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N ABSTRACT

Research performed consisted of: (1) refinement of previous analysis of high resolution total
cross sections for n + 4%Ar in an effort to remove some ambiguities in J7T assignments and
completion of two papers dealing with this analysis and a companion theoretical treatment of
the associated scattering functions and R-functions; (2) extension of the analysis of neutron
total cross section data on 4’803, to 3.5 MeV in neutron energy and modeling of the results
with a dispersive optical model based on parameters from 4°Ca scattering data; (3) attempted
improvement of spin and parity assignments for data on 12261 and determination of external
R-function parameters; (4) development of a graphical interface, coupled with a code for
calculation of R-matrix based total cross sections and parameter minimization, for an MS-

DOS-based microcomputer.
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I. Introduction

Efforts during the reporting period have been directed toward developing a graphical
interface for the 386 microcomputer to be incorporated with a previously developed code for
calculating neutron total cross sections in the R-matrix formalism. In addition a minimization
component has been added to the calculation routines. This greatly enhances the ability to
analyzé an isotope with greater attention to the details of spin and parity and with greater
speed. This has eliminated the continual switching between calculations and parameter-file
modification previously required and rendered the analysis completely screen interactive
through a mouse.

This tool has been used to analyze a data set ( 48Ca ) which had almost been abandoned
due to complex overlapping structures in the cross section above 2.0 MeV. Parameters of the
R-matrix formulation have been obtained in preparation for comparison to predictions of a
dispersive optical model. A paper is in preparation which incorporates experimental and
theoretical details of this interaction and should be complete by the end of the reporting
period..

Finally, attention has been directed to completion of the experimental analysis of the
n—4CAr system in the R-matrix formalism. These results have been compared to predictions
of a dispersive optical model with parameters deduced from available data on n—%%Ca. This

work will have been submitted for review before the end of the reporting period.
II. The n — *Ar System

The n—*%Ar system has been investigated through total cross section measurements over
the energy range 10 keV to 40 MeV. Detailed resonance analysis has been performed up to 1.5
MeV. From this analysis we have obtained average scattering functions and external R-
functions of the the R-matrix formalism, for individual partial waves. While these data
represent a minuscule wealth of data compared to scattering measurements, for purposes of
~ deducing optical model parameters, no other type of Ifleasurement provides such clear
information on the séattering of individual partial waves.

The results of the 'analysis are dedicated to a dispersive optical model potential for the
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n—*°Ar system in the sense that the model parameters based on extensive data for the
n—*°Ca system have been used, with suitable corrections, to model the results of the present

analysis.

III. Dispersive Optical Model Analysis
Collaborators: C.H. Johnson & R.R. Winters

A dispersive component to the optical model potential is obtained from a dispersion relation
which connects the real to the imaginary part of the mean field. This provides for a unified
description of both the optical model potential at positive energies and the shell model
potential in the bound region. This is realized by the inclusion in the dispersive term of the
effect of coupling of the single particle degree of freedom to low-lying core excitations. The
complicated energy dependence of the real potential for low and negative energies is thereby
achieved.

A definitive dispersive optical model analysis (DOMA) requires extensive differential
scattering data. Such data are available!™® for neutron scattering from *°Ca, °°Zr, and 2°8Pb,
each of which have a closed neutron shell. In the case of the n—*°Ca analysis?, which is of
particular interest here, the experimental data included (a) the total cross section for neutron
energies from 1 to 80 - MeV, (b) differential cross sections at fourteen neutron energies from 5
to 40 - MeV, (c) analyzing powers for five energies from 10 to 17 - MeV, and (d) single-particle
bound state energies, not only for the valence shells but also for deeply bound states down to
—66 MeV,

The DOMA is not possible for the n—*°Ar system because no scattering data are
available. The parameters from the DOMA for n—*°Ca can be reasonably be extended to the
n—*%Ar system by correcting for the shift in the Fermi energy and for the contribution of the
isovector potential to n—*°Ar. The comparison of the two systems yields an empirical
isovector potential which is not confused by mass dependencies because the two nuclei are
isobars. The effect of the isovector potential is relatively large because they differ significantly
in their asymmetry coefficients. In fact no other pair of isobars for A > 40 has such a large
difference.

Data are available for n—‘mAr.in the form of bound sfate structure information®, total
cross section for E < 40 MeV®, and R-matrix resonance parameters for E < 1.5 MeV®. The

total cross sections alone are meager data in comparison to extensive scattering data listed
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above for neutrons on *°Ca. Moreover, counting statistical uncertainties are large for the 20-
to 40-MeV total cross section for *°Ar. The R-matrix resonance parameters however provide
us with scattering functions for individual partial waves at low energies. This information may
prove useful in explaining the failure of a simple dispersive optical model to explain the total
cross section of both *°Ca and *°Ar without recourse to orbital angular momentum

dependence and/or an energy dependence of the shape parameters of the potential.
IV. Description of the Model

The model is formulated in terms of a Fermi-shifted energy,

8§ =F-E 1
rather than the normal incident neutron energy E. The mean field is expressed,

Mo(r;8) = Y(r;8) + W (r;8), 2
with the real part being the sum of a local equivalent to the Hartree-Fock (HF) potential and
AY being the dispersive contribution,

V(r;8) = Vy(r;8) + AY(r;8) . . 3
In addition to the central component there is a spin-orbit contribution to the mean field which

is assumed to be real and have the standard form;

Vso(r;8) = - ¢ (mf;rc) Vso% c_(li; f(Xs0) » 4

with energy-independent parameters Vgo = 5.40 MeV, rso = 1.02 fm, and ago = 0.50 fm.
The HF potential is assumed the have the Woods-Saxon form with shape parameters that are
energy independent; '
Vy(r;8) = V4(8)-(X,), ‘
f(Xy) =1+ exp(Xy) 174, 5
Xy =(r—Ry)/ay,
RH = I‘H-Al/s.
The energy dependence of the central depth of the real part of the potential has linear and

exponential components according to :

Vyu(8) = V4(0) + a8 for 8 < 0,
Viu(8) = V4(0)-expla&/Vy(0)] for & > 0. 6
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The dispersion relation is used to connect the dispersive component to the imaginary potential;

AV(rS)——I%f—g)d;’,—’ , 7

where P denotes the principal value integral. The integral is evaluated assuming W (r;8’) to be
symmetric with respect to the Fermi energy. The imaginary field, W, is the sum of surface

and volume components,
W(r;8) = Wy (;8) + Wg(r;8), 8

where the volume component is assumed to have the same shape as the HF field. The shape
of the imaginary component is taken to be the radial derivative of a Woods-Saxon form with

energy-independent shape parameters rg and ag;
Ws(ri8) = —4 ag-W(8)Lf(Xs). 9

With the shapes of both components of the imaginary potential being energy independent, the
dispersive terms will have the same shapes as the corresponding imaginary parts and are given

by integrals involving only the well depths;

o

: £)de’
avye) =B [ TEEE | | 10
-0
where “x” denotes either surface or volume, “s” or “v”. Since the shape of the volume

component, W,/ (r;8), is assumed to be the same as for the HF potential, the total real volume

potential ¥'(r;8) will involve a simple sum of well depths;

Ty(r;i8) = Vy(8)-f(Xy) 11
where

Vy(8) = Vu(8) + AV(8). | 12

The DOMA applied to *°Ca yielded best-fit values for nine free parameters associated
with the HF potential and the shape and depth parameters of the real potential. In addition,
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two parameters associated with the imaginary volume potential were found. The results are

given in the following table: N
ry = 1.18 fm ay = 0.70 fm
rs = 1.26 fm ag = 0.60 fm
Vi'(0) = —58.8 MeV o = 0.5
W' = —14.6MeV 8§ = 130 MeV 13
0o :
Wg = —8.7 MeV 8s, = 15 MeV
8, = 130 MeV

In order to address “°Ar in this formulation we assume the two systems have the same
shape parameters, since the two nuclei are isobars. The same depths are assumed for the
surface and volume imaginary depths. The remaining parameters for the specialization to °Ar
are those parameterizing the HF potential. The depth, V:r(O), of this potential at the Fermi
energy is deduced from the observed energies of the particle and hole states in the valence

7,8

shells, utilizing energies and spectroscopic factors from the most recent literature '~. These are
summarized in Table I. - _

The Fermi energy lies between the ground states of 39Ar and *Ar. Both ground states
have J® = 7/2-, but neither energy is that of the 1f7/2 orbit because of the presence of the
(11°.,/2)2 neutron pair in “°Ar. In Table I we denote the **Ar ground state by “(f7/2)2 +
f7/2” to indicate that it is formed by addition of an f7/2 neutron to the (1{‘.,/2)‘2 pair. In like
manner, the notation “(1°.,/2)2 - 7/2” for the 3°Ar ground state indicates that it is formed by
pickup of one of the paired neutrons. The 3.8-MeV energy difference shows that the pairing
energy is large. The exact location of Eg between the ground states was found not to be

critical to the analysis. We take it to be midway between the states;

E_ = — 8.0 MeV for n—*°Ar.
The Fermi energy and the level energies from Table I are represented in Fig. 1 by the diagram.
"EXPT” for n-*%Ar. In keeping with the above discussion, the ground states are represented
by dashed lines and labeled 7/2- rather than 1f7/2. The other levels are labeled as single-

particle or single-hole states. By choosing these energies, we make the tacit assumption that
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the particle or hole states are reached by stripping or pickup without disturbing the paired
f.,/2 neutrons in the 4%Ar core, and we justify that approximation by the fact that the two
f7/2 particles have a large pairing energy. At the left in the figure are plotted the empirical
and predicted structures for the same levels for n-4OCa, adopted from Fig. 12 of Ref. 4. We
see the corresponding states for n-49Ca are bound much deeper than for n-%9Ar. This was
already apparent from the 4-MeV difference in the Fermi energies. Clearly, the HF depth,
V:r(O), for n-*®Ar must be somewhat less negative than the depth Vga(O) for n-*°Ca.
Essentially, two sets of data are required to determine the two parameters, V:r(O) and
o®'. For one set we take the energies from Table I for the 2p1/2, 2p3/2, 251/2, and 1d3/2
bound states. For the other we take the total cross section for neutron energies from 11 to 40
MeV. To first order we choose the depth V:r(O) to fit the bound states and then choose the
energy coefficient o®' to fit the total cross section. Actually, we must iterate these steps to

obtain the best overall fit. For the following more detailed description of the iterations, we

present figures based on our final parameters. These are

A
V.(0) = - 53.2 % 0.55 MeV
A = 0.39 + 0.05 14

The remaining parameters of the DOMA were taken from the n-40Ca analysis of Ref. 4 and
listed above. The bound-state structure predicted by the real part of the model is represented
by the right-hand diagram in Fig. 1. It agrees well with the observed structure. In particular,
it is compressed in energy relative to that of “°Ca. This is a consequence of the smaller value
for a?'.

We now describe in more detail the evaluation of Vzr(O) and its uncertainty. The curve
in Fig. 2a represents the depth WS(S) for the imaginary surface potential of the model and the
curve in Fig. 2b represents the corresponding real dispersive potential AVS(S).

In Fig. 3 the curve represents the total cross section predicted from our model and the
symbols '.represent the measured . values averaged over appropriate energy intervals. The
vertical heights of the symbols represent the uncertainties from counting statistics. The
energy coefficient o™" has been chosen to yield a good fit for E > 11 MeV. Indeed, the model.
curve agrees well with the data for 11 < E < 40 MeV but is too high for 2 < E < 11 MeV.

Fig. 4 shows the total cross sections for °Ca. We see similarly that for E < 9.5 MeV the

original DOMA for n—*°Ca exhibits a discrepancy. It was this common discrepancy that
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prompted us to ignore the total cross sections for E < 11 MeV in our fitting procedure.
Essentially, that region was ignored also for most of the *°Ca analysis, being only a small part

of the very broad energy range of the analysis.
V. Isovector Potential.

Empirical analyses showed that the central HF depth is shallower for n—%°Ar than for
n—*%Ca. This is because the real part of the symmetry potential contributes for *°Ar but not
for *°Ca and it has the opposite sign from the HF potential. The *°Ar nucleus is asymmetric
with 18 protons and 22 neutrons, whereas *°Ca is symmetric with 20 each. Thus for “°Ar
the asymmetry coefficient is

n=(N - 2Z)/A = 0.10. 15

The energy variable & is well suited for introducing the effect of the symmetry potential.

From the discussion in Ref. 4 we have
H Ar Ca
7 V1 (8) = VH (& - VH (8), 16

where VT(S) is the HF approximation to the central depth of the symmetry potential. The
empirical parameters required for the right-hand side of Eq. 15 are given by Eq. 12. The
resulting symmetry potential is represented by the solid curve in Fig. 5. The vertical symbol
at 8 = 0 represents the estimated uncertainty propagated from that given in Eq. 13 and the
symbol at 8§ = 33 MeV represents the uncertainty which is propagated for the general region
from the coefficient in Eq. 13. The latter value is large because of the large statistical
uncertainties in the total cross sections in Fig. 3. .

The dashed curve in Fig. 5 represents the symmetry potential that was deduced for
n—*°Ca in Ref. 4 by comparison of the HF potential with that previously deduced® for
n—208ph;

nVi(§) = VI '(8) — VI(8), 17

where 75 = 0.21 for 2°®Pb. The solid and dashed curves are in good agreement.
VI. Dispersive Optical Model in the Resonance Region.

The primary motivation of the high resolution measurements was to resolve resonances in
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the neutron total cross section for energies below the inelastic threshold at 1.5 MeV. The R-
matrix provides us with detailed descriptions of the neutron scattering functions for the S1/2)

P1/2 and P3/2 partial waves for the energy domain [EE’ E, ] from E = 0.0 MeV to E = 1.5

)
MeV. Here we compare the energy averages of those functions to the optical model
predictions for the same partial waves.

Since only the entrance neutron channel is important for the domain [EZ’ Eu] , the R-

matrix reduces to an R-function which, for the total angular momentum j = ¢ + %, reads

. - , 18

Séj(E) = e

where PlZ(E) and ¢€(E) are the penetrability and the hard-sphere phase shift evaluated at the
channel radius ac. The value of a. is arbitrary, except that it should be near the nuclear
radius. Once chosen, however, it should be used in both the data analysis and optical model
predictions. We have used a value of 5.0 fm. The R-function, R‘éj(E)’ is a sum over the n -
resonances with quantum numbers € and j that are observed within the domain [EE’ Ey }, plus

an external R-function which accounts for the influence of levels outside the domain;

I 72',\ ext

R4;(E) =§1 Em—iE— + Ry (), 19
where Elle and ‘7sz are the energy and reduced width of the Ath level. In Fig. 6 the data
points represent values of Rz(l\t(E) deduced at six energies where the resonance-potential
interference patterns g@ve the small uncertainties represented by the vertical heights of the
symbols. In Fig. 7 the “staircases” represent cumulative sums of reduced widths up to the
neutron energy E. Each riser is a reduced width, 72j/\ , and each tread is the spacing between
adjacent levels. The error bar at the top of each staircase corresponds to the fractional

uncertainty, |(2/n), for a sum of n widths drawn from a Porter-Thomas distribution.
The energy dependence of the empirical scattering function from Eq. 17 is very
complicated. To compare with the model predictions we must first average over energy.
Good agfeement between model and experiment requires that the model scattering function be

approximately equal to the smoothed experimental average;

oM
Sej (E) = <Sej(E)>' 20
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The energy averaging could be done numerically. It has been shown!® that comparison of the
model to the experimental average can be accomplished by a simple prescription. To utilize
that prescription we expand the model scattering function in the same form as for the

experimental scattering function, using the same channel radius;

oM
M -2¢g(E) 1 + iPy(E) me (E)
(E) = e OM s 21
1 - iPy(E) Ry (E)
with
OM oM . OM
’.Rej (E) = Réj (E) +in- séj (E). 22

Then we can use the following simple prescription for comparing the model functions to the

averaged empirical functions;

E

k k

O I} I

> ve . = | sg (BN dE), 23

A=1 &2 g

¢

and
Pu OM(gry gr)
X M S
R™E) ~ ROM@E) - P J A 24
4] 4] i (E' — E)

¢

where P denotes the principal value integral. The left-hand sides of these two equations are
presented in Figs. 6 and 7 and the optical model predictions from the right-hand sides are
represented by the curves in those figures.

The predicted curves in Figs. 6 and 7 agree relatively well with the data. Both model and
experimeht show ReXt to be much more positive for s-waves tha.n for p-waves. This is because
the 351/2 state is unbound whereas the 2p1/2 and .‘2p3/2 'states are bound. Also the S1/2

strength is relatively large because the 3s1/2 state is only slightly unbound. FInally the spin-
orbit potential makes the strength function larger and Rext more negative for P1/2 than for

P3/2 because the 2p1/2' state is bound less deeply than the 2p3/2 state.
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- As can be seen, there are some discrepancies outside the experimental uncertainties. For
p-waves, the predicted strength functions are too large and the ReXt for P1/2 is too negative.
For s-waves the predicted Rext is too positive. To examine the sensitivity of the predictions
to the depths of the surface potentials, we temporarily ignore the dispersion constraint and
arbitrarily readjust the real and imaginary surface potentials for each partial wave to force
very good agreement with the averaged scattering functions. Our criteria for RZ{t(E) is that
the model function (Eq. 23) give the best least-squares fit to the points in Fig. 6. Qur criteria
for the sum of reduced widths is that, when the integral (Eq. 22) is extended over the full
domai-n, it agrees well with the empirical sum for the full domain. We choose the full domain
in order to minimize the uncertainties that are inherent in a small sample of reduced widths.
For p-waves, we can satisfy the two criteria by making independent adjustments in the real
and imaginary surface potentials because there is little correlation in their effects on the real
and imaginary parts of the complex R-function. This lack of correlation is related to the fact
that the single-particle 2p1/2 and 2p3/2 states lie well below the resonance domain. The same
independence does not hold for S1/p Waves because the 3s1/2 state is only slightly Pnbound.
Since the real and imaginary parts are not completely independent for s-waves, we adjust the
surface potentials together to achieve the best overall fulfillment of the two criteria.

The resulting best-fit surface depths are presented in Fig. 2 at the center of the domain
by a circle for s-waves and by solid points for p-waves. The heights of the symbols represent
the uncertainties estimated from those shown in Figs. 6 and 7. The relative proximity of the
circles and the points to the curves again demonstrates that the model predictions are fairly
good. Specifically, the circles and points in Fig. 2a for the imaginary potential confirm that
the strength of the potential decreases rapidly as the energy is reduced towards the Fermi
energy and, in Fig. 2b, the circles and points confirm that the real dispersi\}e term rises to near
its maximum in the resonance region. '

The most notable failure of the model as applied to the n—*%Ar system is in fitting the
total cross section for 2 < E < 11 MeV. A similar inadequacy was obtained for the n—4CAr
system. Despite the good agreement between predicted and experimental scattering functions,
there is a hint of a parity dependence in the surface imaginary potential. Further studies are
warranted in this regard for both isotopes. Analysis of the resonance region for 40Ca has been

" initiated to investigate this feature.
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VII. Code Development
N

For two years a code for calculating total cross sections in the R-matrix formalism has
been used to obtain preliminary parameter estimates for use in a Bayesian-based fitting code.
The code permitted rapid assessment of proposed spin and parity assignments for a given
resonance through visual observation of peak cross section and asymmetry patterns. The value
in this approach as opposed to use of the fitting code is in the rapid turn around possible on a
dedicated microcomputer. Earlier versions of the code required an exit from the program in
order ‘to modify the parameter file before recalculation with new parameters. A major effort of
the current reporting period has been the development of a graphical interface and least-
squares fitting capability to the program. The former permits access to the parameter file
from the screen and within the program, making possible an almost instantaneous screen
update of any change made in the parameters of the resonance under investigation. Many
repetitions are thus possible without leaving the program, speeding the preparation of a
parameter file to be submitted to the Bayesian fitting code. During this process of
development a means was found to perform x2 minimization without the calculation of partial
derivatives with respect to all the varied parameters. This involved application of the downhill
simplex method due to Nelder and Mead!!, implemented for multidimensional parameter
variation. Variation of both resonance and R-external parameters is possible. Manual
variation of any of the parameters is also possible from the screen through menu selection via
mouse. This provides for a smoother and more efficient interaction with the data. With these
additions to the basic calculation program it became straightforward to implement variation of
the J™-values. While this variation is not in the least-squares sense, it does permit automatic
searching over a range of J"-values. A record each x? is stored for suBsequent retrieval of
best values. This option is not available in the Bayesia,p code and further refines the
parameters and reduces the time required to obtain final parameters for a dataset. Finally in
this regard, capability is implemented in the code for obtaining graphics output from dot-
matrix or laser-printers, and a pen plotter. From the standpoint of published output in this
period, this effort has notrbeen productive but in terms of future analyses, the effort should
prove worthwhile by reducing the time required to obtain a consistent set of resonance
A parameters for Bayesian refinement and by providing for a,-more quantitative and maximally
informative interprei:ation of the total cross section data from ORELA. What was not feasible

a few years ago on a microcomputer is now easily accomplished and is a favored approach
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because of the interactive feature of the data analysis.
N

VIII. The n—*8Ca System

Previous analysis on this isotope was based on measurements of a scattering sample of
0.0577 atoms/barn of Ca which was 96% *®Ca. Measurements were performed at the 200-m
flight path of the ORELA facility. The high resolution total neutron cross sections were
previously analyzed in the resolved region up to 2 MeV using the R-matrix formalism. The
statistics at that time were not sufficient to extend beyond that energy without substantial
ambiguity. Since then additional data have been taken which permit extension of the analysis
to the limit of the inelastic threshold near 3.9 MeV. This has been facilitated by the spin-
variation feature of the minimization code.

The previous analysis assumed a channel radius of 7.5 fm. This was chosen to be well
outside the polarizing forces in order to permit the observed reduced widths to be compared to
the single particle widths. The focus of the current analysis is to extend the analyzed region
and to compare the deduced scattering functions with model scattering functions predicted by
the dispersive optical model. We have chosen the channel radius for this analysis to be

a = 1.45-4"% = 5.27 fm. 25
This will permit comparison to the very similar work on n—*°Ar, and minimize the
interference of resonances with the large R-functions associated with the large radius. An
additional consideration for the fitting relates to the fact that for the large-width d,,
resonances,‘the level shift of the R-matrix formalism is not constant over the resonance. For
this reason we have set the boundary condition equal .to the shift factor at the energy 1560
keV, i.e.,

Bs,/, = S;5/,(1560 keV). 26

Results of the analysis to an energy of 3.5 MeV are shown in Figs. 8 —10 for selected
regions. Large resonances due to ds/zinteraction dominate the structure up to 2.5 MeV,

where p3'/2 strength begins to increase and become the dominant contributor.
IX. R-function Determinations

The interference between resonance and potential scattering are often sufficient to

determine the R-function for a given partial wave when one has at least two resonances
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separated sufficiently far in energy to ascertain the energy dependence of the interference. In
the case of *8Ca, conventional wisdom does not apply since the s- and p-wave resonances are
small and thus do not manifest large interferences. The d;,, resonances on the other hand are
so large that resonance-resonance interference dominates the resonance- potential scattering
interference for all resonances of this J™ which are not remote from one of the large
resonances. This results in larger uncertainties than normal on the R-functions. For the s-
and p-wave R-functions we must resort to consideration of the off resonance scattering cross
section in regions where two resonances of other J™ interfere. Since the partial wave cross
section between two interfering resonances must go to zero, the remaining cross section must
be provided by other partial waves through their ReXt parameters.

The resonances at 300, 400, and 450 keV are crucial for establishing the parameters of the R-
function at lower energies. The J™-values are clearly established by the peak cross sections.
They are J = -1/2, 3/2, and 1/2, respectively, for the 300, 400, and 450 keV resonances. The
large interference pattern with negative phase shows clearly that the 400-keV resonance is p-
wave rather than d-wave because a d-wave resonance could not have such a large potential
phase shift at these low energies. The other two resonances with J = 1/2 must be of opposite
parity with one being p-wave and the other s-wave because of the different interference
patterns observed. The one at 300 keV has a large phase shift while the 0450-keV resonance
shows essentially zero phase. The spin-orbit potential forces the P12 potential phase to be
more negative than that for the P3/2- One can also argue that because the observed bound
single-particle P1/2 state is closer to the resonance region than the P3/2 state, and there are no
broad state.s observed for several MeV above the resonances. We therefore conclude that the

300-keV resonance must be P1/2 and the 450-keV resonance must be S1/2°
X. Average Proprerties

The parameters resulting from this analysis are reflected in the cumnulative sum of
reduced widths in Fig. 11 and the external R-functions shown in Fig. 12. There were only two
resonances comfirmed as s-wave in the analysis. The P12 and P1/2 strength was small as
was that for d3/2. The d5/2 strength was quite large. The previous analysis left open the.
question of the centroid of this strength. These results suggest that the peak has been reached
due to the leveling of the sum of cumulative reduced widths as seen in Fig. 11 The 51/2 level

is unbound in this region and as a conseequence, only two s-wave resonances were observed in
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the region. The P1/2 and P3/2 levels are unbound, the P3/2 being nearer the separation
energy. However the strenghs and R-functions are very little different for these partial waves.
Most of the strength for the d3/2 is a.ttributable' to a single resonance at 3400 keV. While this
assignment is not unambiguous, an alternate assignment would require a major reconsideration
of all spin assingnments of large resonances over the region 2600-3600 keV. The resonance
provides peak height on which other resonances of higher J-value are superposed. This implies
that no assignment of lower J-value would be sufficient. Alternately only the f7/2 assignment
might provide sufficient peak height without underlying structure. This does not however
provide the needed asymmetry. The assignment is consistent with the level structure in this
region. Residual interactions could be responsible for placing the d5/2 level being nearer the
separation energy than the d3/2. We would otherwise expect to encounter strength in this
shell at lower energies for the d3/2 than for the d5/2. One would need higher energy data to
confirm this possible trend. A similar rapid increase of strength at onset was observed for d5/2
in the 1 — 2 MeV region.

The data provides evidence for f-wave interaction in the observed f5/2 resonance at 2860
keV. This is confirmed by maximum peak height considerations. The f7/2 assignment is ruled
out by the fact that a width sufficiently large to fit the tails of the resonance results in an
excessive peak height. We have not been able to make J7- assignments for resonances of
width comparable to the resolution width unless located near a large resonance of similar J7
with sufficient strength to produce significant asymmetry in the smaller resonance through
resonance-resonance interference.

In ordér to consider the statistical properties of interest, we must be able to estimate the
number of missed resonances in the analysis. An accurate measurement of the level spacings
for each J7 is difficult because the levels widths smaller the the experimental resolution width
may not be observed or may be assigned an incorrect J7. To correct for missing levels we
assume that the observed reduced widths are drawn from Porter-THomas (PT) distributions
and that no resonances are missed with 'yf\n greater than < 7§n > /4. To perform this test
one forms a subset of resonances with given J7, beginning with the largest 7?\n’ and
successively includes the next smaller reduced width until the ratio of < 7§n > to
<(7f\n)1/2 > is the result expected for a sample obtained by drawing widths larger than }1
the distribution mean from a PT distribution. The results of this test for the d5/2 partial
waves are shown in Fig. 13, where the histogram is the observed distribution and the solid

curve is from the PT distribution deduced from the above test in which the histogram is fit for
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1/2 > (<7§n>)1/2/2. From extrapolation of the solid curves to x = 0, in this

x= ()
and other similar curves for the other partial waves, we find the number missing, N™, to be
1,8,0 and 0 for the 1/2-, 3/2-, 3/2+ and 5/2+ data sets, respectively. The solid curves are the
expected distribution assuming no missed resonances.

These preliminary results are to be finalized and devoted to a dispersive optical model
analysis before the end of the current reporting period. This will involve, as in the case of
n— “CAr, the comparison of scattering functions and R-functions with model predictions for
each individual partial wave. The model will use parameters deduced from extensive data on

the n— 4%Ca system with suitable modification of the isovector potential for the different

asymmetry coefficient.
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Table I. Experimental en'érgies and spectroscopic factors of particle and

hole states for n— *CAr.

Particle states Hole states
néj E(MeV) (2j+1)S néj E(MeV) (2j+1)S:
(f7/2)° + £/, —6.10 4.0 (f72)° - f1/2  — 987 2.4
2p3/2 —-3.75 3.5 1d3/2 —11.39 3.2
2p —2.64 1.8 2s —12.48 1.4
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Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Figure Captions
Experimental and predicted energies for levels in the valence shells for the
n—*%Ca and n—*°Ar systems. Energies form Table I are represented by the EXPT
structure for n—*%Ar.
Imaginary (a) and real dispersive (b) surface potentials for n—*°Ar. The curves
are for the model; the crosses represent the real dispersive depthsrequired to
bind the 231/2, 1d3/2, 2p1/2, and 2p3/2 states exactly at the empirical energies in
Table I. The open (solid) points show the surface depths required to fit the energy-
averaged s-wave (p-wave) scattering functions in the resonance region.
Neutron total cross section for “°Ar. The points represent energy-averaged
experimental cross sections and the curve is the predicted cross section from
the dispersive optical model potential.
Neutron total cross secton for *°Ca. Both data points and the theoretical curve
are form Ref. 4. The curve is the prediction of the optical model potential.
Central depth of the symmetry potential in the Hartree-Fock approximation. The
solid curve is derived from the differences between the n—*°Ca and n—4°Ar
Hartree-Fock potentials, and the dashed curve was derived in Ref. 5 from the
difference between n—*°Ca and n—2°8Pb potentials. The vertical symbols show
the uncertainties.
Experimental and predicted external R-functions in the resonance energy domain.
Experimental values are plotted as crosses for S1/20 circles for P1/2 and points for
P3/2 partiai waves. The predicted curves are solid for S1/2) short-dash for P1/2
and long-dash for P3/2 partial waves. The R-function expansions used a 5.0 fm
channel radius. '
Sums of experimental reduced neutron widths and integrals of theoretical strength
functions for the S1/21 Py/2s and P3/2 neutron partial waves for 4°Ar in the
resonance region. The error bars show the uncertainties in the full sums for an
assumed Porter-Thomas distribution of widths. The curve represents integrals up
to the energy of the strength functions from the model.
Total cross section for n—*2Ca over the neutron energy range 1.2—2.2 MeV.
The short-, intermediate-; and long-dash lines betoken the contributions
due to pi/Q, P3/2 and d5/2 partial waves, respectively. The solid line through

the data points represents the sum of all partial waves.
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Fig. 9. Total cross section for n—*3Ca over the neutron energy range 2.0—3.0 MeV.
The short-, intermediate-, and long-dash lines betoken the contributions due
to P1/2 d3/2 and d5/2 partial waves, respectively. The solid line through the
data points represents the sum of all partial waves.

Fig. 10.  Total cross section for n—*3Ca over the neutron energy range 2.9—3.5 MeV.
The short-, intermediate-, and long dash lines betoken the contributions due t
P1/2 d3/2 and d5/2 partial waves, respectively. The solid line through the data
points represents the sum of all partial waves. The solid partial wave curve
corresponds to P3/2-

Fig. 11.  Cumulative sum of reduced widths for p- and d-wave resonances observed in
n—*%Ca . |

Fig. 12. The external R-functions for *®Ca over the neutron energy range 0 — 4.0 MeV.

Fig. 13. Porter-Thomas test for missing resonances for d5/2 resonances. The histogram
represents the number of resonances with (7?\)1/2 greater than the abscissa. The
dashed curve corresponds to results expected if widths are drawn from a Porter-
Thomas distribution assuming no levels are missed. The solid curve is for 4-missing

resonances.
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