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x ABSTRACT

Research performed consisted of: (1) refinement of previous analysis of high resolution total 

cross sections for n -f 40Ar in an effort to remove some ambiguities in J71^ assignments and 

completion of two papers dealing with this analysis and a companion theoretical treatment of 

the associated scattering functions and R-functions; (2) extension of the analysis of neutron 

total cross section data on 48Ca to 3.5 MeV in neutron energy and modeling of the results 

with a dispersive optical model based on parameters from 40Ca scattering data; (3) attempted 

improvement of spin and parity assignments for data on 122Sn and determination of external 

R-function parameters; (4) development of a graphical interface, coupled with a code for 

calculation of R-matrix based total cross sections and parameter minimization, for an MS- 

DOS-based microcomputer.
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\

I. Introduction

Efforts during the reporting period have been directed toward developing a graphical 

interface for the 386 microcomputer to be incorporated with a previously developed code for 

calculating neutron total cross sections in the R-matrix formalism. In addition a minimization 

component has been added to the calculation routines. This greatly enhances the ability to 

analyze an isotope with greater attention to the details of spin and parity and with greater 

speed. This has eliminated the continual switching between calculations and parameter-file 

modification previously required and rendered the analysis completely screen interactive 

through a mouse.

This tool has been used to analyze a data set ( 48Ca ) which had almost been abandoned 

due to complex overlapping structures in the cross section above 2.0 MeV. Parameters of the 

R-matrix formulation have been obtained in preparation for comparison to predictions of a 

dispersive optical model. A paper is in preparation which incorporates experimental and 

theoretical details of this interaction and should be complete by the end of the reporting 

period..

Finally, attention has been directed to completion of the experimental analysis of the 

n—40Ar system in the R-matrix formalism. These results have been compared to predictions 

of a dispersive optical model with parameters deduced from available data on n—40Ca. This 

work will have been submitted for review before the end of the reporting period.

II. The n — 40Ar System

The n —40Ar system has been investigated through total cross section measurements over 

the energy range 10 keV to 40 MeV. Detailed resonance analysis has been performed up to 1.5 

MeV. From this analysis we have obtained average scattering functions and external R- 

functions of the the R-matrix formalism, for individual partial waves. , While these data 

represent a minuscule wealth of data compared to scattering measurements, for purposes of 

deducing optical model parameters, no other type of measurement provides such clear 

information on the scattering of individual partial waves.

The results of the analysis are dedicated to a dispersive optical model potential for the
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n —40Ar system in the sense that the model parameters based on extensive data for the 

n —40Ca system have been used, with suitable corrections, to model the results of the present 

analysis.

III. Dispersive Optical Model Analysis 

Collaborators: C.H. Johnson & R.R. Winters

A dispersive component to the optical model potential is obtained from a dispersion relation 

which connects the real to the imaginary part of the mean field. This provides for a unified 

description of both the optical model potential at positive energies and the shell model 

potential in the bound region. This is realized by the inclusion in the dispersive term of the 

effect of coupling of the single particle degree of freedom to low-lying core excitations. The 

complicated energy dependence of the real potential for low and negative energies is thereby 

achieved.

A definitive dispersive optical model analysis (DOMA) requires extensive differential 

scattering data. Such data are available1-3 for neutron scattering from 40Ca, 90Zr, and 208Pb, 

each of which have a closed neutron shell. In the case of the n —40Ca analysis4, which is of 

particular interest here, the experimental data included (a) the total cross section for neutron 

energies from 1 to 80 - MeV, (b) differential cross sections at fourteen neutron energies from 5 

to 40 - MeV, (c) analyzing powers for five energies from 10 to 17 - MeV, and (d) single-particle 

bound state energies, not only for the valence shells but also for deeply bound states down to 

— 66 MeV.

The DOMA is not possible for the n —40Ar system because no scattering data are 

available. The parameters from the DOMA for n —40Ca can be reasonably be extended to the 

n —40Ar system by correcting for the shift in the Fermi energy and for the contribution of the 

isovector potential to n —40Ar. The comparison of the two systems yields an empirical 

isovector potential which is not confused by mass dependencies because the two nuclei are 

isobars. The effect of the isovector potential is relatively large because they differ significantly 

in their asymmetry coefficients. In fact no other pair of isobars for A > 40 has such a large 

difference.

Data are available for n —40Ar in the form of bound state structure information5, total 

cross section for E < 40 MeV6, and R-matrix resonance parameters for E < 1.5 MeV6. The 

total cross sections alone are meager data in comparison to extensive scattering data listed
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above for neutrons on 40Ca. Moreover, counting statistical uncertainties are large for the 20- 

to 40-MeV total cross section for 40Ar. The R-matrix resonance parameters however provide 

us with scattering functions for individual partial waves at low energies. This information may 

prove useful in explaining the failure of a simple dispersive optical model to explain the total 

cross section of both 40Ca and 40Ar without recourse to orbital angular momentum 

dependence and/or an energy dependence of the shape parameters of the potential.

IV. Description of the Model

The model is formulated in terms of a Fermi-shifted energy,

S = E - E, 1

rather than the normal incident neutron energy E. The mean field is expressed,

Jl.(r;g) = r(r;S) + tW(r;S), 2

with the real part being the sum of a local equivalent to the Hartree-Fock (HF) potential and 

AT being the dispersive contribution,

r(r;g) = TH(r;g) + Ar(r;g) . 3

In addition to the central component there is a spin-orbit contribution to the mean field which 

is assumed to be real and have the standard form;

rso(r;g) = ?. £ Vso! | f(Xso) , 4

with energy-independent parameters Vso = 5.40 MeV, rso = 1.02 fm, and aso = 0.50 fm.

The HF potential is assumed the have the Woods-Saxon form with shape parameters that are 

energy independent;

rH(r;g) = VH(g)-f(XH),

f(XH) = [ 1 + eXP(Xhl) F1’ 5

XH = ( r — RH)/aH,

Rh = rH-A1/3.

The energy dependence of the central depth of the real part of the potential has linear and 

exponential components according to :

VH(g) =. VH(0) + ag 

VH(g) = VH(0)-exp[ag/VH(0)]

for g < 0, 

for g > 0. 6
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The dispersion relation is used to connect the dispersive component to the imaginary potential;

-oo

where P denotes the principal value integral. The integral is evaluated assuming £W(r;S’) to be 

symmetric with respect to the Fermi energy. The imaginary field, W, is the sum of surface 

and volume components,

W(r;S) = Wv(r;S) + ^s(r;S)> 8

where the volume component is assumed to have the same shape as the HF field. The shape 

of the imaginary component is taken to be the radial derivative of a Woods-Saxon form with 

energy-independent shape parameters rs and a^;

Vs(r;S) = -4as-Ws(g)|f(Xs). 9

With the shapes of both components of the imaginary potential being energy independent, the 

dispersive terms will have the same shapes as the corresponding imaginary parts and are given 

by integrals involving only the well depths;

oo
AVX(S) = 2 |

-oo

Wx(S’)dS’ 
(S’ - g) 10

where “x” denotes either surface or volume, “s” or “v”. Since the shape of the volume 

component, Wv(r;g), is assumed to be the same as for the HF potential, the total real volume 

potential T(r;g) will involve a simple sum of well depths;

^v(r;e) = Vv(g).f(XH) 11

where

Vv(g) = VH(g) + AVv(g). 12

The DOMA applied to 40Ca yielded best-fit values for nine free parameters associated 

with the HF potential and the shape and depth parameters of the real potential. In addition,
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two parameters associated with the imaginary volume potential were found. The results are 

given in the following table: x

rH = 1.18 fm aH — 0.70 fm

rs = 1.26 fm ag = 0.60 fm
V^a(0) = -58.8 MeV aCa = 0.55

= -14.6 MeV Sv = 130 MeV
W°° = -8.7 MeV 

s 8S1 = 15 MeV

SS2 = 130 MeV

In order to address 40Ar in this formulation we assume the two systems have the same

shape parameters, since the two nuclei are isobars. The same depths are assumed for the

surface and volume imaginary depths. The remaining parameters for the specialization to 40Ar
Ar

are those parameterizing the HF potential. The depth, V (0), of this potential at the Fermi 

energy is deduced from the observed energies of the particle and hole states in the valence 

shells, utilizing energies and spectroscopic factors from the most recent literature ’ . These are 

summarized in Table I.

The Fermi energy lies between the ground states of 39Ar and 41Ar. Both ground states 

have J71^ = 7/2", but neither energy is that of the lf7y2 orbit because of the presence of the 

(lf7y2)2 neutron pair in 40Ar. In Table I we denote the 41Ar ground state by “(f7/2)2 + 

f7/2” to indicate that it is formed by addition of an *7/2 neutron to the (lf7^2)2 pair. In like 

manner, the notation “(f7^2 )2 ' *7/2” for the 39Ar ground state indicates that it is formed by 

pickup of one of the paired neutrons. The 3.8-MeV energy difference shows that the pairing 

energy is large. The exact location of Ep between the ground states was found not to be 

critical to the analysis. We take it to be midway between the states;

Ep = - 8.0 MeV for n-40Ar.

The Fermi energy and the level energies from Table I are represented in Fig. 1 by the diagram 

”EXPT” for n-40Ar. In keeping with the above discussion, the ground states are represented 

by dashed lines and labeled 7/2" rather than lf7/2. The other levels are labeled as single­

particle or single-hole states. By choosing these energies, we make the tacit assumption that
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the particle or hole states are reached by stripping or pickup without disturbing the paired 

*7/2 neutrons in the 40Ar core, and we justify that approximation by the fact that the two 

*7/2 particles have a large pairing energy. At the left in the figure are plotted the empirical 

and predicted structures for the same levels for n-40Ca, adopted from Fig. 12 of Ref. 4. We 

see the corresponding states for n-40Ca are bound much deeper than for n-40Ar. This was 

already apparent from the 4-MeV difference in the Fermi energies. Clearly, the HF depth,
V^(0), for n-40Ar must be somewhat less negative than the depth V*”a(0) for n-40Ca.

H . . H Ar
Essentially, two sets of data are required to determine the two parameters, V (0) and

aAr. For one set we take the energies from Table I for the 2p1f2, and ld3^2

bound states. For the other we take the total cross section for neutron energies from 11 to 40
Ar

MeV. To first order we choose the depth V (0) to fit the bound states and then choose the 

energy coefficient aAr to fit the total cross section. Actually, we must iterate these steps to 

obtain the best overall fit. For the following more detailed description of the iterations, we 

present figures based on our final parameters. These are

VHr(0)

Ara

- 53.2 ± 0.55 MeV 

0.39 ± 0.05 14

The remaining parameters of the DOMA were taken from the n-40Ca analysis of Ref. 4 and 

listed above. The bound-state structure predicted by the real part of the model is represented 

by the right-hand diagram in Fig. 1. It agrees well with the observed structure. In particular, 

it is compressed in energy relative to that of 40Ca. This is a consequence of the smaller value 

for aAr.
Ar

We now describe in more detail the evaluation of V^ (0) and its uncertainty. The curve 

in Fig. 2a represents the depth Ws(S) for the imaginary surface potential of the model and the 

curve in Fig. 2b represents the corresponding real dispersive potential AVs(6).

In Fig. 3 the curve represents the total cross section predicted from our model and the 

symbols represent the measured values averaged over appropriate energy intervals. The 

vertical heights of the symbols represent the uncertainties from counting statistics. The 

energy coefficient aAr has been chosen to yield a good fit for E > 11 MeV. Indeed, the model 

curve agrees well with the data for 11 < E < 40 MeV but is too high for 2 < E < 11 MeV.

Fig. 4 shows the total cross sections for 40Ca. We see similarly that for E < 9.5 MeV the 

original DOMA for n —40Ca exhibits a discrepancy. It was this common discrepancy that
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prompted us to ignore the total cross sections for E < 11 MeV in our fitting procedure. 

Essentially, that region was ignored also for most of the 40Ca analysis, being only a small part 

of the very broad energy range of the analysis.

V. Isovector Potential.

Empirical analyses showed that the central HF depth is shallower for n —40Ar than for 

n —40Ca. This is because the real part of the symmetry potential contributes for 40Ar but not 

for 40Ca and it has the opposite sign from the HF potential. The 40Ar nucleus is asymmetric 

with 18 protons and 22 neutrons, whereas 40Ca is symmetric with 20 each. Thus for 40Ar 

the asymmetry coefficient is

77 = (N — Z)/A = 0.10. ' 15

The energy variable 8 is well suited for introducing the effect of the symmetry potential. 

From the discussion in Ref. 4 we have

*1 V”(8) = V^(S) - V^a(S), 16

where V (8) is the HF approximation to the central depth of the symmetry potential. The 

empirical parameters required for the right-hand side of Eq. 15 are given by Eq. 12. The 

resulting symmetry potential is represented by the solid curve in Fig. 5. The vertical symbol 

at 8 = 0 represents the estimated uncertainty propagated from that given in Eq. 13 and the 

symbol at 8 = 33 MeV represents the uncertainty which is propagated for the general region 

from the coefficient in Eq. 13. The latter value is large because of the large statistical 

uncertainties in the total cross sections in Fig. 3.

The dashed curve in Fig. 5 represents the symmetry potential that was deduced for 

n —40Ca in Ref. 4 by comparison of the HF potential with that previously deduced9 for
n_2°8pb;

Tl v"(S) = V> - V^a(8), 17

where rj = 0.21 for 208Pb. The solid and dashed curves are in good agreement.

VI. Dispersive Optical Model in the Resonance Region.

The primary motivation of the high resolution measurements was to resolve resonances in
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the neutron total cross section for energies below the inelastic threshold at 1.5 MeV. The R- 

matrix provides us with detailed descriptions of the neutron scattering functions for the Sjy2, 

Pjy2 and P3/2 partial waves for the energy domain [E^, Eu] from E^= 0-0 MeV to Eu= 1.5 

MeV. Here we compare the energy averages of those functions to the optical model 

predictions for the same partial waves.

Since only the entrance neutron channel is important for the domain [E^, Eu] , the R- 

matrix reduces to an R-function which, for the total angular momentum j = £ ± reads

e ^ -2VE) 1 + iP£(E) R«j(E)

V J " 6 ‘ 1 - *-P£(E) R£j(E) ’
18

where P^E) and <^g(E) are the penetrability and the hard-sphere phase shift evaluated at the 

channel radius ac. The value of ac is arbitrary, except that it should be near the nuclear 

radius. Once chosen, however, it should be used in both the data analysis and optical model 

predictions. We have used a value of 5.0 fm. The R-function, R^E), is a sum over the n - 

resonances with quantum numbers l and j that are observed within the domain [Eg, Eu ], plus 

an external R-function which accounts for the influence of levels outside the domain;

R{j(E) =£
A=1

£jA
E£jA E

^ext,^.
+ Rg. (E) , 19

where Egj^ and 7gj^ are the energy and reduced width of the Ath level. In Fig. 6 the data 

points represent values of Rgj^(E) deduced at six energies where the resonance-potential 

interference patterns gave the small uncertainties represented by the vertical heights of the 

symbols. In Fig. 7 the “staircases” represent cumulative sums of reduced widths up to the 

neutron energy E. Each riser is a reduced width, 7gj^ > and each tread is the spacing between 

adjacent levels. The error bar at the top of each staircase corresponds to the fractional 

uncertainty, ^(2/n), for a sum of n widths drawn from a Porter-Thomas distribution.

The energy dependence of the empirical scattering function from Eq. 17 is very 

complicated. To compare with the model predictions we must first average over energy. 

Good agreement between model and experiment requires that the model scattering function be 

approximately equal to the smoothed experimental average;

V(E) = <se(E)>- 20
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The energy averaging could be done numerically. It has been shown10 that comparison of the 

model to the experimental average can be accomplished by a simple prescription. To utilize 

that prescription we expand the model scattering function in the same form as for the 

experimental scattering function, using the same channel radius;

with

-2^|(E) 1 + iP£(E) *£j (E)

OM ’
1 - iP£(E) 3t£j (E)

21

«r£M(E) = R°M(E) + i s£M(E) . 22

Then we can use the following simple prescription for comparing the model functions to the 

averaged empirical functions;

k
E 72

A=1

E.

= 1
E,,

sOM(E') dE'), 23

and

E
K-V, - P

Spj (Ef) dE')

E/
(E' - E)

24

where P denotes the principal value integral. The left-hand sides of these two equations are 

presented in Figs. 6 and 7 and the optical model predictions from the right-hand sides are 

represented by the curves in those figures.

The predicted curves in Figs. 6 and 7 agree relatively well with the data. Both model and

experiment show R to be much more positive for s-waves than for p-waves. This is because

the 3sjy2 state is unbound whereas the 2pjy2 and ^3/2 s^a^es are bound. Also the Sjy2

strength is relatively large because the 3s1,2 state is only slightly unbound. Finally the spin-
ext

orbit potential makes the strength function larger and R more negative for than for

P3/2 because the 2pjy2 state is bound less deeply than the 2p3^2 state.
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As can be seen, there are some discrepancies outside the experimental uncertainties. For
gxt

p-waves, the predicted strength functions are too large and the R for p1^2 *00 negative.

For s-waves the predicted R is too positive. To examine the sensitivity of the predictions

to the depths of the surface potentials, we temporarily ignore the dispersion constraint and

arbitrarily readjust the real and imaginary surface potentials for each partial wave to force
ext

very good agreement with the averaged scattering functions. Our criteria for Rgj (E) is that 

the model function (Eq. 23) give the best least-squares fit to the points in Fig. 6. Our criteria 

for the sum of reduced widths is that, when the integral (Eq. 22) is extended over the full 

domain, it agrees well with the empirical sum for the full domain. We choose the full domain 

in order to minimize the uncertainties that are inherent in a small sample of reduced widths. 

For p-waves, we can satisfy the two criteria by making independent adjustments in the real 

and imaginary surface potentials because there is little correlation in their effects on the real 

and imaginary parts of the complex R-function. This lack of correlation is related to the fact 

that the single-particle 2p1y2 an<i ^3/2 states li® well below the resonance domain. The same 

independence does not hold for Sjy2 waves because the 3sjy2 state is only slightly unbound. 

Since the real and imaginary parts are not completely independent for s-waves, we adjust the 

surface potentials together to achieve the best overall fulfillment of the two criteria.

The resulting best-fit surface depths are presented in Fig. 2 at the center of the domain 

by a circle for s-waves and by solid points for p-waves. The heights of the symbols represent 

the uncertainties estimated from those shown in Figs. 6 and 7. The relative proximity of the 

circles and the points to the curves again demonstrates that the model predictions are fairly 

good. Specifically, the circles and points in Fig. 2a for the imaginary potential confirm that 

the strength of the potential decreases rapidly as the energy is reduced towards the Fermi 

energy and, in Fig. 2b, the circles and points confirm that the real dispersive term rises to near 

its maximum in the resonance region.

The most notable failure of the model as applied to the n—40Ar system is in fitting the 

total cross section for 2 < E < 11 MeV. A similar inadequacy was obtained for the n —40Ar 

system. Despite the good agreement between predicted and experimental scattering functions, 

there is a hint of a parity dependence in the surface imaginary potential.. Further studies are 

warranted in this regard for both isotopes. Analysis of the resonance region for 40Ca has been 

initiated to investigate this feature.
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VII. Code Development
\

For two years a code for calculating total cross sections in the R-matrix formalism has 

been used to obtain preliminary parameter estimates for use in a Bayesian-based fitting code. 

The code permitted rapid assessment of proposed spin and parity assignments for a given 

resonance through visual observation of peak cross section and asymmetry patterns. The value 

in this approach as opposed to use of the fitting code is in the rapid turn around possible on a 

dedicated microcomputer. Earlier versions of the code required an exit from the program in 

order to modify the parameter file before recalculation with new parameters. A major effort of 

the current reporting period has been the development of a graphical interface and least- 

squares fitting capability to the program. The former permits access to the parameter file 

from the screen and within the program, making possible an almost instantaneous screen 

update of any change made in the parameters of the resonance under investigation. Many 

repetitions are thus possible without leaving the program, speeding the preparation of a 

parameter file to be submitted to the Bayesian fitting code. During this process of 

development a means was found to perform x2 minimization without the calculation of partial 

derivatives with respect to all the varied parameters. This involved application of the downhill 

simplex method due to Nelder and Mead11, implemented for multidimensional parameter 

variation. Variation of both resonance and R-external parameters is possible. Manual 

variation of any of the parameters is also possible from the screen through menu selection via 

mouse. This provides for a smoother and more efficient interaction with the data. With these 

additions to the basic calculation program it became straightforward to implement variation of 

the J^-values. While this variation is not in the least-squares sense, it does permit automatic 

searching over a range of J^-values. A record each x2 *s stored for subsequent retrieval of 

best values. This option is not available in the Bayesian code and further refines the 

parameters and reduces the time required to obtain final parameters for a dataset. Finally in 

this regard, capability is implemented in the code for obtaining graphics output from dot­

matrix or laser-printers, and a pen plotter. From the standpoint of published output in this 

period, this effort has not been productive but in terms of future analyses, the effort should 

prove worthwhile by reducing the time required to obtain a consistent set of resonance 

parameters for Bayesian refinement and by providing for a more quantitative and maximally 

informative interpretation of the total cross section data from ORELA. What was not feasible 

a few years ago on a microcomputer is now easily accomplished and is a favored approach
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because of the interactive feature of the data analysis.
\

VIII. The n-48Ca System

Previous analysis on this isotope was based on measurements of a scattering sample of 

0.0577 atoms/barn of Ca which was 96% 48Ca. Measurements were performed at the 200-m 

flight path of the ORELA facility. The high resolution total neutron cross sections were 

previously analyzed in the resolved region up to 2 MeV using the R-matrix formalism. The 

statistics at that time were not sufficient to extend beyond that energy without substantial 

ambiguity. Since then additional data have been taken which permit extension of the analysis 

to the limit of the inelastic threshold near 3.9 MeV. This has been facilitated by the spin- 

variation feature of the minimization code.

The previous analysis assumed a channel radius of 7.5 fm. This was chosen to be well 

outside the polarizing forces in order to permit the observed reduced widths to be compared to 

the single particle widths. The focus of the current analysis is to extend the analyzed region 

and to compare the deduced scattering functions with model scattering functions predicted by 

the dispersive optical model. We have chosen the channel radius for this analysis to be
a = 1.45-A1/3 = 5.27 fm. 25

This will permit comparison to the very similar work on n —40Ar, and minimize the 

interference of resonances with the large R-functions associated with the large radius. An 

additional consideration for the fitting relates to the fact that for the large-width d5/2 

resonances, the level shift of the R-matrix formalism is not constant over the resonance. For 

this reason we have set the boundary condition equal to the shift factor at the energy 1560 

keV, i.e.,

B5/2 = S5/2(1560 keV)- 26

Results of the analysis to an energy of 3.5 MeV are shown in Figs. 8 — 10 for selected 

regions. Large resonances due to d5^2interaction dominate the structure up to 2.5 MeV, 

where strength begins to increase and become the dominant contributor.

IX. R-function Determinations

The interference between resonance and potential scattering are often sufficient to 

determine the R-function for a given partial wave when one has at least two resonances
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separated sufficiently far in energy to ascertain the energy dependence of the interference. In 

the case of 48Ca, conventional wisdom does not apply since the s- and p-wave resonances are 

small and thus do not manifest large interferences. The d5/2 resonances on the other hand are 

so large that resonance-resonance interference dominates the resonance- potential scattering 

interference for all resonances of this which are not remote from one of the large 

resonances. This results in larger uncertainties than normal on the R-functions. For the s- 

and p-wave R-functions we must resort to consideration of the off resonance scattering cross 

section in regions where two resonances of other J77 interfere. Since the partial wave cross 

section between two interfering resonances must go to zero, the remaining cross section must 

be provided by other partial waves through their Rex^ parameters.

The resonances at 300, 400, and 450 keV are crucial for establishing the parameters of the R- 

function at lower energies. The J^-values are clearly established by the peak cross sections. 

They are J = 1/2, 3/2, and 1/2, respectively, for the 300, 400, and 450 keV resonances. The 

large interference pattern with negative phase shows clearly that the 400-keV resonance is p- 

wave rather than d-wave because a d-wave resonance could not have such a large potential 

phase shift at these low energies. The other two resonances with 3 = 1/2 must be of opposite 

parity with one being p-wave and the other s-wave because of the different interference 

patterns observed. The one at 300 keV has a large phase shift while the o450-keV resonance 

shows essentially zero phase. The spin-orbit potential forces the p1^2 potential phase to be 

more negative than that for the Pj^' One can also argue that because the observed bound 

single-particle P1/2 state is closer to the resonance region than the p3/2 state, and there are no 

broad states observed for several MeV above the resonances. We therefore conclude that the 

300-keV resonance must be P]y2 and the 450-keV resonance must be s1^2.

X. Average Proprerties

The parameters resulting from this analysis are reflected in the cumulative sum of 

reduced widths in Fig. 11 and the external R-functions shown in Fig. 12. There were only two 

resonances comfirmed as s-wave in the analysis. The Pj/2 and P]y2 strength was small as 

was that for d3^2. The d5/2 strength was quite large. The previous analysis left open the 

question of the centroid of this strength. These results suggest that the peak has been reached 

due to the leveling of the sum of cumulative reduced widths as seen in Fig. 11 The s^j level 

is unbound in this region and as a conseequence, only two s-wave resonances were observed in
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the region. The Pjy2 an<^ P3/2 ^eve^s are unbound, the p3^2 being nearer the separation 

energy. However the strenghs and R-functions are very little different for these partial waves. 

Most of the strength for the d3y2 is attributable to a single resonance at 3400 keV. While this 

assignment is not unambiguous, an alternate assignment would require a major reconsideration 

of all spin assingnments of large resonances over the region 2600-3600 keV. The resonance 

provides peak height on which other resonances of higher J-value are superposed. This implies 

that no assignment of lower J-value would be sufficient. Alternately only the f7/2 assignment 

might provide sufficient peak height without underlying structure. This does not however 

provide the needed asymmetry. The assignment is consistent with the level structure in this 

region. Residual interactions could be responsible for placing the d5^2 level being nearer the 

separation energy than the d3y2- We would otherwise expect to encounter strength in this 

shell at lower energies for the d3/2 than for the d5y2. One would need higher energy data to 

confirm this possible trend. A similar rapid increase of strength at onset was observed for d5^2 

in the 1—2 MeV region.

The data provides evidence for f-wave interaction in the observed f5/2 resonance at 2860 

keV. This is confirmed by maximum peak height considerations. The f7/2 assignment is ruled 

out by the fact that a width sufficiently large to fit the tails of the resonance results in an 

excessive peak height. We have not been able to make Jn- assignments for resonances of 

width comparable to the resolution width unless located near a large resonance of similar J71^ 

with sufficient strength to produce significant asymmetry in the smaller resonance through 

resonance-resonance interference.

In order to consider the statistical properties of interest, we must be able to estimate the 

number of missed resonances in the analysis. An accurate measurement of the level spacings 

for each is difficult because the levels widths smaller the the experimental resolution width 

may not be observed or may be assigned an incorrect . To correct for missing levels we 

assume that the observed reduced widths are drawn from Porter-THomas (PT) distributions 

and that no resonances are missed with 7^ greater than < 7^ > /4. To perform this test

one forms a subset of resonances with given Jw, beginning with the largest 7^n’ an<^ 

successively includes the next smaller reduced width until the ratio of < 7^ > to
<(7^n)1^2 > is the result expected for a sample obtained by drawing widths larger than i. 

the distribution mean from a PT distribution. The results of this test for the d5^2 partial 

waves are shown in Fig. 13, where the histogram is the observed distribution and the solid 

curve is from the PT distribution deduced from the above test in which the histogram is fit for
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x = (T^r,)1^2 > ^'rom extrapolation of the solid curves to x = 0, in this

and other similar curves for the other partial waves, we find the number missing, Nm, to be 
1,8,0 and 0 for the 1/2", 3/2", 3/2**" and 5/2"*" data sets, respectively. The solid curves are the 

expected distribution assuming no missed resonances.

These preliminary results are to be finalized and devoted to a dispersive optical model 

analysis before the end of the current reporting period. This will involve, as in the case of 

n— 40Ar, the comparison of scattering functions and R-functions with model predictions for 

each individual partial wave. The model will use parameters deduced from extensive data on 

the n— 40Ca system with suitable modification of the isovector potential for the different 

asymmetry coefficient.
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Table I. Experimental energies and spectroscopic factors of particle and 

hole states for n— 40Ar.

Particle states _______Hole states

n«j E(MeV) (2j+i)s; n£j E(MeV) (2j + l)S.
(^7/2)2 + *7/2 -6.10 4.0 (*7/2)2 ' *7/2 - 9.87 2.4

2p
3/2

-3.75 3.5 Id ,3/2
-11.39 3.2

2P ,
1/2

-2.64 1.8 2s ,
1/2

-12.48 1.4
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Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4. 

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

Figure Captions

Experimental and predicted energies for levels in the valence shells for the 

n —40Ca and n —40Ar systems. Energies form Table I are represented by the EXPT 

structure for n —40Ar.

Imaginary (a) and real dispersive (b) surface potentials for n —40Ar. The curves 

are for the model; the crosses represent the real dispersive depthsrequired to 

bind the 2s1^2, ld3y2, 2p1y2, and 2p3y2 states exactly at the empirical energies in 

Table I. The open (solid) points show the surface depths required to fit the energy- 

averaged s-wave (p-wave) scattering functions in the resonance region.

Neutron total cross section for 40Ar. The points represent energy-averaged 

experimental cross sections and the curve is the predicted cross section from 

the dispersive optical model potential.

Neutron total cross secton for 40Ca. Both data points and the theoretical curve 

are form Ref. 4. The curve is the prediction of the optical model potential.

Central depth of the symmetry potential in the Hartree-Fock approximation. The 

solid curve is derived from the differences between the n —40Ca and n —40Ar 

Hartree-Fock potentials, and the dashed curve was derived in Ref. 5 from the 

difference between n —40Ca and n —208Pb potentials. The vertical symbols show 

the uncertainties.

Experimental and predicted external R-functions in the resonance energy domain. 

Experimental values are plotted as crosses for circles for p1^2 and points for

p3^2 partial waves. The predicted curves are solid for Sjy2, short-dash for Pjy2 

and long-dash for p3y2 partial waves. The R-function expansions used a 5.0 fm 

channel radius.

Sums of experimental reduced neutron widths and integrals of theoretical strength 

functions for the s1^2, p1^2, and p3/2 neutron partial waves for 40Ar in the 

resonance region. The error bars show the uncertainties in the full sums for an 

assumed Porter-Thomas distribution of widths. The curve represents integrals up 

to the energy of the strength functions from the model.

Total cross section for n— Ca over the neutron energy range 1.2 —2.2 MeV.

The short-, intermediate-, and long-dash lines betoken the contributions 

due to P]y2, p3^2 and d5^2 partial waves, respectively. The solid line through 

the data points represents the sum of all partial waves.
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Fig. 9.
o

Total cross section for n— Ca over the neutron energy range 2.0 —3.0 MeV.

The short-, intermediate-, and long-dash lines betoken the contributions due 

to P]y2’ ^3/2 an<^ ^5/2 Partial waves, respectively. The solid line through the 

data points represents the sum of all partial waves.

Fig. 10. Total cross section for n—48Ca over the neutron energy range 2.9 —3.5 MeV.

Fig. 11.

The short-, intermediate-, and long dash lines betoken the contributions due t

Pl/2’ ^3/2 an<^ ^5/2 Par^ial waves, respectively. The solid line through the data 

points represents the sum of all partial waves. The solid partial wave curve 

corresponds to P3/2•

Cumulative sum of reduced widths for p- and d-wave resonances observed in

n—48Ca .

Fig. 12. • AftThe external R-functions for Ca over the neutron energy range 0 — 4.0 MeV.

Fig. 13. Porter-Thomas test for missing resonances for d5^2 resonances. The histogram 

represents the number of resonances with (7^) greater than the abscissa. The

dashed curve corresponds to results expected if widths are drawn from a Porter-

Thomas distribution assuming no levels are missed. The solid curve is for 4-missing

resonances.
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