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Radial Boundary Layers in Diffusing Toroidal Equilibria
M. D. Rosen* and J. M. Greene
Plasma Physics Laboratory, Princeton University

Princeton, New Jersey 08540

ABSTRACT

Analytic results in straight cylindrical geometry
imply sharp density gradients near the boundary of a
plasma decaying by classical diffusion., Utilizing an
isothermal one-fluid magnetohydrodynamic model, we
apply these results to toroidal configurations and obtain
a set of nonlinear equations for a radial boundary layer.

A dominant effect in this regime is convective plasma

flow along magnetic lines of force, with velocity in the sonic
range. This flow pattern matches onto the interior solution
of Pfirsch-Schliter convective flow. Solutions separable

in the radial and poloidal directions are found that

fulfill both boundary and periodicity conditions, and that
result in both smooth subsonic poloidal flow, and weak shock
transonic flows. Effects of the flow patterns on diffusion

are discussed.



I. INTRODUCTION

\

Most studies of toroidal plasrﬁa confinement have been chafaicter-
ized by the assumption that the plasma is in static equilibrium. However,
about six years ago many papers appéared in the literature that studied
inertial (and diséipative) effects in to;-oidal systems., Poloidal rota-;ions,
weak shocks, and enhanced diffusion due to flows were among the main
topics under investigation. An excellient review paper by Green1 contains
over {ifty references on these subjec;:s.

In this paper, we take a critiéal look at some of those papers,
with Speéial emphasis on fulfilling boundary conditions at a perfectly
conducting mate;f:i;al limiter and part'icularly on the plasma behavior in a
region near that limiter. We find a condition on the steepening of the density
gradient near the limiter by studying' a plasma diffusing classically in a
straight system. [This condition is applied, in leading order, to a-toroidal
system and is fox}:jnd to cat:;se a breakdown of the usual expansion in:inverse
aspect ratio. This results in a radial boundary layer near the plaéma edge,
the solution of whi.ch is the main objective of this paper.

In order tb understand the a;;pearance of radial bourldary lgﬁyers
and the meaning 9f their velocity flow patterns, we must first full:-');rﬁ under-
stand the bulk plasma solution. In the bulk plasma region,density gradients
are mild, (dp/dr )~p/a, as opposed to the boundary layer regi;n near

the edge where p is small and which will be shown to behave as (dp/dr)~1/p.



This bulk plasma region has been investigated. extensively, and demon-
strates Pfirsch-Schliiter current and velocity convection patterns, shown
in Fig. 1. The physical mechanisms behind this flow pattern are due
mainly to the 1/R behavior of the toroidal field, and to resistivity. Ions
drift upward and eiectrons downward in this toroidal field. The rotational
transform (poloidal field) permits rapid neutralization of the resultant E
field caused by the charge separation. However, in a resistive plasma,
this neutralization is incomplete. Consider the remaining un-neutralized
groups of ions and electrons localized at the upper and lower flow stagnation
points of Fig. la. These produce a static E field that yields the EXB-
drift flow pattern of Fig. la.” This, in turn, causes a pressure imbalance
along field lines that is neutralized by flows parallel to the field lines. The
poloidal and toroidal components of this flow are shown in Figs. la and lc.
Plasma inertia prevents complete neutralization of the pressure, so thaF
pressure gx:adients remain along field lines.

Near the plasma boundary,density gradients, electric fields, and
flow velocities become increasingly large. When the poloidal"velocity
approaches the reduced sound speed, pressure variations over a magnetic
surface become finite. At the reduced sound speed, transonic flow and
shocks come into existence. These effects, in the boundary layer, are the
subject of this paper.

The model used is described in Sec. II. In Sec. III, we consider a

straight cylindrical configuration and solutions to the diffusion equation in



such a system. A resulting steep density gradient condition, né‘.ar the plasma
edge, is applied to a toroidal system in Sec. IV. The .boundary‘layer equa-
t'ions are derived, and separable solutions in the radial and poloidal directions
are found. In Sec. V, we discuss subsonic, smoothly flowing, poloida} behavior
in the boundary layer, while in Sec. VI we find different solutions of a tran-
sonic and we;k shock nature. Section VII concludes the analysis with a look

at the effects of these flow solutions on the diffusion. Section VIII contains

conclusions and some remarks on the assumptions of the model.

II. MODEL

We consider the following fluid model for a plasma in a highly
collisional regime. The pressure is a scalar, and we further simplify the
model by making an isothermal approximation. With s denoting the sound
speed, p the density, and 7 a scalar resistivity, our one-fluid magneto-

hydrodynamic model becomes

—_— —— —_— — 2—>—>
p Z4TIVY =L GxE)-s" V0, : (1)
= I -, = - o A
V¢ = 2 (VX B)-nj , (2)
Q-Q —.. 7 = ' 3
ot TV (pV) '0~ , ) (3)
V-7 =0. (4)

We have kept the inertia terms in the force law, and have assumed a

low B [{ P/BZ) « 1], which makes perturbations of the magnetic field



associated with mass diffusion negligibly small. As such, the magnetic
field is static and allows E = -V(j) in Ohm's law. In addition, Ampere's
law is replaced by charge conservation Eq. (4). A final consequence of the
low-f approximation is the "Knorr Model" 4 magnetic field. In the usual
toroidal system, Fig. 2, the magnetic field lines form concentric surfaces
of radius r; § 1is an angle around the magnetic axis, and z is measured

along this axis. We represent the magnetic field as

E:(BO/N)[f(r)Gé+éz] ) | (5)
with

N = 1—(r/R)cosG ({))

and f(r) representative of the poloidal field.

Since the fluid equations have a preferred direction along the

field lines, it is convenient to decompose vectors as

- -~ — -~ 2 —_ 2
v=vrer+vsBo[(B><er)/B ]+vbBo(B/B ) (7)

-~ 2 -~ -~
= Vrer+[N/(1+f )][(vs+fvb)e9+(vb—fvs)ez] . (8)

To help in the solution of our basic set [Eqs, (1) -(4)], we adopt an optimal
ordering designed to include as much relevant physics as possible 2

V. v v

b s r 9/t m i

2
eR € s €s s 63 €3

(9)

Note that we are considering a slowly evolving equilibrium decaying by

means of classical diffusion on a(8/8t) ~q~ €3 time scale.



III. STRAICHT SYSTEM

Before studying our large aspect ratio toroidal system we consider
a straight cylindrical configuration. This will provide a guideline for choosing
a density profile for the toroidal case. The justification for this approach is

that in toroidal geometry we expand in €= a/R. The density p can then be

. .
expressed as ..

P =p(o) (r)+p(1) (r.0) + ... ,

W

(0)

where p (r) is an arbitrary function. Thus )the leading_ order po(r) should
be det.ermined from the straight system and then applied .to toroidal geometry.
The existence c;f Pfirsch-Schlliter terms in the diffusion makes this statement
only qualitatively correct, but that is all that is needed here.

In the straight system, Eq. (3) becomes

o 1 3 - 10
ot T T ar (rpv.r) .O . . (10)

From the radial component of the force law we obtain

I_= (es?/B ) (8p/or) | | (1)
S o] )
and from B X (Ohm's 1a1w)-$r , we obtain
. | ,
v.=-(ne/B )i . (12)

Therefore, Eq.(10)becomes

2 2
9 1 98 (rmcs pap : (13)
ot r dr BZ or ’
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This has the similarity solution

2 2 2 2 4-1
p=X(r)p [1+ (nc’s poht/Boa )] , (14)

and thus reduces Eq. (13) to an eigenvalue equation

2

a d dX
- - —_— —_— . 15
AX  dr ( rX i ) (15)

This equation has been solved numerically 6 subject to the boundary con-
ditions (dX/dr)s0 at r=0, and X=0 at r=a. (A liriter absorbs all
particles that venture past r=a.) The solution is A =2.28, and is shown
in Fig. 3a.

Near r =a, the density is small, and Eq. (15) yields

1 d - dX
i o ()] (16)
or equivalently
' (dp/dr) ~ (p) (a7

so that the density gradients are large. This density gradient steepening
behavior is the key to the toroidal boundary layers that will follow in the
next section.

If instead of a diffusing equilibrium we studied ! one maintained

by a plasma source Q(r),

1 9
T ar (TPV.) = Q(r) ., (18)

we can also find conditions on p (r) near r=a, Fig. 3a could just as well



be the solution of Eq. (18) for a constaht source Q(r) =2 q, whilé Fig. 3b
describes the solution for Q(r) = 4q2r2, representing a more realistic
distribution of neutrals as a plasma source, as they are more numerous
near the plasma edge. Nonetheless, éith’er source yields a P (r) such that,

near r =a, the steepness condition, Eq. (17), still holds.

IV. TOROIDAL SYSTEM AND BOUNDARY LAYER

As de scriioed in the introduction, the bulk plasma behavior in a
toroidal system has a characteristic convective flow pattern (Fig. 1). Near
the plasma edge the density gradienté and flows will become large and a

boundafy layer will be needed to describe this region. For the bulk plasma

1
©) (2)4 oD

2
solution, we find; expanding in powers of €, that p=p

(r,60),

where T

p(l) (r,0) ~ € (dp(o)/dr)‘2 sin@

This is fine as long as (dp(o)/dr ) ~p0/a ~ €0 . However, near the plasma

edge Eq. (17) holds, (dp(o)/dl‘)"‘ (1/P(O)), so a breakdown will occur when p(o)

/3 - :
drops to order 61/3. Then p(l)Ne (l/.e“/j)z~€1/3~p(0)

Eq. (17), p(0)~€.1/3 implies (8/0r) ~ e %3

. To be consistent with
which implies that the
boundary layer is located radially at r=a(l-€ ). Tablel gives an
accounting of the size and dependences of all quantities in the bulk plasma
region and in thevboundary layer.

To find the equations governing this boundary layer we will appeal

to the orderings given in Table 1. The radial and perpendicular components
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of Ohm's law serve to determine A and vy while the force law gives

jS and j . The parallel Ohm's law yields jb, while the parallel force law
by

links p, vy and ¢, as do the mass and charge conservation laws.

We begin with the charge conservation, Eq. (4),

® iy el (N -
.. . 2/3
The significant order that needs to be calculated is € . Therefore
P
we need ji_4/3), j(sz/3), and j}(o_l/?’). These are, from Egq. (1),
2 1 -
(4/3) _ _¢cs 82(4/3) + cs2 cos @ ap(1/3) + cp(l/-3) (0)2 ing
Iy " " "Br a6 BR 20 BR b 0
(4/3)
(2 2
AR S San (21)
s B or
and from Eq. (2),
(-1/3) _ £ 8¢ "7 (5/3) 22
Jb B nr 90 * . (22)

Combining these last three equations with Eqs. (6), (7), and (19), yields

- : 2 (5/3) 2
3°¢ r® 8 ,(/3) (00" , 2 (1/3)
= — sing[— (p \% +2s p )] (23)
26° B> R or °
The leading terms from Ohm's law, Eq. (2), are
/3) o 8%
v = - (24)

r B r 96 ’
0»

(20)
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(5/3) '
(3/3) _ c 8¢
Vs -‘Bo or ' - (25)

The leading’ order parallel force law then becomes

(0) . (0) (0),2
3 5/3) o 5/3 3
Lo [ g5/ R /"—)>+£ i psZe 2 mp/3)
B\ or Y Y, or PAREY: 86 -~

(26)

and the leading order mass continuity becomes

) (1/3) _(0), _
B 55 (P v i) =0. (27)

o (903 553 V/3) 0(5/3) Y
or 20 00 or

Equations (23), (26), and (27) are the set of equations governing

the structure of the boundary layer. They nonlinearly couple p, v, , and (0]

b
through three partial differential equations in two variables, r and §
Before solving this set let us verify that in the limit of returning from the
boundary layer to the bulk plasma, our set reduces to one whose. solutions are
the bulk-plasm; p, ¢, and vy This will ensure the matching of whatever
boundary layer solutions we find to the bulk-plasma solutions,

To approach the limit of bulk plasma parameters, we refer back to
Table 1, along with the setting of véo) (r) and ¢(1)(r) to zero to exclude

unidirectional poloidal flows, which are clearly absent from Fig. 1. In this

limit Eq. (23) becomes

2 (2) . 2 2 . (0)
a_L_ = ZJ——C r s 51n9 d ) (23')
802 sz R dr
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which can be integrated immediately since sinf is the sole § dependence.

Then Eqs. (24) and (25) yield

2 2 (0) -
S _me 25T o (99———) (24")
T 2 2 dr
B f R
2 2 2
A2 o _2Zmes o i(r_ d p(O)) _ (25')
s : BZR dr fZ dr

These are in complete agreement with the bulk plasma solutions for v,
and v given in Ref. 2, [Egs. (21) and (22)]. A further consequence of

taking the bulk plasma limit is that £q. (27) becomes

(1)
(2) (0) ov.
c 0¢ dp _ a0 b .
"B_ 06 ar . - ~fp Y (27")

: 1
Since ¢(2) is now known from Eq. (23'), Eq. (27') yields for v( )

b 3
2 2 2 (0)
vf,l) a Zn?cas - (;) dpdr (r)>Sin9 , (27')
Bf'R p (r)
. . . (2) _ (2 (1)
which agrees with Ref. 2, Eq. (26_). Since Vpoloidal = vs + fvb s

Eqs. (25') and (27") can be combined, and yield the behavior shown in

(1) = v(l) yields, via Eq. (27"), the flow behavior

Fig. la. Similarly, Vioroidal - Vb

of Fig. lc. Thus, our boundary layer set of equations indeed yields bulk-

plasma solutions when we go to the proper bulk-plasma limit.



-12-

A very useful solution of thc set of boundary layer equations (23),

(26), and (27) is separable in the form

1 3 ZN—

oM 20y = [a-11/a125 3 (4 .
5/3 ~ N

0% 2.0y = [(a- /2133 g | | (28)
0 ~

WD irg) = 5O

h b

Thoeo choices arc uoccful, not only in that they reduee the complicated
set of equations to a set of ordinary differential equations in §, but also in
that they satisfy the boundary conditions at r =a. The potential ¢ vanishes
at the absorbipg, conducting surface (a limiter), as does the density p. Note
too, that the b1.11k-p1asma density profile enters the boundary layer, dropping
off quite steeply. The parabolic p(r) in the boundary layer gently returns
this steepening into a more realistic bell-shaped profile. This is shown in

Fig. 4.

V. POLOIDAL STRUCTURE: SUBSONIC

Before moving on to solve for the poloidal structure of the boundary
layer, it is convenient to put the set of equations for the separable solution

into dimensionless form., Let

=nc_2£(0.2 ()=M
No= "2 a 4 R ' 6 - 00 ’

B f

and introduce for the @ dependent factors of the separated solutions, .
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~(0) "
v ~(3/3) ~(-3/3)

_ _b . _ S _fp = 2
M s ’ = Ba fs ’ p= p(o) m= ¢+v. (29)

0 .
All quantities are now of order € = 1. Using Eqgs. (23), (26), (27), (28),

and (29) we obtain, after some rearrangement of (26) apd (27),

2
Py = 2pyYm/(m~-1)

(30)
‘ 2
vp = -2Y/(m7-1) (31)
= (32)
Pg = ¥
. 2 .
1[/9 = 2170(2+v )p sing (33)
Note the denominator has a singularity at m=t 1, ""mach one''. In unscaled
. . 8
form this corresponds to Vpoloidal equalling the reduced sound speed fs.
This speed corresponds to the '"'slow hydromagnetic wave' propagating in
2 2 2 2
the 0 direction. Let b =B2/4Trp and bn: b6 :fzb , then
2 1 2 2 2 2.2 2.2.1 2|
Cor =7 | (749 - [(s7+ 57 - 4s"p] /
SZbZ (34)
n - SZfZ
-2 2 7 :
s +b

A perturbation will not propagate in a plasma that is flowing at this speed
and thus a standing shock can be formed. This, then, is the significance

of the singularity in the denominator.
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Since Eqs. (30) - (32) are autonomous we can actually solve for p

and ¢ in terms of v. Adding Eqgs. (31) and (32), we obtain

2
(m”-3)
m_ = ==t ¢
6 m?.1, 9

The integration can be performed straightforwardly, yielding

: 1 N3 + m

¢ = m - NKY an ) (35)
and thus

~m:¢+v=»\/_3tanh('\/%v). (36)

In determining constants of integration we have assumed that m=v=¢=0
at =0, and 7w. This choice is motivated by the physics of the bulk plasma

‘Pfirsch-Schliiter convective flows as shown in Fig. 1 (a and ¢), (m=v=0==
9=0).
Next we divide Eq. (30) by Eq. (31), and obtain

~d{lo

v :—111:-'\/—3tanh(—’\/zlv) R

which can also-be solved explicitly, yielding
P 2
p =p(v=0) sech ("\/—;i v) . (37)

at v ,t=iO.7603'4 ..., m==1, and p=(2/3)p(0). Thus, we need only

cril

solve a final reduced set

v = -2y/ (3 tanh® (%”v-l)
| (38)

We = Znop(O)(2+vZ) sech? ("/3 v)sing).,
2
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In general, this nonlinear set must be integrated numerically. We can find
an analytic solution in the limit of small p(0).
We call this the subsonic solution in which m <1 (v K v )
max max crit

' 2 2
Since v will be small, we take (2+v )sech [(N3/2)v] =2, let

417°p(0) = § <1 and obtain

Y =~ - §cosf ,

v =~ - 2§ sinf ,

¢ = -5 sinf , (39)
m =~ -3§ sinf,

p = p(0) .

These are pictured in Fig. 5. Note that these solutions obey the boundary
conditions m=v=¢=0 at =0, m as well as periodicity constraints.
Note also the natural way in which this poloidal behavior matches qualita-
tively bagk into the bulk plasma flow pattern. This ié shown in Fig. 7.
Quaulilalively, Eq. (39) does not agree with kigs, (23') - (/') because of
the additional assumptions introduced in forming the separated soiution.

The relations between these various solutions will be discussed in Sec. VIII.
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VI. POLOIDAL STRUCTURE - TRANSONIC

Our subsonic results are not the only type of solutions of the non-
linear set Eq. (38). We now explore solutions with transonic behavior.
Figure 7 deals with the four poss{ble varieties of solutions when the Mach
number m is close to unity. Case (a) is a subsonic solution with maximum
velocity slightly less than the reduced sound speed. This type is character- A

ized by | V('Gcril;)l < Vopit where Voo 18 defined below Eq. (37) and

6 :chiL is the point at which Y (8 éi‘it) = 0. The (b)+ snintinn is the

) = v __. . The (b)_ solution is transonic. Analysis of the

limit as v(8 ..
crit crit
]1/2

set Eq. (38) shows that if v (6§ ) = v . we obtain v_= ;1:[1,06(9 )

crit’ crit 0 crit

with the 3+ signs corresponding to the (b):t curves, Either solution is

possible, depending on global conditions. Finally, the curve (c):has |v9| = o

at v= Vit and implies the possibility of shock solutions. The need for

shock solutions, comes from the fact that any solution following é(b)_ path

te

goes right through v and continues supersonically, never to return

crit

the velocity back to zero, But v=0 at #=0 and w. Therefor(e, there mus(t

be a sudden jump back to a different type of solution, for which case (c) 1s

a perfect candidate, that Will_ return v to zero. This is shown in Fig. 10b.
The bor:fierline between shock and subsonic solutions is the afore-

men‘cionedi(b)Jr or zero shock solution. It can be described quite ::accurately

as 2v .
. crit
v = — §
™

(40)

) vcrit 2 Vcrit
¥ o= — [1-3tanh” (W3 ——0)] ,
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in the region 0 < @< w/2. Then reflecting symmetrically around /2,
and then éntisymmetrically around = reveals the full zero shock solution
as shown in Fig. 8. It is noteworthy that the three possible s6lutions men-
tioned, subsonic, zero shock, and shock bear a striking resemblance to
classical one-dimensional compressivle fluid in a converging-diverging
nozzle.

Returning now to the shock solutions, we must find a recipe that
dictates where and how to jump from the supersonic to subsonic branch.
The obvious physical constraints are mass- and momentum-flux conservation
across the poloidal shock. In deriving these conditions, the 9/80 terms will

predominate, yielding from Eq. (3)

0
a0 (pvpoloidal) =0
or in our scaled units
IIpm =0 ]], (41)

where the brackets denote a jump across the shock. The momentum flux

conservation, Eq. (26) yields

which, with Eq. (41) reduces to

[[i +V]]v:0 . , (42)
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It is helpful to plot pm and (l/m):+ v as functions of v in Fig: | 9a, and
then as a function one of the other ;n Fig. 9b.

1t would&seem, at first glance, that the subsonic and supérsonic
branches intersect at only one point; | m| =1, thus allo‘wing only a zero
shock solution. However, the p(v=0) factor in p, Eq. (37), ali‘ows two
values, p (6 =0) and p (0 =7). With p">p0 we have Fig. 10a, We begin
and finally jum;;): back to the subsonic solution (3), that returns ﬁs, along
p to §=0. In real space this is shown in Fig. 10b. Thus, wé have
ensured that thg periodicity and boundary conditions.on v (and ¢.and m)
be fulfilled.

Thus, the scenario for shoék fitting-is as follows. We first choose
Py (6=0 )(subsc?ipt o denotes the d?.wnstream solution that includes g =0,
and subscript = denotes the upstréam solution). This generate; a. single
curve in the [p.fn, (1/m) + v] plane, -in»dependent of Y (f= 0), such as Fig. 10a,
Next choose any p"(e =r)Z po(e =0)., This will generate another curve that
intersects the first, as in Fig, 10a.k The intersection point defines a unique

pair (vS , v across which the shock will stretch, and, by Construction,

up Sub)’
preserve the mass and momentum fluxes.
Once p :ke =) is chosen, zp"(e =) will then determine #V_ () and
., . .

Y (9) for all 6 However, there is only one ww(e =) that determines a
‘n‘ . .

a,bTr (6) satisfying l,b_rr: 0 when VoT Verig the transonic flow coricfl.itlon.

With pﬂ(@ t ) given, and lp“(e =) now determined, so is v @) .
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Where v_(8)=v_ , thatis the shock position §_ (as in Fig. 10b). Once
m sup

§ is determined, we know exactly where v must be. Our VO(B)
s .

sub

solution must therefore satisfy v, (GS) =v There is only one ll/o(e =0)

sub’
that can generate such a solution. There are now two free parameters,
po(O) and pv(-n'). In general,. one would expect to have two more jump
conditions across the shock so that there is one corresponding to each
derivative in the set, Eqs. (30) - (33). However, these conditions are not
consistent. The reason is that the quantity fandT represents energy
lost from the system of Eqs. (1) - (4). Thus, strong shocks must be
associated with an energy loss that is not consistent with the magnitude
of time derivatives that have been assumed in this paper. However, consis-
tent. small amplitude shocks can be found where the onus of matching the
additional jump conditions can be placed on terms that are higher order in
the shock strength.

Thus, lret us investigate ''small-shock'’ solutions in which the shock
strength is of order § ~€1/3<< 1. Then m=~-1+§6, and po(e =0) has

the value requircd for v to reach the (b), solution of Fig. 7. For Egs.

(36) and (42) to be fulfilled through and including orders 63, we find

2
6

Wy

v=v +0-
c
1_2 2 .3
m:‘ltb-zé 43'56 , (43)

L B 3
p(B=m)=p (6=0)(1+25") .

Thus when we eventually determine § as a function of (a-r), we will
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determine pﬂ(() =;'n' ), and then the shock will be fully determined. -Another
ramification of these solutions is that ¢ is really conserved as seen below,
but using Egq. (36), [[(p 1= Im- vl = 4/3 63. Thus, there must be correc-
tions to Egq. (36)Y‘via higher order equations. This brings us to the‘ next
task, which is solving for the actual shock structufe.

Since jr ~ ap/ae (force lﬁaw), we expect it to grow large within
the poloidal sho”ck. kor maxifmal ordering, s$ince v(sl) = (c¢/B){o ¢(5'/3)/"dr) +
(nc/Bo) jr (Oh.m's law), and 7 ~ 63 , we demand that jr grow to
be €-2 within the shock., Thus, the mass continuity equation., Eq. (41),

now becomes, in dimensionless form

2 7/3
’p(¢+v-x770€/p9)=Kl ‘ (44)

2/3 .

where K1 is a constant of integration and =x= (r - a) € ) While
the parallel momentum law, Eq. (42), remains
p + K, v=K , : ' (45)

1 2

‘
1

with K2 another constant of inté,gration. We solve these last two
equations for the small shock solutions, Egq. (32), in which ¢ and ¥
are both constant across the shock. In this limit the leading order of

Eq. (44) is a constant, so the calculation is carried to orderE 52'.

These yield

2 o, .32 _ 3 2
pozgpo (6=0) Kl—_'po(-1+26 ), KZ—F)O(l-vc+ VCG ).

2

N e

A3
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Upon manipulation, Egs. (44) and (45) reduce to

: -7/3
p_dp (0-0,)€

. o i
2 2 2

2 2
[p-(1-06 )po] -pOG np,*

This is a standard integral whose solution yields
-7/3
(6-6.)0€ / ) ]

p=p [1- 6tanh( >
° T’Opox

(46)

7/ 6/3

3
We find a shock thickness ""Hf'""~ € /6 ~ €

- -2
€ 7/3)561/3"'526 .

. (1/3)
N~ 1 "t ~ ~
Note tha Jr pe

(6

We have also s.olved for the shock structure by including viscosity
in Ref. 7. Because this result is not very different, we have left out the
analysis here.

The physical significance of the shock solutions have been described
earlier in this section when we showed why mach one was a critical velocity.
The poloidal slruclure shuwn in Fig. 11 matches onto the bulk plasma
behavior quite naturally, as it did for the subsonic casé, if the shock begins
at zero strength as we first enter the boundary layer. In the next section,
we will prove that it so, by investigating the radial behavior of §, the

shock strength,
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VII. DIFFUSION

Since our goal is that of finding the radial behavior of the shock

1 )
strength § ~ € /3, it is clear that we must look at the next order boundary

: 1
layer equations (smaller than the leading order ones by € /3 ). With the

notation “e
p(1/3)5 (r_a)zp, ' v](DO)E v ¢(5/3)E (r-2)9, gr( )i _ :( ),
9(2/3)35 ' | "}(31/3): s, tj)6/3-: 5 %(_9) _ (_)9- ,
we obtain the equivalents of Eqs. (23), (26), and (27):

u 2l . 2 2.4 - 2 -~

b = ?(a—)z a5 im0 (2574 v7)p _+ 4(x-a)pv + 2(r-2)" pvv ],

- N - 2 - 5 4 ~
$p [0, Vg + (x-2)97 -9 g1~ 7 H(2) fp + T (9vy) - £(2) B vy,

fr-a) (v. % b v )y1=0 ,

6 6
- 2 - c - - 2, -
% [2(r-2)pg 7 (x-2)"py ¢ 1+ % lp (x-2) ¢,-p 91+ £(a)(x-a) (pV)
+f(a)(p V) g =0

' ' ~ n, &
If we attempt a separable solution of the form p = (r-a) p p(6), etc.,

we find that n = n¢+ l1=n_+ 2. Though this is the same relationship
p v

(47)

(48)

(49)
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that held for the leading order solution, there n_ was determined to be
zero, Here it is undetermined, and thus we have a ''floating'' behavior in
(r-a) for all three functions. This fact will play a crucial role in what is
to soon folow.

We now turn to finding the diffusion for our weak shock solutions.

The diffusion equation is merely Eq. (3) averaged over §:

ap _
ot

M|~

a >
ar * 5 (pNVrad)de

where a bar denotes a ) average. It is straightforward to show that for

a zero shock solution, the right-hand side yields the Pfirsch-Schliiter

result
rir-a)? 2 570G )2 L (rra) K, ]
atp T 9r 2
where
2 2 2
-2 ~ (3 2
K2=-—ﬂff—(p ‘/3’(9)) (1+2q7) = 6(€) .
B

Our task is to calculate additional terms du‘e to the shock. In our
dimensionless notation we are ;onsidering $p Yd0. Normally this would
vanish, as p~1l+ cos2f0 and Y ~ cosf . However, due to the shock, the
symmetry is broken in the small regions (of width ~ §) around § = w/2,
3n/2. A close-up of those regions is shown in Fig. 12. Calling

(90/90)(0-7/2)= A%, y =6 -n/2, we obtain

(50)

(51)
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p(y) =(2/3mo(9=0)[14-(5/€)y] ,

(52)
2
v = Ay
But we know that Vsub, sup = Vet d Ay, implying that § = ¢ A. Then
- €
» L 2 3 \
§p¢d9= 3 p, [2/3(1+Ay)] (A"y)dy~&p_ . . (53) 4
-c :
There is another term due to the shocks. From Eqs; (43) and (46)
we can write ¢ as
7/3
'¢=¢C+ 2/3 § tanh v
¥ NPy
since 1/3 53 is the jump in ¢ across the shock., 'Then
: -7/3
N 2 46-7/3 2 ©® -90)66 /
4/:¢)°=3—2—"’“ sech ( 2 ) . (54)
x nop_o X N,Py
Using p =p0(9v>=0)(z/3), we obtain
) 2
a 4 -7/3 ; xnp
' 2 2 2 oo 3
§pwde= S, (6=0) § T 08— sech’(y) ——5— dy~p s . (59) +
S NPy * € 0

Putting Eqs. (50), (51), (53), and (55) together, we obtain

~(-3/3) '
r(r—a)2 % ot @) =--§;[(r-a)3(K153+KZ)] . (56)
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All three terms on the right-hand side are O(€) since §~ € . Itis

clear from Eq. (56) that

-1

J € |
— ~ —_ ~ 57
ot € or m € . (57)

This contradicts our assumptions of a plasma slowly decaying by classical
diffusion on a time scale (8/9t)~ n -~ 63 . In other words, the boundary
layer collapses much faster than the interior plasma, bringing into question
the entire analysis.

However, this 'catastrophe' can be prevented by making what is inside
the bracket on the right-hand side of Eq. (56) — a constant. This is the toroidal
analogy of what was done in the cylindrical case when the diffusion near the
edge was calculated. Recall Egs. (13) - (17) in which we set (d/dr)[p(dp/dr)]
to zero, or p (dp/dr) = constant.

The freedom in the radial variation of the shock strength §(= v(1/3) )
as discussed at the beginning of this section, now enters to play a crucial
rolef It allows us, here, to use the technique of ''setting the bracket equal

W

to a constant', and obtaining

3 2 1/3
6(1/3) = (constant)( 2 € -1 61/3 .

(58)

(a-r)

2/3
/ )] we have § =0, as required

At the onset of the boundary layer [r=a(l-¢€
to match onto the shockless bulk plasma interior. Throughout the boundary

layer 6 grows, untilat r=a(l-€ ) § becomes finite and the analysis breaks
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down. This is consistent with the 'floating" radial behavior of the higher

(1/3)

order quantities, since if v ~ €/(r-a), then at r=a(l-€), v(1/3) ~

€0~ V(0) and the analysis breaks down. Similar arguments for p and ¢

show a similar breakdown at r=a (1-€). It should be noted that by then

p becomes small, of order € .

VII. CONCLUSIONS

Conditions near-the boundary of a diffusing, large aspect ratio,
toroidal plasma have been considéred. Near the plasma edge, density gradients
increase, as was shown in Sec. l%l. Further, secondary flow along the field
lines also increases. Throughout most of the plasma these effects remain
small enough that they can be treated as perturbations. This was calculated
in Ref. 2. These perturbation results, when combined with the calculation
of Sec. III, le;d to the estimate that When a-r ~€2/3 , where € is the inverse
toroidal aspect ratio, density variations, and secondary flows. }aecome finite
and perturbation theory is no longer valid. A set of nonlinear equations
governing this nonlinear behavior was derived in Sec. 1V.

The most significant solution of these equations is that containing a

weak shock, discussed in Sec. VI. Here, there is a layer where the maximum

“

flow velocity is very close to the sonic speed, and the density Iﬁrofile is
2 : ,

self similar and falls off as (a-r) . The amplitude of the weak shock in-

creases toward the plasma boundary, but it is too weak to have a direct

effect on the density and velocity profiles.
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Between the bulk plasma, where perturbation theory is valid, and the
weak shock layer, there is a region that bridges between these two. Exact
solutions of the coupled nonlinear set, Eqs. (23), (26), and (27)? have not

\ been found that cover this, but from approximate solutions 7 it is clear that

there is no new interesting physics going on. The subsonic solutions of Sec. V

provide a model for this region. While the amplitude of the subsonic solution

" will increase as the wall is approached, contrary to the separable assumptions
of Sec. V, this will not have a strong effect on the profiles of Fig. 5. From
Eqgs. (23')-(27') it is clear that these solutions merge smoothly into the bulk
plasma region. |

Similarly, outside the weakshock layer, there appears to be another

region of rapid variation. By continuity With the weakshock region, shocks
will be of finite strength here, and perhaps particular details of the plasma-
wall interaction will be important. / .

A broader view of the diffusion can be obtained by examining the-energy

relation. A direct consequence of Eqgs. (1) - (4) is

0 1 2 2 1 2 2 2
st L3PV s plnp_/po ]+V°[pv(zv + s lnp/po+s )

> (59)
ti¢l+ni =0

where P, is an arbitrary constant.

1

Thus, in this model, Ohmic dissipation represents an energy loss

from the system. There is a close relation between this loss of energy and -
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the energy change associated with the decrease in plasma density. In
particular, consider a region near the plaéma boundary. Mass and energy,
evicted from the central regions by diffusion, stream through this layer
with magnitudés that are large compared to the resident p0pu£ation. Thus,

we have found throughout this paper the condition that the mass flux be con-

stant, independent of radius,
8 gl
At §p v, dg = '0 )

so that the boundary layer is not violently disrupted by local variations in
the flux.
. . i \ ’
A similar relation for the energy flux can be found by integrating

Eq. (59) over a surface of constant r. We find approximately,

o , L2
e 3pvrln(p/po)d9+§m 46 = 0.

Clearly, comparing these last two results, Ohmic dissipation must increase

near the plasma boundary where the-density decreases and the slope of

Inp increases. When conditions allow the formation of a weak shock, there

is a new, and very efficient, source of energy dissipation. Density gradients

are smaller };ere, because they are not needed to produce the required

dissipation. Thus, the plasma profile becomes bell shaped, as.in Fig. 4.
The effect of this bell shaped profile is to decrease the-volume

available for the confinement of the high density plasma. Thus dissipation

associated with plasma flow can be important for confinement. Further, it

»
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can have a strong influence on the poloidal variation of plasma parameters
near the edge, and thus affect boundary conditions and plasma wall inter-

actions.
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TABLE 1.

Variable Bulk Plasma Boundary layer
x 0=r=a(l-¢€'3 a-€3)=r=a
p e°(r)+ el(r,e) 61/3 (r,0)
v ez(r, 0) ez(r,e)
v, et €2 (x.0) €3 (r,0)
Vb €o(r)+€1(r,6) €® (r.0)
i ! (z.6) /2 (x,0)
i €®(r) + € (r.0) e 3 (.0
i, €® (r.6) e V3 (r,0)
" €' (r)+ e (r.0) el ry+ e (x,0)
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(A) (a)
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: 762290
Fig. 1. Pfirsch-Schliiter convection patterns. Particle
drifts are sign dependent (B) causing neutralizing currents to
flow (A) and (Q), Resistivity prevents total neutralizdtion,
thus creating ExB drifts (b) shown in poloidal (a) and toroidal
(c) 'projections.
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Fig. 2. The (r,0,z) toroidal coordinate system. A
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762292

Fig. 3. (a) Radial profile of density for the similarity °
solution of diffusion equation. (b) Radial profile of density
for plasma supported by external sources.
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Fig. 4. Modification o= steep density profile in bulk
plasma due to boundary layer.
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'pﬁb(o)

¢

762265
Fig. 5. - Subsonic solution for 6 dependences of parallel
flow (v), potentlal (¢) , poloidal flow (m), radial flow (y),
and density (o).
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0

. | | Major
| Axis

762261

Fig. 6. Inside dotted line: Bulk plasma convective flow,

as in Fig. 1(a). Outside dotted line: Subsonic boundary layer
flow. Note the matching. i
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Verit [

. 762263

Fig. 7. Possible solutions of Eq. (38): (a) Subsonic
solution, (b), Just sonic solution, (b)_ Transonic solution,
(c) Possible shock solution branch. .

4
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762267
Fig. 8. Just sonic solution for parallel flow (v) and
radilal flow (y).
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762285

Fig. 9. (a) Mass flux (pm) and momentum flux (l1/m+v) as

functions of parallel velocity, v.
one another.

(b) Fluxes as function of

~—~
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Fig. 10. Flux conserving shock construction. . Solution

emanates from 6 = w along (1),
along (2).

Goes transonic and continues
Shocks back to solution emanating from 6 =
returns to 6 = 0 along (3).

= 0 and
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: 762271
Fig. 11. (a) Shock solutions for parallel flow (v) elec-
tric potential -(¢) and poloidal flow (m). (b) Matching of these
boundary layer solutions to bulk plasma convective flow.
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