13: 421 (1966)

113 Y Marcus, M Givon, and M Shiloh, The Chemistry of the Trivalent Actinides in Aqueous Solution and Their Recovery, in *Proceedings of the Third International Conference on the Peaceful Uses of Atomic Energy Geneva, 1964*, Vol 10, p 588, United Nations, New York, 1965

114 W H Lewis, Americium and Neptunium Recovery Processes, in *Proceedings of the Second United Nations International Conference on the Peaceful Uses of Atomic Energy Geneva 1958*, Vol 17, p 236, United Nations, New York, 1958

115 R E Leuze, Transuranic Studies—Status and Problem Statement, USAEC Report CF 59-4-108, Oak Ridge National Laboratory, April 1959

116 G Koehly and F Hoffert, Separation of the Actinide Group from That of the Lanthanides in Nitric Medium, in *Semiannual Report of the Chemistry Department, Center for Nuclear Studies at Fontenay Aux-Roses, December 1966-May 1967*, French Report CEA-N-856, also, USAEC Report ANL-Trans-628, Argonne National Laboratory, 1967

117 J M McKibben, H P Holcomb, D A Orth, W E Prout, and W C Scotten, Partitioning of Light Lanthanides from Actinides by Solvent Extraction with TBP, USAEC Report DP-1361, Savannah River Laboratory, August 1974

118 Oak Ridge National Laboratory, Chemical Technology Division, Annual Progress Report for Period Ended August 31, 1960, USAEC Report ORNL-2993, September 1960

119 P. K. Khopkar and P. Narayankutty, Extraction of Americium(III) and Europium(III) from Thiocyanate Solutions by Some Organophosphorus Extractants and Aliquat Thiocyanate, Indian Report BARC/I-135, 1971

120 N M Isaak, P R Fields, and D M Gruen, Solvent Extraction of Actinides and Lanthanides from Molten Salts, *J Inorg Nucl Chem.*, 21: 152 (1961)

121 Z. Borkowska, M Mielcarski, and M Taube, High Temperature Organic Extraction of Uranium, Plutonium and Americium Fused Chlorides, *J Inorg Nucl Chem*, 26: 359 (1964)

122 M Zangen, Some Aspects of Synergism in Solvent Extraction III Am(III) and Am(VI) in Nitric Acid, *J Inorg Nucl Chem*, 28: 1693 (1966)

123 Oak Ridge National Laboratory, Chemical Technology Division, Annual Progress Report for Period Ended May 31, 1963, USAEC Report ORNL-3452, September 1963

124 V I Zemlyanukhin, G P Savoskina, and M F Pushlenkov, Complex Formation of Nitrates of Transuranium Elements with Neutral Organophosphorus Compounds, *Radio khimya*, 6: 714 (1964), through *Sov Radiochem (Engl Transl)*, 6: 690 (1964)

125 J C. Sheppard, The Distribution of Am^{3+} Between Xylene-DBBP Solutions and Nitrate Solutions, USAEC Report HW-81166, General Electric Company, Hanford Atomic Products Operation, March 1964

126 T H Siddall, Extraction of Uranium and Other Actinides from Nitric Acid by Di-n-butyl-n-butylphosphonate, USAEC Report DP-219, Savannah River Laboratory, June 1957

127 L. E. Bruns, Geometrically Favorable Plutonium Scrap Recovery Plant, in *Preparation of Nuclear Fuels, Nuclear Engineering, Part XVIII*, Chemical Engineering Progress Symposium Series, No 80, Vol 63, pp 156-162, American Institute of Chemical Engineers, New York, 1967

128 L E Bruns, Plutonium-Uranium Partitioning by a Reflux Extraction Flowsheet, in *Proceedings of the International Solvent Extraction Conference, The Hague, April 19-23, 1971*, Vol 1, p 186, Society of Chemical Industry, London, 1971

129 R S Kingsley, Solvent Extraction Recovery of Americium with Dibutyl Butyl Phosphonate, USAEC Report RL-SEP-518, General Electric Company, Hanford Atomic Products Operation, June 1965

130 R S Kingsley and H H Hopkins, Jr, Solvent Extraction Recovery of Americium with Dibutyl Butyl Phosphonate, USAEC Report ISO-SA-7 (CONI-660320-16), Isochem, Inc, March 1966

131 C A Lorenzen and R I Speakman, Increased Plutonium and Americium Recovery by Continuous Solvent Extraction in the Waste-Treatment Facility, USAEC Report ARH-20, Atlantic Richfield Hanford Company, September 1967

132 I N Taylor, Jr, Flowsheet for Continuous Solvent Extraction of Plutonium and Americium in Waste Treatment Facility, USAEC Report ARH-210, Atlantic Richfield Hanford Company, November 1967

133. G L Richardson, Americium Recovery by DBBP Solvent Extraction Pilot Plant Demonstration, USAEC Report BNWL-CC-1503, Battelle Memorial Institute, Pacific Northwest Laboratories, February 1968

134 a. G. L. Richardson and W W Schulz, Integrated LMFBR Aqueous Fuel Reprocessing Concepts, USAEC Report BNWL-CC-1939, Battelle Memorial Institute, Pacific Northwest Laboratories, January 1969

b. W W Schulz and G. L. Richardson, Integrated Lanthanide-Actinide Solvent Extraction Process, USAEC Report BNWL-SA-3345, Battelle Memorial Institute, Pacific Northwest Laboratories, June 1970

135 V I Zemlyanukhin, G P Savoskina, and M F Pushlenkov, Study of the Complex Formation of Americium with Diisoamyl Ester Methylphosphinic Acid (DAMP), *Radio khimya*, 4: 655 (1962), through *Sov Radiochem (Engl Transl)*, 4: 579 (1962)

136. T. H. Sidall III, Bidentate Organophosphorus Compounds as Extractants I Extraction of Cerium, Promethium, and Americium Nitrates, *J Inorg Nucl Chem*, 25: 883 (1963).

137. T. H. Sidall III, Bidentate Organophosphorus Compounds as Extractants II Extraction Mechanisms for Cerium(III) Nitrate, *J Inorg Nucl Chem*, 26: 1991 (1964)

138 T H Siddall III, Method of Extracting Lanthanides and Actinides, U S Patent No 3,243,254, March 1966

139 W W Schulz, Bidentate Organophosphorus Extraction of Americium and Plutonium from Hanford Plutonium Reclamation Facility Waste, USAEC Report ARH-SA-203, Atlantic Richfield Hanford Company, September 1974, also, *Trans Amer Nucl Soc*, 21: 262 (1975)

140 W W Schulz and L D McIsaac, Removal of Actinides from Nuclear Fuel Reprocessing Waste Solutions with Bidentate Organophosphorus Extractants, ERDA Report ARH SA-217 (CONF-750913-13), Atlantic Richfield Hanford Company, August 1975

141 F E Butler and R M Hall, Determination of Actinides in Biological Samples with Bidentate Organophosphorus Extractant, *Anal Chem*, 42: 1073 (1970)

142 J R Ferraro and D F. Peppard, Structural Aspects of Organophosphorus Extractants and Their Metallic Complexes as Deduced from Spectral and Molecular Weight Studies, *Nucl Sci Eng*, 16: 389 (1963)

143 J R Ferraro, G W Mason, and D F Peppard, Molecular Weight of Several Organophosphorus Acids, *J Inorg Nucl Chem*, 22: 285 (1961)

144 E S Gureev, V N Kosyakov, and G N Yakovlev, Extraction of Actinide Elements by Dialkylphosphoric Acids, *Radiokhimiya*, 6: 655 (1964), through *Sov Radiochem (Engl Transl)*, 6: 639 (1964)

145 D F Peppard, G W Mason, W J Driscoll, and R J Sironen, Acidic Esters of Orthophosphonic Acid as Selective Extractants for Metallic Cations—Tracer Studies, *J Inorg Nucl Chem*, 7: 276 (1958)

146 G W Mason, S Lewey, and D F Peppard, Extraction of Metallic Cations by Mono-Acidic Orthophosphate Esters in a Monomerizing Diluent, *J Inorg Nucl Chem*, 26: 2271 (1964)

147 S M Karpacheva and L V Illozheva, Kinetics of Extraction of Americium(III) from Perchloric Acid Solutions by Bis-(2-ethylhexyl)phosphate in Decane, *Radiokhimiya* 12: 460 (1970), through *Sov Radiochem (Engl Transl)*, 12: 427 (1970)

148 G L Ritter and L A Bray, Solvent Extraction Process for Purifying Americium and Curium, U S Patent No 3,463,619, August 1969

149 D E Ferguson et al., Chemical Technology Division Annual Progress Report, May 31, 1966, USAEC Report ORNL-3945, Oak Ridge National Laboratory, September 1966

150 J E Bigelow, F R Chatton, and V C A Vaughn, Plant Practice in Solvent Extraction Processing of Alpha-Emitting Nuclei of High Specific Activity, in *Proceedings of the International Solvent Extraction Conference, The Hague, April 19–23, 1971*, Vol 1, p 507, Society of Chemical Industry, London, 1971

151 B Weaver and F A Kappelmann, Preferential Extraction of Lanthanides over Trivalent Actinides by Monoacidic Organophosphates from Carboxylic Acids and from Mixtures of Carboxylic and Aminopolyacetic Acids, *J Inorg Nucl Chem*, 30: 263 (1968)

152 F. A Kappelmann and B S Weaver, Method for Separating Americium and Curium from the Lanthanide Rare Earths and Yttrium, U S Patent No 3,230,036, January 1966

153 B Weaver and F A Kappelmann, Talspeak A New Method of Separating Americium and Curium from the Lanthanides by Extraction from an Aqueous Solution of an Aminopolyacetic Acid Complex with a Monoacidic Organophosphate or Phosphonate, USAEC Report ORNL 3559, Oak Ridge National Laboratory, August 1964

154 R E Leuze, R D Baybarz, F A Kappelmann, and B Weaver, Behavior of the Transplutonium Elements in Solvent Extraction Systems, in *Solvent Extraction Chemistry of Metals*, H A C McKay, T V Healy, I L Jenkins, and A Naylor (Eds.), The MacMillan Company, London, 1966, p 423, also, USAEC Report ORNL-P-1577, Oak Ridge National Laboratory, August 1965

155 W D Burch (Comp.), Transuranium Quarterly Progress Report for Period Ending November 30, 1964, USAEC Report ORNL-3847, Oak Ridge National Laboratory, September 1965

156 K B Brown (Ed), Chemical Technology Division, Chemical Development Section C, Progress Report on Separations Chemistry and Separations Progress Research for January-June 1963, USAEC Report ORNL 3496, Oak Ridge National Laboratory, October 1963

157 K P Lunicikina and E V Renard, Extraction of Americium(III), Lanthanum(III), and Neodymium(III) from Lactic Acid Solutions by Di-(2-ethylhexyl)-phosphoric Acid in the Presence of Large Amounts of Rare Earth Elements, *Radiochimya*, **15**: 30 (1973), through *Sov Radiochem (Engl Transl)*, **15**: 28 (1973)

158 J J Fardy and J M Pearson, Solvent Extraction of Trivalent Actinides and Lanthanides from a Mixture of Carboxylic and Aminopolyacetic Acids, *J Inorg Nucl Chem*, **35**: 2513 (1973)

159 R Berger, G Koehly, C Musikas, R Pottier, and R Sontag, Processing of Highly Irradiated Al-Pu Alloy, *Nucl Appl Technol*, **8**: 371 (1970)

160 Z Kolarik, G Koch, H H Kuesel, and J Fritsch, Separation of Americium and Curium from Highly Radioactive Waste Solutions, German Report KFK-1553, February 1972

161 G Koch, Z Kolank, H Haug, W Hild, and S Drobni, Recovery of Transplutonium Elements from Fuel Reprocessing High-Level Waste Solutions, in Symposium on the Management of Radioactive Wastes from Fuel Reprocessing, Paris, France, November 27-December 1, 1972 (CONI-721107, pp 1081-1110), also, German Report KFK-1651, November 1972

162 G Koch, Method for the Separation of Americium and Curium from Aqueous Solutions of Irradiated Fuels, German Patent No 1,813,441, June 1970

163 G Koch, Gewinnung der Actiniden aus dem HAW der WAK, in Project Actinides First Semi-Annual Report, 1972 PACT Report No 24, German Report KFK-1656, October 1972

164 G Koch, Recovery of By-Product Actinides from Power Reactor Fuels, German Report KFK-976, May 1969

165 G Koch, A Study on Americium/Curium Recovery from Fuel Reprocessing High Level Waste Solutions, in *Progress in Coordination Chemistry*, M Cais (Ed), p 729, American Elsevier Publishing Company, Inc , New York, 1968

166 E S Gureev, V B Dedov, S M Karpacheva, I A Lebedev, M N Ryzhov, P S Trukhlyayev, I K Shvetsov, and G N Yakovlev, Extraction and Some Chemical Properties of Transplutonium Elements, in *Proceedings of the Third International Conference on the Peaceful Uses of Atomic Energy, Geneva 1964* Vol 10, pp 553-560, United Nations, Geneva, 1965

167 P K Khopkar and P Narayankutty, Separation of Actinides and Lanthanides Using Di(2-ethylhexyl)phosphoric Acid, in Proceedings of the Nuclear and Radiation Chemistry Symposium, Poona, March 6-9, 1967 (CONI-670335)

168 K B Brown and R E Leuze, Development of Chemical Flowsheets for the Overall Process, in Transuranium Quarterly Progress Report for Period Ending August 31, 1963, W D Burch (Comp), USAEC Report ORNL-3558, Oak Ridge National Laboratory, March 1964

169 K Watanabe and C Sagawa, Separation of Plutonium and Curium from Irradiated Americium by Solvent Extraction Using HDEHP, *Nippon Genshuryoku Gakkaishi*, **14** 326 (1972)

170 C T Lee, Study of the Separation Factor of Am-Cm in the Di-(2-ethylhexyl)-orthophosphoric Acid Extraction System, *Daehan Hwahak Hwoejee*, **13**: 205 (1969)

171 B F Myasoedov, M K Chmutova, N E Kochetkova, and G A Pribylova, Solvent Extraction of Trivalent Americium from Acid Media, *Radiochem Radioanal Lett* **14**: 63 (1973)

172 B F Myasoedov, M K Chmutova, N E Kochetkova, and G A Pribylova, Extraction of Trivalent Transplutonium Elements and Europium by a Mixture of Di-2-ethylhexylortho-

phosphoric Acid and Phosphorus Pentoxide from Strongly Acid Media, in *Proceedings of the International Solvent Extraction Conference Lyon, France, September 8-14, 1974*, CONF-740917, Vol 2, pp 1103-1108, Society of Chemical Industry, London, 1974

173 M Zangen, Some Aspects of Synergism in Solvent Extraction II Some Di-, Tri- and Tetravalent Ions, *J Inorg Nucl Chem*, 25: 1051 (1963)

174 Z Kolarik, Acidic Organophosphorus Extractants XVI Effect of Tri-*n*-Butyl Phosphate on the Extraction of Some Metals by Di (2-ethylhexyl) Phosphoric Acid in *n*-Hexane, *J Inorg Nucl Chem*, 34: 2911 (1972)

175 D F Peppard, G W Mason, and I Hucher, Acidic Esters of Phosphonic Acid as Selective Extractants for Metallic Cations—Selected M(III) Tracer Studies, *J Inorg Nucl Chem*, 18: 245 (1962)

176 D F Peppard, G W Mason, and I Hucher, Mutual Separation of Cf and Cm with Acidic Phosphonates, in *Radioisotopes in the Physical Sciences and Industry* Conference Proceedings, Copenhagen, 1960, Vol II, p 541, International Atomic Energy Agency, Vienna, 1962 (STI/PUB/20)

177 R D Baybarz, Separation of Transplutonium Elements by Phosphonate Extraction, USAEC Report ORNL-3273, Oak Ridge National Laboratory, August 1962 also, *Nucl Sci Eng* 17: 463 (1963)

178 R F Leuze, R D Baybarz, and B Weaver, Application of Amine and Phosphonate Extractants to Transplutonium Element Production, *Nucl Sci Eng*, 17: 252 (1963)

179 B Weaver, Enhancement by Zirconium of Extraction of Cations by Organophosphorus Acids I Monoacidic Phosphonates, *J Inorg Nucl Chem*, 30: 2233 (1968)

180 G W Mason, A F Bollmeier, and D F Peppard, Partition of Oxidized Americium from Actinides(III) and Lanthanides(III), *J Inorg Nucl Chem*, 32: 1011 (1970)

181 G W Mason, A F Bollmeier, and D F Peppard, Separation of Americium and Curium, U S Patent No 3,743,696, July 1973

182 D F Peppard, G W Mason, W J Driscoll, and S McCarty, Application of Phosphoric Acid Esters to the Isolation of Certain Trans-Plutonides by Liquid-Liquid Extraction, *J Inorg Nucl Chem*, 12: 141 (1959)

183 G S Rao, G W Mason, and D F Peppard, Extraction of Selected Metallic Cations by Di Acidic Phosphorus-Based Extractants, $\text{XPO}(\text{OH})_2$, in a Ketone Diluent, *J Inorg Nucl Chem*, 28: 887 (1966)

184 D F Peppard and G W Mason, Some Mechanisms of Extraction of M(II), (III), (IV), and (VI) Metals by Organophosphorus Extractants, *Nucl Sci Eng*, 16: 382 (1963)

185 G W Mason and D F Peppard, Types of Acidic Organophosphorus Extractants and Their Applications to Transuranic Separations, *Nucl Sci Eng*, 17: 247 (1963)

186 Y Marcus and A S Kertes, *Ion Exchange and Solvent Extraction of Metal Complexes*, Wiley-Interscience, Inc, New York, 1969

187 D F Peppard, G W Mason, and R J Sironen, Isolation of Neptunium as a Mono-Octyl Phosphoric Acid Complex by Liquid-Liquid Extraction, *J Inorg Nucl Chem*, 10: 117 (1959)

188 S Lewey, G W Mason, and D F Peppard, Comparative Extraction of Selected M(III) Cations by $(2\text{-C}_2\text{H}_5 \cdot \text{C}_6\text{H}_{12}\text{O})\text{PO}(\text{OH})_2$ and $(2\text{-C}_2\text{H}_5 \cdot \text{C}_6\text{H}_{12})\text{PO}(\text{OH})_2$, *J Inorg Nucl Chem*, 33: 2531 (1971)

189 R D Baybarz and R E Leuze, Separation of Transplutonium and Rare Earth Elements by Liquid-Liquid Extraction, USAEC Report CF-60-3-32, Oak Ridge National Laboratory, June 1960

190 R D Baybarz and R E Leuze, Separation of Transplutonium and Rare Earth Elements by Liquid-Liquid Extraction, *Nucl Sci Eng*, 11: 90 (1961)

191 R D Baybarz and R E Leuze, Process for Separating Americium and Curium from Rare Earth Elements, U S Patent No 3,079,225, February 1963

192 D. F. Peppard, G. W. Mason, and I. Hucher, Stability Constants of Certain Lanthanide(III) and Actinide(III) Chloride and Nitrate Complexes, *J Inorg Nucl Chem.*, **24**: 881 (1962)

193 G. W. Mason, A. F. Bollmeier, and D. F. Peppard, Diluent Effects in the Extraction of Selected Metallic Cations by *Bis*(hexoxyethyl)phosphoric Acid, *J Inorg Nucl Chem.*, **29**: 1103 (1967).

194 D. F. Peppard, G. W. Mason, and G. Griffin, Extraction of Selected Trivalent Lanthanide and Actinide Cations by *Bis*(hexoxyethyl)phosphoric Acids, *J Inorg. Nucl. Chem.*, **27**: 1683 (1965)

195 G. W. Mason, N. L. Schofer, and D. F. Peppard, The Extraction of U(VI) and Selected M(III) Cations by *Bis-n-octylphosphoric Acid*, *J Inorg Nucl Chem.*, **32**: 3899 (1970).

196 G. W. Mason, N. L. Schofer, and D. F. Peppard, The Extraction of U(VI) and Selected M(III) Cations by *Bis-neo-octylphosphoric Acid*, *J Inorg Nucl Chem.*, **32**: 3911 (1970)

197 D. F. Peppard, G. W. Mason, A. F. Bollmeier, and S. Lewey, Extraction of Selected Metallic Cations by a Highly Hindered $(GO_2)_2PO(OH)$ Extractant in Two Different Diluents from an Aqueous Chloride Phase, *J Inorg Nucl Chem.*, **33**: 845 (1971)

198 D. F. Peppard, G. W. Mason, and S. Lewey, *Di-n-Octyl Phosphinic Acid* as a Selective Extractant for Metallic Cations Selected M(III) and M(VI) Tracer Studies, *J. Inorg Nucl Chem.*, **27**: 2065 (1965).

199 D. F. Peppard, G. W. Mason, and S. Lewey, A Tetrad Effect in the Liquid-Liquid Extraction Ordering of Lanthanides(III), *J Inorg Nucl. Chem.*, **31**: 2271 (1969)

200 D. F. Peppard, G. W. Mason, and C. Andrejasich, Two Mono-Octyl Phosphinic Acids, $(R)(H)PO(OH)$, as Extractants for Metallic Cations Selected M(II), M(III), and M(VI) Tracer Studies, *J Inorg Nucl Chem.*, **28**: 2347 (1966)

201 G. W. Mason, N. L. Schofer, and D. F. Peppard, Two Octyl Phenyl Phosphinic Acids, $(R)(C_6H_5)PO(OH)$, as Extractants for Selected M(III) and M(VI) Metallic Cations, *J Inorg Nucl Chem.*, **32**: 3375 (1970).

202 V. S. Schmidt, *Amine Extraction*, translated by J. Schmorak, Israel Program for Scientific Translation, Jerusalem, 1971.

203 C. F. Coleman, Amine Extraction in Reprocessing, *At. Energy. Rev.*, **2**: 3 (1964).

204. C. F. Coleman, C. A. Blake, Jr., and K. B. Brown, Analytical Potential of Separations by Liquid Ion Exchange, *Talanta*, **9**: 297 (1962).

205. E. P. Horwitz, C. A. A. Bloomquist, L. J. Sauro, and D. J. Henderson, The Liquid-Liquid Extraction of Certain Tripositive Transplutonium Ions from Salted Nitrate Solutions with a Tertiary and Quaternary Amine, *J Inorg Nucl Chem.*, **28**: 2313 (1966).

206. Y. Marcus, M. Givon, and G. R. Choppin, Anion Exchange of Metal Complexes. XIII. The Actinide(III)-Nitrate System, *J Inorg Nucl Chem.*, **26**: 1457 (1963), also, Israeli Report IA-783, October 1962.

207. W. E. Keder, J. C. Sheppard, and A. S. Wilson, The Extraction of Actinide Elements from Nitric Acid Solutions by Tri-*n*-Octylamine, *J Inorg Nucl Chem.*, **12**: 327 (1960).

208. E. G. Chudinov and S. V. Pirozhkov, Investigation of the Influence of the Structure of Trialkylamine Nitrates on the Extraction Separation of Americium and Curium, *Radiochimica*, **13**: 396 (1961), through *Sov Radiochem. (Engl. Transl.)*, **13**: 411 (1971)

209. R. D. Baybarz, B. S. Weaver, and H. B. Kinser, Isolation of Transplutonium Elements by Tertiary Amine Extraction, *Nucl. Sci. Eng.*, **17**: 457 (1963).

210. A. J. Roth and H. E. Henry, Extraction of Americium-Curium-Europium from Lithium Chloride-Hydrochloric Acid by Tertiary Amines, *J. Chem Eng Data*, **10**: 298 (1965)

211. A. Van Dalen, W. Kraak, J. Van Ooyen, P. Polack, and J. C. Post, Transplutonide Research, Final Report, Euratom Report EUR-2640.e, November 1965.

212. A. D. Gel'man, A. I. Moskvin, and P. I. Artyukhin, Composition and Dissociation Constants of Pu(V) and Pu(III) Complexes with Ethylenediaminetetraacetic Acid, *At. Energ. (USSR)*, **7**: 667 (1959), through *Sov. J. At. Energy (Engl. Transl.)*, **7**: 667 (1959).

213. G. Duyckaerts, J. Fuger, and W. Muller, L'Extraction Liquide-Liquide par le Chlorhydrate de Trilaurylamine, Euratom Report EUR-426.f, 1963
214. W. Muller, J. Fuger, and G. Duyckaerts, Complex Formation in Tertiary Amine Extraction of Trivalent Metals, Euratom Report EUR-2196 e, 1964
215. R. D. Baybarz and B. Weaver, Separation of Transplutonium from Lanthanides by Tertiary Amine Extraction, USAEC Report ORNL-3185, Oak Ridge National Laboratory, December 1961
216. F. L. Moore, New Technique for the Separation of Trivalent Actinide Elements from Lanthanide Elements, *Anal. Chem.*, 33: 748 (1961)
217. W. Muller, G. Duyckaerts, and J. Fuger, Mechanisms of Extraction of Transplutonium Elements by Trilaurylamine Hydrochloride, in *Solvent Extraction Chemistry of Metals*, H. A. C. McKay, T. B. Healy, I. L. Jenkins, and A. E. Naylor (Eds.), The Macmillan Company, London, 1966.
218. H. C. Jain and G. Duyckaerts, Extraction of ^{241}Am from Concentrated Aqueous Chloride Solutions by Trilaurylamine Hydrochloride, *Inorg. Nucl. Chem. Lett.*, 5: 553 (1969)
219. a. Y. Marcus, Anion Exchange of Metal Complexes XV. Anion Exchange and Amine Extraction of Lanthanides and Trivalent Actinides from Chloride Solutions, *J. Inorg. Nucl. Chem.*, 28: 209 (1966).
b. H. D. Harmon, J. R. Peterson, W. J. McDowell, and C. F. Coleman, Phosphine Oxide and Quaternary Ammonium Extraction of Americium(III) from Concentrated Chloride Solutions, *J. Inorg. Nucl. Chem.*, 38: 155 (1976).
220. F. L. Moore, Rapid Removal of Transuranium Elements from Aqueous Solutions Prior to the Determination of Total Lanthanide Fission Products, *Anal. Chem.*, 37: 419 (1965).
221. F. L. Moore, Method for Separating Transplutonium Elements from Rare Earth Fission Products, U. S. Patent No. 3,178,256, April 1965
222. R. D. Baybarz, B. Weaver, and H. B. Kinser, Separation of Transuranium Elements from Rare Earths by Tertiary Amine Extraction, *Trans. Amer. Nucl. Soc.*, 5: 17 (1962).
223. R. D. Baybarz and H. B. Kinser, Separation of Transplutonium and Lanthanides by Tertiary Amine Extraction. II. Contaminant Ions, USAEC Report ORNL-3244, Oak Ridge National Laboratory, March 1962.
224. D. L. West and R. Navarez, Curium Process Development III-2. Identification of Solvent Degradation Products. USAEC Report DP-1016, Savannah River Laboratory, November 1966.
225. K. B. Brown, Chemical Technology Division, Chemical Development Section C, Progress Report, July-December 1962, USAEC Report ORNL-TM-449, Oak Ridge National Laboratory, April 1963.
226. R. D. Baybarz, Alpha Radiation Effects on Concentrated LiCl Solutions Containing HCl, and the Use of Methanol as an Inhibitor of Acid Radiolysis, *J. Inorg. Nucl. Chem.*, 27: 725 (1965).
227. W. D. Burch, J. E. Bigelow, and L. J. King, Transuranium Processing Plant Semiannual Report of Production, Status and Plans for Period Ending December 31, 1968, USAEC Report ORNL-4428, Oak Ridge National Laboratory, November 1969.
228. W. D. Burch, J. E. Bigelow, and L. J. King, Transuranium Processing Plant Semiannual Report of Production, Status and Plans for Period Ending June 30, 1971, USAEC Report ORNL-4718, Oak Ridge National Laboratory, December 1971.
229. E. I. Eubanks and G. A. Burney, Curium Process Development. I. General Process Description, USAEC Report DP-1009, Savannah River Laboratory, April 1966.
230. W. E. Prout, H. E. Henry, H. P. Holcomb, and W. J. Jenkins, Curium Process Development. II-2. Recovery of Curium and Americium by Solvent Extraction with Tertiary Amines, USAEC Report DP-1302, Savannah River Laboratory, December 1972
231. V. C. A. Vaughn and R. D. Baybarz, Curium Processing Experience, in Large Scale Production and Applications of Radioisotopes, Proceedings of the American Nuclear

Society, National Topical Meeting, March 21-23, 1966, Augusta, Georgia, USAEC Report DP-1066(Vol. 2), E. I. du Pont de Nemours & Company, Inc., May 1966.

232 M. K. Chmutova, B. F. Myasoedov, B. Ya. Spivakov, N. W. Kochetkova, and Yu. A. Zolotov, Solvent Extraction of Transplutonium Elements by Mixtures of Tri-*n*-Octylamine with Neutral Extractants from Nitrate Solutions, *J Inorg Nucl Chem*, 35: 1317 (1973)

233 G. Koehly, C. Madic, and R. Berger, Capric Acid Effect on Actinide Extraction by Trilaurylammmonium Nitrate, in *Proceedings of the International Solvent Extraction Conference, The Hague, April 19-23, 1971*, Vol 1, p 768, Society of Chemical Industry, London, 1971

234 G. Koehly and R. Berger, Separation of Trivalent Actinide and Lanthanide Elements in Nitrate Medium, in *Symposium on the Transuranium Elements*, Liege, Belgium, April 21-22, 1969 (CONF-690426, pp 91-115)

235 Semiannual Report of the Chemistry Department, No 6, June-November 1968, French Report CEA-N-1148, June 1969

236. F. L. Moore, Liquid-Liquid Extraction of Metal Ions from Aqueous Solutions of Organic Acids with High-Molecular-Weight Amines, *Anal Chem*, 37: 1235 (1965).

237. B. Weaver, Extraction of Americium(VI), in Chemical Technology Division, Chemical Development Section C, Progress Report on Separations Chemistry and Separations Progress Research for January-June 1962, K. B. Brown (Ed.), USAEC Report ORNL-3496, Oak Ridge National Laboratory, October 1963

238 F. L. Moore, Improved Extraction Method for Isolation of Trivalent Actinide-Lanthanide Elements from Nitrate Solutions, *Anal. Chem.*, 38: 510 (1966)

239 J. Van Ooyen, Quaternary Ammonium Nitrates as Extractants for Trivalent Actinides, in *Solvent Extraction Chemistry*, D. Dyrssen, J.-O. Liljenzin, and J. Rydberg, (Eds.), John Wiley & Sons, Inc., New York, 1967

240 J. Van Ooyen, Properties of Trilaurylmethylammonium Nitrate as an Extractant for Trivalent Actinides, Netherlands Report RCN-113, February 1970

241 E. G. Chudinov and S. V. Pirozhkov, Effect of Cation of Salting-Out Agent on Separation of Trivalent Actinide Elements by Extraction with Amines, *Radiokhimiya*, 15: 18 (1973), through *Sov Radiochem (Engl Transl)* 15: 16 (1973).

242. E. P. Horwitz, C. A. A. Bloomquist, and H. E. Griffin, The Preparation of High-Purity ^{242}Cm in Multicurie Quantities, USAEC Report ANL-7569, Argonne National Laboratory, March 1969.

243. G. Koch and J. Schoen, Isolation of ^{241}Am from Plutonium Scrap by Extraction with Tricaprylmethylammonium Nitrate, German Report KFK-783, June 1968

244. G. Koch, Recovery of By-Product Actinides from Power Reactor Fuels, in *Symposium on the Transuranium Elements*, Liege, Belgium, April 21-22, 1969 (CONF-690426)

245 F. L. Moore, New Approach to Separation of Trivalent Actinide Elements from Lanthanide Elements Selective Liquid-Liquid Extraction with Tricaprylmethylammonium Thiocyanate, *Anal Chem*, 36: 2158 (1964).

246 F. L. Moore, Method for Removing Lanthanides and Trivalent Actinides from Aqueous Nitrate Solutions, U. S. Patent No. 3,294,494, December 1966.

247 P. Th. Gerontopoulos, L. Rigali, and P. G. Barbano, Separation of Americium(III) from Lanthanides by Quaternary Ammonium Salt Extraction, *Radiochim Acta*, 4: 75 (1965)

248 Z. Szeglowski, J. Mikulski, K. A. Gavrilov, K. Y. Bon, and O. S. Ik, Solvent Extraction of Actinide and Lanthanide Elements by Quaternary Ammonium Salts III Extraction of Lanthanide and Transplutonium Elements in the Systems CTMAB-LiNO₃ and CPB-LiNO₃, *Nukleonika*, 17: 631 (1967).

249 N. Zaman, E. Merciny, and G. Duyckaerts, Extraction by Quaternary Ammonium Salts of High Molecular Weight Hydroxyethylenediaminetriacetic Acid and Its Complexes with Trivalent Lanthanides and Actinides II Extraction of Americium and Curium, *Anal Chem Acta*, 56: 271 (1971).

250. F. L. Moore, Liquid-Liquid Extraction of Anionic Americium and Europium Complexes of Hydroxyethylethylenediaminetriacetic Acid and Diethylenetriaminopentaacetic Acid, *Anal Chem.*, 38: 905 (1966).

251. F. L. Moore, Method of Extracting Soluble Metal Complexes Using Amine Solvents, U. S. Patent No. 3,409,415, November 1968

252. J. L. Ryan, Ion Exchange, in *Gmelins Handbuch der Anorganischen Chemie*, Band 21, Transuran, Teil D2, G. Koch (Ed.), Verlag Chemie, G.m.b.H., Weinheim, Germany, 1974

253. J. Korkisch, *Modern Methods for the Separation of Rarer Metal Ions*, Pergamon Press, Inc., London, 1969.

254. A. D. Jones and G. R. Choppin, Complexes of Actinide Ions in Aqueous Solution, *Actinides Rev.*, 1: 311 (1969).

255. I. L. Jenkins and A. G. Wain, Ion Exchange in the Atomic Energy Industry with Particular Reference to Actinide and Fission Product Separations, *Rep. Progr. Appl. Chem.*, 57: 308 (1972).

256. J. P. Surls, Jr., and G. R. Choppin, Ion-Exchange Study of Thiocyanate Complexes of the Actinides and Lanthanides, *J. Inorg. Nucl. Chem.*, 4: 62 (1957).

257. V. D. Dedov, V. V. Volkov, B. A. Gvozdov, V. A. Ermakov, I. A. Lebedev, V. M. Razbitnoi, P. S. Trukhlyayev, Yu. T. Chuburkov, and G. N. Yakovlev, Preparation of ^{242}Pu and ^{242}Cm from Neutron-Irradiated ^{241}Am , *Radiokhimiya*, 7: 453 (1965), through *Sov. Radiochem. (Engl. Transl.)*, 7: 452 (1965).

258. J. S. Coleman, L. B. Asprey, and R. C. Chisholm, The Anion-Exchange Absorption of Americium, Yttrium, Lanthanum, Europium, and Ytterbium from Aqueous Ammonium Thiocyanate, *J. Inorg. Nucl. Chem.*, 31: 1167 (1969).

259. J. S. Coleman, R. A. Penneman, T. K. Keenan, L. E. LaMar, D. E. Armstrong, and L. B. Asprey, An Anion-Exchanger Process for Gram-Scale Separation of Americium from Rare Earths, *J. Inorg. Nucl. Chem.*, 3: 327 (1956).

260. T. K. Keenan, Rapid and Efficient Purification of Americium, *J. Inorg. Nucl. Chem.*, 20: 185 (1961).

261. K. Naito, A Method of Purification of Americium, USAEC Report UCRL-8748, University of California, Lawrence Radiation Laboratory, November 1959.

262. V. A. Ryan and J. W. Pringle, Preparation of Pure Americium, USAEC Report RFP-130, Rocky Flats Plant, Dow Chemical Company, January 1960.

263. P. G. Hagan and H. W. Miller, Recovery and Preliminary Purification of Americium Obtained from Waste Material, USAEC Report RFP-442, Rocky Flats Plant, Dow Chemical Company, March 1965.

264. L. I. Guseva and G. S. Tikhomirova, Separation of Transplutonium Elements from Rare Earth Elements on an Ion-Exchange Resin in the System Ammonium Thiocyanate-Alcohol-Water, *Radiokhimiya*, 10: 246 (1968), through *Sov. Radiochem. (Engl. Transl.)*, 10: 233 (1968).

265. L. N. Moskvin and V. T. Novikov, Study of Anion Exchange of Ca, Eu, Tm, and Am in Aqueous Alcohol Solutions of Ammonium Thiocyanate, *Radiokhimiya*, 14: 106 (1972), through *Sov. Radiochem. (Engl. Transl.)*, 14: 102 (1972).

266. L. I. Guseva and G. S. Tikhomirova, Isolation of Transplutonium Elements on Anionites by Means of Aqueous Alcohol Solutions of Nitric Acid and Ammonium Thiocyanate, *Radiokhimiya*, 16: 152 (1974), through *Sov. Radiochem. (Engl. Transl.)*, 16: 152 (1974).

267. G. H. Higgins and W. T. Crane, The Production and Chemical Isolation of Curium-242 in Thousand-Curie Quantities, in *Proceedings of the Second United Nations International Conference on the Peaceful Uses of Atomic Energy*, Geneva, 1958, Vol. 17, p. 245, United Nations, New York, 1958.

268. E. K. Hulet, R. G. Guttmacher, and M. S. Coops, Group Separation of the Actinides from the Lanthanides by Anion Exchange, *J. Inorg. Nucl. Chem.*, 17: 350 (1961).

269. S. G. Thompson, B. G. Harvey, G. R. Choppin, and G. T. Seaborg, Chemical Properties of Elements 99 and 100, *J. Amer. Chem. Soc.*, 76: 6229 (1954).

270. M. Ward and G. A. Welch, The Chlonde Complexes of Trivalent Plutonium, Americium, and Curium, *J. Inorg. Nucl. Chem.*, 2: 395 (1956).

271. R. D. Baybarz and P. B. Orr, Final Purification of the Heavy Actinides from the First Four Campaigns of the TRU Program, USAEC Report ORNL-TM-2083, Oak Ridge National Laboratory, November 1967

272. Oak Ridge National Laboratory, Chemical Technology Division Annual Progress Report for Period Ending May 31, 1969, USAEC Report ORNL-4422, October 1969

273. W. D. Burch, J. E. Bigelow, and L. J. King, Transuranium Processing Plant, Semiannual Report of Production Status and Plans for Period Ending June 30, 1968, USAEC Report ORNL-4376, Oak Ridge National Laboratory, April 1969.

274. W. Müller, Die Gewinnung von Transplutoniumelementen aus Bestrahltitem ^{241}Am , *Atompraxis*, 15: 35 (1969).

275. R. J. Morrow, Anion Exchange Separation Techniques with Methanol-Water Solutions of Hydrochloric and Nitric Acids, *J. Inorg. Nucl. Chem.*, 13: 1265 (1966).

276. L. L. Guseva and G. S. Tikhomirova, Sorption of Certain Transplutonium and Rare Earth Elements from Concentrated Solutions of Hydrochloric Acid in the Presence of Alcohol on a Cation-Exchange Resin, *Radiokhimiya*, 14: 188 (1972), through *Sov. Radiochem. (Engl. Transl.)*, 14: 197 (1972).

277. K. A. Orlandini and J. Korkisch, Anion-Exchange Behavior of Transplutonium Elements and Lanthanides in Hydrochloric Acid-Organic Solvent Mixtures, USAEC Report ANL-7415, Argonne National Laboratory, January 1968.

278. V. A. Bochkarev and A. A. Lbov, Sorption of Curium, Lanthanum, Erbium, and Ytterbium from Lithium Chloride Solutions by AV-17 Anion Exchange Resin, in *Soosazhenie i Ad sorbitsiya Radioaktivnykh Elementov*, p. 190, Izdatel'stvo Nauk, Moscow, 1965.

279. J. P. Faris and R. F. Buchanan, Anion Exchange Characteristics of Elements in Nitric Acid Medium, *Anal. Chem.*, 36: 1157 (1964).

280. I. E. Stark and F. G. Ginzburg, State of Microamounts of Radioelements in Dilute Solutions XVI. Investigation of the State of Americium by the Ion-Exchange Method, *Radiokhimiya*, 3: 45 (1961), through *Radiochemistry USSR (Engl. Transl.)*, 3: 49 (1961).

281. J. Danon, Anion-Exchange Studies with Actinium and Lanthanides in Nitrate Solutions, *J. Inorg. Nucl. Chem.*, 7: 422 (1958).

282. Y. Marcus and F. Nelson, Anion Exchange Studies XXV. The Rare Earths in Nitrate Solutions, *J. Phys. Chem.*, 63: 77 (1959).

283. W. Kraak and W. A. Van der Heijden, Anion Exchange Separation Between Americium and Curium and Between Several Lanthanide Elements, *J. Inorg. Nucl. Chem.*, 23: 221 (1961).

284. Y. Marcus, M. Grivon, and G. R. Choppin, Anion Exchange of Metal Complexes—XIII The Actinide(III)-Nitrate System, *J. Inorg. Nucl. Chem.*, 25: 1457 (1963).

285. S. Adar, R. K. Sjoblom, R. F. Barnes, P. R. Fields, E. K. Hulet, and H. D. Wilson, Ion-Exchange Behavior of the Transuranium Elements in LiNO_3 Solutions, *J. Inorg. Nucl. Chem.*, 25: 447 (1963).

286. M. H. Lloyd, An Anion Exchange Process for Americium-Curium Recovery from Plutonium Process Waste, *Nucl. Sci. Eng.*, 17: 452 (1963).

287. M. H. Lloyd and R. E. Leuze, Anion Exchange Separation of Trivalent Actinides and Lanthanides, *Nucl. Sci. Eng.*, 11: 274 (1961).

288. R. S. Kingsley, A Multi-Column Ion Exchange Purification-Concentration Process for Americium, USAEC Report RL-SEP-729(Rev.), General Electric Company, Hanford Atomic Products Operation, October 1965.

289. J. Hines, M. A. Wahlgren, and F. Lawless, Separation of Actinides with Nitric Acid-Methanol and EDTA, in Proceedings of the 6th Symposium on Analytical Chemistry in

Nuclear Reactor Technology, Gatlinburg, Tenn., October 9-11, 1962, USAEC Report TID-7655, p. 247, 1962.

290. V. A. Bocharev and E. N. Voevodin, Separation of Americium and Curium by Anion Exchange Using Solutions Containing a Mixture of Methanol and Nitric Acid as the Eluent, *Radiokhimya*, 7: 461 (1965), through *Sov. Radiochem. (Engl. Transl.)*, 7: 459 (1965).

291. D. C. Stewart, C. A. A. Bloomquist, and J. P. Faris, Nitric Acid-Organic Solvent Mixtures for Separations of Plus-Three Actinides on Anion Resins I. Survey of Solvents, USAEC Report ANL-6999, Argonne National Laboratory, 1965

292. I. A. Lebedev, B. F. Myasoedov, and L. I. Guseva, Use of Alcoholic Solutions for the Isolation and Purification of Americium and Curium with Anion Exchangers, *J. Radioanal. Chem.*, 21: 259 (1974).

293. F. Helfferich, *Ion Exchange*, McGraw-Hill Book Company, Inc., New York, 1962

294. S. G. Thompson, A. Ghiorso, and G. T. Seaborg, The New Element Berkelium (Atomic Number 97), *Phys. Rev.*, 80: 781 (1950).

295. K. Street, Jr., and G. T. Seaborg, The Separation of Americium and Curium from the Rare Earth Elements, *J. Amer. Chem. Soc.*, 72: 2790 (1950).

296. W. J. deWet and E. A. C. Crouch, A Sequential Analytical Scheme for the Carrier-Free Separation of Microgram Quantities of Individual Fission Product and Actinide Elements from Highly Burnt-Up Fuels, *J. Inorg. Nucl. Chem.*, 27: 1735 (1965).

297. K. Wolfsberg, W. R. Daniels, G. P. Ford, and E. T. Hitchcock, Purification of Transplutonium Actinides Produced in Underground Thermonuclear Explosions, *Nucl. Appl.*, 3: 568 (1967).

298. S. G. Thompson, B. B. Cunningham, and G. T. Seaborg, Chemical Properties of Berkelium, *J. Amer. Chem. Soc.*, 72: 2798 (1950).

299. D. C. Stewart, Rare Earth and Transplutonium Element Separations by Ion Exchange Methods, in *Proceedings of the International Conference on the Peaceful Uses of Atomic Energy, Geneva, 1955*, Vol. 7, p. 321, United Nations, New York, 1956.

300. H. L. Smith and D. C. Hoffman, Ion Exchange Separations of the Lanthanides and Actinides by Elution with Ammonium Alpha-Hydroxy-Isobutyrate, *J. Inorg. Nucl. Chem.*, 3: 243 (1956).

301. D. E. Armstrong, L. B. Asprey, J. S. Coleman, T. K. Keenan, L. E. Lamar, and R. A. Penneman, Ion Exchange Separation of Gram Quantities of Americium from a Kilogram of Lanthanum, *A. I. Ch. E. J.*, 3: 286 (1957).

302. J. Milsted and A. B. Beadle, Separation of Actinide Elements by Cation Exchange Using Alpha-Hydroxy Isobutyric Acid, *J. Inorg. Nucl. Chem.*, 3: 248 (1956).

303. I. Brandshtet, T. S. Zvarova, M. Krzhivanek and Ya. Maly, Chromatographic Separation of the Rare Earth Elements and Certain Actinides on Cation-Exchange Resins in the Presence of Radioactive Isotopes Coprecipitated with LaF₃, *Radiokhimya*, 5: 694 (1963), through *Sov. Radiochem. (Engl. Transl.)*, 5: 655 (1963).

304. R. A. Glass, Chelating Agents Applied to Ion-Exchange Separation of Americium and Curium, *J. Amer. Chem. Soc.*, 77: 807 (1955).

305. L. Wish, E. C. Freiling, and L. R. Bunney, Ion Exchange as a Separations Method. VIII. Relative Elution Positions of Lanthanide and Actinide Elements with Lactic Acid Eluant at 87°, *J. Amer. Chem. Soc.*, 76: 3444 (1954).

306. S. H. Eberli and S. A. Ali, Ionenaustauschverhalten und Chelatbildung dreiwertiger Transplutonumelemente bei Gegenwart von Nitrilotriessig Saure und einigen ihrer Derivate, *Z. Anorg. Allg. Chem.*, 361: 1 (1968).

307. J. Fuger, Ion Exchange Behaviour and Dissociation Constants of Americium, Curium, and Californium Complexes with Ethylenediaminetetraacetic Acid, *J. Inorg. Nucl. Chem.*, 5: 332 (1958).

308. W. H. Hale and J. T. Lowe, Rapid, Gram-Scale Separation of Curium from Americium and Lanthanides by Cation Exchange Chromatography, *Inorg. Nucl. Chem. Lett.*, **5**: 363 (1969).
309. E. Merciny and G. Duyckaerts, Séparation des Lanthanides et des Actinides sur Echangeur d'ions par l'acid Hydroxy éthylène diaminetraacétique. II. Étude de L'Influence du pH sur le Facteur de Séparation et sur L'Efficacité de la Colonne, *J. Chromatogr.*, **26**: 471 (1967).
310. R. D. Baybarz, Dissociation Constants of the Transplutonium Element Chelates of 1,2 Diaminocyclohexanetetraacetic Acid, *J. Inorg. Nucl. Chem.*, **28**: 1055 (1966).
311. S. G. Proctor, Cation Exchange Process for Molten Salt Extraction Residues, ERDA Report RFP-2347, Rocky Flats Plant, Dow Chemical Company, March 1975
312. D. E. Kudera and R. H. Guyer, Plutonium and Americium Recovery from a Chloride-Salt Matrix, USAEC Report RFP-1642, Rocky Flats Plant, Dow Chemical Company, June 1971.
313. H. O. Haug, Final Purification and Concentration of Americium/Curium Separated from High-Level Reprocessing Waste, *J. Radioanal. Chem.*, **21**: 187 (1974).
314. D. O. Campbell, The Isolation and Purification of Americium, USAEC Report ORNL-1855, Oak Ridge National Laboratory, April 1956
315. H. D. Perdue and H. G. Hicks, Ion Exchange Separation of Americium and Curium, *Anal. Chem.*, **37**: 1110 (1965).
316. G. Höhlein and H. J. Born, Ion Exchange Separation of Some Rare Earths and Actinides Under Optimum Conditions with α -Hydroxyisobutyric Acid, *Radiochim. Acta*, **8**: 172 (1967).
317. G. Höhlein, H. J. Born, and W. Weinlander, Die Isolierung von ^{242}Cm aus Neutronenbestrahlitem ^{241}Am , *Radiochim. Acta*, **10**: 85 (1968).
318. G. Höhlein, H. Voller, and W. Weinlander, Verwendung von Aminex zur Trennung von Actiniden und Lanthaniden, *Radiochim. Acta*, **11**: 172 (1969).
319. D. O. Campbell, Rapid Ion Exchange Separations—Chromatographic Separation of Transplutonium Elements Using High Pressure Ion Exchange, *Ind. Eng. Chem., Process Design Develop.*, **9**: 95 (1970).
320. G. A. Burney and R. M. Harbour, Separation of Milligram Quantities of ^{252}Cf from Multigram Quantities of ^{244}Cm and ^{243}Am , *Radiochim. Acta*, **16**: 63 (1971).
321. E. J. Wheelwright, F. P. Roberts, L. A. Bray, G. L. Ritter, and A. L. Boldt, Simultaneous Recovery and Purification of Pm, Am, and Cm by the Use of Alternating DTPA and NTA Cation-Exchange Flowsheets, USAEC Report BNWL-SA-1492, Battelle Memorial Institute, Pacific Northwest Laboratories, March 1968.
322. E. J. Wheelwright, Ion Exchange Process for Recovering Americium and Curium, U. S. Patent No. 3,445,201, May 1969.
323. E. J. Wheelwright, Ion Exchange—A Generic Nuclear Industry Process for the Recovery and Final Purification of Am, Cm, Pm, Sr, Pu, Np, Cs, Tc, Rh, and Pd, in *Ion Exchange in the Process Industries*, pp 202-208, London, Society of Chemical Industry, 1970
324. E. J. Wheelwright and F. P. Roberts, The Use of Alternating DTPA and NTA Cation-Exchange Flowsheets for the Simultaneous Recovery and Purification of Pm, Am, and Cm, USAEC Report BNWL-1072, Battelle Memorial Institute, Pacific Northwest Laboratories, July 1969
325. E. J. Wheelwright, Battelle Memorial Institute, Pacific Northwest Laboratories, Richland, Washington, private communication, 1975
326. J. T. Lowe, W. H. Hale, Jr., and D. F. Hallman, Development of a Pressurized Cation Exchange Chromatographic Process for Separation of Transplutonium Actinides, *Ind. Eng. Chem., Process Design Develop.*, **10**: 131 (1971).
327. R. M. Harbour, W. H. Hale, G. A. Burney, and J. T. Lowe, Large-Scale Separation of Transplutonium Actinides by Pressurized Cation Exchange, *At. Energy Rev.*, **10**: 379 (1972).

328. W. H. Hale, Jr., and C. A. Hammer, Cation Exchange Elution Sequence with DTPA, *Ion Exch Membranes*, 1: 81 (1972).

329. J. A. Kelley, Ion Exchange Process for Separating Americium and Curium from Irradiated Plutonium, USAEC Report DP-1308, Savannah River Laboratory, November 1972.

330. M. A. Wakat and S. F. Peterson, On-Line Radiochemical Analysis for Controlling Rapid Ion Exchange Recovery of Transplutonium Elements, *Nucl Technol*, 17: 49 (1973).

331. S. Specht, B. O. Schutz, and H. J. Born, Development of a High-Pressure Ion-Exchange System for Rapid Preparative Separations of Trans-Uranium Elements, *J Radioanal Chem.*, 21: 167 (1974).

332. E. P. Horwitz, The Sorption of Certain Transplutonium Ions on Amorphous Zirconium Phosphate, *J Inorg. Nucl. Chem.*, 28: 1469 (1966).

333. W. J. Maeck, M. E. Kussy, and J. E. Rein, Adsorption of the Elements on Inorganic Exchangers from Nitrate Media, *Anal Chem.*, 35: 2086 (1963).

334. E. Akatsu, R. Ono, T. Tsukuechi, and H. Uchiyama, Radiochemical Study of Adsorption Behavior of Inorganic Ions on Zirconium Phosphate, Silica Gel, and Charcoal, *J Nucl Sci Technol (Tokyo)*, 2: 141 (1965).

335. K. V. Baroukova and G. S. Rodionova, Sorption and Separation of Certain Transplutonium and Rare Earth Elements on a Zirconium Phosphate-Silicate Sorbent, *Radiokhimiya* 14: 228 (1972), through *Sov Radiochem. (Engl Transl.)*, 14: 237 (1972).

336. K. B. Brown, Chemical Technology Division, Chemical Development Section C, Progress Report for January-March 1962, USAEC Report ORNL-TM-181, Oak Ridge National Laboratory, July 1962.

337. F. L. Moore, New Method for Separation of Americium from Curium and Associated Elements in the Zirconium Phosphate-Nitric Acid System, *Anal Chem.*, 43: 487 (1971).

338. F. L. Moore, Separation and Recovery of Americium from Curium and Other Elements, U. S. Patent No. 3,687,641, August 1973.

339. A. I. Shafiev, Yu. V. Efremov, V. M. Nikolaev, and G. N. Yakovlev, Separation of the Actinides and Lanthanides on Zirconium Phosphate II Separation of Americium(V), (VI), and Curium(III), *Radiokhimiya*, 13: 129 (1971), through *Sov Radiochem. (Engl. Transl.)*, 13: 123 (1971).

340. A. I. Shafiev, Yu. V. Efremov, and V. P. Andreev, Separation of Actinides and Lanthanides on Zirconium Phosphate IV. Separation of Milligram Amounts of Americium and Curium, *Radiokhimiya*, 15: 265 (1973), through *Sov Radiochem. (Engl Transl.)*, 15: 263 (1973).

341. H. A. Goya and M. G. Lai, Adsorption of Trace Elements from Seawater by Chelex 100, Report USNRDL-TR-67-129, U. S. Naval Radiological Defense Laboratory, September 1967.

342. V. P. Myasoedov and N. P. Molochnikova, A Procedure for Concentrating Americium and Curium Combined with Their Separation from Plutonium and Fission Products Using a Chelating Resin, *J. Radioanal. Chem.*, 6: 67 (1970).

343. J. Kooi, J. M. Gandolfo, N. Waechter, J. Wijkstra, R. Boden, R. Hecq, E. Vanhoof, and M. Leynen, Isolation of Microgram Amounts of Berkelium and Californium from Irradiated Americium, Euratom Report EUR-2578.e, December 1965.

344. J. Kooi, R. Boden, and J. Wijkstra, Separation of Americium (Curium), Berkelium and Californium by Extraction Chromatography, *J Inorg Nucl Chem.*, 26: 2300 (1964).

345. J. Kooi, Application of Extraction Chromatography in the Processing of Irradiated Americium, *Radiochim. Acta*, 5: 91 (1966).

346. K. A. Gavrilov, E. Gvuzdz, J. Starý, and W. T. Seng, Investigation of the Solvent Extraction of Californium, Fermium, and Mendelevium, *Talanta*, 13: 471 (1966).

347. E. P. Horwitz, C. A. A. Bloomquist, D. J. Henderson, and D. E. Nelson, The Extraction Chromatography of Americium, Curium, Berkelium, and Californium with Di(2-ethylhexyl)-orthophosphoric Acid, *J Inorg Nucl Chem.*, 31: 3255 (1969).

348. E. P. Horwitz and C. A. A. Bloomquist, High Speed-High Efficiency Separation of the Transplutonium Elements by Extraction Chromatography, *J Inorg Nucl Chem*, **35**: 271 (1973).

349. K. Watanabe, Separation of Americium and Some Rare Earths from Lanthanum by Reversed Phase Chromatography, *J Nucl Sci Technol (Tokyo)*, **2**: 45 (1965).

350. K. Watanabe, Separation of Promethium and Americium by Reversed Phase Chromatography, *J Nucl Sci Technol (Tokyo)*, **2**: 112 (1965).

351. I. Stronski, Untersuchungen über die Trennung von einigen Lanthaniden und Actiniden mittels der Extraktionschromatographie in System Di-(2ethylhexyl)-orthophosphorsäuresalzsäure, *Radiochim Acta*, **13**: 25 (1970).

352. T. D. Filer, Separation of the Trivalent Actinides from the Lanthanides by Extraction Chromatography, *Anal. Chem.*, **46**: 608 (1974).

353. I. L. Moore, New Extraction Chromatographic Method for Rapid Separation of Americium from Other Transuranium Elements, *Anal. Chem.*, **40**: 2131 (1968).

354. M. Hara and S. Suzuki, The Chemistry of Americium II. The Behavior of Am(III), Am(V), and Am(VI) in Column Chromatography, with Bis(2-ethylhexyl)phosphoric Acid Used as the Extractant, *Bull. Chem. Soc. Jap.*, **47**: 635 (1974).

355. E. K. Hulet, An Investigation of the Extraction Chromatography of Am(VI) and Bk(VI), *J Inorg. Nucl. Chem.*, **26**: 1721 (1964).

356. E. P. Horwitz, K. A. Orlandini, and C. A. A. Bloomquist, The Separation of Americium and Curium by Extraction Chromatography Using a High Molecular Weight Quaternary Ammonium Nitrate, *Inorg. Nucl. Chem. Lett.*, **2**: 87 (1966).

357. E. P. Horwitz, C. A. A. Bloomquist, K. A. Orlandini, and D. J. Henderson, The Separation of Milligram Quantities of Americium and Curium by Extraction Chromatography, *Radiochim. Acta*, **8**: 127 (1967).

358. I. Stronski, Solvent Extraction and Separation of Some Lanthanides and Americium by Extraction Chromatography in the System Aliquat 336-LiNO₃ and HNO₃, *Chromatographia*, **1**: 285 (1969).

359. W. Muller, Extraction of Transplutonium Elements by Alkylammonium Salts, *Angew. Chem.*, **83**: 625 (1971), through *Angew. Chem. Int. Ed.*, **10**: 581 (1971).

360. W. Muller, Research on Transplutonium Element Chemistry at the European Institute for Transuranium Elements, in Symposium on the Transuranium Elements, Liege, Belgium, April 21-22, 1969, Report CONI-690426, pp 169-191, 1969.

361. F. A. Huff, Partition Chromatographic Studies of Americium, Yttrium, and the Rare Earths in the Tricaprylylmethyl-ammonium Thiocyanate-Ammomium Thiocyanate System, *J. Chromatogr.*, **27**: 229 (1967).

362. P. G. Barbano and L. Rigali, Separation of Americium from Rare Earths by Reversed-Phase Partition Chromatography, *J. Chromatogr.*, **29**: 309 (1967).

363. W. Knoch and H. Lahr, The Chromatographic Separation of Am-Cm on Paper, *Radiochim. Acta*, **4**: 114 (1965).

364. N. Cvjetićanin, Synergism in the Reversed-Phase Partition Chromatography of Americium, Cerium, and Lanthanum, *J. Chromatogr.*, **34**: 520 (1968).

365. B. A. Bilal, K. Metscher, B. Muhlig, C. Reichmuth, and B. Schwarz, Application of Counterflow Ion Migration for Separation of Actinides, *Chem. Ing.-Tech.*, **45**: 841 (1973), through USAEC Report RFP-Trans-147, Rocky Flats Plant, Dow Chemical Company, 1973.

366. B. A. Bilal and B. Schwarz, Obtaining the Actinide Elements and Reusable Fission Products from the Waste Solution of Irradiated Nuclear Fuel by Means of Countercurrent Ion Migration, *Radiochim. Acta*, **18**: 148 (1974), through USAEC Report AEC-tr-7535, 1972.

367. K. Wagener, H. D. Breyer, and B. A. Bilal, Countercurrent Electrophoresis, *Separ. Sci.*, **6**: 483 (1971).

368 B. A. Bilal and C. Reichmuth, Lanthaniden/Actiniden-Trennung mit Hilfe der Gegenstrom-elektrolyte, *J. Inorg. Nucl. Chem.*, 34: 348 (1972).

369. Y. Kobayashi and A. Saito, Extraction of Thorium, Neptunium, Plutonium, and Americium with Sodium Amalgam from Aqueous Solution, *J. Inorg. Nucl. Chem.*, 35: 3065 (1973).

370. H. Eschrich and L. Salomon, Study of the Leaching of Plutonium Oxide for the Elimination of Americium, Report ETR-276, European Company for the Chemical Processing of Irradiated Fuels, Mol, Belgium, February 1972

371. T. S. Zvarova and I. Zvára, Separation of Transuranium Elements by Gas Chromatography of Their Chlorides, *J. Chromatogr.*, 49: 290 (1970).

372. T. S. Zvarova, Gas Chromatography of High-Boiling Metal Chlorides Using Aluminum Chlorides as Complex Former, *Radiokhimiya*, 15: 542 (1973), through *Sov. Radiochem. (Engl. Transl.)*, 15: 546 (1973).

373. I. Zvára, V. Aikhler, V. S. Belov, T. S. Zvarova, Yu. S. Korotkin, M. R. Shalaevskii, V. A. Shchegolev, and M. Yussonnua, Gas Chromatography and Thermo-chromatography in the Study of Transuranium Elements, *Radiokhimiya*, 16: 720 (1974), through *Sov. Radiochem. (Engl. Transl.)*, 16: 709 (1974).

374. F. Clanet, J. Clarence, and M. Verry, Electrophoresis on Cellulose Acetate Paper in Strong Electrolytes and Concentrates. Equipment and Techniques, Determination of Electrophoretic Mobilities and Separation of Some Transuranium Elements in Nitrate Media, *J. Chromatogr.*, 13: 440 (1964).

375. A. Van Dalen, W. Kraak, J. Van Ooyen, P. Polak, and J. C. Post, *Transplutonide Research*, Euratom Report EUR-2640 e, November 1965

376. G. E. Ermolina and V. T. Kharlamov, Electrophoretic Separation of Americium and Plutonium, *Zh. Anal. Khim.*, 28: 2246 (1973).

377. K. Backman, Trennung der Actinide durch Hochspannungselektrophorese, *Radiochim. Acta*, 6: 62 (1966).

378. H. Y. Gee, A. H. Heimbuch, and M. W. Nathans, Separation of Americium and Curium from Rare Earth Metal Carriers by Ion-Focusing Electrophoresis, *Anal. Chem.*, 39: 98 (1967).

379. G. Marcu, Separation of ^{152}Eu , ^{147}Pm , ^{241}Am , and ^{246}Cm Through Electrophoretic Focussing Using the Sodium Polyphosphate as Complexing Agent, *Stud. Univ. Babes-Bolyai, Ser. Chem.*, 11: 61 (1966).

380. Z. Szeglowski, M. Bittner-Jankowska, J. Mikulski, and T. Machej, Frothless Ion Flotation of Some Trivalent Actinides, *Nukleonika*, 18: 307 (1973).

381. J. Stachurski and Z. Szeglowski, Verification of a Stochastic Model for a Frothless Solvent Ion Flotation Using Thulium and Americium, *Separ. Sci.*, 9: 313 (1974).

382. J. B. Knighton, R. G. Auge, J. W. Berry, and R. C. Franchini, Molten Salt Extraction of Americium from Molten Plutonium Metal, ERDA Report RFP-2365, Rocky Flats Plant, Rockwell International, March 1976

Butler, J P , 189
 Bykhovskii, D N , 194

Cain, A , 68
 Campbell, D O , 249
 Carlson, T A , 4
 Carnall, W T , 6, 10, 84-85, 141, 151
 Carvalho, R G , 102
 Charvillat, J P , 132, 151, 163, 165-166
 Chatt, J , 100
 Chattin, F R , 211, 228
 Chianizia, R , 100
 Chikalla, T D , 152-156
 Chisholm, R C , 234
 Chistyakov, V M , 70-71
 Chmutova, M K , 14, 220, 229
 Choppin, G R , 16, 99, 102, 106, 222
 Christman, R P , 36
 Chudinov, E G , 232
 Clarke, R W , 14
 Clayton, E D , 12-13
 Cobble, J W , 55
 Cohen, D , 13, 54, 77, 86, 166
 Coleman, C F , 222
 Coleman, J S , 57, 61-64, 84-85, 140, 149, 234
 Conner, W V , 123-124, 146
 Conway, F G , 141
 Coops, M S , 238-239
 Coqblin, B , 126
 Cornman, W R , 36
 Crandall, J L , 29, 32
 Crane, W T , 249
 Cunningham, B B , 1, 55, 57, 62, 123-124, 142, 153, 155, 189

Damien, N , 69-70, 132, 156, 166
 Danford, M D , 168
 Darby, J B , Jr , 14
 Dauben, C H , 142, 145, 153
 David, F , 49, 127
 Day, P P , 10
 Dedov, V B , 196
 Demine, D , 14
 Désiré, B , 49
 Drobnick, S , 217-218
 Dumond, J W M , 10
 Dunlap, B D , 13, 128
 Duyckaerts, G , 224, 233
 Dzkelepopov, B S , 4

Eberle, S H , 103, 169
 Efremov, Yu V , 254

Eicholz, G G , 32
 Eick, H A , 132, 138
 Ellinger, F H , 129-130
 El Rawi, H , 106
 Ermakov, V A , 65-67, 70-72
 Eyring, L , 55, 123, 152-153, 155-156

Faircloth, R L , 152
 Fang, D , 139
 Fardy, J J , 213
 Ferradini, C , 16
 Ferraro, J R , 208
 Ferris, L M , 188
 Fields, P R , 141, 151, 201, 241
 Fletcher, J W , 188
 Foex, M , 153, 154
 Foos, J , 188, 201
 Fowler, E E , 32
 Fred, M , 6
 Freeman, A J , 14
 Frenkel, V Ya , 52, 61
 Fried, S , 78, 146
 Friedman, H A , 49
 Fuger, J , 44-45, 141-142, 153, 224

Gal, J , 11-12
 Galleani D'Aghiano, E , 126
 Garber, D I , 4
 Gel'man, A D , 16, 86, 99
 Gerontopoulos, P Th , 232
 Ghirosso, A , 1
 Ginzburg, F L , 194, 245
 Givon, M , 16, 51-52, 76, 99, 222
 Goldanski, V I , 15
 Gorbenko-Germanov, D S , 140, 190
 Gorski, A G , 77
 Gourise, D , 64
 Gove, N B , 4, 7
 Goya, A A , 255
 Graf, P , 78, 123
 Griffen, H E , 232
 Groh, H J , 229, 231
 Gruber, J B , 141
 Gruen, D M , 78, 201
 Guillaumont, R , 49, 188, 201
 Gunn, S R , 55, 57, 62
 Gureev, E S , 196, 209, 211, 219
 Guseva, L I , 14, 239, 243
 Gutmacher, R G , 238-239
 Guyer, R H , 246

Hadari, Z , 14
 Hagan, P G , 236

Haire, R. G., 146
Hale, W. H., Jr., 249-252
Hall, C. R., 189
Hall, G. R., 62, 74, 81, 83, 164
Hall, R. M., 208
Hall, R. O. A., 124, 126
Hallman, D. F., 250, 252
Hara, M., 53
Harbour, R. M., 249
Harmon, H. D., 224
Haug, H. O., 217-218, 249
Hauske, H., 142
Helfreich, F., 244
Helminski, E. L., 16, 32
Henderson, D. J., 223
Hennelly, E. J., 29, 33
Henry, H. E., 196, 225
Hermann, J. A., 190
Herniman, P. D., 74, 81, 189
Hesford, E., 197
Hicks, H. G., 249
Higgins, G. H., 249
Hild, W., 217, 218
Hill, H. H., 126, 128
Hinchey, R. J., 55
Hindman, J. C., 64
Hoffert, F., 202, 205
Hogan, P. G., 193
Hollander, J. M., 4-6
Horwitz, E. P., 222-223, 232, 252
Howerton, R. J., 4
Hucher, I., 220
Hulet, E. K., 238-239, 241
Huntoon, R. T., 231
Hussonnois, M., 49
Hyde, E. K., 4

Illozheva, L. V., 210
Isaak, N. M., 201
Iyer, R. S., 194

James, R. A., 1
Jenkins, I. L., 233
Johnson, K. W. R., 129-130
Jones, A. D., 16
Jones, L. H., 84-85, 99, 106
Jones, L. L., 107
Jove, J., 48, 165
Jullien, R., 126
Jyo, A., 65, 66

Kalvius, G. M., 13
Kamath, P. R., 194

Kanellakopulos, B., 132
Kappelmann, F. A., 211-215
Karantsevich, T. S., 194
Karapacheva, S. M., 196, 210
Karraker, D. G., 157, 168
Katz, D. J., 8, 14, 16
Keder, W. E., 223
Keenan, T. K., 15, 57, 61, 75, 84-85,
138-139, 141, 144-147, 189, 201, 219,
234
Keller, C., 11, 14, 32, 49, 53, 99, 101, 131,
139, 146-147, 149, 152-153, 157-159,
161-163, 169
Kelley, J. A., 251
Kikindai, T., 49
Kingsley, R. S., 203, 241
Kinser, H. B., 225
Kishbaugh, A. A., 192
Knighton, J. B., 185-186
Kobayashi, Y., 258
Koch, C. W., 142
Koch, G., 215, 217-219, 232
Kochethova, M. E., 220
Koehly, G., 199, 202, 205, 216, 229, 231
Koiro, O. E., 52, 61
Kolarik, Z., 215, 217, 219-220
Konkina, L. F., 99
Korkisch, J., 239
Korotkin, Yu. S., 50-51
Kosyakov, V. N., 74, 82, 189, 209, 211
Kotlin, V. P., 77
Kramer, G. F., 125
Krot, N. N., 54, 57, 68-69, 84, 86
Kruse, F. H., 138, 141, 145, 147
Kudera, D. E., 246
Kuznetsov, V. I., 190

Lai, M. G., 255
Laidler, J. B., 142-143
Lam, D. J., 128-129, 131-132, 166
Latimer, W. M., 57-58
Lbov, A. A., 239
Leary, J. A., 47, 186-188
Lebedev, I. A., 14, 51-52, 61, 196, 241
Lederer, C. M., 4-6
Ledicotte, G. W., 32
Lee, C. T., 219
Legoux, Y., 127
Leuze, R. E., 16, 192-193, 199, 210, 221,
224, 226, 228, 240-241, 243
LeVert, F. E., 16, 32
Lewey, S., 208

Van Ooyen, J., 232
Varga, L. P., 75, 77, 79
Vasseur, C., 127
Vaughen, V. C. A., 211, 228
Vdovenko, V. M., 15
Viola, V. E., 4
Vodovatov, V. A., 143

Wade, W. Z., 123
Wain, A. G., 233
Wakat, M. A., 252
Wallman, J. C., 123-124, 189
Wapstra, A. H., 4, 7
Ward, J. W., 125
Warshaw, I., 153-154
Wasserman, N., 4
Watanabe, K., 219
Weaver, B., 16, 149, 195, 211-215, 221, 224-225, 231
Weigel, F., 139, 142, 169-170
Werner, L. B., 80, 140, 189-190
West, D. L., 225
West, R., 32
Westrum, E. F., Jr., 55, 123

Wheelwright, E. J., 249-250
Williams, K. R., 106
Williams, R. L., 194
Wilson, A. S., 223
Wilson, H. D., 241
Wishnefsky, V., 142
Wolf, T., 123
Woods, M., 68

Yakovlev, G. N., 65, 74, 82, 140, 164, 189-190, 196, 209, 211
Yanir, E., 12, 51-52, 76

Zachariasen, W. H., 4, 8, 126, 138, 141, 150, 152-153, 165
Zaitsev, A. A., 58-60, 62, 68
Zaitsev, L. M., 16
Zaitseva, V. P., 65
Zaman, N., 233
Zamorani, E., 155-157
Zangen, M., 201, 219-220
Zaozerskii, I. N., 193
Zemyanukhin, V. I., 197, 204
Zvara, I., 258-259
Zvarova, T. S., 258-259

SUBJECT INDEX

Acetate, 167
Acetylacetone, 167
Alloys
 See also Intermetallic compounds
 with aluminum, 126
 with beryllium, 127
 with lanthanum, 128
 with neptunium, 128
 with plutonium, 129
 with thorium, 130
Aluminate, 131
Americium(II) ion
 in aqueous solution, 47-49
 in molten salts, 47
 in solid compounds, 145
Americium(III) ion
 calculated electronic energy levels, 73
 electrode potentials, 55-58
 hydrolysis of, 49-51
 oxidation
 of peroxydisulfate in HNO_3 , 64-66
 by peroxydisulfate in K_2CO_3 solution, 67
 paramagnetic susceptibility, 49
 preparation in aqueous solution, 48
 spectrum, in aqueous lithium solutions, 72-73
 in ethanolic HCl , 72-73, 77
 in fused LiNO_3 , 72-73, 78
 in K_2CO_3 solution, 72-73, 76
 in MgI_2 solution, 72-73
 in mineral acids, 72-76
 in saturated KF solution, 72-73, 77
 thermodynamic quantities, 55
Americium(IV) ion
 autoreduction of, 60
 calculated electronic energy bands, 75
 disproportionation of, 60-62
 electrode potentials, 55-58
 preparation in aqueous solution, 48, 51-52
 self-reduction of, in H_3PO_4 , 60
 spectrum, in H_3PO_4 solution, 75-76, 80
 in KF solution, 75, 79
 in NH_4F solution, 75, 78, 80
 thermodynamic quantities, 55
Americium(V) ion
 calculated electronic energy bands, 77
 disproportionation of, 62-64
 electrode potentials, 55-58
 oxidation of peroxydisulfate in HNO_3 solution, 67
 preparation in aqueous solutions, 48, 52-53
 reduction, by H_2O_2 , 69
 by Np(IV) in HClO_4 solution, 70
 by Np(V) in HClO_4 solution, 70-71

- by Np(V) in Na_2CO_3 solution, 71
- by U(IV) in HClO_4 solution, 71
- self-reduction of, 59-60
- spectrum, in HCl solution, 80-81
 - in HClO_4 solution, 80-81
 - in H_2SO_4 solution, 80
- thermodynamic quantities, 55
- Americium(VI) ion**
 - calculated electronic energy bands, 79, 82
 - electrode potentials, 55-58
 - preparation in aqueous solution, 48, 53-54
 - reduction, in acid peroxydisulfate solutions, 72
 - by H_2O_2 , 68
 - by miscellaneous reagents, 68-69
 - self-reduction of, 58-59
 - spectrum, in CsOH solution, 86
 - in mineral acids, 80, 82-83
 - in Na_2CO_3 solution, 85
 - in NaOH solution, 80, 86
 - in $\text{Na}_4\text{P}_2\text{O}_7$ solution, 84
 - thermodynamic quantities, 55
- Americium(VII) ion**
 - preparation in aqueous solutions, 48, 54
 - spectrum in NaOH solution, 84, 86
- Americium isotope ^{241}Am**
 - availability, from power reactors, 27-28
 - from ^{241}Pu decay, 24
 - critical mass, 12-13
 - critical radius, 12-13
 - decay scheme, 5
 - price, 24
 - production by ^{241}Pu decay, 23
 - target for production of ^{242}Cm , 33
 - uses, table of, 30
- Americium isotope ^{243}Am**
 - availability from power reactors, 27-28
 - decay scheme, 6
 - production from ^{242}Pu , 24
 - target, for production of ^{252}Cf , 33-34
 - for production of ^{244}Cm , 33-34
- Anion exchange**
 - from aqueous nitrate solutions, 239-243
 - from $\text{LiCl}-\text{HCl}$ solutions, 239
 - from LiCl solutions, 237-238, 240
 - from methanolic nitrate solutions, 242-243
 - from thiocyanate solutions, 234-237
- Antimonides**, 131-132
- Arsenate**, 132
- Arsenides**, 132
- Benzoyltrifluoroacetone**, 168
- Borate**, 132
- Bromides**
 - dibromide, 138
 - tribromide, 138
- Carbide**, 139
- Carbonates**, 139-141
 - ammonium compound, 139
 - barium compounds, 140
 - calcium compound, 140
 - cesium compound, 139
 - potassium compounds, 139-140
 - rubidium compound, 140
 - sodium compounds, 140-141
- Cation exchange**
 - americium distribution ratios, 245
 - displacement chromatography, 244-245, 249-252
 - elution chromatography, 244
 - pressurized systems, 250-252
 - recovery processes, 245-252
 - separation factors, 245-247
- Chlorides, binary**
 - dichloride, 141
 - oxychloride, 142
 - trichloride, 141-142
- Chlorides, ternary**
 - Am(III) compounds, 142-143
 - Am(V) compounds, 143
 - Am(VI) compound, 143-144
- Clanex process**, 229, 231
- Cleanex process**, 211
- Complexes formed in solution**
 - inorganic ligands, 99-100
 - kinetics of formation, 106
 - organic ligands, 100-102
 - tabulated formation constants, inorganic ligands, 87-90
 - organic ligands, 90-98
 - thermodynamic functions, 102-106
- Compounds**
 - inorganic, table of, 133-137
 - organic, table of, 167
- Critical mass**, 12-13
- Critical radii**, 12-13
- Curium, separation from americium**
 - by extraction, with *bis*(2,6-dimethyl 1-4-hexyl)phosphoric acid, 221
 - with *bis*(2-ethylhexyl)phosphoric acid, 219

by extraction chromatography with
Aliquat 336, 255-256

by gas chromatography of chlorides, 258-259

by nitrate-based anion exchange, 243

by precipitation with $K_5AmO_2(CO_3)_3$, 190, 192

by pressurized cation exchange, 250-252

by pyrochemical procedures, 187

separation factors for cation-exchange systems, 246-247

by sorption on zirconium phosphate exchanger, 253-255

Cyclooctatetraenate, 168

Cyclopentadienide, 168

Dapex process, 210, 213

Dipivaloylmethanato compounds, 168

Discovery, 1

Electrode potentials
in $HClO_4$, 56-57
in H_3PO_4 , 58
in $NaOH$, 57-58

Electron configuration, 7

Fluorides, binary
spectra of, 144
tetrafluoride, 146
trifluoride, 145

Fluorides, ternary
Am(III) compounds, 146
Am(IV) compounds, 147
Am(V) compound, 147

Formate, 169

Germanate, 147-148

Hexafluoroacetylacetone, 169

Hydrides, 148-149

Hydroperoxide, 149

Hydroxides
Am(III), 149
Am(IV), 149-150

Hydroxyquinolates, 169-170

Inorganic exchangers
sorption of Am(III) by, 252-254
zirconium phosphate, 253-254

Intermetallic compounds
 Al_2Am , 126
 $AmBe_{1.3}$, 127

$AmBi$, 127

Co_2Am , 126

Fe_2Am , 126

Ir_2Am , 128

Ni_2Am , 128

Os_2Am , 129

Pd_3Am , 129

Pt_2Am , 129

Pt_5Am , 129

Rh_2Am , 130

Rh_3Am , 130

Iodides
diiodide, 150
oxyiodide, 151
triodide, 150-151

Ionization potentials, 4, 8

Isotopes
See also Americium isotope ^{241}Am and Americium isotope ^{243}Am
list of, 2-3
nuclear properties of, 2-3, 7

Lanthanides (separation from americium)
by Aliquat 336 extraction, 232
by anion exchange from $LiCl$ solutions, 237, 239
by anion exchange from thiocyanate solutions, 234-237
by *bis*(2-ethylhexyl)phosphoric acid extraction, 211-221
by displacement chromatographic cation exchange, 249-252
by mono(2-ethylhexyl)phosphoric acid extraction, 222
by precipitation processes, 190
by pressurized cation exchange, 250-252
separation factors in cation exchange systems, 246
by Talspeak process, 211-214, 216-218, 221
by Tramex process, 224-230
by tri-*n*-butylphosphate extraction, 198-202

Metal
phase transformations, 124
preparation of, 122-124
properties, physical, 124-125
table of, 125

Molybdates, 151

Nitrate, 151
 Nitride, 151

Organometallic compounds, 166-171
 Oxalate, 170
 Oxides, binary
 dioxide, 153, 155-157
 monoxide, 152
 sesquioxide, 152, 154
 Oxides, ternary
 with barium and strontium, 157, 159
 with curium, 159-160
 with lithium and sodium, 157-158
 with niobium, tantalum, and protactinium, 162
 with zirconium, hafnium, and thorium, 159-160
 Oxychloride, 142
 Oxyiodide, 151
 Oxytelluride, 166

Perxenate, 166
 Phosphate, 162
 Phosphide, 163
 Phthalocyaninato compound, 170
 Pyridine carboxylates, 170-171

Radius
 critical, 12-13
 ionic, 4, 8
 metallic, 4, 8
 Recovery
 from aged plutonium metal, 185-187, 189, 232
 by amalgamation, 258
 by anion-exchange procedures, 233-243
 by cation-exchange procedures, 244-252
 at Hanford Plant, 196-197, 202-204, 207, 210, 212, 245-246, 249-251
 by ion flotation, 259
 from irradiated ^{241}Am targets, 190, 239
 from irradiated Pu-Al alloy, 188, 195-196, 199, 214, 216, 240-242
 from LiCl-HCl solutions, 200, 205, 237, 240
 from Liquid-Metal-Cooled Fast Breeder Reactor fuel, 204
 at Oak Ridge TRU Plant, 190, 192, 227-228, 237, 240
 by precipitation, of $\text{Am}_2(\text{C}_2\text{O}_4)_3$, 189-190, 193-194, 247, 250

of AmF_3 , 189, 191
 of Am(OH)_3 , 189, 191, 193
 of $\text{Am}_2(\text{SO}_4)_3 \cdot \text{Na}_2\text{SO}_4$, 192
 of $\text{K}_3\text{AmO}_2(\text{CO}_3)_2$, 189
 of $\text{K}_5\text{AmO}_2(\text{CO}_3)_3$, 190, 192
 of $\text{K}_8\text{Am}_2(\text{SO}_4)_7$, 189
 by Purex process waste, 197, 206, 215-219, 249
 by pyrochemical procedures, 185-189
 at Rocky Flats Plant, 185-186, 193-194, 234-237, 246-249
 at Savannah River Plant, 190, 192-193, 228-230, 250-252
 by selective leaching from PuO_2 , 258
 from Shippingport reactor fuel, 196-197, 199, 210, 212, 249-251
 from slag and crucible waste, 197-198
 by Tramex process, 224-229

Scandate, 163
 Selenides, 163
 Separation
See also Recovery
 by chelating ion-exchange resins, 255
 by counterflow ion migration, 258
 from curium (see Curium)
 by extraction chromatography, 255-256
 by gas chromatography of chlorides, 258-259
 by inorganic exchangers, 252-255
 from lanthanides (see Lanthanides)
 by paper electrophoresis, 258-259
 by precipitation processes, 190-194
 by pyrochemical processes, 185-189
 by solvent extraction methods, 195-233
 by Talspeak process, 211-218, 221
 by Tramex process, 224-231
 Silicates, 163
 Solvent extraction [Am(III)]
 by Alamine 336, 223, 225-226, 229, 231
 by Aliquat 336, 223, 232-233
 by *bis*(2,6-dimethyl-4-heptyl)phosphoric acid, 221
 by *bis*(2-ethylhexylphenyl)phosphoric acid, 221
 by *bis*(2-ethylhexyl)phosphoric acid, 208-220
 by dibutylbutyl phosphonate, 206-209
 by dibutyl-*N,N*-diethylcarbamylmethylene phosphonate, 206-209
 by dihexyl-*N,N*-diethylcarbamylmethylene phosphonate, 207-208

- by diisoamylmethyl phosphonate, 205
- by methyldibutyl phosphonate, 205
- by mixtures of *bis*(2-ethylhexyl)phosphoric acid and P_2O_5 , 219-220
- by mono(2-ethylhexyl)phosphoric acid, 221-222
- by quaternary amine salts, 224, 232-233
- by tertiary amines, 222-231
- by tri-*n*-butyl phosphate, 188-189, 195-202
- by tri-*n*-octyl amine, 223
- by various organophosphorus acids, 222
- Solvent extraction [Am(VI)]
 - by Alamine 336 nitrate, 231
 - by *bis*(2,6-dimethyl-4-heptyl)phosphoric acid, 221
 - by *bis*(2-ethylhexyl)phosphoric acid, 219-220
 - by tri-*n*-butyl phosphate, 201-202
- Spectra
 - absorption
 - see* individual americium ions
 - emission, 6, 9-10
 - luminescence, 10
- Mossbauer, 11-12
- X ray, 10-11
- Sulfates
 - of Am(III), 164
 - double, 164
- Sulfides, 165
- Talspeak process
 - distribution data, 214-215
 - reverse Talspeak-type processes, 214-216
- Tellurides, 165-166
- Thenoyl trifluoroacetone, 171
- Thermodynamic quantities, 55
- Tramex process
 - chemistry of, 224, 226
 - distribution data, 225
 - Oak Ridge flow sheet, 224, 226-228
 - radiolytic efforts, 226
 - Savannah River flow sheet, 228-231
- Tungstate, 166
- Vanadates, 166
- Zirconium phosphate exchanger, sorption of Am(III), 252-255

NOTICE

This book was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Energy Research and Development Administration, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

ERDA SYMPOSIUM SERIES

Available from the National Technical Information Service, U S Department of Commerce, Springfield, Virginia 22161 (For foreign price add \$2 50 per publication)

Reactor Kinetics and Control (TID 7662) 1964 \$6 00
Noise Analysis in Nuclear Systems (TID 7679) 1964 \$6 00
Radioactive Fallout from Nuclear Weapons Tests (CONF 765) 1965 \$6 00
Radioactive Pharmaceuticals (CONF 651111) 1966 \$6 00
Neutron Dynamics and Control (CONF 650413) 1966 \$6 00
Luminescence Dosimetry (CONF 650637) 1967 \$6 00
Neutron Noise, Waves, and Pulse Propagation (CONF-660206) 1967 \$6 00
Use of Computers in Analysis of Experimental Data and the Control of Nuclear Facilities
(CONF 660527) 1967 \$6 00
Compartments, Pools, and Spaces in Medical Physiology (CONF 661010) 1967 \$6 00
Thorium Fuel Cycle (CONF 660524) 1968 \$6 00
Radioisotopes in Medicine In Vitro Studies (CONF 671111) 1968 \$6 00
Abundant Nuclear Energy (CONF 680810) 1969 \$6 00
Fast Burst Reactors (CONF 690102) 1969 \$6 00
Biological Implications of the Nuclear Age (CONF-690303) 1969 \$6 00
Radiation Biology of the Fetal and Juvenile Mammal (CONF-690501) 1969 \$10 00
Inhalation Carcinogenesis (CONF 691001) 1970 \$6 00
Myeloproliferative Disorders of Animals and Man (CONF 680529) 1970 \$9 00
Medical Radionuclides Radiation Dose and Effects (CONF 691212) 1970 \$6 00
Morphology of Experimental Respiratory Carcinogenesis (CONF 700501) 1970 \$6 00
Precipitation Scavenging (1970) (CONF 700601) 1970 \$6 00
Neutron Standards and Flux Normalization (CONF 701002) 1971 \$6 00
Survival of Food Crops and Livestock in the Event of Nuclear War (CONF 700909) 1971 \$9 00
Biomedical Implications of Radiostrontium Exposure (CONF 710201) 1972 \$6 00
Radiation Induced Voids in Metals (CONF 710601) 1972 \$9 00
Clinical Uses of Radionuclides Critical Comparison with Other Techniques (CONF 711101) 1972
\$13 60
Interactive Bibliographic Systems (CONF 711010) 1973 \$7 60
Radionuclide Carcinogenesis (CONF 720505) 1973 \$13 60
Carbon and the Biosphere (CONF 720510) 1973 \$10 60
Technology of Controlled Thermonuclear Fusion Experiments and the Engineering Aspects of Fusion Reactors (CONF 721111) 1974 \$16 60
Thermal Ecology (CONF 730505) 1974 \$13 60
The Cell Cycle in Malignancy and Immunity (CONF 731005) 1975 \$13 60
Mammalian Cells Probes and Problems (CONF 731007) 1975 \$7 60
Cooling Tower Environment—1974 (CONF 740302) 1975 \$13 60
Mineral Cycling in Southeastern Ecosystems (CONF 740513) 1975 \$13 60
Radiation and the Lymphatic System (CONF 740930) 1976 \$9 00
Atmosphere—Surface Exchange of Particulate and Gaseous Pollutants (1974) (CONF 740921) 1976
\$13 60
Impact of Energy Production on Human Health An Evaluation of Means for Assessment
(CONF 751022) 1976 \$6 75

ERDA CRITICAL REVIEW SERIES

As a continuing series of state-of the-art studies published by the ERDA Office of Technical Information, the ERDA Critical Reviews are designed to evaluate the existing state of knowledge in a specific and limited field of interest, to identify significant developments, both published and unpublished, and to synthesize new concepts out of the contributions of many.

SOURCES OF TRITIUM AND ITS BEHAVIOR UPON RELEASE

TO THE ENVIRONMENT

December 1968 (TID 24635) \$6 00
D. G. Jacobs
Oak Ridge National Laboratory

REACTOR-NOISE ANALYSIS

IN THE TIME DOMAIN

April 1969 (TID 24512) \$6 00
Nicola Pacilio
Argonne National Laboratory
and Comitato Nazionale
per l'Energia Nucleare

PLUME RISE

November 1969 (TID-25075) \$6 00
G. A. Briggs
Environmental Science Services
Administration

ATMOSPHERIC TRANSPORT PROCESSES

Elmar R. Reiter
Colorado State University

Part 1. Energy Transfers
and Transformations
December 1969 (TID 24868) \$6 00

Part 2 Chemical Tracers
January 1971 (TID 25314) \$6 00

Part 3: Hydrodynamic Tracers
May 1972 (TID-25731) \$3 00

THE ANALYSIS OF ELEMENTAL BORON

November 1970 (TID 25190) \$3 00
Morris W. Lerner
New Brunswick Laboratory

AERODYNAMIC CHARACTERISTICS OF ATMOSPHERIC BOUNDARY LAYERS

May 1971 (TID-25465) \$3 00
Erich J. Plate
Argonne National Laboratory
and Karlsruhe University

NUCLEAR-EXPLOSION SEISMOLOGY

September 1971 (TID 25572) \$3 00
Howard C. Rodean
Lawrence Livermore Laboratory

BOILING CRISIS AND CRITICAL HEAT FLUX

August 1972 (TID-25887) \$3 00
L. S. Tong
Westinghouse Electric Corporation

NEPTUNIUM-237 PRODUCTION AND RECOVERY

October 1972 (TID-25955) \$3 00
Wallace W. Schulz and Glen E. Benedict
Atlantic Richfield Hanford Company

THE KINETICS OF THE OXIDATION-REDUCTION REACTIONS OF URANIUM, NEPTUNIUM, PLUTONIUM, AND AMERICIUM IN AQUEOUS SOLUTIONS

August 1975 (TID-26506) \$5 45
T. W. Newton
Los Alamos Scientific Laboratory,
University of California

PARTICLE-TRANSPORT SIMULATION WITH THE MONTE CARLO METHOD

October 1975 (TID-26607) \$5 45
L. L. Carter and E. D. Cashwell
Los Alamos Scientific Laboratory

THE CHEMISTRY OF AMERICIUM

October 1976 (TID-26971) \$6.00
Wallace W. Schulz
Atlantic Richfield Hanford Company

Available from the National Technical Information Service, U. S. Department of Commerce, Springfield, Virginia 22161. (For foreign price add \$2.50 per publication.)