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Radial Boundary Layers in Diffusing Toroidal Equilibria 

* M. D. Rosen and J. M. Greene 

Plasma Physics Laboratory, Princeton University 

Princeton, New Jersey 08540 

ABSTRACT 

Analytic results in straight cylindrical geometry 

imply sharp density gradients near the boundary of a 

plasma decaying by classical diffusion. Utilizing an 

isothermal one-fluid magnetohydrodynamic model, we 

apply these results to toroidal configurations and obtain 

a set of noillinea.r equations for a radial boundary layer. 

A dominant effect in this regime is convective plasma 

flow along magnetic lines of force, with velocity in the sonic 

range. This flow pattern matches onto the interior solution 

of Pfirsch-SchHiter convective flow. Solutions separable 

in the radial and poloidal directions are found that 

fulfill both boundary and periodicity conditions, and that 

result in both smooth subsonic poloidal flow, and weak shock 

transonic flows. Effects of the flow patterns on diffusion 

are discussed. 
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I. INTRODUCTION 

Most studies of toroidal plasma confinement have been char·acter-

ized by the assumption that the plasma is in static equilibrium. However, 

about six years ag.o many papers appeared in the literature that studied 

inertial (and dissipative) effects in toroidal systems. Poloidal rotat~ons, 

weak shocks, and enhanced diffusion due to flows were among the main 

1 
topics under inve~~.tigation. An excellent review paper by Green cdntains 

over fifty references on these subjects. 

2 
In this paper, we take-a critical look at some of those pape'!S, 

with special emphasis on fulfilling boundary conditions at a perfect:l)' 

conducting mater~;al limiter and part~cularly on the plasma behavior in a 

region near that limiter. We find a condition on the steepening of the density 

gradient near the limiter by studying a plasma diffusing classically· in a 

straight system. ,This condition is applied, in leading order, to a-~~roidal 

system and is fm,I:hd to cause a breakdown of the usual expansion ip~:inverse .. . 

aspect ratio. This results in a radial boundary layer near the plasma edge, 

the solution of which is the main objective of this paper. 

In order to understand the appearance of radial boundary l~;Yers 

and the meaning -~f their velocity flow patterns, we must first fully; under-

stand the bulk pl~sma solution. In the bulk plasma region,density gradients 
... 

are mild, ( dp/dr) "'p/a, as opposed to the boundary layer region near 

the edge where p is small and which will be shown to behave as (~p/dr)"'l/p. 

~-
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This bulk plasma region has been investigated· extensively, and demon-

strates Pfirsch-Schliiter current and velocity convection patterns, shown 

in Fig. 1. The physical mechanisms behind this flow pattern are due 

mainly to the 1/R behavior of the. toroidal field, and to resistivity. Ions 

drift upward an~ electrons downward in this toroidal field. The rotational 

• transform (poloidal field) permits rapid neutralization of the resultant E 

field caused by the charge separation. However, in a resistive plasma, 
.; 

this neutralization is incomplete. Consider the remaining un-neutralized 

groups of ions and electrons localized at the upper and lower flow stagnation 

- - -points of Fig .. la. These produce a static E field that yields the E X B · 

drift flow pattern of Fig. la.' This, in turn, causes a pressure imbalance 

along field lines that is neutralized by flows parallel to the field lines. The 

poloidal and toroidal components of this flow are shown in Figs. la and lc. 

Plasma inertia prevents complete neutralization of the pres sure, so that 

pressure gradients remain along field lines. 
I 

Near the plasma boundary,density gradients, electric fields, and 

flow velocities become increasingly large. When the poloidal velocity .. 

approaches the reduced sound spe.ed, pres sure variations over a magnetic .• 
surface become finite. At the reduced sound speed, transonic flow and 

shocks come into existence. These effects, in the boundary layer, are the 

subject of this paper. 

The model used is described in Sec. II. In Sec. III, we consider a 

straight cylindrical configuration and solutions to the diffusion equation in 
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such a system. A resulting steep density gradient condition, near the plasma 

edge, is applied to a toroidal system in Sec. IV. The boundary layer equa-

tions are derived, and separable solutions in the radial and poloidal directions 

are found. In Sec. V, we discuss subsonic, smoothly flowing, poloidal behavior 

in the boundary layer, while in Sec. VI we find different solutions of a tran-

sonic and weak shock nature. Section VII concludes the analysis with a look • 

"<H the effects of these flow soluhons on the diffusion. Section VITI contains 

conclusions ahd some remarks on the assumptions of the model. 

II. MODEL 

We consider the following fluid model for a plasma in a highly 

collisional regime. The pressure is a scalar, and we further simplify the 

model by making an isothermal approximation. With s denoting the sound 

speed, p the density, and TJ a scalar resistivity, our one-fluid magneto-

hydrodynamic model becomes 

- 1 2--av --- - -p + v• Vv - (jXB)- s Vp 
at c 

( 1) 

••t 

- 1 - - -vq, = ( v X B) - TJ j 
c 

( 2) 

.££ - -+ V· (pv) = 0 
at 

(3) 

( 4) 

.. 
We have kept the inertia terms in the force law, and have assumed a 

low (3 [( p /B 
2

) « 1] , which makes perturbations of the magnetic field 

,, 
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associated with mass diffus:j.on negligibly small. As such, the magnetic 

field is static and allows E =- vcp in Ohm's law. In addition, Ampere's 

law is replaced by charge conservation Eq. ( 4). A final consequence of the 

4 
low-(3 approximation is the "Knorr Model" magnetic field. In the usual 

toroidal system, Fig. 2, the magnetic field lines form concentric surfaces 

of radius r; f) is an angle around the magnetic axis, and z is measured 

along this axis .. We represent the magnetic field as 

( 5) 

with 

N = 1 - ( r I R) cos e ( 6) 

and f (r) representative of the poloidal field. 

Since the fluid equations have a preferred direction along the 

field lines, it is convenient to decompose vectors as 

v= 
A - A 2 - 2 

v e + v B [( B X e ) I B ] + vb B (BIB ) 
r r s o r o ( 7) -

= v ~ + ( Nl( 1+ f
2 

)][(v + fvb) e
8 

+ (vb- fv ) e ] . 
r r s s z ( 8) 

To help in the solution of our basic set [Eqs. (l) - ( 4)] , we adopt an optimal 

2 
ordering designed to include as much relevant physics as possible 

a 

ER 
-,.....,-
E s 

v 
s 

ES 

v 
r 

2 
E s 

Note that we are considering a slowly evolving equilibrium decaying by 

means of classical diffusion on a (a/ at),....., 1J,....., E
3 

time scale. 

(9) 
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III. STRAIGHT SYSTEM 

Before studying our large aspect ratio toroidal system we consider 

a straight cylindrical configuration. This will provide a guideline for choosing 

a density profile for the toroidal case. The justification for this approach is 

that in toroidal geometry we expand in E = a/R. The density p can then be 

expressed as 

.p = p(O) (r) + p(l) (r,e) + 

where p ( O) (r) is an arbitrary function. Thus the leading order p 0 (r) should 

be determined from the straight system and then applied to toroidal geometry. 

The existence of Pfirsch-Schliiter terms in the diffusion makes this statement 

only qualitatively correct, but that is all that is needed here. 

In the straight system, Eq. (3) becomes 

E.e_ + 1 
Dt r 

From the radial component of the force law we obtain 

J ~ (cs
2 

/ B ) (o.p/or) 
s 0 

and from B X (Ohm• s law)·~ 
r 

we obtain 

v = ( T] c/B ) j 
r o s 

Therefore, Eq~ (lO)becomes 

2 2 
~ _ .!_ _£_ ( rn c s 
at - r or B 2 ~) or 

( 10) 

( ll) 

(1.2). 

(13) 

.. 
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2 2 2 2 -1 
p =X(r)p (1+(7]C s p At/B a)] 

0 0 0 

and thus reduces Eq. (13) to an eigenvalue equation 

- A X = a 2 _i_ ( r X dX ) 
r dr dr 

( 14) 

(15) 

This equation has been solved numerically 
6 

subject to the boundary con-

ditions (dX/dr)::;: 0 at r = 0, and X= 0 at r =a. (A limiter absorbs all 

particles that venture past r =a. ) The solution is A= 2. 28, and is shown 

in Fig. 3a. 

Near r =a, the density is small, and Eq. (15) yields 

(16) 

or equivalently 

(dp/dr) "' ( 1/p) ( 17) 

so that the density gradients are large. This density gradient steepening 

behavior is the key to the toroidal boundary layers that will follow in the 

next section • 

7 
If instead of a diffusing equilibrium we studied one maintained 

by a plasma source Q (r ), 

1 
r 

a 
or (rpv ) = Q(r) , 

r . (18) 

we can also fmd conditions on p (r) near r =a, Fig. 3a could just as well 
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be the solution of Eq. (18) for a constant source Q(r) = 2 q , while Fig. 3b 
0 

describes the solution for 
2 

Q(r) = 4q
2

r , representing a more realistic 

distribution of neutrals as a plasma s.ource, as they are more numerous 

near the plasma edge. Nonetheless, either source yields a p (r) such that, 

near r =a, the steepness condition, Eq. (17), still holds. 

IV. TOROIDAL SYSTEM AND BOUNDARY LAYER 

.. 
As de scribed in the introduction, the bulk plasma behavior in a 

toroidal system has a characteristic convective flow pattern (Fig. 1). Near 

the plasma edge the density gradients and flows will become large ~nd a 

boundary layer ~~11 be needed to describe this region. For the bulk plasma 

solution, we find·~ 2 
expanding in po";ers of E, that p = p (O) (r) + p (l) (r, 8), 

where T 

This is fine as long as ( dp (O) /dr) ,....., p 0 
/a ,....., 

edge Eq. (17) holds, ( dp (O)/dr)"' (1/p(O)), so 

0 
E . However, near,.the plasma 

a breakdown will occur when p(O) 

1/3 (1) 1/3 2 1/3 (0) 
drops to order E . Then p ,.__ E (1/ E ·· ) ,....., E "'P . To be consistent with 

Eq. (17), p(O),.....,E.l/ 3 implies (8/or),....., E-
2! 3 

which implies that the 

. 2/3 
boundary layer is located radially at r =a ( 1- E ) . Table 1 gives an 

accounting of the size and dependences of all quantities in the bulk plasma 

region and in the boundary layer. 

To find t-h~ equations governing this boundary layer we wi~l appeal 

to the orderings given in Table 1. The radial and perpendicular components 

.,. 
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of Ohm's law serve to determine vs and vb, while the force law gives 

j and j • The parallel Ohm1 s law yields jb, while the parallel force law 
s r 

links p, vb, and cp, as do the mass and charge conservation. laws. 

We begin with the charge conservation, Eq. (4) , 

2/3 
The significant order that needs to be calculated is e: • Therefore 

we need .(4 / 3 ) 
Jr , 

.( 2/3) 
J s , 

and .(-l/ 3 ) 
Jb . 

.(4/3) 
J = r 

.(2/3) 
J = s 

2 
cs 
Br 

c - s 
B 

and from Eq. ( 2) , 

.( -1/3) f 
Jb = - 7Jr 

2 

(4/3) ap 
ae 

a (4/3) p 
or 

ap_< 5/3) 

ae 

These are, from Eq. (1), 

(19) 

( 21) 

(22) 

Combining these last three equations with Eqs. (6), (7), and (19), yields 

r 
2 a ( ( 1/3) ( o) 

2 
2 2 ( 1/3) ] 

sin e [ - p vb + s p ) . R or 

The leading terms from Ohm's law, Eq. (2), are 

(5/3) 
v 

r 
c = ---B r 
0 

(23) 

(24) 

( 20) 
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v 
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= 

c 
·B 

0 
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The leading' or_der parallel force law then becomes 

( 

a)O) 
c b -- --

B or 
0 

and the leading order mass continuity becomes 

- __£_ (ap(l/3) racp(S/3) ap(l/3) acp(S/3)) a (1/3) (O) 
B or of) - o f) or + f M ( p v b ) =: ' .0 • 

0 

( 25) 

(26) 

(27) 

Equations (23), (26), and (27) are the set of equations go.verning 

the structure of the boundary layer. They nonlinearly couple p, vb, and cp 

through three partial differential equations in two variables, r and f) • 

Before solving this set let us verify that in the limit of returning from the 

boundary layer to the bulk plasma, our set reduces to one whose., solutions are 

the bulk-plasma p, cf>, and. vb, This will ensure the matching of whatever 

boundary layer solutions we find to the bulk-plasma solutions. 

To app~oach the limit of bulk plasma parameters., we refer back to 

Table 1, along with the setting of v~O) (r) and cp(l) (r) to zero to exclude 

unidirectional p~oloidal flows, which are clearly absent from Fig. 1. In this 

limit Eq. (23) becomes 

2 2 
r s 

R 
sin f) 

d 
( 0) 
~ 

dr ( 23' ) 
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which can be integrated immediately since sin(} is the sole (} dependence. 

Then Eqs. (24) and (25) yield 

(2) 
v 

r 

( 2) 
v = 

s 

2 
2 s r ( -

2
- cos(} 

f R 

dp(O) ) 

dr 

d p(O)) 
dr 

(24' ) 

( 25 I ) 

These are in complete agreement with the bulk plasma solutions for v 
r 

and v given in Ref. 2, [Eqs. (21) and (22)]. A further consequence of 
s 

taking the bulk plasma limit is that Eq. (27) becomes 

c 
B 

0 

acp<2) dp(O) 

a(} dr 
= -fp(O) 

Since q>( 2
) is now known from Eq. ( 23'), Eq. (2 7') yields for v~) 

(1) 
v = h 

2 2 2 2n c s r 
2 3 

B f'R ( 
1 )f-d p ( 

0) ( r )) _ (} 

p(O)(r) \ dr Sln 

which agrees with Ref. 2, Eq. (26). 
(2) (2) (1) 

Since v 1 'd 1 =v +fvb , 
po 01 a s 

Eqs. (25') and (27") can be combined, and yield the behavior shown in 

( 27') 

(27") 

Fig. la. Similarly, v(l) 'd 
1 

= vb(l) yields, via Eq. (27"), the flow behavior 
toro1 a 

of Fig. lc. Thus, our boundary layer set of equations indeed yields bulk-

plasma solutions when we go to the proper bulk-plasma limit. 
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A very useful solution of the set of boundary layer, equa.tions (23), 

(26)·, and (27) is separable in the form 

P ( ll 3) ( r, e ) = [ (a - r) I a l 2 P'-( 3 I 3 ) ( e ) 

cp( 513
)(r,e) = [(a-r)la] ~( 313 )(8) , 

( 0) 
vb (r, e) = '; (0) (B) 

b 

( 28) 

Thoe;o ohoicoc arc uocful; not only in tho.t: they rcduee t.hc. cnn.,.plicat.-.d 

set of equations to· a set of ordinary differential equations in e ' but also in 

that they satisfy the boundary conditions at r =a. The potential cp vanishes 

at the absorbing, conducting surface (a limiter), as does the density p. Note 

too, that the bulk-plasma density profile enters the boundary layer, dropping 

off quite steeply. The parabolic p(r) in the boundary layer gently returns 

this steepening into a more realistic bell-shaped profile. This is shown in 

Fig. 4. 

V. POLOIDAL STRUCTURE: SUBSONIC 

Before:moving on to solve for the peloidal structure of the boundary 

layer, it is con'venient to put the set of equations for the separable solution 

into dimensionless form. Let 

and introduce "for the e dependent factors of the separated solutions, 

,. 
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~(3/3) 

fs 

"'(-3/3) 
P = ;:.J£ P=---­

P (0) 
m= cp+ v. 

All quantities are now of order £
0 

= 1. Using Eqs. (23 ), (26), (27), (28), 

and (29) we obtain, after some rearrangement of (26) and (27), 

2 
Pe = 2pt/Jm/(m - 1) 

2 
ve = -2t/l/(m - 1) 

cpe - t/1 

t/le 
2 

= 2TJ (2+v )p sinO 
0 

(29) 

(30) 

(31) 

( 32) 

(33) 

Note the denominator has a singularity at m = ± 1, "mach one". In unsealed 

form this corresponds to v 
1 

.d 
1 

equalling the reduced sound speed 
8 

fs. 
po 01 a 

This speed corresponds to the "slow hydromagnetic wave" propagating in 

2 2 2 2 2 2 
the e direction. Let b = B I 4Trp and b = b = £ b , then 

n e 

f 
2 2 2 2 2 2 2 1/ 2l 

( s + b ) - ( ( s + b ) - 4s b n] 
1 
2 

2 2 
s b 

n 

2 b2 s + 

2 2 
~ s f 

A perturbation will not propagate in a plasma that is flowing at this speed 

and thus a standing shock can be formed. This, then, is the significance 

of the singularity in the denominator. 

(34) 
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Since Eqs. (30)- (32) are autonomous we can actually solve for p 

and cp in terms of v. Adding Eqs. (31) and (32), we obtain 

= 
2 

(m - 3) 
2 

(m - 1) 

The integration can be performed straightforwardly, yielding 

and thus 

: m. 
'f' = n'l -

t\[3 + m 
ln. :J3 - m 

..[3 
m = cp + v = ..[3 tanh ( -

2
- v ) . 

In determining constants of integration we have assumed that rn=v=¢=0 

(3 5) 

(3 6) 

at (} = 0, and 1r. This choice is motivated by the physics of the bulk plasma 

·Pfirsch-Schliiter convective flows as shown in Fig. 1 (a and c), ( m = v = 0 ==* 

cp = 0 ). 

Next we divide Eq. (30) by Eq. (31), and obtain 

· d ( logp) 
dv 

..[3 
= - rn = - ..[3 tanh ( 2 v ) 

which can also.,be. solved explicitly,. yielding 

2 ..[3 
p = p ( v = 0 ) s e ch ( 2 v) 

at v = ±0. 76034 ... , rn = ± 1, and p =(2/3)p ( 0 ). Thus, we need only 
crit 

solve a final reduced set 

= 27]
0
p(0)(2tv2 ) se.ch2 (,..[3 v) sin(}) 

2 

(3 7) 

(3 8) 
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In general, this nonlinear set must be integrated numerically. We can find 

an analytic solution in the limit of small p (0). 

We call this the subsonic solution in which m « 1 ( v « v . ). 
max max cr1t 

Since v willbesmall, "Yetake (2+v
2

)sech
2 

[(.f3/2)v] =2, let 

417 p (0) = {j « 1 and obtain 
0 

t/1 ~ - {j cos (} ' 

v :::::::: - 2{j sin(} , 

cp ~ - {j s in (} , 

m ~ - 3 {j sin(} , 

p ~ p (0) • 

These are pictured in Fig. 5. Note that these solutions obey the boundary 

conditions m = v = cp = 0 at (} = 0, lT as well as periodicity constraints. 

Note also the natural way in which this peloidal behavior matches qualita-

tively back into the bulk plasma flow pattern. This is shown in Fig. 7. 

QuauliLCLLively, Eq. (39) does not agree with ~qs. (23') - (l,"(') because of 

the additional assumptions introduced in forming the separated solution . 

The relations between these various solutions will be discussed in Sec. VIII. 

(3 9) 
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VI. POLOIDAL STRUCTURE - TRANSONIC 

Our subsonic results are not the only type of solutions of the non-

linear set Eq. (38). We now explore solutions with transonic behavior. 

Figure 7 deals with the four possible varieties of solutions when the Mach 

number m is close to unity. Case (a) is a subsonic solution with maximum 

velocity slightly less than t_he reduced sound speed. This ty:pe is· character-

ized by I v(•8 )I< v 't where· v .t is defined below Eq. (3'7) and crit · cr1 cr1 

8 = 8 l:.L'll is the point at which t/1 (f) Crit) = 0. ThP. (h)+ Anhltinn is the 

limit as v ( 8 .. ) - v . • The (b) solution is transonic. Analysis of the 
cr1t cr1t -

set Eq. (38) shows that if v (8 "t) = V· . we obtain v8 = ± [t/1 (8 . )]1/
2

' 
· cr1 . e-r1t o cr1t 

with the ± signs corresponding to the (b)± curves. Either solut~on is 

possible, depending on global conditions. Finally, the curve {c) :has I v8 I = 00 

at v = v . , and implies the possibility of shock solutions. The need for 
cr1t 

shock solutions. comes from the fact that any solution following a(b) path 
" -

goes right through v . and continues supersonically, never to return 
cnt 

the velocity back to zero. But v = 0 at 8 = 0 and 1r. Therefore, there must 

be a sudden jump back to a different type of solution, for which case (c) is 

a perfect candWate, that will. return v to zero. This is shown in Fig. 10 b. 

The borderline between shock and subsonic solutions is the afore-

mentioned. (b)+ pr zero shock solution. It can be described quite _accurately 

as 2v 
crit 

8 
.. 

v = 
lT (40) 

v 't 
[1- 3 ta~h 2 

( ,[3 
v 
crit 

t/1 
cr1 

8 ) J = 
lT lT .. 

•. 

•· 
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in the region 0 < 8 < 1r /2. Then reflecting symmetrically around 1r/2, 

and then antisymmetrically around 1T reveals the full zero shock solution 

as shown in Fig. 8. It is noteworthy that the three possible solutions men-

tioned, subsonic, zero shock, and shock bear a striking resemblance to 

classical one-dimensional compressivle fluid in a co~verging-diverging 

nozzle. 9 

Returning now to the shock solutions, we must find a recipe that 

dictates where and how to jump from the supersonic to subsonic branch. 

The obvious physical constraints are mass- and momentum-flux conservation 

across the poloidal shock. In deriving these conditions, the o/o8 terms will 

predominate, yielding from Eq. (3) 

0 
ae (pv poloidal) = 0 , 

or in our scaled units 

[pm = o], 

where the brackets denote a jump across the shock. The momentum flux 

conservation, Eq. (26) yields 

mov 
ao 

which, with Eq. (41) reduces to 

0 . 

( 41) 

(42) 
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It is helpful to plot pm and (1/m):+ v as functions of v in Fig; 9a, and 

t~en as a function one of the other in Fig. 9b. 

It would,seem, at first glance, that the subsonic and supersonic 

branches intersect at only one poin.t;·l m I = 1, thus allowing only a zero 

shock solution. However, the p (v = 0) factor in p, Eq. (3 7), al~ows two 

values' p ( 8 = 0 ) and p ( 8 = 1T ). With p > p we have Fig. lOa.· We begin 
1T 0 

at e = 1T along the p m C\].:J;Ve, (l), paSS transonic.rt.lly th1•nngh n'1Rrh Ql).;>,(?.) 
: fi' 

and finally jump back to the subsonic solution (3), that returns ti~. along 
·,.i: 

p m to 8 = 0. In real space this is shown in Fig. lOb. Thus, we have 
0 

ensured that the periodicity and boundary conditions. on v (and cp·. and m) 
".1 

be fulfilled. 

Thus, the scenario for shock fitting· is as follows. We first choose 

p ( 8 = 0 )(subscript 0 denotes the downstream solution that includes 8 = 0, 
0 . 

and subscript rr denotes the upstream solution). This generates a single 

curve in the [pm, (1/m) + v] plane, independent of t/i ( 8:::; 0 ), such as Fig. lOa. 

Next chQose any p rr ( 8 = rr) ~ p 
0 

( 8 = 0). This will generate another curve that 

intersects the first, as in F'ig. lOa. The intersection point defines a unique 

pair (v , v b·), across which the shock will stretch, and, by ~.onstruction, 
sup su . 

preserve the mass and momentum fluxes. 

Once p ' ( 8 = rr) is chosen, t/i (8 = rr) will then determine::· v (8) and 
1T. 1T . 1T 

t/i (8) for all 8 . However, there is only one t/i (8 = rr) that determines a 
1T 1T . 

satisfying tJ,t = 0 when 
1T 

v = v "t' rr cr1 
the transonic flow condition. 

With p ( 8 ~ 1r) given, and t/i (8 = rr) now determined, so is v (8) 
.. 1T 1T 1T 

... 
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Where v (8 ) = v , 
1r sup 
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that is the shock position 8 (as in Fig. lOb). 
s 

Once 

8 is determined, we know exactly where v b must be. Our v (8) 
s . su 0 

solution must therefore satisfy v (8 ) = v b" There is only one l/1 (8 =0) 
0 s su 0 

that can generate such a solution. There are now two free parameters, 

p (0) and p (1r). In general, one would expect to have two more jump 
0 1T 

conditions across the shock so that there is one corresponding to each 

derivative in the set, Eqs. (30) - (33). However, these conditions are not 

consistent. The reason is that the quantity JTJ/ dT represents energy 

lost from the system of Eqs. (1) - (4). Thus, strong shocks must be 

associated with an energy loss that is not consistent with the magnitude 

of time derivatives that have been assumed in this paper. However, consis-

tent small amplitude shocks can be found where the onus of matching the 

additional jump conditions can be placed on terms that are higher order in 

the shock strength. 

Thus, let us investigate ''small-shock" solutions in which the shock 

strength is of order o,...., £1/3 « 1. Then m::::: -1 ± o , and p (8 = 0) has 
0 

the value required for v to reach the (b)+ solution of Fig. 7. For Eqs. 

(36) and ( 42) to be fulfilled through and including orders o 3 , we find 

1 2 2 3 
m=-1±6--o =F-o 

6 3 

Thus when we eventually determine o as a function of (a- r), wP- will 

(43) 
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determine p ( 8 = 1T ), and then the shock will be fully determined. ·Another 
1T 

ramification of these· solutions is that cp is really conserved as seen below, 

but using Eq. (36), [ cp] = I m- vI = 4/3 o 3 . Thus, there must be correc-

tions to Eq. (36) via higher order equations. This brings us to the next 

task, which is solving for the actual shock structure. 

Since j ,..;..., a p/o 8 (force law), we expect it to grow large within 
r 

the poloidal shock. }"or maximal ordering, since v(l) = (c/B)(o <f>(S,/3)/or) + 
s 

(ryc/B ) j 
o r 

(Ohm's law), 
3 

and TJ "' E · we demand that jr grow to 

be 
-2 

E within the shock. Thus, ·the mass continuity equation, Eq. (41), 

now becomes, in dimensionless form 

2 7/3 
P ( <1> + v - x TJ o E Pe 

where is a: constant of integration Q.nd x= -t./3 
(r - a) E • While 

the parallel momentum law, Eq. (-42), remains 

with K
2 

another constant of integration. We solve these last two 

equations for the small shock solutions, Eq. (32), in which ¢ and tJ; 

are both constant across the shock. ln this limit the leading order of 

Eq. (44) is a c'onstant, 

These yield 

2 
so the calculation is carried to order, o . 

( 44) 

( 45) 

=~p (8=0) 
3 0 

. 3 2 
K 1 =· p o ( -1 + z o ) ' K

2 
= p (1 - v + 2_ v o 2 

) • , 
0 c 2 c 
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Upon manipulation, Eqs. (44) and (45) reduce to 

= 

-113 
(B-0 )£ 

0 

2 
1JP X 

0 

This is a standard integral whose solution yields 

p =p 
0 [ (

(e-e )o£-
7

/
3
)] 

1- o tanh 
0 

2 • 

11o Pox 

1 I 3 6 I 3 . ( 1/ 3 ) 
We find a shock thickness "oe••....., £ lo ""£ • Note that J "'P 

r e 
( 

F.. -1 I 3) 113 F.. 2 -2 
v£ o£ "' v £ . 

We have also solved for the shock; structure by including visco_si ty 

in Ref. 7. Because this result is not very different, we have left out the 

analysis here. 

(46) 

The physical significance of the shock solutions have been described 

earlier in this section when we showed why mach one was a critical velocity. 

The poloidal sl.t·u~...:lu.t·t:! :shuwn in Fig. 11 matches onto the bulk plasma 

behavior quite naturally, as it did for the subsonic case, if the shock begins 

at zero strength as we first enter the boundary layer. In the next section, 

we will prove that it so, by investigating the radial behavior of o , the 

shock strength. 

\ 
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VII. DIFFUSION 

Since our goal is that of finding the radial behavior of the shock 

h l/ 3 . . 1 th . 1 th strengt · 6 "' £ , 1t 1s c ear at we must ook at e next order boundary 

1/3 . layer equations (smaller than the leading order ones by £ ). W1th the 

notation ·::.. 

2 
(1/3)::: (r-a) p, )0)= v (5/ 3) a ( )._; 

( ) r p cf> = (-r -a) cp. --· = b - , 
l;lr 

.t 

(2/3) A (1/ 3) ... . 6/3 ... a ( ) - ¢ ( ) e p "=' p v - ~T j Cfl - -;:::;: 
b ae 

we obtain the equivalents of Eqs. (23), (.26), and (27): 

2 
~ c [ 2 2... ... 2 ... ] = sin e ( 2::; + v ) p + 4 ( r -a) p vv + 2 ( r- a) p v v 
f(a)2 BR r r 

( 4 7) 

c ... ... ... ] 2 ... s... ["' 
Bp[-cprv8 t(r-a)cpvr-cpv

8
- s f(a)pe+3p (cpv

8
)- f(a) pvv

8 
( 48) 

2 ... ... 
+(r-a) (vev+ vve)] == 0, 

C 2 A C A ..._ 2 .A. 

B [2(r-a)p~ 8 _.7 (r-a) p
8

cpr] +- B [pr (r-a) cp
8

-p
0

cf>J + f(a)(r-a) (pv)
8 

\.J 

( 49) 
tf(a)(pv) e =0 

If we attempt a separable solution of. the form p = (r-a)nP p ( 8 ),. etc. , 

we find that n = n n- + 1 = n + 2 . Though this is the same relationship 
p 'f' v 
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that held for the leading order solution, there n was determined to be 
v 

zero. Here it is undetermined, and thus we have a 11floating 11 behavior in 

(r-a) for all three functions. This fact will play a crucial role in what is 

to soon folow. 

We now turn to finding the diffusion for our weak shock solutions. 

The diffusion equation is merely Eq. (3) averaged over (): 

21!. 
at = - ~ :r r ~ .. (pNvrad) d(J 

where a bar denotes a 0 average. It is straightforward to show that for 

a zero shock solution, the right-hand side yields the Pfirsch-Schliiter 

result 

where 

2 a ,...., -(3/3 > 
r(r-a) -p . (())= at 

a 3 
or [ r (r-a) K 2 ] 

2 
( 1 + 2q ) = () ( E ) • 

Our task is to calculate additional terms due to the shock. In our 

dimensionless notation we are considering j>p t/ld(). Normally this would 

vanish, as p"' 1 + cos 2 () and tJ; "' cos () . However, due to the shock, the 

symmetry is broken in the small regions (of width ,...., o) around () = tr/2, 

3tr/2. A close-up of those regions is shown in Fig. 12. Calling 

2 (ot/1/o())(()- tr/2):= ~ , y =()- tr/2, we obtain 

(50) 

(51) 
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p ( y) = ( z 13 )p o ( e = o ) [ 1 + ( o 1 E ) y ] , 

2 
tJ; = !:;. y 

But we know that v = v ± a· implying that o = EA.. Then 
sub, sup crit Y' 

E 

= j' Po 
2 3 

[ 2/3 ( 1 +.a y ) ] ( a y ) d y rv 0 p . 
0 

-c 

There i.s·another term due to the shocks. From Eqs. (43) and (46) 

we can write f/> as 

( e -e ) o E 
7

/
3 

0 3 
· cp = cp + 21 3 o tanh 

c 

since 1/3 o3 
.is the jump in f/> across the shock. Then 

2 
tJ;=th = 

'~'o 3 

4 -7/3 
0 E 

Using p = p ( B ,: 0 )( 2/3} , we obtain 
0 

-CO 

i 
sech (y) 

2 
X TJ p 

0 0 

-7 I 3 
E 0 

Putting Eqs. (5,0), (51), (53), and (55) together, we obtain 

2 ap(- 3/3) (B) 
r (r- a) at = -

0 3 3 or [ ( r - a) ( K 
1 
o + K 2 ) ] 

3 
dy"' p 0 • 

. 0 

(52) 

(53) 

(54) 

(55) 

(56) 
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All three terms on the .right-hand side are 0 ( £) 

clear from Eq. (56) that 

-1 a£ 
- "'£ 
at 

or 
a 
at 

2 
£ 

since It is 

This contradicts our assumptions of a plasma slowly decaying by classical 

diffusion on a time scale (a/at)"' 17 "' £
3

• In other words, the boundary 

(57) 

layer collapses much faster than the interior plasma, bringing into question 

the entire analysis. 

However, this "catastrophe" can be prevented by making what is inside 

the bracket on the right-hand side of Eq. (56) - a constant. This is the toroidal 

analogy of what was done in the cylindrical case when the diffusion near the 

edge was calculated. Recall Eqs. (13)- (17) in which we set (d/dr)[p(dp/dr)] 

to zero, or p (dp/dr) = constant. 

The freedom in the radial variation of the shock strength o ( = v(l/
3

) ), 

as discussed at the beginning of this section, now enters to play a crucial 

role, It allows us, here, to use the technique of "setting the bracket equal 

to a constant", and obtaining 

3 2 
= (constant) ( a £ 

3 
(a-r) 

(58) 

2/3 
At the onset of the boundary layer [ r =a ( 1-£ )] we have o ·= 0, as required 

to match onto the shockless bulk plasma interior. Throughout the boundary 

layer 0 grows, until at r =a ( 1- E ) 0 becomes finite and the analysis breaks 
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down. This is consistent with the "floating" radial behavior of the higher 

order quantities, since if v(l/3 ),....., E/(r-a), then at r=a(l-E), v(l/ 3 ),....., 

0 (0) and the analysis breaks down. Similar arguments for p and n. 
E "'V 't' 

show a similar breakdown at r =a (1-E). It should be noted that by then 

p becomes small, of order E • 

VIII. CONCLUSIONS 

Condit~ons near·the boundary of a diffusing, large aspect ratio, 

toroidal plasma have been considered. Near the plasma edge, d~nsity gradients 

increase, as was shown in Sec. lll. Further; secondary flow along the field 

lines also increases. Throughout"most of the plasma these effects remain 

small enough that they can be treated as perturbations. This was calculated 

in Ref. 2. These perturbation results, when combined with the ,calculation 

1 
.··d h . h h 213 h :: . th . of Sec. III, ea to t e estlmate t at w en a- r,....., E , w ere .. E 1s e mverse 

toroidal aspect ratio, density variations, and secondary flows become finite 

and perturbation theory is no longer valid. A set of nonlinear equations 

governing this nonlinear behavior was derived in Sec. IV. 

The most significant solu'tion of these equations is that containing a 

weak shock, discussed in Sec. VI. Here, ther~ is a layer wher-e the maximum 

flow velocity is very close to the sonic speed, and the density profile is 

self similar and'falls off as ( a-r )
2

. The amplitude of the wea~ shock in-

creases toward the plasma boundary, but it is too weak to have a direct 

effect on the density and velocity profiles. 
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Between the bulk plasma, where perturbation theory is valid, and the 

weak shock layer, there is a region that bridges between these two. Exact 

solutions of the coupled nonlinear set, Eqs. (23), (26), and (27)~ have not 

7 
been found that cover this, but from approximate solutions it is clear that 

there is no new interesting physics going on. The subsonic solutions of Sec. V 

provide a model for this region. While the amplitude of the subsonic solution 

will increase as the wall is approached, contrary to the separable assumptions 

of Sec. V, this will not have a strong effect on the profiles of Fig. 5. From 

Eqs. (23 1 )- (27 1
) it is clear that these solutions merge smoothly into the bulk 

plasma region. 

Similarly, outside the weakshock layer, there appears to be another 

region of rapid variation. By continuity with the weakshock region, shocks 

will be of finite strength here, and perhaps particular details of the plasma-

wall interaction will be important. I .. 
A broader view of the diffusion can be obtained by examining the-energy 

relation. A direct consequence of Eqs. (1) - ( 4) is 

a 12 2 12 2 2 
at [lpv +s plnp/p

0
]+V·[pv(2v +s 1np/p

0
+s 

+jcp]+ij/ = 0 

where p is an arbitrary constant. 
0 

Thus, in this model, Ohmic dissipation represents an energy loss 

from the system. There is a close relation between this loss of energy and 

(59) 
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the energy change associated with the decrease in plasma density. In 

particular, consider a region near the plasma boundary. Mass and energy, 

evicted from the central regions by diffusion, stream through this layer 

with magnitudes that are large compared to the resident population. Thus, 

we have founq~throughout this paper the condition that the mass flux be con-

stant, indepe:q~ent of radius, 

a s·p v dB 0 = a:r r. 

so that the boundary layer is not violently disrupted by local variations in 

the flux. 

. \ 

A similar relation for the energy flux can be found by integrating 

Eq. (59) over a surface of constant r. We find approximately, 

D 
or 

Clearly, comparing these last two results, Ohmic dissipation must increase 

near the plasma boundary where the·density decreases and the slope of 

ln p increase.s. When conditions allow the formation of a weak "shock, there 

is a new, and very efficient, source of energy dissipation. Density g:r:adients 

are smaller here, because they are not needed to produce the ~equired 

dissipation. Thus, the plasma profile becomes bell shaped, as ~in Fig. 4. 

The effect of this bell shaped profile is to decrease the: .volume 

available for the confinement of the high density plasma. Thus dissipation 

associated with plasma flow can be important for confinement. Further, it 
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can have a strong influence on the poloidal variation of plasma parameters 

near the edge, and thus affect boundary conditions and plasma wall inter-

actions. 
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TABLE 1. 

Variable Bulk Plasma Boundary layer 

2/3 - 2/3 
r O<r<a(l-E ) a (1- E )< r <a 

0 1 1/3 
p £ (r)+ E ( r,O) E (r,O) 

• 2 2 
v E (r, 8) E (r,8) 

r 

1 2 5/3 v € (r)+ E (r,O) E (r,O) s 

0 1 0 . 

vb E (r)+E (r,8) E (r, 8) 

jr 
1 1/3 E (r, 8) E (r,O) 

js 
0 1 -1/3 

E (r)+E (r,8) e: (r,e) 

0 -1/3 
Jz € (r, e) E (r,O) 

-;I 1 2 1 5/3 E (r)+E (r,O) E (r)+E (r,O) 
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··, 

. (A) 

• j 

(8) (b) 

762290 
Fig. 1. Pfirsch-Schluter convection patterns. Particle 

drifts are sign dependent (B) causing neutralizing currents to 
flow (A) an~-(~)~ Resistivity prevents total neutrrilizrition~ 
thus creating ExB drifts (b) shown in poloidal (a) and toroidal 
(c) ·projections. 
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I 
MINOR-AXIS I OF TORUS 
~ 

I 
I 

~~~---R------~ 

. MAJOR AXIS I 
· OF TORUS 

682150 
Fig • .2. The (r,e,z) toroidal coordinate system. 
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1.0 {r/a) 

1.0 {rIa) 

762292 
Fig. 3. (a) Radial profile of density for the similarity 

solution of diffusion equation. (b) Radial profile of density 
for plasma supported by external sources . 
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762288 
Fig. 4. Modification o= steep density profile in bulk 

plasma due to boundary layer. 
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27r 8 

-(Mach One) -1.0 ,__ __ ___:.;_ _____ ___;, _________________ _ 

762265 
Fig. 5. ·Subsonic solution for e dependences of parallel 

flow (v), potential (<f>), peloidal flow (m), radial flow (ljl), 
and density (p). 
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' 8 

I 
I 
I 
I 

__.~l.__l 

I 
I 
I 

Major 
Axis 

762261 
Fig. 6. Inside dotted line: Bulk plasma convective flow, 

as in Fig. l('a). Outside dotted line: Subsonic boundary layer 
flow. Note the matching. ·· 
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\/crit 

762263 
Fig. 7. Possible solutions of Eq. (38): (a) Subsonic 

solution, (b)+ Just sonic solution, (b) Transonic solution, 
(c) Possible shock solution branch. 
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762267 
Fig. 8. Just sonic solution for parallel flow (v) and 

rad.::.al flow (1/J) • 
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lml>l V=Vc lml<l 
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_I +V 
m 

pm 

------------------------------~-----------+~--v+--1 m 

I 

: lml=l 
I 
I 

762285 
Fig. 9. {a) Mass flux { pm) and momentum flux { 1/m+v) as 

functions of parallel velocity, v. {b) Fluxes as function of 
one another. 
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Por---

I 
Vcrit --------,--

0 

l(m)= I 
I 

pm 

l_+V m 

8 

762269 
Fig. 10. Flux conserving shock construction •. Solution 

emanates from e =~along (1). Goes transonic and continues 
along (2). Shocks back to solution emanating from e = 0 and 
returns toe= 0 along {3). 
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(a) 

m=+l 
+I ------------...---------""""""'--~-

rr/2 

3rr/2 

-I 
m=-1 

~.<'---------------------

762271 
Fig. 11. (a) Shock solutions for parallel flow (v) elec­

tric potential·{¢) and poloidal flow (m). (b) Matching of these 
boundary layer solutions to bulk plasma convective flow. 




