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ABSTRACT

o R 5

This study was motivated by the need to design the thermal shield in
reactor internals and other system components to avold detrimental flow-
induced vibrations. The system component is modeled as two coaxial shells
separated by a viscous fluid. In the analysis, Fliigge's shell equations
of motion and linearized Navier-Stokes equation for viscous fluid are
employed. Pirst, a traveling-wave type solution is taken for shells and
fluid. Then, from the interface conditions between tha shells and fluid, 4

the solution for the fluid medium is expressed in terms of shell displace-

ments., Finally, using the shell equations of motion gives the frequency

equation, from which the natural frequency, mode shape, and mocdal damping
ratio of coupled modes can be calcriasted. The analyticai results show a
fairly good qualitative agreement with the published exparimental data.
With the presented analysis and results, the frequency and damping
characteristics can be analyzed and dzsign parameters can be related to

frequency and damping.
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INTRODUCTION

In th.s paper, the dynamics of a system of two concentric cylindrical
shells ccupled by a viscous fluid is studied analytically. The objective
is to investigate the effect of fluid viscosity on fluid structure inrcer-
actions.

This study was motivated by the need to design reactor system components
to avoid detrimental flow-induced vibrations. Several reactor system
components consist of nominally circular cylindrical shells coupled to
other shells through a fluid. Examples include shrouds and thermal liners.
Those components are subject to variouys excitation sources including flaid
flow and structural borne disturbance. To design a component such that over
the design life its performance will not be affected by vibrations, one
must understand the system characteristics.

Vibrations of two coaxial shells separated by a fluid have been studied
recently [1-4]. However, all those investigations omit the effect of fluid
viscosity. Although for many practical applications, the viscosity is small and
the fluid may be considered inviscid as a first approximation, near the interface
of the struc.ure and fluid there exists & thin layer of rotational flow.
This flow regime in which the viscous effect is significant is of great
concern to the dynamic response of couplied shell systems. In particular,
when the annular gap is small, the fluid viscous effect becomes more
pronounced.

In this studv, Fligge's shell equations of motion and the linearized
Navier-Stokes equation for fluid are employed. First, a traveling-wav:-
type solution is taken for shells and fluid. Then, from the interface

conditions be:ween the shells and fluid, the solution for fluid medium
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is expressed in terms of shell displacements. Finally, using the shell 4
equations of motion gives the frequency equation from which the natural
frequency, mode shape, and the modal damping ratio can be calculated.

The analytical results are also compared with an experimental investigation

for two concentric shells coupled by water.
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1. GOVERNING EQUATIONS OF MOTION

Consider two concentric circular cylindrical shells separated by a
viscous fluid annulus as shown in Fig. 1. The motion of the shells is

described by the following Fliigge's shell equation [5]:

‘ 2 2
[32 +(1 vi) (1+ hi ) 32] . 4 1+\a:t avi
322 2R§ 12 &2 202 1 2R, 93230

2 2
+[:ii- hy _§3+(1'°1)hi )3 ]w
Ry %2 12R; )3 248 9200 1
2 2
] pi(l-vi) 3ui l-vip
1 ]
Ei a‘:2 Ei hi zi
; 1+v, 2% 2 1-v hi,\ .2
i 1+[1 2° 1(1+1)a]’
7R 3230 22 aol 3 T ] I
1 1
1)
2
[ 1 2 & Vi)hi 93 ] pi(l-vf) ;.\zvi
+ | = - v, =
Riz 30 26R12 202z2J] 1 E, a
g
1-v 2
1 5
;_ E, h, o1
2 2
[. 3 L, a - vph 53 ]u
! 12Ry 5,3 Ry 2 24 Ri az 3% J 1
3-von? .3
NG R
L 242 a0 g2 )1




< EA A e

4

1 hy hy" 54 by 5% hy™ 54 hy™ 32 |
YTzt Y1 it T2t At T2 | Y *
R, 12 R, dz°  6R,C 22°00° 12R;"30° 6R, 20 I
(1) '

(Contd.)

p.(1 - v 2) azw 1 -v 2
.Ul i i, i p
E1 3t2 Eihi ri

where the index i denotes the variables associated with the inner shell

(i = 1) and outer shell (i = 2); ug, vy, W, are the displacement components

of the shell middle surfaces, z, &, and r are cylindrical coordinates;

Pzi‘ Pai’ and Pri are the surface loading components per unit area, and

t is the time. The physical characteristics of shells are defined by the

mean radius Ri’ wall thickness hi’ mass density Pys Young's modulus E, and

1
Poisson's ratio v ‘

For a2 non-steady, small-amplitude oscillatory motion, the equations of

notion for the contained viscous fluid can be expresscd as follows [4]:

9p W e
5t + po v-V¥s=a0 .

- 4 ' D - 5 '
™ - oy Vp + (3 v, + vo) VvV - V) v, Ixyxy (2) :
i
3p 2
Y Co ’

where o and p are the mean and instantaneous fluid mass densities, v
and v; are the kinematic and second viscosities of the fluid, co is the

speed of sound in fluid, p is fluid pressure and ¥ 1s fluid velocity

vector.
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At the interfaces between the shells and fluid, the following condi-

tions must bve satisfied:

3ui 3v1 awi
Vz =3"t—-; Ve '-a-t‘-;andvr -W with i = 1 and 2.
r=ri r"ri Pri

The surface loading acting on the shells is given by

and P
1

T

22 ™ T with £= 2,6, and r, (4)

2

r=y r=r

where r1 = Rl + h1/2 and r, = Rz - h2/2 are the interface radii, ard

Trt, Togs and Trz are the fluid stresses:

M 1
=Ml )t i 1 G

Here y is fluid viscosity.

Equations (1) through (5) are the complete mathematical statement of

the coupled viscous fluid/shell systenm.
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IT. AXNALYSIS

Letting V=0~ $ + V¢ and inserting it into equatrions (2) yields

. 7 - '
4v
= - ..3.9. ..__.o ’ 2 ;
P=p -0, t+p°(3+v°)v $ (7)
s+ L 2y2_ L 22 @)
[A) at 2 2J¢ ’
o C at
[e]
vhere
I P
v = Co /(3 v +v) .

Equation (7) shows that the fluid pressure is not affected by the waves ;

produced from the vector potential, 5. which is associated with the fluid

viscosity.

In cylindrical coordinates, equation (6) yields:

103 2 _
(T{E’ V)wz—o’
]
2 ¥ ay
1 3 6 2 r
vo3 - V% *t 3-F5 3% =0 9
[a] b Tr
and P EY]
1 3 2 xr, 2 8 _
G 3t )b, v 3+5 35 =0 .
[o] r T

Solutions of the following form are assumed for the shells:

u; =3 u, cos(n 0) expljwt -~ kz)] ,

i
v, = ‘-’1 sin (n € ) expliwt ~ kz)] , (10)
W, = Gi cos{n 0) exp [j(wt - kz)] ,

“wizad
4l
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vhere j = -CI} n is the circumferential wave number, w is the
circular frequency, k is the axial wave number, and ;i’ ;i and ;i

are arbitrary constants to be determined.

Similarly, the fluid velocity potential may be assumed as follows:

¢ = $(r) cosn 6 exp[jlut - kz)] ,
v, =V,(r) sinn ® explit - k2)] , (11)
vy =3 ae(r) cos n@explitwt ~ k2)] ,
v o= R ir(r) sin n8exp[jwt - kz)] .

Substituting Eqs. (11) into (8) and (9) gives the following forms

of Bessel's equations:

2 3
1 93 3 2 _ n, .5
Goar T3 * &y r2)”"0 ,
t
224l 55 -0
‘r ar ar Y2 r2 Rbz B ’
> (12)
1 3 3 3 2 _n"+1 2n = i
r 9r (x or we) * (kZ 2 )we +'—7 wr =0,
r r
li(ri E)+(k2_n2.+1' 2n =
r 3t T3 W 2 TV +5 Y= 0,
r r 7
where
2 wZ/Co2 1/2
k—-(-k+ ) ,
1 1+ 3 & a3
W »
o2 . wa1/2 i
kb, = (k" -3 ) .




The general solutions of equations (12) are

$(r) = j wlaF (1) + 46 (0]

V,(x) = 5 wla F (kyr) + 4,6 (k)D)] (14)

[

\br(r) "”'e(r) = j w[Aan+1(k2r) + A6Gn+l(k2r)] s

where Ai are arbitrary constants and Fn and Gn are the n-th order Bessel
functions. Fn and Gn can be either the first and second kind Bessel functions,

(1) (2)

Jn ang Yn’ or the Hankel functions Hn and Hn . The selection of the
functions mainly depends on the computational consideration.
Substituting equations (10}, (11), and (14) into the interface condi-

tions, Eq. (3), gives six linear, a.gebraic equationms:

6
qzl a A = ’fp{?p » p=1to6 (15)
where A A
T=T for p=1, 2, and 3, T, =71, for p = 4,5,6
Up T Ups Uy SV Ug S W, uy S Uy, Ug =V, and g =W,

and the expression of apq is given in the appendix.

Now we are in the position to calculate the loading stresses on the
shell surfaces. Here only the dynamic quantity is of interest and thus the
reference pressure [ will not be considered. Equation (5) is used to obtain

the fluid stresses. Define the new variables izi’ iei’ and iri as follows:
P.=jo w’B costn ) explj@t - k)]
i o zi ?

2 = .
Py = CI Pei sin(n 8) expl[j(wt - kz)], (16)

and

P.=p w2 ﬁri cos{n 6) exp[jlwt - kz)] .
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Substituting equation (16) into (4) and using (11) and (14) yield

another six linear, algebraic equations:

6 A
h A =P = 17
qu pq q p ’ P 1 to 6,
where A _ ~ - ~ - N - A - A -
Py =Pus Bp=Pys Py=Ps By =P g Pg=Poys Pg =Py

and the expression of hpq is given in the appendix.
Using equations (15) and (17) gives the surface loading expressed in

terms of the interface radii and the sheli displacement as

6
A
P =) o 28, p=1tos, (18)
P 5 P1ad
q
where
1( _1
= h .
{apq} { pq} {apq} (193

The coefficient app is proportional to the dynamic fluid stress
acting cn a shell surface due to its own movement; while the others,
apq for p # q, are proportional to the dynamic fluid stresses acting on
a shell surface in one direction due to the movement in another
direction.

The fluid stresses acting on the shells are linear functions of
shell motions. In general, the coefficients upq are complex. The fluid
stress can be separated into two components: omne proportional to Re(apq)
is in phase with the shell accelerations and is related to the added mass
effect, while the other, proportional to Im(upq), is opposing to the merment

of the shells and is related to damping mechanism. If the fluid is inviscid,

the second component of the stress opposing shell motion will be zero.
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The dynamic fluid stress coefficient matrix apq is a function of the

radius ratio, rZ/rl, the circumferential wave number, n, the axial wave

wr or
number, a,, the Mach number Mo, = ——, cthe Reynolds number, Re, = -——l—.
1 1 Co 1 Vo

and the ratio of the fluid viscosities v;/vo. It should be noted that the

circular frequency w and so Mach number Mol and Reynolds number Rel are in

general complex numbers. The Mach number Mo1 is considered to include the

compressibility effects of the fluid. However, the analysis is valid for

a small compressible effect or a small Mach number Hol. The Reynolds number

Re1 and viscosity ratio v;/vo are the additional function parameters associated

with fluid viscosity. The viscous effect is discussed in detail in the study.

For the case of potential flow where v, = 0, and v; = 0, the

Reynolds number Rel and viscous ratio v;/vo are no longer defined and

the coefficient is a function of r2/r1, n, al and Mol only. Furthermore,

all the elements of the coefficient matrix are zero except the real parts

of the four elements: Re{a33}, Re{u36}, Re{u63}, and Re{a66}, 2nd no

damping is introduced to the system by the Incompressible ideal fluid [1].
With respect to fluid shell interaction, substituting eqs. (10), (16),

and (18) into the shell eq. (1) gives six linear algebraic homogeneous

equations

6 A
z b u =0, p=1toé, (20)
q=1 P9 g

where

2
c - Ql(qu +u for p,g =1, 2 and 3 ,

b
Pq Pq

-92 § Fyp :2 o ) for p =
1{pa” "17x, pgf’ P=
and q =

a >
1%q’

it

» 2, and 3,

£ ]
,and 6
H
L]

&

and 6

forp =
and 3 > 4

and q =

5
» 3
2

[}
<]
(¥
——
(]
-
D
E
g
Hl 2]
R
9
a
. W
-
g

+ u2apq) s for p,q=4,5, and 6 ,
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- 2..1/2
o (A=) _PoTy
f. = R, 0 —————— » H, = ’
i 1 Ei i pih1
=] f = otherwise § =qQ
qu or p q, Pq ’

and the expression of Cpq is given in the Appendix.

The frequency equation of the coupled fluid/shell system is obtained
by setting the determinant of the coefficient matrix bpq in equation (20)
equal to zero; it can be vritten as Ibpq' = 0 or in the function form as

F(“l’rzlrl’M°1’Rel’vé/“o’n’ﬂi’ai’ui) =0 . (21)

In contrast with the incompressible potential flow theory, the stress coef-
ficient for a given physical condition is a function of the frequency parameter,uw,
which in general is a complex number. Therefore, in order to determine
the natural frequency and the damping ratio of the coupled system, an
iteration procedure is in general required.

It should be noted that, Zor the case of an incompressible viscous fluid, the
dynamic fluid stress is not only a function of n, rzlrr and oy but also a
function of the vibrational Reynolds number Rel. This additional parameter
Re1 mgkes the simulation of a scaled model test for a coupled viscous fluid/
shell system to be very difficult when fluid viscosity effeit is important.

In a reduced-scale model test, the geometrical simulation commonly employed
tends to overestimate the fluid damping and thus the test result may not

be conservative.

¢ ——— e S KNG S R
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I1I. NUMRRICAL EXAMPLES

The preceding analysls can be used to evaluate the stress ccefficient
matrix, apq, for two concentric shells separated by viscous fluid for any
given set of input parameters n, rzlrl,ul, Mol, Rel, and v;/vo.

Some numerical examples of the stress coefficients were obtained and shown
in Table 1 and Figs. 2 to 4. All examples given are for incompressible fluid
(Mo, = 0), the length of both shells equal to radius r, (e) = %), and v; = 0.
Also the circular frequency w is limited to a nirely real number. That is,
Im{w) = Im(Rel) = Q.

Table 1 shows the stress coefficient matrix for al =5, n=3, rzlr1 = 1.2
and Mo1 = 0. FEach element is specified by a real part (upper number) and an
imaginary part (Iower number). In Table la all the values of upq ore very small except
Re{a33} = 0.324, Re{a36} = Re{a63} = ~0,234, and Re{u66} = 0.318. 1In this
case, the Reynolds number is large (Re1 = 1010); as expected the imaginery
part of apq is not important. The results are consistent with the solutions
of the potential flow [1], which shows Gay = 0.324, Ryg = Ggq ™ -0.234,
a66 = 0,318 and all others are zero. However, for the case of small Reynolds
number, the viscous effect becomes important; the imaginary part of apq becomes
more important and, in some cases, the imaginary part may be larger than the
real part. This can be seen from Table 1b for Re1 = 10, the imaginary parts
of apq are, indeed, much larger than their real parts.

Figure 2 shows the stress coefficient 2,4 as a function of Reynolds

number Re1 as well as n for aI = w, r?/r1 = 1.1 and Mol = 0,0 ,

a33 decreases as the Reynolds number Rel increases; this behavior is the
same as thzt of a vibrating rod in confined viscous fluids [7]. For fixed
values of Ts Ty and v, Re{a33} decreases with an increasing w; this

behavior is consistent with the experimental observations [8]. It is
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interesting to note that the sensitiviiy of all Ra{upq} with respect to
Re, is much smaller thar In{ upq}' although both Re{opq} and Im{apq} increase
with decreasing Re,. Figure 2 also shows that both Re{a33} and Im{-o33}
are the decreasing function of n.

Figures 3 and 4 show the stress coefficients aqq and ace 35
functions of rzlrl. n, and Re, for a) =7 and Mo, = O.
In all cases, as the values of rzlr1 increase, a33 approaches a constant
value while Lo monotonically decreases. The different behaviors between
@y and S is attributed to the choice of inner radius r, (rather than
rz) as a roference length scale. As the value of rzlrl becomes large,
the movement of either shell is less dependent on the existence of the
other and the stress coefficients are expected to approach a constant
value if all other parameters for the shell are kept unchanged. However,
the present example is set to keep %y Rel, and Hol unchanged, and so
ag» Re2 and Mo, which are the important parameters for the outer shell
are increased as rzlr1 increases. This means there will be a larger
three~dimensional effect, a larger compressibility effect and a smaller vis-
cous effect for the outer shell as rzlr1 increases, although these effects
are relatively constant for the inner shell.

For rzlr1 > 2.0 the outer shell has practically no effects on Gqq
and the effect of the inner shell on the outer shell seems no longer
important and the decrease of %6 is primarily due to the increase of a,
or the decrease of length/radius for the outer shell. With respect to
the dependence of n, both qq and GGG decrease as n increases.
Also the decreasing rate for Re{u33} and Re{u66} is smaller as

Re, increases, while this behavior for Im{-u33} and Im[-a66] is more

1

pronounced.
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Note that the example given here is for Mol = 0. For case oz Hol > 0,
the value of apq is expected to be smaller. It can be concluded that the
stress coefficient is a decreasing function of the parameters ays Hol,

Rel. and T /r1 and in most cases it is a decreasing function of n.

For a specific numerical example of a coupled fluid/shell syster, consider
the following dimensional values: R1-86.52 cm (34.0625 in.), F! = 88.74 cm (34.93751n.),
h1 = 0.635 cm (0.25 in.), h2 = 1.5875 cm (0.625 in.), El - Bz = 1.896 x 101193
(2.75 x 10 psi), v, = v, = 0.27, o = b, = 7.986 x 10° kg/u’ (0.2835 lbw/in.}),

2 1g/m> (0.0333 1ba/in.3}, v, = 7.432 x 1077 u?/q

P, = 9.217 x 10
-6 2
(8.0 x 10 =~ ft /sec), v; = 0 and c° = o, This is the same example as that

given in Ref. 1, with the exception that, in the present case, there is no
fluid F-side the inner shell and the fluid is viscous in the annulus region.

The fluid is considered to be incompressible, Mol = 0, and the shell is
assuned to be simply supported at both ends.

The frequencies of the system depend on the axial wave number a, and
circumferential wave number n. The lowest frequency is associated with
the lowest axial wave number, i.e., the wavelength is equal to twice the
shell length which is assumed to be 104.14 cm (41 in.).

The natural frequencies for the cases of ;iscous fluid are shown in
Fig. 5. For comparison, fuur related cases are also shown: (1) the inner
shell in vacuo; (2) the outer shell in vacuo; (3) the shell system with
rigid outer shell; and (4) the shell system with rigid inner shell. It
can be seen from Fig. 5 that natural frequencies of the system decrease
due to the existence of the fluid and for each circumferential wavenumber

n the natural frequencies for the first coupled modes (out-of-phase modes)
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are lowar than either of the uncoupled natural frequencies, while the
frequencies for the second coupled modes (in-phase modes) are higher than
either of the uncoupled natural frequencies.

Calculations for an inviscid fluild are also made. It is found that these
natural frequencies are practically independent of the fluid viscosity.
However, as shown in Fig. 6, the related modal damping ratio is noticeably
increased in some cases when the fluid viscosity is included. These results
are expected since the fluid viscosity (related to Rel) has a smaller effect
on Re(apq} and has a larger effect on Im{apq}. The decrease in natural
frequencies is due to fluid inertia effect, which is proportional te Re{apq}.
while the increase in damping is mainly attributed to fluid drag, which is
proportional to Im{upq}.

The effects of £f1luid viscosity on coupled and uncoupled modes are
clearly shown. For the coupled shell systems the effects are mostly pronounced
for the out-of-phase modes, but these effects are much smaller and in fact are
considered to be negligible for the in-phase modes. However, for the uncoupled
vibrations, the effects of fluid viscosity remain comparable for both shells.
The reason for large damping ratios on out-of-phase modes and small damping
ratios on in-phase modes can be seen from the differences of the vibrational
mode~shapes which are shown in Fig. 7. For in-phase modes, both shells as
well as the fluid in the annular region are moved almost in the same way
{(i.e., amplitude ratios = 1.0) and so the existence of the fluid is hardly
noticed by the shells. However, for the out-of-phase modes, two shells
are moved in opposite directions and the existence of the fluid is mostly
detected by the shells. Also, the frequencies and so the vibrational Reynolds

nunber Re1 for the in-phase modes are much higher than for the out-phase modes.

PR S S
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Thus the mcdal damping is much smaller for the in-phase modes

than for tke out-phase modes. For n > 6 the movement of inner shell is

much larger than of outer shell and the result is close to that of un-

coupled shell system with rigid outer sheil. For n < 2 or m > 11 the

in-phase mode data were not presented because of the high natural frequencies.
Additional calcuiations also have been made to understand the effect

of fluid compressibility. It is found that the effect of fluid compreasibility,

in general, is very small on natural frequency and damping, and in practical

applications for structural vibrations, the compressibility of the fluid

may be neglected. On the other hand, if the propagation of waves in the

system is of interest, fluid compressibility has to be included.
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V. COMPARISON OF ANALYTICAL AND EXPERIMENTAL RESULTS

- e

An experimental study on a related problem was repo - d recently by
Chung et al. [9]. In the experiment, a steel shell free at the top edge
and soldered to a disc at the bottom was tested. The fluid gap was provided
by using a thick concrete shell as the outer cylinder and the fluld is water.
A series of tests was made for four different fluid gap sizes: 2.616 cn

(1.03 in.), 1.367 cm (0.538 in.), 0.643 cm (0.253 in.), and 0.384 em (0.151 in.).

s

The analytical and experimental results are given in Fig. 8. The general i
behavior of the theoretical fluid damping is similar to the experimental data.
Quantitatively, the agreement is good for circumferential wave number n = 5
and 6 and small gaps, and fair for large gaps. However, the experimental
values for n = 4 are much larger than the analytical results. One of the
reasons for the discrepancy is attributed to the boundary conditions: the
theoretical model is assumed to be simply supported at both ends while the
shell tested is fixed at the bottom and free at the top. Since the theoretical
and experimental models have different boundary conditions, and the added
mass and viscous damping depend on vibrational mode shape, the two models are
not expected to give identical results. Another reason is probably associated
with the difficulty in determining the damping ratio for a system with high
modal de-- ‘ty.

In a similar study for tubes vibrating in a viscous fluid annulus,

the analytical results based on the linear viscous theory are in good agree=~
ment with the experimental results for damping and added mass [7). Since
the same theory is used here, as long as the motion is small,

the analytical results based on the linear viscous theory are expected to

be reliable.
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V- CONCLUDING REMARKS

In this paper, an analysis is presented for coupled vibrations of
two concentric shells separated by a viscous fluid. The coupling effects
are accounted for using fluid stress coefficient matrix of concentric
shells. With this analysis, aatural frequencies and modal damping of
coupled concentric shells in viscous fluid can readily be obtained.

In the analysis the three-dimensional, linearized, Navier-Stokes
equations governing the motion of viscous fluids are used. The displace-
ments of the shells are assumed to be small such that the equations of
state and motion can be linearized. The analytical results are in reasonable
agreement with the published experimental data.

Numerical results are presented for a few selected problems for an
incompressible fluid. It is shown that the fluid stress coefficient is
always a decreasing function of ul, Mbl, Rel and r2/r1 and in most cases
it will decrease as n increases. The sensitivity of Re1 on Re{upq} is
much smaller than that on Im{apq}. For general cases, the magnitude of
Re{apq} is larger than the magnitude of Im{apq}; however when Re1 is
sufficiently small, the magnitude of Im{upq} could bhe much larger than
that of Re{upq}and the damping ratio of the system can therefors be very
large.

The lowest natuval frequency of the coupled shell system with fluid
is significantly lower than those of the individual shells. The frequencies
for the first coupled modes (out-of-phase sicdes) are lower than either of
the uncoupled natural frequencies. The effect of the fluid viscosity on
the system natural frequencies is negligibly small in most practical
systems. However, the modal damping ratio is noticeably increased for

some cases when the fluid viscosity is included, especially for the lower
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frequency cases. For a coupled shell system the viscous effects are mostly

pronounced for the out-of-phase modes, but these effects are considered

to be negligible for the in-phase mode.

Finally, it should be pointed out that results from scaled models,

frequently used in practices for design evaluation, may not be conservative

if the vibration Reynolds number is not simulated. If the gap is small,

or the fluid viscosity !s relatively high, the simulation of the vibration
Reyvnolds number Re1 should be included to ensure that modal damping of

the model is properly accounted for.
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APPENDIX
(1) Matrix apq
43 = 7% Fairpds 319 = % G,0rp)s 337 34, =05
35 = =B F(8)s a6 = ~By Gp(By)s 391 ="0 Fo(vy)s
352 = R G (yy), 293 = B1F 41 (By)) - n F (By),
224 7 By Gy (B - G (Bp)s 425 =;335 %1 (81
826 = 236 = % Cp4q (By) 31 = BFLOrp) = vy Fp (g
232 =0 G (v = vy G Orp) 233 = 2 (B
ag, =1 Gn(Bl) and @, = k s Si = kzri, Y = klri .

The expression of apq for p = 4,5,6 is similar to those for p = 1,2,3

and can be obtained by replacing Q55 Bl’ and Y1 by @y 52, and Yy

2 Matrix h
(2) -

hll =2 S ol[Fnﬂ(yl) - 71 (Yl)] s
hip = 28y 0306, ) = o0l
S,0,n S,a.n

=22 _ 259"

B3 B, %) g 7 A A
1
h, =-S5, {(6,2 - 1F . (8.) +-F (8.}
15 2 19, w1t T
h,, = -5, {(0,2 -~ 1)G 6) +2 e (8))
16 2 2 n+1 Bl n 1 >
2S.n

N . )
Po1 =y Fan 00 ~ 57 DT

RS e B T Ao RASTRRESS  r  mn
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i
g.:
2840 n—1 [
h,, = Y, [Gn+1(y1) -y 6 (r)1 , ?
: f
- _ 2n(n-1) _ 2
hys S, {b——g—i—— 11F_(8;) + i F +1(81)} s
1
2n(n 1) 2
hy, = -8, {[F=5== - 116 (B)) + 3= - Gpe1 (BDY s
1 1
= _ 2(ntl)
hzs = Szoz[Fn(Bl) Bl n+1(8 )] ’
- _ 2(ntl)
hy, =8 oz[Gn(Bl) -——§I~— Gn+1(81)] s
hy, = [——“'Y—T—— - (2 5, * —)1 Fn(Yl) + Y Fn-l-l(Yl) s
1 1+1 o 1
hy, = [— 75— - (25 + Pl oy +Le o),
1 1+ i.a—- 1
_ 28m °
= 2 SZ n-1
3 = TR [8 G (B0 = 6 (BT
h,e = 28 o, lF_ (B ) - +1(8 1o
1
hy. = 2 5,0,06 (B) - 2= ¢, (8)]
3¢ 272 1 Bl n+1 ?
8.2 Mo2 ’
Yl e A W 1 ,4 o
and S, =1 S, = , —_— = (z+—) ,
1 Re1 > 2 Re1 w, ey 3 v,
9 = 01/71 s 9y T c‘1/72 ’ w rl2 w Ty
Rel = s Mol = C .
v, o
Again, the expression of hpq for p = 4,5, and 6 is also cmitted here
since it is similar to those of p =1, 2, and 3; they can be obtained by

replacing B and Yy by B and Yo and multiplied by -1 [e.g., 43

Sqo,n ,
82 Fn(BZ)]- |
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3 M ix C
(3) atrix pq

2
l1-v é
_ 1 2 %1
Cll-a1+ ) n(1+12),
1+v1
Ci1a=Cpy =3 yn
52
o 21 _1) 2
C22—n +2(1 vl) (1+4)a1 .
(13 a
- _ 1.2 %, 2.2
C13 = C33 = vy + 33 8] — 35 -y
“i 2
Cpy = Cgp = m+ 37 (3-v )60
2
s
_ 1 2 2 272
033—1+12[1-—2n +(al+n)] s

8. = h, /R, .
i i i
The expression of Cpq for the outer shell can be obtained easily by

replacing &y and 61 by @, and 62 and changing the subscript for cpq from 1, 2,and

3 to 4, 5, and 6 respectively.
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Modal shape of a coupled fluid/shell system.
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