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A F e a s i b i l i t y  Study and Pro to type  
Design of a  NaI Gamma-Ray 

Densitometer f o r  Use i n  LOFT 

I n t r o d u c t i o n  

This  work r e p o r t  i s  p a r t  of a  s tudy  f o r  t h e  Aero j e t  Nuclear Company ("A 

F e a s i b i l i t y  Study f o r  Use of a  Germanium De tec to r  i n  LOFT Gamma-Ray ~ e n s i t o m e t e r " ,  

r.0. 2-6238 11/19/75).  The f i r s t  rPpnrt, nn t h i s  s t udy  (UCID-17111) i n d i c a t e d  

t h a t  NaI d e t e c t o r s  would be p r e f e r a b l e  t o  germanium and a l l  subsequent work has  
. I 

been rnnfined t o  t h e  u s e . o f  NaI d e t e c t o r s .  The primary aim of t h i s  s tudy  i s  t o  

p r e d i c t  t h e  performance of a  gamma-ray dens i tometer  system us ing  computer 

modeling techniques.  The system s t u d i e d  c o n s i s t s  of a  ~ 0 6 '  c a l i b r a t i o n  

source ,  a  p ipe  con ta in ing .  a  v a r i a b l e  amount of water  absorber  where t h e  water  

c o n t a i n s  r ad ioac t ive  N I ~ ,  and a  s h i e l d e d  and co l l ima ted  NaI d e t e c t o r  system. 

An i d e a l i z e d  model of t h i s  system is  shown i n  F igure  1 wi th  t h e  sou rces  descrLbed 

i n  Table  1 and Figure  2. The b a s i c  ques t i on  is :  Can one d e t e c t  t h e  change i n  

s i g n a l  from t h e  co l l imated  co60 c a l i b r a t i o n  source  caused by a  water  d e n s i t y  

change when t h e  d e t e c t o r  system is  s u b j e c t  t o  an a d j a c e n t  background source  

equ iva l en t  t o  abo.ut 30 C i  of h igh  energy (avg. 6  M e V ,  pk. 10  MeV) gamma rays?  ' . 

The f i r s t  r e p o r t  i n d i c a t e d  t h a t  exces s ive  ( s a t u r a t i o n )  d e t e c t o r  count r a t e s  

could e a s i l y  occur from t h i s  h igh  energy,  h igh  i n t e n s i t y  background and t h e  

second b a s i c  ques t i on  is: How much l ead  s h i e l d i n g  is  r equ i r ed  f o r  t y p i c a l  NaI 

d e t e c t o r s  t o  keep, t h e  d e t e c t o r  count r a t e  from t h i s  sou rce  below 50 kcps (50,000 

counts  pe r  second)? The importance. of t h i s  ques t i on  i s  borne ou t  by t h e  r e s u l t s  

t h a t  i n d i c a t e  t h a t  t h e  weight of l e a d  s h i e l d i n g  r equ i r ed  i s  about 1000 lb s .  

Pre l iminary  Cons idera t ions  and Relevant  Farameters  

Some c r i t i c a l  parameters  i n  t h e  dens i tometer  de s ign  a r e  t h e  l e n g t h  and 

d iameter  of t h e  d e t e c t o r  c o l l i m a t o r  (beamed a t  t h e  c a l i b r a t i o n  s o u r c e ) ,  t h e  
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TABLE 1 

GAMMA RAY SOURCES FOR COMPUTER MODELING 

1. 0, 10,  o r  50 C i  co60 point  source with 1332 keV and 1173 keV. 

3 2. N ~ '  6-7 MeV, 137 p ~ i / c m  a t  75% water. 

The 6.13 MeV (69%) and 7.11 MeV (5%) emissions are modeled a s  one peak 

a t  6.13 MeV (74%). Normal operat ion and blowdown. 

7 2 3. Neutron a c t i v a t i o n  gammas from s h i e l d  tank 1 X 10 'Y/cm-second. 

Normal operat ion and blowdown. 

A) Skew s p e c t r a l  shape of Figure 2 

o r  - 
B) F l a t  s p e c t r a l  shape 0.5-10 MeV. 



7 2 Figure 2.  Skew reactor background spectrum 1 x 1.0 y/cm- see. . 



t h e  c a l i b r a t i o n  source energy o r  energies and i ts physica l  loca t ion  and s t reng th ,  

and the  de tec to r  s i z e  and location.  Optimization of these  and other  re levant  

parameters involves a  l a r g e  number of performance tradeoff  s i t u a t i o n s ,  many of 

which a r e  coupled. For example, t h e  c a l i b r a t i o n  source t o  de tec to r  d i s t ance  

should be minimized wi th in  the  cons t ra in t s  of des i red  col l imator  path sampling 

but  t h i s  d i s t ance  must increase  a s  b e t t e r  ( i - e . ,  th icker )  de tec to r  sh ie ld ing  is  

used f o r  t h e  high energy background reduction. Detector s i z e  a l s o  involves 

severa l  t radeoffs .  F i r s t ,  a  l a r g e r  de tec to r  w i l l  increase  t h e  sh ie ld ing  require-  

ments r ap id ly  because t h e  shie ld ing thickness must increase  because t h e  l a r g e r  

de tec to r  is more e f f i c i e n t  and a l s o  the  t o t a l  s h i e l d  diameter is increased i f  

t h e  de tec to r  c e l l  diameter is increased. 

The energy of the  c a l i b r a t i o n  source is  another c r u c i a l  parameter. Two key 

considera t ions  a r e  t h a t  t h e  s e n s i t i v i t y  of t h e  t ransmit ted  c a l i b r a t i o n  f l u x  t o  

t h e  change i n  water densi ty  i s  a  s t rong funct ion of source energy and t h a t  t h e  

de tec to r  e f f i c i ency  i s  a  strong funct ion of energy. The photopeak (9 ) and 
P 

de tec t ion  (qD) e f f i c i e n c i e s  f o r  some t y p i c a l  NaI de tec to r s  a r e  given i n  

Figure 3. The photopeak e f f i c iency  is the  number of de tec to r  counts under 

the  spectrum photopeak divided by the  number of photons t h a t  e n t e r  t h e  exposed 

de tec to r  f ace  from a  monoenergetic source; t h i s  is a  s t rong funct ion of source 

col l imat ion and source posi t ion.  The col l imat ion parameter is s p e c i f i e d  i n  

Figure 3  f o r  a  p a r a l l e l  beam of photons. The de tec t ion  e f f i c iency  is a l l  t h e  

counts i n  t h e  de tec to r  spectrum divided by t h e  number of photons t h a t  e n t e r  t h e  

exposed de tec to r  face;  t h i s  is weak funct ion of col l imat ion and source posi t ion.  

The absolute  e f f i c i ency  f o r  a  spec i f i ed  source is t h e  appropr ia te  de tec to r  

e f f i c i ency  (9 or  QD)  mul t ip l ied  by the f r a c t i o n a l  s o l i d  angle subtended by 
P 

the  appropr ia te  exposed detec tor  area  r e l a t i v e  t o  t h e  source center.  One can 

see from Figure 3 t h a t  t h e  photopeak e f f i c iency  diminishes very rap id ly  with 

energy but  t h e  de tec t ion  e f f i c iency  is reduced slowly. The importance of these  



Figure 3. Detector efficiencies for various Naf detectors with 
several degrees of coll imation for a parallel square 
beam of gamma rays incident on the cylindrical side. 



d e f i n i t i o n s  and e f f i c iency  funct ions  bears d i r e c t l y  on t h e  de tec to r  s i z e  and 

c a l i b r a t i o n  source energy ' tha t  should be used. From a count r a t e  viewpoint, 

when considering the  reac to r  background and N~~ leakage through t h e  detect01 

shie ld ing,  t h e  de tec t ion  e f f i c iency  (VD) uncollimated should be used. To 

consider the  c a l i b r a t i o n  s i g n a l  count r a t e ,  t h e  photopeak e f f i c iency  (9 ) with 
P 

c o l l i m t i o n  should be used. 

A simple a n a l y t i c a l  ca lcu la t ion  is  now considered where one s t a r t s  with a 

p a r a l l d  ao l l imnt~r l  r a l i b r a t i ~ n  f l u x  incident  on one s i d e  of t h e  coolant water 

prpe and then i n t o  a NaI de tec to r  on t h e  o ther  side. I f  one ca lcu la tes  t h e  

f r a c t i o n  of unscattered t ransmit ted  f l u x  (i .e. ,  f u l l  energy photons) and m u l t i p l i e s  

t h i s  by the  de tec to r  photopeak (9  ) ef f i c iency ,  then t h e  f i n a l  f r a c t i o n ,  F, 
P 

may b e  p lor ted-as  a funct ion of gamma ray source e n e r g y v i t h  water densi ty  a s  - 

a parameter a s  shown i n  Figures 4 and 5. The d i f fe rence  between t h e  curves is 

t h e  s e n s i t i v i t y  (-dF/dPH O) t o  densi ty  changes i n  t h e  water and is a l s o  
2 

plo t t ed  on t h e  f igures .  The da ta  i n  Figures 4 and 5 favor t h e  use  of a  2 x 2 

{ roe .  , 2 in. dia.  x 2 in.  th ick)  NaI de tec to r  a t  about 2.4 MeV c a l i b r a t i o n  source 

energy; the  s e n s i t i v i t y  is higher and t h e  f i n a l  f r a c t i o n  F, which is propor t ional  

t n  ~ i g n a l  count rate, is higher. There a r e  two problems with t h i s  choice, however. 

F i r s t ,  there  is t h e  problem of a v a i l a b l e  p r a c t i c a l  sources. One i d e a l l y  d e s i r e s  

a monoenergetic source at the  cor rec t  gamma energy with a high y i e l d  per  decay 

and a h a l f - l i f e  longer than 3-4 months. Sources with unusable emissions, 

e spec ia l ly  high energy gammas and high energy bremsstrahlung, w i l l  not  only 

requ i re  more source sh ie ld ing  per  usable source photon but  w i l l  a l s o  con t r ibu te  

undesired background counts i n  t h e  de tec to r  spectrum. A cursory survey of 

commercially a v a i l a b l e  sources yielded very few high i n t e n s i t y  (1-50 Ci ) ,  high 

137 energy sources of the  type desired. Sources t h a t  were considered were C s  , 

co60, ~ b ~ ~ ~ ,  and ~ 1 ~ ' ~ .  None of these  sources a r e  w e l l  matched f o r  the  
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2 x 2 NaI detec tor .  For t h e  a v a i l a b l e  sources,  t h e  2 x 2 N a I  de tec to r  w i l l  

perform s i g n i f i c a n t l y  b e t t e r  than a 1 x 1 NaI de tec to r ,  even i f  a non-optimum 

source is used. The second, and more important,  problem with t h e  2 x 2 NaI 

de tec to r  s i z e  is  one of de tec to r  sh ie ld ing  requirements from t h e  reac to r  and 

N~~ background. I n i t i a l  ca lcu la t ions ,  t o  be discussed l a t e r ,  f o r  a 2 x 2 NaI 

de tec to r  indica ted  the  de tec to r  sh ie ld ing  requirements w e r e  excessive i n  s i z e  

and weight. Since t h e  de tec t ion  e f f i c iency  of a 2 x 2 de tec to r  is about 2 

t i m e s  t h a t  of 1 x 1 and the  a rea  is 4 t i m e s  t h a t  of a 1 x 1, f o r  a given 

f l u x  the  2 x 2 de tec to r  is about 8 times harder t o  s h i e l d  down t o  a given count 

r a t e  than t h e  1 x 1 detector .  Subsequent ca lcu la t ions ,  t o  be discussed later, 

f o r  a 1 x 1 detec to r  showed t h a t  p r a c t i c a l  sh ie ld ing  dimensions and weight could 

be achieved. Now from Figures 4 and 5 ,  one can see t h a t  t h e  s e n s i t i v i t y  versus  

energy curve is much f l a t t e r  f o r  t h e  1 x 1 detec to r  than f o r  the  2 x 2 detec tor .  

The optimal s e n s i t i v i t y  energy (2.2 MeV) is still  high, but  t h e  r e l a t i v e  penal ty  

f o r  using a 1.33 MeV source with a 1 x 1 detec to r  is  much less than with a 

2 x 2 detec tor .  

Of the  sources mentioned above, only ~s~~~ and co60 a r e  very c l o s e  t o  

i d e a l ,  The useful  emissions a r e  662 keV (85%) f o r  ~s~~~ and 1173 keV (100%) 

60 and 1332 keV (100%) f o r  Co . The co60 photons must be counted c a r e f u l l y  

when computing the  conversion between Curies and de tec to r  count ra te .  There is  

very l i t t l e  angular  c o r r e l a t i o n  between the  1173 keV and t h e  1332 keV photons 

t h a t  a r e  emitted with each decay; the  angular  d i s t r i b u t i o n  is  uniform wi thin  5f: 

4.5%. For the  present  app l i ca t ion  where t h e  coll imated de tec to r  s o l i d  angle t o  

t h e  co60 source is very small, i f  t h e  de tec to r  d e t e c t s  one of t h e  decay 

photons, then the  p robab i l i ty  of i t  a l s o  de tec t ing  t h e  o ther  decay photon is 

neg l ig ib ly  small. Mult iple photon de tec to r  counts a r e  not included i n  t h i s  

modeling. From t h e  de tec to r  s tandpoint ,  two adjacent  peaks a r e  almost a s  good 



a s  one f o r  uee a s  a s i g n a l  and i n  t h i s  app l i ca t ion  co60 is b e t t e r  than 

cs13' i n  s e n s i t i v i t y  and absolute  count r a te .  co60 is s p e c t r a l l y  much 

c leaner  than t h e  o ther  sources and a l s o  much more e f f i c i e n t ,  thus  it was chosen 

f o r  subsequent ca lcula t ions .  

The Compton absorption process tends t o  dominate i n  most materials used i n  

t h i s  s tudy over the high euergg range of approximately 1-6 MeV. From a de tec to r  

viewpoint, when considering a monoenergetic source, t h e  s c a t t e r e d  Compton photon 

may eacape or it mny be f ,ul ly shnnrbed or i t  may be  s c a t t e r e d  again. The Compton 

e l e c t r o n  w i l l  deposi te  energy from zero  up t o  a maximum, ECM, given i n  Figure 6. 

I f  the  Compton photon escapes, then a count i n  t h e  Compton continuum is observed. 

I f  the  Compton photon is  f u l l y  absorbed, then a , coun t  i n  t h e  photopeak is  ob- 

served. Thus, from the;se processes the spectrum develops a shape t h a t  typicalJy 

has a continuum from zero  t o  ECM, a v a l l e y  between ECM and Ey, and a 

photopeak a t  Ey. But t h e r e  is an a d d i t i o n a l  process t h a t  dominates a t  t h e  

h ighes t  energies  and which has an energy threshold of 2 moc2 = 2 X 511 keV; 

t h i s  p a i r  production e f f e c t  is usual ly  not  s i g n i f i c a n t  u n t i l - 2  MeV. The p a i r  

production absorption c r e a t e s  an e l e c t r o n  and a pos i t ron  from 1022 keV of t h e  

incoming cncrgy and t r a n s f e r s  the  balance of t h e  energy t o  t h e  e l e c t r o n  and 

pos i t ron  k i n e t i c  energy. When t h e  posi tron's  k i n e t i c  energy is t rans fe r red  t o  

t h e  de tec to r ,  i t  ann ih i l a tes ,  c r e a t i n g  two 511 keV a n n i h i l a t i o n  photons. I f  

both a n n i h i l a t i o n  photons a r e  absorbed i n  t h e  detec tor ,  a count i n  t h e  f u l l  

energy photopeak is possible. I f  one ( o r  two) of t h e  a n n i h i l a t i o n  photons 

escape the  de tec to r ,  then a count i n  t h e  s i n g l e  (o r  double) escape peak is  

possible.  For a 1 X 1 N a I  de tec to r ,  t h e  e l e c t r o n  and pos i t ron  mean f r e e  paths  

a r e  very small compared t o  t h e  de tec to r  s i z e ;  however t h e  a n n i h i l a t i o n  photon 

mean f r e e  paths are comparable t o  t h e  de tec to r  s i ze .  Far che 1 X 1 N a I  de tec to r  

and 6130 keV gamma rays,  the  double escape peak a t  5108 keV has  a r e l a t i v e  
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Figure 6.  Maximum Compton electron energy as a function o f  primary photon 
energy. 



amplitude of 7.1, t h e  s i n g l e  escape peak a t  5619 keV has a r e l a t i v e  amplitude 

of 2.6, and the  photopeak a t  6130 keV has a r e l a t i v e  amplitude of 1.0; 

furthermore, 80% of the  detec tor  counts a r e  i n  the  continuum and only 22.2% 

of t h e  incoming 6130 keV gamma rays a r e  detected at  a l l !  The f u l l  absorption 

pho toe lec t r i c  e f f e c t  dominates a t  low energies  of course. There a r e  severa l  

o ther  less important e f f e c t s  such as f luorescent  x-ray escape, b u t  t h e  major 

e f f e c t s  described above ind ica te  t h e  na tu re  of t h e  absorbed energy spectrum 

i n  the  detector .  Detector and e l e c t r o n i c s  noise  w i l l  smear out t h e  very 

narrow peaks of t h e  absorbed energy spectrum. This noise  is a c6111plPcated 

funct ion of energy; some theor ies  show i t  has  an E -'I2 dependence. When 

t y p i c a l  commercial da ta  are used, t h e  reso lu t ion  (FWHM = f u l l  width a t  ha l f  

maximum) appears t o  have an E -114 dependence; t h i s  dependence is used i n  

the  de tec to r  simulation. The spec i f i ed  FWHM reso lu t ion  a t  662 keV is used 

a s  a reference point. I f  the  photopeak is  t o  be c l e a r l y  resolved from t h e  

continuum, then the  reso lu t ion  should be l e s p  than the  gap between t h e  Compton 

edge and the  photopeak. This i s  shown i n  Figure 7 f o r  th ree  t y p i c a l  grades 

of de tec to r  resolution.  

~ e o m e r r y  Qsed i n  Computer Modeling - - 
Two i j o r  geomatri 'eswere used in t h e  'densitorniter computer moddl'ing. 

ThC f i r s t  model is shown i n  l igur re  1 (page 3 )  whlch 'is charac te r i i ed  by a 

c y l i n d r i c a l  s h i e l d  around a c y l i n d r i c a l  &a1 detector .  lrhe c y l i n d r i c a l  s h e l l  

s h i e l d  has c y l i n d r i c a l  'end plugs and uees a square c r a s s  sec t ion ' co l l ima tor  path. 

The square m o s s  s e c t i o n  wcis used because, t h e  code used .CHANDYL7X - a vers ion of 

SAMDYL) does not allow perpendicular c y l i n d r i c a l  geometries; t h e  square cross  

s e c t i o n  area  was chosen t o  be equal  t o  t h e  a r e a  of 118 and' 3/i6 inch d'iameter 

c i r c l e s .  The approximation of a c i r c u l a r  col l imator  by a square one should 

have no s i g n i f i c a n t  e f f e c t  i n  t h e  modeling. The coll imator was f i l l e d  with 





bordn n i t r i d e  a t  1/10 bulk  dens i ty .  This  d e n s i t y  x  path- length product  f o r  

t h i s  m a t e r i a l  was chosen t o  minimize t h e  a t t e n u a t i o n  o f .  t h e  gamma r a y s  down 

t h e  co l l ima to r  t o  l e s s  than 20% whi l e  maximizing t h e  abso rp t ion  of t h e  

thermal  neut rons ;  f o r  a  pa th  l eng th  of 7 inches  wi th  1 /10  bulk  d e n s i t y  n a t u r a l  

-30 
BN t h e  thermal  neut ron  t ransmiss ion  is  4.73 x  10  . The same e f f e c t s  could 

be  obtained wi th  t h e  co l l ima tv r  f i l l a d  wi th  0.7 inches  o f  f u l l  d e n s i t y  (2.0 gm/cc) 

BN and 6.3 inches  f i l l e d  w i th  a i r  o r  low d e n s i t y  foam, bu t  t h i s  combination is 

more cumbersome t o  model. The computer zoning f o r  t h e  c y l i n d r i c a l  d e t e c t o r  

s h i e l d  assembly of f i g u r e  is  shown i n  F igure  8. 'I'he cylindrical s l l i c ld  model 

of F igures  1 and 8 was computat ional ly  e f f e c t i v e  f o r  computing t h e  C 60 and 
0 

N~~ t ransmiss ion  through t h e  water  p ipe  and down t h e  c o l l i m a t o r  and near- 

16  
c o l l i m a t o r  r eg ions ;  bu t  t h i s  model was very  i n e f f i c i e n t  f o r  computing t h e  N 

and r e a c t o r  background c o n t r i b u t i o n  t o  t h e  d e t e c t o r  t h a t  l e a k s  through t h e  

t h i c k e r  p a r t  of t h e  sh i e ld ing .  This  l a t t e r  c o n t r i b u t i o n  is computed more e f f i -  

c i e n t l y  and more a c c u r a t e l y  wi th  t h e  s p h e r i c a l  s h e l l  sh i ,e ld  geometry of F igure  9 ;  

t h i s  f i g u r e  i s  approximately t o  s c a l e  except  t h e  p ipe  l e n g t h  is shown shortened.  

A s p h e r i c a l  d e t e c t o r  i s  used wi th  a  volume equa l  t o  that.  f o r  l - inch diameter  

by l - inch t h i c k  NaI d e t e c t o r .  This  model is used t o  compute t h e  f l u x  spectrum 

e n t e r i n g  t h e  d e t e c t o r  and i s  a  good approximation t o  t h e ' e x a c t  geometry. Once 

t h e  va r ious  f l u x  c o n t r i b u t i o n s  e n t e r i n g  t h e  d e t e c t o r  have been computed, the  

f l u x  absorbed i n  t h e  d e t e c t o r  was always computed wi th  t h e  t r u e  c y l i n d r i c a l  

d e t e c t o r  shape. 

The r e s u l t s  of v a r i o u s  geometry computations have been combined i n t o  a  

p ro to type  dens i tometer  design. The f i n a l  e f f e c t i v e  model f o r . t h i s  p ro to type  

des ign  i s  shown approximately t o  s c a l e  i n  F igu re  10. 



Figure 8. cyl indrical detector shield assembly model de ta i l s  . 
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Proto type  Design R e s u l t s  and performance 

Various s p e c t r a l  s imu la t i ons  were c a l c u l a t e d  a s  shown i n  F igu re s  11-26 

. 
wi th  a parameter index t a b l e  f o r  t h e s e  s p e c t r a  g iven  ' i n  Table  2.' F igure  11 

shows an alrnos; n e g l i g i b l e  photopeak a t  6130 keV from t h e  N 1 6 ;  t h e  N 
16  

A 

f i r s t  and second escape  peaks show up l a r g e r  a t  5619 keV and 5108 keV. , There 

is no c a l i b r a t i o n  (co60) source  f o r  F igu re s  11 and 12. F igure  12  is  an 

expanded p o r t i o n  of F igure  11 and c l e a r l y  shows t h e  peak a t  511 keV which is  

f ro rn ' pos i t ron  a n n i h i l a t i o n  photons genera ted  i n  t h e  l a r g e  l ead  d e t e c t o r  s h i e l d .  

I t  is important  t o  n o t e  t h e  smooth s p e c t r a l  shape from 600 t o  2000 keV; t h i s  

a l l ows  one t o  r e a d i l y  perform background s u b t r a c t i o n  us ing  e x t r a p o l a t i o n .  

S ince  ' t he re  is some u n c e r t a i n t y  a s  t o  t h e  shape of t he . spec t rum from t h e  

r e a c t o r  background, two shapes were used. The f i r s t  c a s e  i s  t h e  skew shape 

of F igure  2 (page 5 )  and t h e  o the r  is  a f l a t  shape or  uniform i n t e n s i t y '  pe r  

energy b i n  from 0.5 - 10 MeV; t h i s  l a t t e r  c a s e  r e p r e s e n t s  a "worst case"  and 

w i l l  be emphasized i n  t h e  d i s c u s s i o ~ .  When, f o r  example, a 50 C i  co60 source  

is  added t o  t h e  problem, t h e  spectrum of F igu re  12 is  changed t o  t h a t  of F igure  16. 

I n  F igure  16 ,  t h e  6060 peaks a t  1332 and 1173 keV a r e  c l e a r l y  ev iden t ,  as 

is t h e  Compton.edge.peak a t  900 keV. By e x t r a p o l a t i n g  t h e  continuum from 

1500 t o  3500 keV- down t o  t h e  region. of 1050 t o ' 1 4 5 0  keV, t h i s  c a l c u l a t e d  back- 

ground may be used f o r  background s u b t r a c t i o n  t o  determine t h e  n e t  area under 

t h e  photopeaks t h a t  i s  caused by t h e  co60 and r e p r e s e n t s  a u s e f u l  d e n s i t y  

s i g n a l .  Although t h e  background continuu& caused b y  t h e  N 1 6  and r eaS to r  

background leakage  i s  no t  d e s i r a b l e ,  i t  does have; a smooth enough shape and 

enough counts  i n  it t o  a l low adequate  background s u b t r a c t i o n .  The only o t h e r  

a l t e r n a t i v e  is  even.more massive high-Z s h i e l d i n g .  The r e l a t i v e  importance 

of t h i s  leakage c o n t r i b u t i o n  t o  t h e  d e t e c t o r  is  i l l u s t r a t e d  i n  Table  3 (page 38) .  

The d i s t i n c t i o n  should be made between photons e n t e r i n g  t h e  d e t e c t o r  (Table  3)  and 



TABLE 2 

F igure  Index f o r  Various ' s p e c t r a l  S imula t ions  us ing  a 1 X 1 NaI 
De tec to r ,  7 inches  of Lead Sh ie ld ing ,  3/16 inch  Col l imator ,  Water 
a t  0.75'gm/cc, and' t h e  Sources of Table  1 i n  t h e  Geometry of 
F igure  10. 

F igure  No. I Sample Time I I Sample Time I 
1 5 seconds I I 1 Second I 

I I 0  I I  11 1 1 2  1 1 - 1 - 1  
I Reactor  I I 1 I 1 I 1 1 
I Background 1 10 1 1  13  1 14 1 1 23 1 24 1 
I F l a t  1 I I I 1 1 I 1 
I 1 5 0  1 1  15  1 1 6  1 1 - 1 - 1  
I I 

I I I I I I I 

I Graph Range, I I Graph Range, I 
co60 S t r e n g t h ,  MeV 1 1 MeV I 

Cur ies  I I I 
1 0 - 1 0  1 0  - 21 

1 1 I I I 

I I 1 I I I I 
I I I I I I I I I 
I I 0  1 1  17 1 1 8  1 1 - 1 - 1  
I Reactor.  I I I I 1 I I . .  I 
I Background 1 10 1 1  19 1 20 1 I . 2 5  1 2 6  1 
I Skew I 1 1 I 1 I I I 
I I 5 0  1 1  21 1 2 2  1 1 - 1 - 1  
I I I 

I I I I I I 
I I I I I I I I I 
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. ENERGY ( ~ ( E V  I . .. 

4 76 NP. I ! X  1 ' 7 .  Pa 3 /  16 C O L L  5SEC OC I FLAT 
4, -/ f -., ,-'. . ! 2 p J A  1 1  - 
* I L i  c-I-,s, fit\/ 0. 10000.0 

EV/CH=2GG00.0 C T S  FRACTION= 2..59.2E-01 
.. . . . ... . . . . . 



ENERGY ( K E V )  

36 TJk! 1 X 1 7 P6 .3 /  16 COLL 5SEC OC I FLAT 
130644 CTS,KEV C j .  10000.0 

EIJ/CH= 4000.0 CTS FRACTION= 2,592E-01 



ENERGY ( K E V I  

78 Y 1 . 1 1  7 Pa 3 /16 COLL 5SEC lOCI FLAT 



ENERGY ( K E V ) .  

78 V' NAI~X!' 7 P3 3/16 COLL 5SEC lOCI FLAT 
1 z.f-F; 
1 ,CIL 18 CTS , KEV' 0. '10020.0 
-' 1.- E \ / / L ~ -  4 G O O .  0 C T S  FRACT ION= 2.729E-O 1 



ENERGY ( K E V )  

LLO N.41 I X i  7 Pi3 3/ 16 C O L L  5SEC 50C I FLAT 
258987 CTS , KEV 

EV/CH=2000G.9 CTS  FRACTION= 3.063E-01 





ENERGY (KEV I 



ENERGY ( K E V )  

- E:/i'Ci!= 4000.0 C T S  FRACTION= 2.'632E-01 



ENERGY ( K'EV) 

39 1 7 ?B 3 /16  COLL 5SEC lOCI SKEN 

E\ / /CZ=20000.0  CTS FRACTION= 2.877E-01 



ENERGY [ K E V )  

-J -a ?\!A. i i X i  7 PP 33/ 16 COLL SSEC 1 0 C  I SKEW 3 u' 

E:,( / c-!= LLC33.O C T S  F R A C T I O N . = ' ~ ~ , ~ ~ ~ E - - O ~  



ENERGY (KEV) 

91 N.A.I1):! 7 PB 3 /16 C O L i  5SEC 50CI SKEW 
I l l - -  152178 CTS,~LV 0. 10000.0 

EV/Cf i=20000.0  CTS FRACTION= 3.292E-01 



ENERGY (KEV 1 

G 1 P \ L  "IlXi L 7 PB 3/16 COLL 5SEC 50CI SKEH 
152 178 C T S ,  KEV ' 0. 1000~.0 

EV/CA= 4003.9 CTS FRACTION= 3.292E-01 





I 
c.: f 
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ENERGY (KEV 1' 

- 
44 A ! !  7 PB 3/16  C O L i  1SEC 1OCI FLAT J 

7 1 s: 2 12 C T S ,  KEV 0. 1 0 0 0 0 . 0  
'\!/CH= 4S0C.G CTS FRACTION= 2.727E-01 L "  





ENERGY (KEV)  

35 N A I l X l  7 P B  3/16 COLL lSEC !OCI SKEW 
- 17 ! /a43 C T S  ,KEV 

E V i C H =  4000.0 C T S  FRACT!ON= 2.870E-01  



TABLE 3 

Source Cont r ibu t ions  Enter ing  t h e  Detec tor  

Photonslsec Enter ing  Detec tor  . Photonslsec Enter ing  De tec to r  
Source Or ip in  ( F l a t  Reactor Background) (Skew Reactor  Background) . 

, . 

N~~ s h i e l d i n g  leakage  

continuum 

6.1.3 M e V  

N~~ d i r e c t  6.13 M e V  810 

down co l l ima to r  

60 50 C i  Co . d i r e c t  11 7 3 keV 31 050 
40.4% 

down co l l ima to r  1332 keV 37 200 

Reactor  Background 
1 

cantinuum 58 000 
37.2% 

511 keV 5 000 



photons  absorbed o r  counted by t h e  d e t e c t o r  ( F i g u r e s  11-26). 

To g i v e  q u a n t i t a t i v e  meaning t o  t h e  s p e c t r a l  i n f o r m a t i o n  of F i g u r e s  11-26, 

one may i n t e g . r a t e  r e l e v a n t - p o r t i o n s  of t h e  spectrum and d i v i d e  t h e  r e s u l t i n g  

d e t e c t o r  c o u n t s  by t h e  sample t ime  t o  o b t a i n  a  d e t e c t o r  coun t  r a t e  f o r  a g i v e n  

energy window. T h i s  h a s  been done w i t h  t h e  r e s u l t s  t a b u l a t e d  i n  T a b l e  4. I n  

T a b l e  4 ,  t h e  f i r s t  row i s  t h e  t o t a l  photon i n p u t  r a t e  t o  t h e  d e t e c t o r ;  t h e  

second row i s  t h e  t o t a l  d e t e c t o r  count  r a t e  and t h e  t h i r d  row i s  t h e  t o t a l  

dctoct ion  ~ f f i r i ~ n c y  o b t a i n e d  by d i v i d i n g  t h e  second row by t h e  f i r s t .  The 

f o u r t h  and f i f t h  rows a r e  count  r a t e s  of energy windows (FWTM = f u l l  w i d t h  

a t  1 / 1 0  maximum = 1.826 X FWHM) c e n t e r e d  on t h e  co60 peaks  a t  1173 and 

1332 keV. Rows s i x  t o  n i n e  a r e  from a r b i t r a r y ,  un i fo rm energy  windows on 

t h e  smooth s p e c t r a l  continuum j u s t  above t h e  si .gna1 windows. The t o t a l  back- 

ground s t r e n g t h  i s  i n d i c a t e d  i n  columns 36 and 37 ( 0  C i  of co60)  and may b e  

used t o  s u b t r a c t  from t h e  o t h e r  columns t o  o b t a i n  t h e  n e t  s i g n a l s  from t h e  

co60 s o u r c e s .  The lower (1094 - 1252 keV) s i g n a l  window h a s  more n e t  s i g n a l  

c o u n t s  t h a n  t h e  upper window because  i t  d e r i v e s  i t s  s i g n a l  from t h e  1173 keV 

photopeak and a l s o  from t h e  upper p o r t i o n  of t h e  Compton continuum from t h e  

1372 keV p h ~ t o n s .  T h i s  e n t i r e  n e t  s i g n a l  is v a l i d  and u s a b l e  and i n  p r a c t i c e  

b o t h  s i g n a l  windows s h o u l d  b e  used t o  d e r i v e  a t o t a l  n e t  s i g n a l  t h a t  is  i n d i -  

c a t i v e  of the water a b s o r p t i o n .  

Using t h e  weaker,  upper s i g n a l  window o n l y ,  a  s i m p l i f i e d  s i g n a l - t o - n o i s e  

a n a l y a i s  w i l l  now be  given u s i n g  d a t a - i n  Tab le  4. There  are two obvious  ways 

one cou ld  implement background s u b t r a c t i o n  i n  p r a c t i c e .  F i r s t ,  one cou ld  l e a v e  

t h e  co60 s o u r c e . o n  a l l  t h e  t ime  and measure t h e  spec t rum above t h e  s i g n a l  

window w e l l  enough t o  e x t r a p o l a t e  t h e  background t o  be s u b t r a c t e d  from t h e  

s i g n a l  window. T h i s  would p robab ly  r e q u i r e  s e v e r a l  upper  energy  windows and 



TABLE 4 

3 NaI 1 X 1, 7" Pb, 3/16" Dia. Co11. ,' 0.75 gm/cm H20 

137 *ci/cm3 co60 4" Away from Pipe 

Count R a t e ,  cps  i n  
i n t e g r a t i o n  region, FLAT SKEW FLAT SKEW FLAT SKEW FLAT SKEW 
keV 0 C i  0 C i  10 C i  10 C i  50 1 2 i  50 C i  10 C i  10 C i  

5 sec  5 sec  5 sec  5 sec  5 sec 5 sec  1 sec  1 sec 
SPECTRUM RUN NO. 36 37 38 39 40 41 42 43 

1. J DET INPUT I 100 820 1 48 520 
I I 



an  e s t i m a t e  of t h e  g e n e r a l  background shape  t h a t  h a s  been e x p e r i m e n t a l l y  

predetermined.  . T h i s  method ,has  t h e  advan tage  t h a t  t h e  background i n f o r m a t i o n  

i s  d e r i v e d  f o r  t h e  same sample t ime  and f l o w  c o n d i t i o n s  t h a t  p r e v a i l  f o r  t h e  

s i g n a l  window in format ion .  T h i s  method is a l i t t l e  more d i f f i c u l t  t o  imple- 

ment t h a n  t h e  second obvious  method b u t  i t  s h o u l d  y i e l d  b e t t e r  r e s u l t s .  The 

second obvious  method u s e s  a  chopped co60 source .  I n  t h i s  method, t h e  back- 

ground t o  be used f o r  s u b t r a c t i o n  is  measured i n  t h e  s i g n a l  window d u r i n g  t h e  

o f f - t ime  of t h e  co60 s o u r c e ,  b u t  s y n c h r o n i z a t i o n  of t h e  sampl ing and chopper 

must b e  niaintained.  For s i m p l i c i t y ,  t h e  second method w i l l  be used co i l l u s L r a L e  

t h e  s i g n a l - t o - n o i s e  r a t i o  c a l c u l a t i o n .  The s p e c i f i c  example of a 1 0  C i  Co 
6  0  

s o u r c e  w i t h  a  skew r e a c t o r  background is i l l u s t r a t e d  i n  Tab le  5. If  t h e  o t h e r  

d a t a  i n  Tab le  4 i s  used i n  a  manner similar t o  t h a t  i n  T a b l e  5 ,  t h e n  F i g u r e  27 

may b e  cons t ruc ted . ,  F i g u r e  27 p l o t s  t h e  s i g n a l - t o - n o i s e  r a t i o  v e r s u s  sampl ing 

t ime  f o r  v a r i o u s  c o n d i t i o n s .  The 25 C i  s o u r c e  c u r v e s  were o b t a i n e d  by s c a l i n g  

t h e  10 C i  and 50 Ci d a t a .  The n o i s e  i n  F i g u r e  27 i s  s imply t h e  s t a n d a r d  dev ia -  

t i o n  and t h e  c u r v e s  i n  F i g u r e  27 a r e  shown dashed f o r  v e r y  s h o r t  sample  t i m e s  

because  v e r y  poor s t a t i s t i c s  r e n d e r s  t h e  d e f i n i t i o n  of n o i s e  used meaningless .  

Again,  i t  must be  emphasized t h a t  t h e s e  c a l c u l a t i o n s  a r e  f o r  t h e  weaker,  upper  

peak s i g n a l  o n l y ;  t h e  lower  peak s i g n a l  h a s  a  s i g n a l  abou t  27% s t r o n g e r .  Thus, 

t h e  s i g n a l - t o - n o i s e  r a t i o  t h a t  cou ld  be  ach ieved  from t h e  sys tem i s  b e t t e r  t h a n  

i s  i n d i c a t e d  i n  F i g u r e  27. From F i g u r e  27, one can  see t h a t  t h e  s h a p e  of t h e  

r e a c t o r  background s o u r c e ,  skew o r  f l a t ,  s o f t  o r  h a r d ,  becomes less r e l e v a n t  

f o r  i n c r e a s i n g  cob' s o u r c e  s t r e n g r h s .  For any r e a s o n a b l e  number of d e t e c t o r  

c o u n t s ,  t h e  s i g n a l - t o - n o i s e  r a t i o  i n c r e a s e s  w i t h  t h e  s q u a r e  r o o t  of t h e  sampl ing 

t ime. The q u e s t i o n  of what s i g n a l - t o - n o i s e  r a t i o  i s  a d e q u a t e  depends on t h e  

range  of wa te r  d e n s i t y  encounte red  and how t h e  s i g n a l  and t h e  n o i s e  depend on 

w a t e r  d e n s i t y .  



TABLE 5 

An example of a s i m p l i f i e d  s i g n a l - t o - n o i s e  r a t i o  c a l c u l a t i o n  f o r  a 1 0  C i  

c o 6 0  s o u r c e  w i t h  a skew r e a c t o r  background. 

1 )  Assume a sample t ime of 0.2 seconds ,  i . e . , . 0 . 2  seconds  f o r  measur ing S + B = 

s i g n a l  + b.ackg.round and 0.2 seconds  f o r  measur ing B o n l y ,  f o r  a t o t a l  measur ing 

t i m e  of 0.4 seconds.  

2 )  Use S + B = 1110 c p s  c o l  39,  row 5 ,  T a b l e  4 

Use B = 554 cps  c o l  37,  row 5 ,  T a b l e  4 

- 
3 )  S + B = 1110 x 0.2 = 222 c t s  = ,/S .+ B = 14.90 

B = 554 x 0.2 ='111. C ~ S  - JB =2 - = 10.54 
Y 

S = 111 c t s  

4 )  SIOT = 6.10, u s i n g  on ly  t h e  1332 keV photopeak window. 



Figure 27. Signal-to-nolse r a t 6 8  versus sampling time uslng only the  
1332 keV peak o f  Co . 



Scaling from t h e  Prototype Design 

Using the  geometry of Figure 10 (page 19) ,  t h e  upper c060 peak s i g n a l  

en te r ing  the  collimated de tec to r  as a funct ion of water dens i ty  has been 

ca lcu la ted  and the  r e u s l t s  a r e  shown i n  Figure 28. The r e s u l t s  have been 

3 normalized t o  the  water densi ty  of 0.75 gm/cm because a l l  previous da ta  has  

used t h i s  nominal value. The s lope  of t h e  l i n e  i n  Figure 28 simply y i e l d s  t h e  

absorption c o e f f i c i e n t  f o r  water a t  t h a t  energy. The s i g n a l  i n  Figure 28 is 

d i r e c t l y  proport ional  t o  the  de tec to r  s i g n a l  i n  t h e  signal-to-noise r a t i o  calcu- 

1aLluus. The background dcpondance dn water densi ty  is mare cvmpll,cgted; t h e  

~ l ~ - t o - r e a c t o r  background r a t i o  may vary from 0.59 t o  3.45 depending upon 

whether the  reac to r  background is  f l a t  or skewed a s  w a s  shown i n  Table 3 (page 38). 

60 
Consider t h e  case of t h e  skew reac to r  background and a 50 C i  Co source, i f  t h e  

s16 contri6utiTin i s  assumed t o  be p t o v t i o n a l  t o  t h e  water densi ty ,  78% o f  t h e  - 

background w i l l  be reduced t o  zero a s  the  water densi ty  approaches zero. Since 

most of t h e  noise  a t  t h e  nominal operat ing point  of P = 0.75 gm/cm3 comes 

from t h e  s p e c t r a l  background, a dramatic improvement i n  signal-to-noise r a t i o  

should r e s u l t  as t h e  water densi ty  decreases. 

One may s c a l e  coll imator diameter changes upon t h e  prototypb design and 

performance. Consider t h e  case of t h e  50 hi CO" source and t h e  skew reac to r  

background when changing- the  coll imatbr from' 3/16 t o  4/16 inch, and' irsing a 

sampling t i m e  of 0.2 seconds. The current  va lue  of S / q  = 19.8 is read from 

Figure 27. Since t h e  new col l imator  diameter is s t i l l  a f r a c t i o n '  of t h e  

de tec to r  diameter, t h e  phstspeak e f f i c iency  at  1332 keV may be assumed constant  

( i t  w i l l  decrease s l i g h t l y ,  see Figure 3). The down-collimator contr ibut ion of 

N~~ i s  a neg l ig ib le  0.7% (see Table 3). The down-collimator" con t t ibu t ion  of 

t h e  co60 s h m ~ l d  inerease  wt(ith t h e  s o l i d  angle which is a f a c t o r  of ( 4 1 3 ) ~  - 1.78. 

I f  the  net  co60 s i g n a l s  i n  Table 4, column 41 were increased by 1.78, then t h e  

new value  of S k T  = 28.2. Thus S/uT could be improved by 42% by increas ing 
- I  . 



f i g u r e  28. Relatlve strength o f  the 1332 keV signal o f  co60 transmitted 
. . , -  ,-..S;hr~ygh, . .  - .  .., the pipe as a function o f  water density. 
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t h e  coll imator diameter from 3/16 t o  4/16 inch. The p r i c e  one pays is a 

nigher de tec to r  count rate; the  old t o t a l  de tec to r  count rate w a s  38,436 cps 

and the  new value  would be approximately 58,600 cps. This new va lue  is not 

3 excessive but it is f o r  a value of water densi ty  of 0.75 gm/cm . The 

increased count r a t e  may reduce the  dynamic range of water densi ty  t h a t  may 

be measured before s a t u r a t i o n  (de tec to r  e l e c t r o n i c s  deadtime) e f f e c t s  take  

p lace  a t  low water densi t iea .  Some of t h e  deadtime e f f e c t s  may b e  unfolded 

depending upon the  nature  of t h e i r  source i n  the  de tec to r  and e lec t ronics .  

Source s t r eng th  e f f e c t s  upon signal-to-noise r a t i o  may e a s i l y  be  scaled  

from t h e  prototype design data  i n  Table 4, a s  has been demonstrated with 

t h e  25 C i  curves of Figure 27. The ne t  s i g n a l  (S + B column - B column) is  

simply scaled  d i f e c t f y - t o  the  source s t r eng th - to  c a l c u l a t e  a new S + B-value 

f o r  use i n  the  signal-to-noise ca lcula t ion.  

Source pos i t ion  changes may be s i m i l a r l y  sca led  using t h e  l / r2  dependence. 

The present  r value (source-to-detector d is tance)  is  26 inches. The 50 C i  source 

4 inches away from t h e  pipe w i l l  be equivalent  t o  a 66.57 C i  source 8 inches 

away from t h e  pipe. 

Detector s i z e  e f f e c t s  may a l s o  be scaled  using the  e f f i c iency  d a t a  i n  

Figure 3 and the  source data  i n  Table 3, making t h e  assumption t h a t  uncoll i-  

mated sources w i l l  a l s o  s c a l e  with de tec to r  cross-sect ional  area. One can 

e a s i l y  estimate t h a t  sh ie ld ing  a 2 X 2 de tec to r  w i l l  be f a r  more d i f f i c u l t  than 

sh ie ld ing  a 1 X 1. 

Prototype Calcula t ional  D e t a i l  and Addit ional  Calcula t ions  
L I 

Of the  sources l i s t e d  i n  Table 3 (page 3 8 ) ,  t h e  f i r s t ,  which is t h e  N 16 

sh ie ld ing  leakage was t h e  most d i f f i c u l t  t o  c a l c u l a t e  f o r  several reasons. This is a 



high energy, d i s t r i b u t e d  volume source of high i n t e n s i t y .  For these  reasons, 

i ts  contr ibut ion over a s i g n i f i c a n t  length of t h e  coolant p ipe  nea res t  t h e  

de tec to r  must be considered. For computational purposes, t h e  55-inch length 

of p ipe  from which N~~ r a d i a t i o n  was modeled was divided i n t o  5 inch long 

c y l i n d r i c a l  segments. The middle segment was b isected  by the  densitometer 

a x i s  (X-axis of Figure 10, page 19). To compute t h e  photon f l u x  en te r ing  the  

de tec to r  more accura te ly ,  a spher ica l  s h e l l  de tec to r  s h i e l d  and s p h e r i c a l  

de tec to r  w e r e  used. This was necessary because a successful  sh ie ld  t ransmits  

a very small f r a c t i o n  of t h e  inc ident  photons and longer computer runs a r e  

required t o  obta in  good s t a t i s t i c s  on the  t ransmit ted  f rac t ion .  To help  alle- 

v i a t e  t h i s  problem, a computational technique using photon m u l t i p l i e r s  ( i n  t h e  

s p h e r i c a l  shield) and weighting f a c t o r s  was employed. Two i d e n t i c a l  comparative 

runs with and without photon m u l t i p l i e r s  were made with i d e n t i c a l  r e s u l t s  except 

f o r  the  much higher precis ion using the  m u l t i p l i e r  technique. The angular  

emission from t h e  N~~ was f u r t h e r  confined wi th in  a cone aimed toward the  

de tec to r  from t h e  center  of the  source segment. The nominal value  of t h e  
0 

cone's semi-apex angle, a, was 45 . The r e a l  photons t h a t  a r e  emitted ou t s ide  

of t h i s  conical  d i s t r i b u t i o n  c o n s t i t u t e  85% of a l l  emissions but  they cannot 

make a s i g n i f i c a n t  contr ibut ion t o  the  f l u x  enter ing the  de tec to r  and should 

not  be followed computationally. This may be  understood by considering the  

energy of the  s c a t t e r e d  Compton photon a s  shown i n  Figure 29. A source 

photon o r i g i n a l l y  inc l ined  45O away from t h e  de tec to r  must s c a t t e r  through 9 0 °  

t o  tu rn  towards t h e  detec tor .  A Compton photon s c a t t e r e d  through 90' o r  180' 

2 must have an energy less than moc2 ( 0  511 keV) or  moc 12, r e spec t lve ly*  

For a 6.13 MeV source photon, using Figure 29, t h e  90" s c a t t e r e d  photon has 

an energy of 470 keV and the  180' s c a t t e r e d  photon has an energy of 245 keV. 

Photons of these  energies  w i l l  have l i t t l e  chance of penet ra t ing  t h e  sh ie ld ing  





and adding t o  the  detec tor  s ignal .  Even f i v e  successive 18 s c a t t e r i n g  events 

i n  the  same plane i n  the  same d i r e c t i o n  s t i l l  r e s u l t s  i n  a t o t a l  s c a t t e r i n g  

angle of 90 but  with a low 1.56 M e V  r e s i d u a l  photon energy; t h i s  s i t u a t i o n  

a l s o  has a very low probab i l i ty  of occurring. This explanation has been 

computationally v e r i f i e d  by computer runs where t h e  source cone apex angle 

was the  parameter. 

T 
The t o t a l  f lux ,  Fl (photons  per  source photon), en te r ing  t h e  de tec to r  

from t h e  d i f fa ron t  pipe segments i n  shnwn i n  Figure 3QI The contr ibut ion,  

f a l l s  off f a s t e r  than r 2 ,  a s  might be expected s i n c e  t h e  coolant  p ipe  

appears th icker  a t  oblique angle transmission. The in tegra ted  contr ibut ions  

from t h e  eleven 5-inch t h i c k  N~~ d i sk  sources of Figure 30 is shown i n  

Figure 31. I n  Figure 31, th coni-cal source s o l i d  angle factor-has been included, 

and TF represents  the  t r u e  f r a c t i o n a l  transmission (photons per  4lf-source photon) 

en te r ing  the detector .  

The second s t rong source t o  t h e  de tec to r  is the  reac to r  background spectrum. 

Two d i f f e r e n t  source s p e c t r a l  shapes were used here; a f l a t  i n t e n s i t y  p r o f i l e  

was used a s  a worst case and a skew i n t e n s i t y  p r o f i l e  shown i n  Figure 2 was 

used f o r  the  more l i k e l y  s i tua t ion .  P a r a l l e l  beam sources of t h i s  type were 

inc iden t  on t h e  de tec to r  and s h i e l d  assembly and t h e  r e s u l t i n g  f l u x e s  en te r ing  

the  de tec to r  are shown i n  Figures 32 and 33. Figures 31 t o  33 a l l  represent  

t h e  transmission through seven inches of lead. They a l l  have a maximum which 

i s  highcr i n  energy f o r  the  harder source spectrum; however, t h e  energy maxima 

ranges only from 1.8 t o  2.7 MeV f o r  a very wide range i n  source hardness. It 

may help t o  understand t h i s  t rend by considering t h e  a t t enua t ion  c o e f f i c i e n t  

versus energy f o r  lead shown i n  Figure 34. The a t t enua t ion  c o e f f i c i e n t  is 

equivalent  t o  the  rec ip roca l  of t h e  mean f r e e  path and one can see t h a t  t h e  mean 
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Figure 31 . Detector input fl "x from N ' ~  * 
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Figure 34. Attenuation coeff ic ient  (cn-' ) or the reciprocal o f  the mean f ree  
path for  photons i n  vartous materials. 



f r e e  p a t h  goes  through a  maximum f o r  l e a d  a t  3 . 6  MeV. Above t h i s  energy ,  p a i r  

p roduc t ion  soon dominates  and t h e  subsequen t  p o s i t r o n  a n n i h i l a t i o n  n e a r e s t  t h e  

d e t e c t o r  i n  t h e  l e a d  c r e a t e s  511 keV photons  t h a t  sometimes r e a c h  t h e  d e t e c t o r ;  

below t h i s  energy ,  e s p e c i a l l y  below 1 M e V ,  t h e  a b s o r p t i o n  i n  t h e  l e a d  becomes 

v e r y  h i g h ,  t h u s  v e r y  l i t t l e  low energy f l u x  r e a c h e s  t h e  d e t e c t o r .  

The c o n t r i b u t i o n s  down t h e  c o l l i m a t o r  p a t h  from i n s i d e - w a l l  s c a t t e r  and 

l e a k a g e  t h a t  end up i n  t h e  broad energy continuum a r e  r e l a t i v e l y  small; most 

of t h e  c o l l i m a t e d  r a d i a t i o n  IS a~: the svurce photopeak energy. For t h e  N 
1 6  

s o u r c e ,  88% o f . t h e  c o l l i m a t e d  r a d i a t i o n  is  i n  t h e  photopeak.  For t h e  Co 60 

s o u r c e ,  96% of t h e  c o l l i m a t e d  r a d i a t i o n  i s  i n  t h e  photopeak.  The continuum 

c o n t r i b u t i o n s  from t h e s e  s o u r c e s  a r e  n e g l i g i b l e  and have been exc luded  from 

T a b l e  3 and t h e  s p e c t r a l  modeling. 

I n i t i a l  c a l c u l a t i o n s  s t a r t e d  w i t h  a  2 x 2 d e t e c t o r  and 4 i n c h e s  of 

s h i e l d i n g  r a t h e r  t h a n  t h e  f i n a l  v a l u e s  of a  1 x  1 d e t e c t o r  and 7 i n c h e s  of 

s h i e l d i n g .  The ' i n i t i a l  c a l c u l a t i o n s  were on ly  p a r t i a l  because  n o t  a l l  of 

t h e  s o u r c e s  were c a l c u l a t e d .  The p a r t i a l  r e s u l t s  i n d i c a t e d  t h e  t r e n d  t o  

v e r y  h igh ;  d e t e c t o r  coun t  r a t e s  and s o  complete  c a l c u l a t i o n s  were n o t  done. 

By s c a l i n g  t h e  p r t i a l  r e s u l t s  t o  t h e  complete  d a t a  f o r  t h e  1 x  1 d e t e c t o r  

s h i e l d e d  w i t h  7 i n c h e s  of l e a d ,  t h e  r e l a t i v e  s h i e l d i n g  e f f e c t s  f o r  v a r i o u s  

d e t e c t o r  s i z e s  arb summarized i n  T a b l e  6. The consequences  of i n a d e q u a t e  

s h i e l d i n g  a r e  d r a m a t i c a l l y  emphasized i n  T a b l e  6. The' d e t e c t o r  coun t  rate 

from t h e  N~~ s o u r c e  a l o n e  f o r  a 2 x 2 d e t e c t o r  and 11 i n c h e s  of lead 

s h i e l d i n g  i s  8.18 x  l o 5  cps ;  i f  t h e  r e a c t o r  background were i n c l u d e d ,  

t h i s  cou ld  t y p i c a l ' l y  i n c r e a s e  t h i s  coun t  rate by a  f a c t o r  of two. The 

r e s u l t s  shown i n  Tab le  G i n d i c a t e  t h e  need f o r  v e r y  c o n s e r v a t i v e  s h i e l d i n g  

d e s i g n .  



Table 6  

Shielding 

D e t e c t ~ r  Count Rate From 55" o f  i n  the Pipe 

Detector Entry Detector 
Equal Flux from Count Rate 
Volum~ Central 5" Relat ive  from 55" 

Spherical Cylindrical  Segment of Detector 
Detector . Detector Detection Count of N~~ i n  

Radirs, crn Dia. x  Ht., inches N~~ i n  pipe Eff ic iency , % Rate . Pipe, Kcps 



Appl ica t ion  Notes and Summary 

The c a l c u l a t i o n a l  models employed included a  r eg ion  around t h e  d e t e c t o r  

of a  0.5 inch  gap f i l l e d  wi th  a i r .  This  was intended t o  account f o r  t h e  

p r a c t i c a l  need t o  i s o l a t e  t h e  d e t e c t o r  c rys t a l -pho tomul t i p l i e r  assembly 

from thermal  and a c o u s t i c  shocks. I n  a d d i t i o n ,  t h e  ga in  s h i f t s  s i g n i f i c a n t l y  

w i t h '  temperature  so,  t h a t  thermal  i s o l a t i o n  and s t a b i l i z a t i o n  w i l l  be  requi red .  

A slow temperature  d r i f t  could r e a d i l y  be  compensated by us ing  an  AGC (auto- 

mat ic  ga in  c o n t r o l )  a m p l i f i e r  t h a t  "locks" on t o  a  r e f e r e n c e  peak i n  t h e  

spectrum; t h i s  could i n c l u d e  t h e  upper cob' peak o r  i t  could be  providgd 

by a  s t a b i l i z e d  l i g h t  pu l se r .  The pho tomul t i p l i e r  should be  optimized f o r  

h igh  count r a t e s ;  see "A High-Rate Phototube Base," by Cordon R. Kerns, t o  

be publ ished i n  I E E E  Trans. Nucl. Sc i . ,  Feb. 1977. 

The cob' source  should be contained i n  a  s h i e l d  c o n t a i n e r  t h a t  h a s  

a  remote c o n t r o l l e d  s h u t t e r .  The s h u t t e r  should be  q u i t e  e f f i c i e n t  because 

t h e  s p e c t r a l  background shape must be  a c c u r a t e l y  determined be fo re  t h e  

experiment.  The co60 sou rce  c o n t a i n e r  could a l s o  be  designed t o  remotely 

advance t h e  source  c l o s e r  t o  t h e  coo lan t  p i p e  once t h e  s h u t t e r  has  been 

opened. This  would s i g n i f i c a n t l y  improve t h e  s i g n a l  count r a t e .  

The importance of a c c u r a t e  background s u b t r a c t i o n  cannot  be over- 

emphasized. Reducing t h e  background by increas ' ing  t he 'mass ive  high-Z 

d e t e c t o r  s h i e l d i n g .  beyond' t he  amount used i n  t h i s  p ro to type  des ign  i s  

s t r o n g l y  recommended where p u s s i b l e i  For cxample, i t  w n ~ ~ l r l  be d e s i r a b l e  

t o  r e p l a c e  t h e  ' lead c o l l i m a t o r  r eg ion  of t h e  d e t e c t o r  s h i e l d  w i th  a l a r g e  

t ungs t en  c y l i n d r i c a l  ~11.18 wi th  t h e  c o l l i m a t o r  ho l e  i n  'it. This  would 

provide  a d d i L 1 u a a l d e t e c t o r  oh i e ld ing  from one of t h e  s t r o n g e s t  background 

sources--the volume o f  coo lan t  water  n ' ea res t  t h e  d e t e c t o r .  



The use of m u l t i p l e  sources  a long  d i f f e r e n t  c o l l i m a t i o n  pa ths  i n c i d e n t  

on one d e t e c t o r  is no t  recommended. The m u l t i p l e  source  energy spectrum is  

very  complicated wi th  a l l  t h e  h igher  energy sou rces  c o n t r i b u t i n g  Compton 

backgrounds i n  t h e  reg ion  of t h e  lower energy photopeaks. S p e c t r a l  unfo ld ing  

i s  d i f f i c u l t  a t  b e s t  without  t h e  compl ica t ions  of a s t r o n g  t r a n s i e n t  back- 

ground. I n  a d d i t i o n ,  t h e  spectrum one is  t r y i n g  t o  unfo ld  is a l s o  a  t r a n s i e n t .  

Accurate  spectrum unfo ld ing  r e q u i r e s  a  spectrum wi th  very  l i t t l e  s t a t i s t i c a l  

n o i s e ,  i . e . ,  long measurement t imes. This  s t r o n g l y  c o n f l i c t s  wi th  t h e  p red i c t ed  

p ro to type  performance da ta .  

The complete dens i tometer  de s igns  d i s cus sed  p rev ious ly  were designed t o  

keep t h e  d e t e c t o r  count r a t e  i n  t h e  nominal range of '20,000 t o  50,000 cps; 

t h i s  is  f o r  a  water  d e n s i t y  of 0.75 gm/cm'l. +i the. water  d e n s i t y  goes  t o  

ze ro ,  t h e  N~~ s i g n a l  goes away and t h e  co60 s i g n a l s  i n c r e a s e  by f a c t o r s  

of -4 .1  and 4.5. I f  one cons ide r s  a  worst  c a se ,  u s ing  t h e  f l a t  r e a c t o r  

background which is  assumed t o  remain cons t an t  i n  t i m e  and a 50 C i  Co 6 0  

sou rce ,  t h e  d e t e c t o r  count r a t e  w i l l  go from 52,000 cps a t  a  d e n s i t y  of 

0.75 gm/cm' t o  125,000 cps a t  a - d e n s i t y  of zero. Of t h e  125,000 cps a t  

ze ru  d e n s i t y ,  1.10,000 cps are from t h e  co60 source.  I f  t h e  d e t e c t o r  and 

i t s  e l e c t r o n i c s  can handle  t h i s  count r a t e ,  then  t h e  s igna l - to -noise  r a t i o  

would be  very  high. Again us ing  t h e  upper energy co60 peak only ,  t h e  

S/uT i s  e s t ima ted  t o  be 97.8 f o r  a  1 second sampling t i m e  o r  43.7 f o r  a 

0.2 second sampling time a t  z e ro  dens i ty .  ,The.noise  is dominated by t h e  

s t a t  i s  t i c s  of t h e  co60 s i g n a l ;  t h e  background c o n t r i b u t i o n  t o  t h e  n o i s e  

i s  negl ig ib le . .  

Neutron s h i e l d i n g  must  a l s o  be considered.  The p a r t i a l  f i l l i n g  of t h e  

c o l l i m a t o r  with boron ' n i t r i d e ,  e f f e c t i v e l y  s h i e l d s  'the d e t e c t o r  from thermal  

neut rons  coming down t h e  co l l ima to r .  The rest of t h e  d e t e c t o r  could be  



pro t ec t ed  by boron n i t r i d e  s h i e l d i n g ' b u i l t  i n t o  t h e  d e t e c t o r  thermal  and 

v i b r a t i o n a l  gap f i l l e r  mater ia l ' .  One might a l s o  coa t  t h e  o u t s i d e  of t h e  

de t ec to r -pho tomul t i p l i e r  assembly wi th  a  boron n i t r i d e  loaded p a s t e  o r  epoxy. 

I t  may be  desirable t o  c o a t  t h e  o u t s i d e  of t h e  d e t e c t o r  s h i e l d  wi th  cadmium. 

Cadmium neutron s h i e l d i n g  should no t  be used ad j acen t  t o  t h e  d e t e c t o r  because 

of a c t i v a t i o n  gammas. Ac t iva t ion  i s  n o t  a  problem wi th  t h e  boron s h i e l d i n g  

7 because t h e  (n ,u)  r e a c t i o n  wi th  81° produces s t a b l e  L i  and an e n e r g e t i c  

( 2.5 M e V )  a l pha  p a r t i c l e .  A very  t h i n  d e t e c t o r  housing should s t o p  t h e  

a lpha  p a r t i c l e  without  s i g n i f i c a n t l y  a t t e n u a t i n g  t h e  coGO s i g n a l .  Thermal 

neut rons  i n c i d e n t  on t h e  NaI w i l l  a c t i v a t e  t h e  d e t e c t o r ;  t h e  problem has  

been observed t o  be t h e  product ion  of I ~ ~ ~ .  has  a  25 minute h a l f -  

l i f e  and s e v e r a l  emissions:  a  b e t a  emission up t o  2.12 M e V  (go+%) and 2  

gammas 441 keV (14%) and 969 keV (0.3%) and a  few o the r s .  For a  thermal  

7 neut ron  f l u x  of 10 n/cm2-sec i n c i d e n t  on a  1 x  1 NaI d e t e c t o r ,  a  rough 

7 e s t i m a t e  of t h e  c r e a t i o n  r a t e  i s  1.1 x 10 atoms ~ l ~ ~ / s e c .  M t e r  

a  few h a l f - l i f e s ,  t h e  decay r a t e  w i l l  equa l  t h e  c r e a t i o n  r a t e  and a  s t r o n g  

b u i l t  i n  sou rce  could r e s u l t .  

Thc s i g n a l  p rocess ing  and data s t o r a g e  could be  done i n  many ways. A 

system wi th  some redundancy would seem d e s i r a b l e .  O n e  way t h i s  could be  

achieved would be t o  have seven or  more s i n g l e  channel  ana lyze r s  d r i v i n g  

coun te r s  t h a t  a r e  p e r i o d i c a l l y  read  out  and r e s e t .  A t  t h e  same t i m e  t h e  f u l l  

pu l se  he igh t  spectrum, say  us ing  256 channels ,  could  be p e r i o d i c a l l y  dumped 

i n t o  a  f a s t  b u f f e r  f o r  a  few seconds b e f o r e  and a f t e r  blowdown: 

There appears  t o  be no reason  why one co60 sour,e could no t  be  viewed 

by s e v e r a l  s e p a r a t e  d e t e c t o r s  l o c a t e d  on .  d i f f e r e n t  poin' ts  on a  p l ane  b i s e c t i n g  

t h e  pipe.  This  would only r e q u i r e  des ign ing  t h e  sou rce  c a s e  s o  t h a t  t h e  sou rce  



could be seen by the several  detectors .  A source that  advanced outs ide  the 

case  and.up near t o  the pipe would be qu i t e  sa t i s fac tory . .  Of course, the 

prac t i ca l  neces s i ty  of supporting the considerable weight of the detector  

s h i e l d s  and the source s h i e l d  needs t o  be addressed. 
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