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ABSTRACT 

MIELKE, D. L., H.  H.  SHUGART, and D. C. WEST. 1977. User ' s  
manual f o r  FORAR, a  s tand  model f o r  composi t ion and 
growth o f  up1 and f o r e s t s  o f  Southern Arkansas. ORNLITM- 
5767. Oak Ridge Na t i ona l  Labora to ry ,  Oak Ridge, Tennessee. 
44 PP. 

Th is  r e p o r t  i s  a  u s e r ' s  manual f o r  FORAR, a computer model s i m u l a t -  
i n g  s tand  growth and composi t ion o f  up land f o r e s t s  o f  south c e n t r a l  
Arkansas. The model computes: ( 1  ) the  number and biomass o f  each t r e e  
spec ies,  and ( 2 )  t h e  dbh, age, and spec ies o f  each i n d i v i d u a l  t r e e  on 
a  1112-ha c i r c u l a r  p l o t .  FORAR was developed f rom FORET (Shugar t  and 
West 1977), a  m o d i f i e d  v e r s i o n  o f  t he  JABOWA model developed by B o t k i n  
e t .  a t .  (1972a, 1972b). The p resen t  v e r s i o n  o f  FORAR cons iders  up t o  
35 spec ies and 700 t r ees  and has been implemented on IBM 360 s e r i e s  
computers. 

Once a  y e a r  t r e e s  a re  s t o c h a s t i c a l l y  k i l l e d  o r  grown and new t r e e s  
a r e  s t o c h a s t i c a l l y  p l an ted .  I n d i v i d u a l  t r e e s  a r e  k i l l e d  by a  p rob-  
ab i  1  i ty  f u n c t i o n  sca led  accord ing  t o  t h e  maximum age recorded  f o r  t h e  
a p p r o p r i a t e  spec ies.  S tock ing  o f  new seed l i ngs  and sprou ts  i n  a  g iven  
y e a r  depends on t he  computed l e a f  area index  o f  t h e  p l o t  and t h e  con- 
d i  t i o n  o f  f i v e  env i ronmenta l  v a r i a b l e s :  m ine ra l  s o i l ,  l i t t e r  l a y e r ,  
temperature (as expressed by degree-days) , w i  1  d l  i f e  popu la t i ons  , and 
ep i  demi cs . I n d i  v i  dual  t r e e s  grow accord i  ng t o  a  spec i  es-spec i  f i c 
optimum growth f u n c t i o n  m o d i f i e d  by c l ima te ,  a v a i l a b l e  1 i g h t ,  compet i-  
t i o n ,  and s o i l  mo is tu re .  The optimum growth f u n c t i o n  i s  a  f u n c t i o n  o f  
t he  maximum known age, t he  maximum dbh, and t he  maximum h e i g h t  recorded  
f o r  each species.  

The d r i v i n g  v a r i a b l e  i s  degree-days. I n p u t  c o n s i s t s  o f  19 general  
c h a r a c t e r i s t i c s  f o r  each spec ies.  Normal ou tpu t  shows t o t a l  biomass 
and l e a f  area on a  s imu la ted  p l o t  and, f o r  each spec ies,  t h e  number o f  
t r e e s  on t h e  p l o t ,  t h e i r  dbh's,  and t h e i r  biomass. The model a l s o  has 
op t i ons  t o  l i s t  a l l  the  t r e e s  t h a t  have d i e d  f rom random causes, 
logg ing ,  and f i r e .  

iii 
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INTRODUCTION 

Because o f  t h e  r e l a t i v e  ease o f  e s t i m a t i n g  t h e  necessary i n p u t  
parameters and because t h e  model r e t a i n s  i n f o r m a t i o n  on bo th  i n d i v i -  
dua l s  and species,  FORAR (FORest i n  ARkansas stand s i m u l a t i o n  model) 
i s  v e r s a t i l e  enough t o  be used i n  severa l  d i f f e r e n t  types o f  eco log i -  
c a l  s t ud ies .  Changes i n  spec ies composi t ion th rough succession o r  
because o f  long- te rm p e r t u r b a t i o n s  can be examined and consequences 
o f  d i f f e r e n t  t imbe r  and wi l d l  i f e  h a b i t a t  management techniques can be 
p red i c ted .  Changes i n  t r e e  species abundance (e.g. t o  dominance o r  
e x t i n c t i o n )  can be determined. The model p rov ides  dynamic s imu la t i ons  
o f  what i s  c l a s s i c a l l y  r e f e r r e d  t o  as t h e  s t r u c t u r e  and f u n c t i o n  o f  
ecosystems. The usefulness o f  d i f f e r e n t  measures o f  such i n d i c e s  as 
d i v e r s i t y ,  p r o d u c t i v i t y ,  o r  s t a b i l i t y  can be s tud ied .  

Th i s  u s e r ' s  manual descr ibes  t h e  FORAR model, which s imu la tes  an 
up land f o r e s t  o f  Union County i n  sou thcen t ra l  Arkansas. The model 
was developed f rom FORET (Shugart  and West 1977), a  m o d i f i e d  v e r s i o n  
o f  t h e  JABOWA model used by B o t k i n  e t  a1 . (1 972a, 1972b). The l o g g i n g  
sub rou t i ne  has been expanded i n  FORAR. A  sub rou t i ne  t o  burn  t he  p l o t  
and p r o b a b i l  i t i e s  o f  t r e e s  d y i n g  f rom f i r e  damage has been added. Soi 1  
compe t i t i on  i s  computed u s i n g  basal  area i n s t e a d  o f  biomass. A  f i f t h  
environmental  v a r i a b l e ,  spec ies -spec i f i c  epidemics, has been added t o  
sub rou t i ne  BIRTH t o  a f f e c t  seed l i ng  es tab l i shment .  I n  a d d i t i o n ,  v a r i -  
ab les  have been added, de le ted,  renamed, o r  s h i f t e d  t o  o t h e r  subrou- 
t i n e s  t o  make t he  program more e f f i c i e n t .  

FORAR s imu la tes  compos i t ion  and growth o f  a  f o r e s t  s tand on t h e  
bas i s  o f  each t r e e  g r e a t e r  than  1.27 cm i n  d iameter  a t  b r e a s t  h e i g h t  
(dbh) on a  1/12 ha c i r c u l a r  p l o t . '  The.mode1 computes ( 1 )  t he  numbers 
and binmass o f  each species and (2 )  t h e  dbh, age, and spec ies o f  each 
i n d i v i d u a l  t r e e .  Once a  year ,  t r e e s  a r e  .s tochas t i c t i1  l y  k i l l e d  o r  deter.= 
m i n i s t i c a l l y  grown and new t r e e s  a r e  s t o c h a s t i c a l l y  p l an ted .  I n d i v i -  
dual  t r e e s  a r e  k i l l e d  by a p r o b a b i l i t y  f u n c t i o n  t h a t  i s  sca led  accord- 
i n g  t o  t h e  maximum age recorded f o r  t he  a p p r o p r i a t e  spec ies.  The prob- 
a b i l i t y  t h a t  a  s p e c i f i c  t r e e  w i l l  d i e  d u r i n g  a  g i v e n  s imu la ted  yea r  i s  
increased i f  i t s  growth r a t e  (expressed as d iameter  increment)  f a l l s  
below an acceptable minimum (0.1 c m l y r ) .  S tock ing  o f  new seed1 i n g s  and 
sprou ts  i n  a  g i ven  s imu la ted  yea r  depends on t h e  computed l e a f - a r e a  
index o f  t h e  p l o t  and t h e  c o n d i t i o n  o f  f i v e  environmental  v a r i a b l e s  
d iscussed below. The t r e e  species t o  be stocked a r e  chosen randomly 
f rom those species which can germinate under t h e  e x i s t i n g  c o n d i t i o n s  
f o r  s o i l ,  temperature,  w i l d l i f e  popu la t ions ,  and epidemics. Trees 
grow accord ing  t o  a  s p e c i e s - s p e c i f i c  optimum growth f u n c t i o n  t h a t  i s  
m o d i f i e d  by s o i l  mois ture,  compet i t i on ,  a v a i l a b l e  l i g h t ,  and c l i m a t e .  
The optimum growth f u n c t i o n  f o r  each species i s  a  f u n c t i o n  o f  t h e  maxi- 
mum known age, t h e  maximum dbh and t h e  maximum h e i g h t  recorded f o r  t h e  
species.  The d r i v i n g  v a r i a b l e  f o r  t h e  model i s  degree-days, which i s  
randomly chosen a t  t h e  beg inn ing  o f  each yea r  f rom a  normal d i s t r i b u t i o n  
w i t h  a p p r o p r i a t e  mean and var iance .  FORAR i s  w r i t t e n  i n  FORTRAN I V  and 



has been implemented on I B M  360 se r ies  computers. The present  vers ion  
of  the  model considers up t o  35 t r e e  species and up t o  700 i n d i v i d u a l  
t r e e s  and can simul a t e  the  f o r e s t  f o r  any prespeci f i e d  number o f  years. 

PROGRAM DESCRIPTION 

The deck setup o f  FORAR i s  shown i n  F igure  1. The c o n t r o l  cards 
shown are  those necessary t o  run the  program on the  ORNL IBM 360/91 
computer. The program i s  1 i s t e d  i n  Appendix A-3. I n  a t y p i c a l  run  
the  maximum computer core  used i s  279K. Computer t ime needed w i l l  
depend on the  s i z e  of t h e  run, i . e . ,  how many d i f f e r e n t  p l o t s  a re  
wanted, how many species a re  used, and how many years each p l o t  i s  
run. A run  o f  t h ree  p l o t s ,  each p o t e n t i a l l y  having 33 species and 
running f o r  600 years, takes approxirrlately two minutes o f  CPU t ime.  

INPUT 

The program c u r r e n t l y  reads i n  parameter values f o r  each t r e e  
species us ing  the  format:. 

Th is  format can e a s i l y  be changed i n  subrout ine DATA t o  s u i t  the user.  
Table 1 l i s t s  and descr ibes t h e  i n p u t  v a r i a b l e  names i n  t h e  order  i n  
which the  are entered i n  the  above format.  Most o f  the  parameters, 
such as s K ade to le rance  o r  maximum age, a re  r e l a t i v e l y  s t ra igh t - fo rward  
and can be der ived from standard textbooks o f  dendrology o r  s i l v i c s .  
Harlow and Har rar  (1 969) and Fowell s ( 1  965) were r.~sed i n  t he  p r e ~ e n t  
case f o r  such parameter es t imat ions .  

DMAX and DMIN are  t h e  maximum and minimum degree-day values 
assoc ia ted  w i t h  the  geographic range o f  each spe'cies. They a re  ca lcu-  
l a t e d  (us ing  a s ine  wave, see Appendix A-1) from the  ,lant.rary and J u l y  
mean temperatures a t  t he  no r the rn  and southern ends of t he  range o f  
each species (e.g.,  F igu re  2). B2 and B3 a r e  the  c o e f f i c i e n t s  of the 
f o l l o w i n g  equat ion re1 a t i n g  he igh t  t o  diameter ( i n  cm) : 

So lv ing  f o r  82 and 83, us ing  H=Hmax and $ = 0 when D=Dmax Bo tk in  e t  
a l .  1972a) r e s u l t s  i n :  
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Fig .  1. Deck s t r u c t u r e  and j o b  setup f o r  program FORAR. 



Table  1.  Parameters used i n  t h e  FORAR model . '  Table 2 1 i s t s  t h e  
values used f o r  each t r e e  species. See t e x t  f o r  exp la-  
n a t i o n  of v a r i a b l e s .  

Parameter Name Meaning F i e l d  

-AAA S c i e n t i f i c  name (up t o  .24 1 e t t e r s )  xxxxxxxxxxxxxxxxxxxxxxxx  

DMAX 

DMIN 

Maximum de ree-days f o r  species 
range ?see t e x t )  XXXXX.  

Minimum degree-days f o r  species 
range (see t e x t )  X X X X .  

. % 

0 3 Derived growth parameter (see t e x t )  . xxx  

B 2 Der i ved  qrowth parameter (see t e x t )  xx ixx 

ITYPE Shade to1  erance 
1 = t o l e r a n t  
3 = i n t o l e r a n t  

AGEMX Maximum age recorded f o r  t h e  species xxx . 
Lea f  area cons tan t  

1 = deciduous 
2 = c o n i f e r o u s  

. G Der ived Graowth cons tan t  (see t e x t )  X X X .  x 

STEND 

SPTMIN 

q (q1  

s (4 )  

s ( 5 )  

KTIME 

SOIM 

Tendency t o  sp rou t  
Value o f  0.,1.,2.,or 3. 

The minimum dbh o f  a t r e e  t h a t  w i l l  
sp rou t  x x . x  

The I I I ~ X  ~IIIUIII dhh o f  a t r e e  t h a t  w i  11 
5prn1.1t. X X X .  

the  seed I~dvt l  d  1 I t t e r  l a y e r  t o  
germinate? va lue  o f  T o f  F x 

Must t h e  seed have minera l  s o i l  t o  
I u ?  VEI'~UC o f  T o r  I X 

I 3  t h e  seed l i ng  juscepllble t o  hoe 
yea rs?  va lue  o f  T o r  F 

I s  t h e  seed l i ng  a h i g h l y - p r e f e r r e d  
rood Fur w l l d l l P c ?  va iue  0.f T 0 1 .  F x 

I s  an epidemic s e r i o u s l y  damaging t h e  
species? va lue  o f  T o r  F x 

Number o f  yea rs  a f t e r . a  bare p l o t  t h a t  a 
spec ies  i s  l i a b l e  t o  be p resen t  xxx 

The f r a c t i o n  o f  maximum recorded dbh t h e  
species w i l l  a t t a i n  on an up land s i t e  x. x 
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Fig.  2 .  Growing degree-day l i m i t s  DMAX and DMIN f o r  the geographic  
range of  f lower ing  dogwood (Cornus f 1 o r i  da)  . I sopl  e t h s  f o r  growing degree 
days a r e  c a l c u l a t e d  from U.S. Geological Survey (1965) and from program 
DATGEN (Appendix A-1 ) . 



The growth constant  G i s  de r i ved  from Equation (4) below and the assump- 
t i o n  t h a t  2 /3  o f  the  maximum dbh o f  t he  t r e e  i s  reached a t  1/2 the  maxi- 
mum age. G can be solved f o r  d i r e c t l y  (see Bo tk in  e t  a l .  1972b) o r  
found by us ing  a  s imple program of t r e e  growth on an i n t e r a c t i v e  com- 
p u t e r  (see Appendix A - 2 ) .  The v a r i a b l e  KTIME i s  an at tempt t o  hand1 e  
v a r i a t i o n  i n  seed source a v a i l a b i l i t y .  . I f  the re  i s  no parent  t r e e , o n  
the  p l o t  and i f  t h e  v a r i a b l e  IMYR ( t h e  number o f  years t h a t  have passed 
s ince  t h e  p l o t .  had no, t r e e s  and minera l  s o i l  ). i s  g rea te r  than KTIME, 
then i t  i s  assumed the re  i q  no seed source f o r  thc  species and t h a t  
i t  can n o t  be es tab l i shed  by seeding. The i n p u t  values used i n  the  
present  vers ion  o f  FORAR are  l i s t e d  i n  Table 2. 

The model u s u a l l y  s t a r t s  a p l o t  w i t h  no t rees;  however, subrout ine 
LOAD can be used t o  i n p u t  any des i red  i n i t i a l  cond i t i ons .  If a l i t t e r  
l a y e r  i s  wanted a t  t h e  beginning of a  p l o t ,  IMYR should be g iven an 
i n i t i a l  va lue g rea te r  than 15. 

Subrout i  nes 

The f l owchar t  f o r  FURAK i s  shown i n  F igure  3. There are  14 sub- 
r o u t i n e s  i n  a d d i t i o n  t o  the  main program; however, KILL, BIRTH, and 
GROW a re  t h e  main elements i n  terms o f  ac tua l  computation. 

Whenever a  random number i s  needed f o r  any model computation, a  
c a l l  t o  subrout ine  RANDOM r e t u r n s  a  random number drawn from a  f la t -  
d i s t r i b u t i o n  between 0 and 1. I n  subrout ine DATA the  user declares 
the  number o f  p l o t s  wanted, t h e  number o f  t r e e  species, t he  numher o f  
years  each p l o t  w i l l  be run, t h e  i n t e r v a l  o f  t ime between successive 
outputs,  t he  annual i n s o l a t i o n ,  the  maximum basal area a  p l o t  can a t t a i n ,  
and the  mean fo r  DEGD. Subrout ines PLOTIN and INIT  i n i t i a l i z e  va r iab les ,  
arld PLOTIN a l so  i ipdates and p r i n t s  t he  p l o t  number. ' 

Subrout ine GAUSS randomly chooses a  value f o r  DEGD - t o t a l  degree- 
days f o r  a  year, based on a growing degree*day teniperature o f  42OF - 
from a  normal d i s t r i b u t i o n .  The mean and standard d e v i a t i o n  o f  DEGD 
can be c a l c u l a t e d  from data a v a i l a b l e  from the  Nat iona l  C l i m a t i c  Center, 
Ashev i l l e ,  Nor th Carol ina.  



Table 2. Parameter values us?d i n  t h e  FORAR model. S c i e n t i f i c  b i nom ia l s  f o l l o w  L i t t l e  
(1971). 

Species 

- 

0MAX3 0MIN3 83 82 ITVPE AGEMX c8 G STENO SPTMIN SPTMAX S KTIME SOIM 

Acer rubnun 
Carpinus caroliniana 
::.r.a cordi fornis 
~ a & a  9 Zabra 
Carya Zaciniosa 
Carya ovata 
Carya texana 
Carya t aen to sa  
Cas tanea ozarkensis 
Ce l t i s  loevigata 
Cornus florido 
Diosv:.ros v i r2 in ima 
Faps  ? r d i  fol ia 
Fnzrinus anericam 
I l e z  opaca 
J ~ f h n s  ni.7r.1 
Jirni-ems v i r s i n ima  
Li?uidmblr s t ? m r i  f2 
t.!or~s rubm 
!J:,ssr s? L?atica 
0 s t r :~n  v iq in i l lna  
Pinus echimta  
P i n u  t ~ e d a  
Prunus sersotina 
&ercus o l b ~  
berms f n l c ~ m  
Guernuo nari  Landicn 
&uerzue s h m l d i i  
Gbermo s t e l l a to  
2 u e ~ u s  v e l u t i m  
:imscjCms a l t i d m  
Ulms  3ht4 
Ulmue m e r i c n m  . 

]From Fowel 1 s ( 1965) 
2From Harlow and Harrar  (1969) 
'From L i t t l e  (1971) and U.S. Geological Survey (1,965) 
'From Wigginton (1964) 
5Frorn Car l  Amason (personal cormarnication. 1975)- 
6From Baker (1949) 
'From P e a t t i e  (1950) 
8Fmm Shugart and West (1977) 
?From Northeastern Forest Experiment S t a t i o n  (1971 ) 

IoFrom M a r t i n  e t  a l .  (1971) 
l lFmm Pardo 1973 
"From M o r e  I19601 
13Al l  o the r  values n o t  otherwise referenced were developed dur ing  the course of t h i s  p ro jec t .  





Subrou t ine  KILL 

FORAR, l i k e  t h e  B o t k i n  model, assumes t h a t  i n d i v i d u a l  t r e e  death 
can be viewed as a s t o c h a s t i c  process, r a t h e r  than d e l i n e a t i n g  a1 1 
t h e  d i f f e r e n t  and complex causes o f  m o r t a l i t y .  The p r o b a b i l i t y  t h a t  
a  t r e e  w i l l  be k i l l e d  i n  any one yea r  i s  p  = 1 - ( 1 - ~ ) n  ( B o t k i n  e t  a l .  
1972b). The model assumes t h a t  1  "l o f  a1 1 seed1 i n g s  o f  a  spec ies wi 11 
l i v e  t o  reach t h e  maximum age f o r  t h a t  species ( F i g u r e  4 ) .  S e t t i n g  p 
equal t o  0.99 and n equal t o  AGEMX ( t h e  maximum known age a spec ies 
can a t t a i n )  r e s u l t s  i n :  

Once a yea r  KILL generates a random number f o r  every  t r ee ,  and t h e  t r e e  
i s  k i l l e d  i f  the  random number generated i s  l e s s  than  E. 

I n  t h e  p resen t  ve rs i on  o f  FORAR, t h e r e  a r e  two cases i n  which t h e  
k i l l  p r o b a b i l i t i e s  o f  a  t r e e  a r e  changed f rom t h e  above s ta tement .  
F i r s t ,  t h e  model uses t he  a r r a y  NOGRO t o  keep t r a c k  o f  those  t r e e s  
t h a t  grow l e s s  than  0.1 cm dbh pe r  year .  A t r e e  has o n l y  one chance 
i n  a  hundred o f  s u r v i v i n g  10 years  i f  such a growth r a t e  i s  ma in ta ined  
( B o t k i  n  e t  a1 . 1972b). Accord i  ng l  y, t h e  random numb'er generated has t o  
be l e s s  than  0.368 t o  k i l l  such a t r e e .  Secondly, a  moderate f i r e  (des- 
c r i b e d  below) w i l l  "damage" those  species t h a t  a r e  s u s c e p t i b l e  t o  f i r e .  
I n  t h e  p resen t  v e r s i o n  o f  FORARy a s u s c e p t i b l e  t r e e  t h a t  i s  p resen t  on 
t he  p l o t  when a moderate f i r e  occurs i s  g i ven  a 20% chance o f  l i v i n g  5 
years  (J. Warren Ranney, personal  communication 1976); thus,  t h e  random 
number generated must be l e s s  than  0.275 t o  k i l l '  t he  t r e e .  

Trees a r e  a l s o  k i l l e d  d e t e r m i n i s t i c a l l y  i f  t h e r e  i s  1ogg.lr1y ur- a 
f i r e .  To l o g  t he  c i r c u l a r  p l o t ,  t h e  user  s p e c i f i c s  i n  sub rou t i ne  
LOGING t h e  upper and lower  d iameter  l i m i t s  o f  each species o f  the  t r e e s  
t o  be logged. Subrout ine ClJT then removes a l l  t r e e s  on t he  p l o t  w i t h i n  
these d iameter  l i m i t s .  I n  sub rou t i ne  FIRE t h e  user  has a cho i ce  o f  
s p e c i f y i n g  a l i g h t ,  a moderate, o r  a  severe burn. A l i g h t  f i r e  se t s  
the  l o g g i n g  l i m i t s  o f  each spec ies t o  a  minimum of 0  cm and a maxir~luln 
o f  12.7 cm and then  c a l l s  sub rou t i ne  CUT t o  remove t h e  t r e e s .  A severe 
f i r e  removes a l l  t r e e s  f rom t h e  p l o t  and r e s e t s  t he  bare p l o t  coun te r  
I M Y R  t o  zero, a l l o w i n g  t h e  p ioneer  species w i t h  smal l  values o f  KTIME 
t o  r e e n t e r  t he  p l o t .  A moderate f i r e  uses sub rou t i ne  CUT i n  t he  same 
way as a l i g h t  burn t o  remove a l l  t h e  t r e e s  o f  species t h a t  a r e  extreme 
l y  suseept i  b l e  t o  f i r e  damage, a1 1 t h e  t r e e s  l e s s  than  25.4 cm dbh o f  
species t h a t  a r e  moderate ly  s u s c e p t i b l e  t o  f i r e  damage, and a l l  t h e  
t r e e s  l e s s  than  17.8 cm dbh o f  r e s i s t a n t  spec ies.  The s u s c e p t i b i l i t y  
o f  each species t o  f i r e  damage i s  e s t a b l i s h e d  i n  t h e  COMPUTED GO TO 
statements i n  sub rou t i ne  FIRE. The va lues used i n  FORAR were taken 
from Davis (1959), Fowel ls  ( 1  965), Har low and Ha r ra r  (1969),  o r  deve l -  
oped i n  t h e  cnurse o f  t h i s  p r o j e c t .  A.moderate f i r e  a l s o  r e s e t s  I M Y R  
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Fig .  4 .  Funct iona l  form f o r  t h e  random death process. The model 
assumes t h a t  1% o f  a l l  t h e  seedl ings o f  a species w i l l  l i v e  t o  reach 
t h e  maximum known age. I n  t h e  example shown, t h e  maximum age o f  l o b -  
l o l l y  p i n e  i s  350 years. 



t o  ze ro  and changes t h e  s u r v i v a l  p r o b a b i l i t i e s  o f  those damage-suscept- 
i b l e  t r e e s  t h a t  were l a r g e  enough t o  s u r v i v e  the  f i r e ,  as d iscussed 
above. 

Subrout ine BIRTH 

BIRTH c a l c u l a t e s  t he  biomass a l r eady  on t h e  p l o t  and s e t s  t h e  
c o r r e c t  va lues f o r  t h e  yea r  f o r  t h e  f i v e  environmental  v a r i a b l e s  co r re -  
sponding t o  t h e  S a r r a y  , i n  Table 1 . As i n  t h e  FORET model (Shugar t  
and West 1977), t h e  s o i l  i s  cons idered t o  be m ine ra l  s o i l  i f  t h e  biomass 
on t h e  p l o t  i s  l e s s  than  0.2 m e t r i c  ton/ha and i f  I M Y R  (an a d d i t i o n a l  
parameter i n  t h e  FORAR model)  i s  l e s s  than  15. The s o i l  i s  cons idered 
t o  have a l i t t e r  l a y e r  i f  t h e  p l o t  biomass i s  g r e a t e r  than  0.1 m e t r i c  
ton/ha. I t i s  a  h o t  y e a r  i f  DEGD has a va lue  g r e a t e r  than  i t s  mean. 
W i l d l i f e  popu la t i ons  a re  randomly chosen h a l f  t he  t i m e  t o  be l a r g e  
enough t o  consume t h e  e n t i r e  seed source o f  a  p r e f e r r e d  food species.  
I n  t h e  FORAR model, an epidemic i s  randomly pre'sent h a l f  t h e  t i m e  t o  
des t roy  t h e  seed l ings  o f  c e r t a i n  hos t  spec ies.  

BIRTH then separates o u t  those spec ies capable o f  ge rm ina t i ng  
under e x i s t i n g  env i ronmenta l  c o n d i t i o n s .  For  ins tance ,  we assume 
t h a t  a  species r e q u i r i n g  a l i t t e r  l a y e r  t o  germinate ( i  .e.  S ( l )  - 
.TRUE.) cannot be s tocked when t h e r e  i s  no l i t t e r  l a y e r  on t h e  ground 
( i . e .  when t h e  biomass on t h e  p l o t  i s  l e s s  than  0.1 m e t r i c  t o n l h a ) .  
From t h e  subset o f  p o s s i b l e  species,  t h e  program randomly chooses f rom 
one t o  t h r e e  spec ies t o  a c t u a l l y  s tock  i n  a  g i v e n  year .  A random num- 
be r  o f  seed l ings  between zero and e i g h t  a r e  then  "born"  f o r  each o f  t h e  
one t o  t h r e e  spec ies and randomly assigned a dbh around 1.27 cm (Tree - 
seed l ings  a r e  e s t a b l i s h e d  137 cm t a l l  i n  t h e  model i n  o r d e r  t o  have a 
nonzero dbh. ) . 

A f t e r  t h e  new seed1 i ngs a r e  es tab l  i 'shed, su b r o u t i  ne BIRTH c a l l  s  
subrou t ine  SPROUT, which checks t o  see i f  any t r e e s  o f  a  species capable 
o f  s p r o u t i n g  have d i e d  s i nce  t h e  l a s t  year .  I f  they  have, and i f  t h e i r  
d iameter  was w i t h i n  t h e  s p r o u t i n g  range o f  t h a t  spec ies (SPTMIN<dbh< 
SPTMAX), a  random number o f  sp rou ts  between zero and t h r e e  a r e  'FandEm- 
l y  g i ven  dbh 's  around 0.1 cm and a r e  added t o  t he  p l o t .  Where a maxi-  
mum of t h r e e  species o f  seed l ings  can e n t e r  t h e  p l o t  i n  one pass 
through sub rou t i ne  BIRTH, o n l y  one randomly chosen t r e e  can sp rou t  i n .  
one pass through sub rou t i ne  SPROUT. 

Subrout ine BIRTH then  c a l c u l a t e s  whether t he  biomass on t h e  p l o t  
i s  l e s s  than  0.1 m e t r i c  t on lha .  I f  i t  i s ,  t h e  program r e t u r n s  t o  t he  
t o p  o f  sub rou t i ne  BIRTH t o  go th rough t h e  process again.  Be fo re  r e -  
t u r n i n g  t o  MAIN, BIRTH updates t he  age o f  a l l  t h e  t r e e s .  



Subrou t i ne GROW 

The bas ic  growth func t i on  used by FORAR, FORET (Shugart and West 
1977), and JABOWA ( B o t k i n  e t  a1 . 1972a, 1972b) i s :  

2 D H 
6(D H) = R LA ( 1  - ) 

max max 

where 

D = dbh, 
H = he igh t ,  

Dmax = maximum dbh recorded fo r  the  species (Pardo 1973), 
Hmax = l~~axinium h e i g h t  recorded f o r  the  species, 

R = a cons tant ,  and 
LA = l e a f  area. 

This  equat ion  considers the  t runk  of a  t r e e  t o  be a  c y l i n d e r  and 
assumes t h a t  the  change i n  volume o f  a  t r e e  i n  one year  i s  p ropo r t i ona l  
t o  t he  amount o f  s u n l i g h t  t he  leaves rece i ve  t imes a  f a c t o r  f o r  main- 
tenance o f  the  volume o f  1  i v i n g  t i s s u e  a1 ready present  (Bo tk i  n  e t  a1 . 
1972b). The assumptions o f  t h e  model a r e  as fo l l ows  (For  more d e t a i l s ,  
see B o t k i n  e t  a1 . 1972b) : 

and 

where 

ti - 137 + I320 - ~ 3 0 ~  , 
LA a l e a f  weight , 

l e a f  weight = CD 2  
9 

G = RC ,9 

C = l e a f  area constant  , 
'I 

G : a gr-owl11 cons tan t  . 

Using the  above equat ions i n  Equation (4 )  t o  so lve  f o r  D, the annual 
increment o f  growth, we f i n d :  



This i s  the basic  equat ion f o r  optimum growth on a good s i t e  w i t h  no 
competi tors. An example o f  t h i s '  f u n c t i o n  f o r  two species i s  shown i n  
F igure 5. 

FORAR modi f ies  the annual growth equat ion by f a c t o r s  f o r  shading, 
c l imate ,  compet i t ion,  and s o i l  moisture.  I n  o rder  t o  modi fy  growth 
according t o  the  amount o f  l ' i g h t  each t r e e  i s  rece iv ing ,  subrout ine 
GROW ca l cu la tes  the  amount each t r e e  i s  shaded, i n  0.1 meter increments, 
by those t rees  on the  p l o t  t h a t  a re  t a l l e r .  Th is  i s  done us ing  the  
'equation: 

where 

AL = a v a i l a b l e  l i g h t  f o r  a g iven t r e e ,  
PHI = annual i n s o l a t i o n  ( i n  appropr ia te  u n i t s ) ,  and 
SLA = shading l e a f  area (Bo tk in  e t  a l .  1972a). 

.SLA i s  ca l cu la ted  us ing  Equation (6 )  as the  l e a f  biomass above a g iven 
he igh t  (Shugart and West 1977, Sol 1 i n s  e t  a1 . 1973). Kramer and 
Kozlowski (1960) g i v e  equat ions t o  r e l a t e  AL t o  r (AL)  , the photosynthe- 
t i c  r a t e :  

f o r  t o l e r a n t  species , 

r ( A l  ) = 2 . 2 4 ( 1  - e -136(AL-0'08),) f o r  i n t o 1  e ran t  species . (1 1 ) 

The f a c t o r  r (AL )  i s  then used as the  shading f a c t o r  mu1 t ip1,y ing the 
growth equat ion. F1yur.e G shows r (AL)  as a f u n c t i o n  o f  Al .  f o r  t o l e r a n t  
and i n t o l e r a n t  species. 

FORAR assumes a pa rabo l i c  f unc t i ona l  form f o r  t he  e f f e c t  o f  c l i m a t e  
upon t r e e  growth, T(DEGD). F igure  7 shows the  r e l a t i o n s h i p  between the  
range o f .  t he  species and T(DEGD) . Optimum c l i m a t i c  e f f e c t  occurs i n  
the middle o f  t h e ' c l i m a t i c  range o f  the species. DEGD values a t  t h e  
range extremes reduce T(DEGD), and thus the growth o f  the  t r e e s  o f  
t h a t  species, t o  near zero. 

The crude compet i t ion  f a c t o r  i n  the  model i s  s imply:  
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F ig .  5. Func t iona l  farm f o r  the  c~ptimum growth equat ion.  The sl1)pe o f  t h e  curve i s  a  func-  
t i o n  of AGEMX. The h e i g h t  [ o f  t h e  curve  i s  a f u n c t i o n  o f  t he  maximum dbh r e m r d e d  f o r  t he  species 
(Pardo 1973). 
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Fig .  6. Func t iona l  form r e l a t i n g  a v a i l a b l e  l i ~ h t  AL 
t o  pho tosyn~ the t i c  r a t e  r(AL). Equat ions a r e  f r o m  Kramer 
and Kozlowski  (1960).  
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Fig .  7. F u ~ c t i o n a P  f c rm r e l a t i r g  degree-days DEGD t o  t h e  e f f e c t  o f  c l i m a t e  on t h e  growth o f  

a t r e e  spec ies.  I n  t h i s  example, sassa'ras can n o t  grow i f  the  degree-days a re  less than 3686 o f  
g r e a t e r  than  10947. 



where 

S(BAR) = compe t i t i on  f a c t o r ,  
'BAR = basal area on t h e  p l o t ,  and 

SOIL? = maximum basal area t h e  p l o t  can sus ta i n .  

A  p l o t  o f  S(BAR) i s  shown i n  F igu re  8. 

The l a s t  f a c t o r  mod i f y i ng  t r e e  growth, s o i l  mo is tu re ,  was added t o  
FORAR when i t  was found t h a t  p r ima r i l y -bo t t om land  species were compris-  
i n g  t o o  much biomass on t h e  p l o t .  For s i m p l i c i t y ,  SOIM was assumed t o  
be a  cons tan t  f a c t o r  reduc ing  ( u s u a l l y )  t he  growth o f  a  spec ies on an 
up land s i t e .  A  more r e a l i s t i c  approach would be t o  use mo i s tu re  as 
another  d r i v i n g  v a r i a b l e  o f  t h e  model. Th is ,  however, would add ano ther  
l e v e l  o f  r e s o l u t i o n  t o  an a l r eady  complex program. Species t h a t  a r e  
found p r i m a r i l y  on d ry ,  poor s o i l s  have values o f  S O I M  near 1  .O; where- 
as spec ies t h a t  commonly grow w e l l  i n  bottomlands and grow much more 
p o o r l y  on up1 and s i t e s  may have va l  ues o f  S O I M  around 0.5. 

The f i n a l  growth equat ion  f o r  t h e  model i s  thus :  

1  - D H 

6 D = G D  Dmax Hmax r ( A L )  T(DEGD) S(BAR) S O I M  . (13)  

OUTPUT 

A sample o u t p u t  o f  FORAR i s  shown i n  Appendix A-4. Normal o u t p u t  
o f  FORAR shows, f o r  each species,  t h e  numbcr o f  t r e e s  on the  p l n t ,  
t h e i r  dbh 's ,  and t h e  biomass. To ta l  biomass and l e a f  area on t he  p l o t  
a r e  a l s o  g iven  a t  t h e  end o f  t h e  spec ies l i s t .  Output f requency (KPNT) 
i s  s p e c i f i e d  by t h e  u s e r  i n  sub rou t i ne  DATA. The model has an o p t i o n  
t o  l i s t  a l l  t he  t r e e s  t h a t  have d i e d  f rom random causes s i nce  t h e  l a s t  
p r i n t o u t ,  a l l  t he  t r e e s  t h a t  have been removed by l o g g i n g  and t he  d i a -  
meter  l i m i t s  f o r  each species,  and a1 l t h e  t r e e s  t h a t  have been k i l l e d  
by f i r e .  
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F i g .  8. L i n e a r  f u n c t i o n  r e l a t i n g  basal  area on t he  1/12 ha p l o t  
(BAR) t o  a  general  c o m p e t i t i o n  f a c t o r  S(BAR). The maximum basal  area 
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Appendix A-1 

Program DATGEN ca lcula tes  annual degree-days from January and. 
July mean temperatures. A s ine  function i s  used to  estimate average 
daily temperature, w i t h  the  minimum and maximum values equal t o  the  
January and July means, respectively.  The area under the s ine  curve 
and above the  42°F l i n e  i s  then determined by in tegrat ion and scaled 
to the proper value for  degree-days. 

In the l i s t i n g  shown, the degree-days a r e  calculated and'printed 
out f o r  the matrix of January mean temperatures from O0 t o  70" and 
July mean temperatures from 60" to  90'. 



I S V  0 0 0 2  
I a V  0 0 0 3  
I S V  0 0 0 4  
I S V  0 0 0 5  
I S Y  0 0 0 6  
I b N  0 0 0 7  
I S V  0 0 0 8  
I S 9  0 0 0 9  
I S V  0011  
I S U  0012 
I S V  0 0 1 3  
I S V  0 0 1 4  
I S V  0 0 1 5  
I S V  0 0 1 6  
I S N  0 0 1 8  
I S N  0 0 1 9  
I S V  0 0 2 0  
I S Y  0 0 2 1  
I S N  0 0 2 3  
I S V  0 0 2 4  
I S V  0 0 2 5  
I S V  0 0 2 5  
I S Y  0 0 2 7  
I S V  0 0 2 8  
1 SV 0029 
I S V  0030 
I S N  0 0 3 1  
I S U  0 0 3 ' 2  
I S Y  0 0 3 3  
I SU 0 0 3 4  
I S U  0 0 3 s  

D I M E N S I 3 N  DESD(  1 0 0 + 1 0 0 )  
D O  6 I = L  971 e5, 

X I  =I- 1 
D O  4 J = 6 3 . 9 0 1 >  
K K = 1  
# J = J  

A VE=( XJ+XE ) / >  l 
I F (  X I  o C E o X J 1  50 T O  39 
R = X J - X t  

F := rS*R  
D O  1 L. JJ=l  s 3 . % 2  

X J J = J J  
H E A T = R * S I  N ( . O 1 7 2 1 4 * ( X  J J - 9 1 o 2 5 ) J + A V E  
I F ( K K o E Q o  L r A N D * M E . A T o G E o 4 2 o J  GO r0 9 
GO TO 1 0  

S D l = X J J  
K  K = 2  

L O  I F  ( l i K o E Q o 2 o ~ A ~ V ~ o ~ E A T ~ L T o 4 2 o  G.J r0 12 
GO TO 11 

12 D 2 = X J J  
K K = 1  

1 1  CONTLNUE 
D.EGD(. I rJb=CQZ,4 . . 0 1 7 2 1 4 * ( D 1 - 3 A  0 2 5 )  ) - C O S (  - 3  1 7 2 1 4 * ( 0 2 - 9 1 * 2 S )  J 

D E G D (  I r , 0 = 0 3 1 8 3 1  * D E G D ( l e  J ) * ( D 2 - D 1  ) * R - ( 0 2 - 0 1 ) * ( 4 2 ~ - A V E )  
G O  TC 4 

39 D E G O (  1. ~ ) = 1 0 0 0 3 0 0 0 0  
4 C O N T I N U E  

1 Y P t  7 r ( 3 l i ; i D (  1 r J)  . J '=C>.3 .90 .> )  
7 = U i l M A . T (  1.74 ' ' r - = 3 . 0 )  

STOP - 
r NO 



Appendix A-2 

Program GFIX i t e r a t i v e l y  determines t h e  va lue  o f  G, t he  growth 
constant ,  f o r  each t r e e  species.  G i s  c a l c u l a t e d  us ing  t he  optimum 
growth f u n c t i o n  developed by B o t k i n  e t  a1 . (1972a, 1972b) and t he  
assumption t h a t  a t r e e  w i l l  a t t a i n  2/3 o f  i t s  maximum dbh a t  1 /2  i t s  
maximum age: . 

- .. 
1 - H 

6 D = G D  Dsax max rn 

and 

D = 2/3 Dmax when t = AGEMX/2 . 

Any i n t e r a c t i v e  computer system can be used t o  r u n  t h i s  program. The 
values f o r  DMAX, HMAX;B2, B3, and AGEMX f o r  t h e  spec ies and t h e  i n i t i a l  
guess f o r  G a r e  en te red  i n .  The va lue  o f  DBH typed  o u t  can t hen  be 
compared t o  2/3 Dmax, and a b e t t e r  guess . f o r  G can be en te red  f o r  the  
nex t  i t e r a t i o n .  Th i s  i s  repeated u n t i l  DBH becomes s u f f i c i e n t l y  c l o s e  
t o  2/3 h a x .  



I S N  0002  
I S N  0003 
I S N  0004  
LSN 0 0 ~ 5  
I S N  0006  
I S N  0007  
I S N  0008 
I S N  0009 
I S N  0010 
I S N  0011  
I S N  0012 
I S N  0013 
I S N  0014  
I S N  0015 
I S N  0016 
I S N  0017 
I S N  0018 
I S N  0019 

I S N  0020 
I S N  0021  
I S N  0022  
I S N  0023  
I S N  0024 

I N T E G E R  A G E M A X  
B Y P E  1 

1 F O k M A T  ( L A *  'TY'L I'! D M A X  ~ H M A x  ~ ~ Z ~ & ~ ~ * A G E M A X * ~ F ~ O O ~ ~  15' ) 
A C C E P T  2 *OMAX s H M A X  9E2 e 8 3  sAGIzMAX 

2 F O R M A T  (4F10.3 * I S )  
3 T Y P E  4 
4 F O R M A T  ( 2 X * ' T Y P E  I N  G *  F10.3') 

A C C E P T  5 1 G  
5 F O R M A T  (FA 0 - 3 4  

0z.5 
J = I F I  >.( A G E M A X I 2 0  ) 
00 10 I = 1 * J  
H e  1 3 7 r + B Z * O - 6 3  *D **2 
D E L D = ( G * D * (  1 o-CD-H ) / ( O M A X * H M A X )  ) ) /  ( 2 7 4 r + 3 m * B 2 * 0 - 4 . * 8 3 * 0 * * 2 )  
D = D + O E L D  

L C  C D N T I N L E  
TYPE 11 r D M A X * H M A X * B 2  * 8 3 * A G E H A X . G  

11 F D R M A T  ( 5 X * ' D M A X 0  * S X 9 ' H M A X ' * 7 X * * B 2 @  m 9 X * '  83' * 4 X *  
A a A G E M A X '  * 4 X r 0 G  ' ~ / r 4 F 1 0 0 3 ~ 1 5 ~ F L O 0 3 )  

T Y P t  1.2 .b 
1 2  F l H M A T  ( 6 X . * D r 3 H = . . F 1 3 0 4 J  

G 3  TO 3 
S T O P  
E ...I 0 



Appendix A-3 

L i s t i n g  o f  Program FORAR 



S STAN0  SIMULATOR MODIFIED FROM: 

I S N  0 0 0 2  
I S N  OCO3 
I S N  0 0 0 4  
I S N  0 0 0 5  
I S N  0 0 0 6  
I S N  0 0 0 7  
I S N  COO8 
I S N  0 0 0 9  
I S N  0 0 1 0  
I S N  0 0 1 1  
I S N  0 0 1 2  
I S N  C 0 1 3  
I S N  0 0 1 4  
I S N  0 0 1 5  
I S N  0 0 1 6  
I S N  0 0 1 7  
I S N  0 0 1 8  
I S N  0 0 1 9  
I S N  0 0 2 1  
I S N  t)t)I?Z 
I S N  0 0 2 3  
1SN C 0 2 6  
I S N  0 0 2 5  iiGJ %EE% 
I S N  0 0 2 9  

I S N  0 0 3 0  
I S N  0 0 3 2  

I S N  0 0 3 3  
I S N  0 0 3 5  
1SN 0 0 3 6  
I S N  0 0 3 7  
I S M  0 0 8 9  
I S N  0 0 4 0  
I S N  0 0 4 1  
I S N  0 0 4 2  

I S N  0 0 0 2  
I S N  OC03 
I S #  0004 - - 
I S N  0 0 0 5  
I S N  0 0 0 6  
I S N  0 0 0 7  
I S N  0 0 0 8  

I S N  OCOP 
I S N  0 0 0 3  
I S N  0 0 0 4  
13M 0005 
1 S Y  0 0 0 6  - - . . . . - 
I S N  0 0 0 7  
I S N  OCO8 
I S M  OOOP 
I S N  0 0 1 0  

EC1 88tl 

L 
C BOTKIN.O.8.. J.F. JANAK.?.R.WALLIS. 1 9 7 0 .  A SIMULATOR FOR 
C NORTHEASTERN FOREST GRQWTH. A CONTRIBUTION O F  THE HUBBARO BROOK 
C ECOSYSTEM STUDY AN0 IBM RESEARCH. RC 3140 .  I B M  THOMAS J. WATSON 
C RESEARCH CENTER. VORKTOWN HEIGHTS. NEW VORK. 21P. 

D I M E N S I O N  OBH(700  l .NTREES(35 ) 
D I M E N S I O N  OBHK(2501  .NTREEK(351 
COMMON /FOATA/ F A ~ A M ( 5 0 0 l . A L I M I T ( 3 5 ~ ~ 8 L I M I T ~ 3 5 ) . I M V R  
L O G I C A L  SWITCH(51  .S(35.51 .LOGS 
D IMENSION K T I M E t  3 5 )  
COMMON /LOGBLW SWITCH.KT 1ME.S 
COMMON /RUNNR/ NYR. INYReKPNT .KAGE.KTI MES.KLAST 
COMMON /HDATA/ 8 2 C 3 5 1  .83(35) .PHI  .SOILO.OEGO 

C A L L  DATA 
I P L o T = o  

1 1  CONTINUE 
C A L L  PLOTIN(  [ R O T  .OBH.NTREES) 

INVR=O 
C A L L  OUTPUT( DEI*. NTREESI 
0 0  9 J=l .KT1 YES - - 
I F  ~ J J  .GT. I 1  PR INT  13. IX  

1 3  FORMAT (/.' R O T  NVMBER ' 1 1 4 1  
C A L L  IN IT(OBH.NTRE~S.OBHK.NTREEK.JJ)  

l NVR= I 
CA1.l.. GAUSS( t X ,700 -0 .8700 .0  10EO01 

C F L b  K I L L (  DOH.tJTREE9rI I I )  
C A L L  B I R T H (  I XaNTREES .DBH I 

C A L L  GROW(0BH .NTREES) 
I F  (R.Lt..0481 CALL  F I R E  (0BH.NTREES) 
IF  (I .NE.351 GO TO 5 
C A L L  L o G l N G  ( U ) G S l  
C A L L  CUT (OBH.NTREESILOGS) 
I F (  I -KPNT*(  I /KPNT)  .EO.Ol C A L L  OUTPUT(DBH.NTRE 

1 CONTI  NUE 
9 C O N T I  NUE 

I F f  [PLOT .EO. KLAST)  GO TO 9 9  

SUBROUTINE LOAD( DBH.NTREESI 
O IMENSION O B H ( 7 0 0 I . N T R E E S ~ 2 5 )  
COMMON / I U U N I  I N U t X  
0 0  1 I = l * I N D E X  

1 NTREESt  I )=Om 
RE TURN 
E N 0  

SUBROUTINE LOGING (LOGS) 
COMMON /[RUN/ INDEX 
L O G I C A L  OGS 
COMRON-/kOATA/ FAFBLIM1500) . A L t M I T ( 3 5 ) . B L I M I T ( 3 5 l .  IMVR 
DO 1 0  J= l . INOEX 
A L I  M I l ( J ) = 2 5 . 4  
B L I M I T (  J )=20O.  

1 0  COtJTINUC 
LOGS= .TRUE. 
DFII .WN 



I S N  0 0 0 2  
I S N  0 0 0 3  
I S N  0 0 0 4  
I S H  COOS 
I S N  COO6 

I S N  COO8 
I S N  OCO9 
I S N  0 0 1 0  
I S N  0 0 1 1  
I S N  OC12 
I S N  0 0 1 4  
I S N  O C l 5  
I S N  0 0 1 6  
I S N  0 0 1 7  
I S N  0 0 1 8  
I S N  0 0 1 9  
I S N  0 0 2 0  
I S N  0 0 2 2  
1SN 0 0 2 4  
I S N  OP25 
I S N  0 0 2 6  
I S N  0 0 2 7  
1SN 0 0 2 9  
I S N  O@3O 
I S N  OC31 
I S N  OC32 
I S N  OC33 
I S Y  0 0 3 4  
ISY 0 0 3 5  
I S N  0 0 3 6  
I S N  C 0 3 7  
ISY  OC38 

I S N  0 0 3 9  
I S N  0 0 4 0  
I S N  0 0 4 1  
I S N  0 0 4 3  
I S N  GO44 
I S N  OC45 
I S N  0 0 4 6  
I S N  0 0 4 7  
I S N  0 0 4 8  
I S N  OC49 
I S N  0 0 5 0  
I S N  0 0 5 1  
I S N  0 0 5 2  
I S N  0 0 5 3  
I S N  0 0 5 4  
I S N  @ 0 5 5  
I S N  0 0 5 6  
I S N  0 0 5 8  
I S N  0 0 5 9  
I S N  0 0 6 0  
I S N  O C 6 l  

I S N  0062 
 is^ 0063 
I S N  0 0 6 4  
I S N  0 0 6 5  

is"! 8 8 3  
I S N  OC68 
1SN @ 0 6 9  
I S N  OC70 
1SN 0 0 7 1  

SUBROUTINE SPROUT(IX.NlREES.OBH) 
COMMON /SDATA/ KSPRT(35) .  STEND(35) . S P T M I N ~ ~ § I  
COMMON /[RUN/ INOEX 
OIMENSION NTREES ( 3 5 ) .  ANEW(790).DBH(700).NAGE( 
OIMENSION NEW(35) 
COMMON /TRACE/ ICES(  7 0 0 )  IOGE(S00 )  
SMALLEST STUMP SPROUT I S  .I CM ON THE 'AVERAGE 
SIZE=.I 

NE"(Niij;L 
CONTINUE 
I F  ( N I X  .EO.O) GO TO 7 4  
0 0  2 J=l *KENO 
NAG€( J ) = I G E S (  J) 
ANEW( J)=OBH( J )  
CONTINUE 
CALL  RANDOM( 1X.R 1 
NIX=NIX*R+ I  .O 
NmNEW(N1X) 

I SPTMA 

7 0 0 )  

KSUMPO 
0 0  5 1  I = l . N  

5 1  KSUM=KSUM+NTREES( I I 
C STENO(1)  I S  THE TENDENCY FOR THE I l l 4  SPECIES TO STUMP 
C OR ROOT SPROUT. T M  VALUE OF STEND( I) I S  THE AVERAGE 
C NUMBER OF SPROUTS ( V I A B L E )  THAT MIGHT OCCUR WITH A G IVEN TREE 

CALL  RANDOM(IX.9) 
M=R*STENO( N )  + I 

IF(M.EO.0) GO TO 7 4  
DO 7 0  J = l t M  
KSUYIKSUM+l  
NTREES(NI=NTREES( N) +I 
NAG€( KSUM)=O 
CALL  RANDOM ( 1X.R ) 
ANEW(KSUM)=SIZE+O.I * t  1 .O-R)**3 
KENO=KENO+I 
K I=KSUM+ l  
DO 6 0  I I = K I  .KEND 
1 = l I  
ANEW( I )=OBH( 1-11 
NAG€( I )= ICES(  1-1 I 

6 0  CONTINUE 
I F (  KENO .LT.TOl) GO TO 6 1  
P R I N T  9 8  
STOP 

6 1  CONTINUE 
9 8  FORMAT ( '  <<<<<<<<<<<<LOOK OUT THE 

'>>>** 13!A/ '  <<<<<<<<<<<<TRY COYPAT 
0 0  6 5  I=l .KENO 
IGES(  I l = N A G E ( I )  

6 5  OBH ( I )=ANEW( I I 
7 0  CONTINUE 

N=o 
, 7 b C U N l I N U E  

00 9 9 9 8  I = l . I H ) E X  
9 9 9 8  KSPRTt  1 ) = I  

RETURN 
E NO 

NTREES VECTOR GOT TOO BIG>>> 
l 9 C E  SPECIES AN0 U IMATE>>>>>>* ) 



I S N  0 0 0 2  
ISM 0 0 0 3  
I S N  0 0 0 4  
I S N  0 0 0 5  
I S M  0 0 0 6  
I S N  0 0 0 7  
I S N  0 0 0 8  
I S N  0 0 0 9  
I S N  0 0 1 0  
I S N  0 0 1 1  
I S N  0 0 1 2  
I S N  0 0 1 3  
I S N  0 0 1 4  
I S N  0 0 1 5  
I S N  0 0 1 7  
I S N  OC18 
I S N  0 0 1 9  
I S N  OC20 
I S N  0 0 2 1  
I S N  0 0 2 2  
I S N  0 0 2 4  
I S N  O E 2 5  
I S N  0 0 2 6  
I S N  OC27 
I S N  0 0 2 8  
I S N  C 0 2 9  
I S N  0 0 3 1  
I S N  0 0 3 2  
1SN 0 0 3 3  
I S N  0 0 3 4  
I S N  0 0 3 5  
I S N  0 0 3 7  
1SN 0 0 9 6  
I S N  0 0 3 9  
I S N  0 0 4 0  
I S N  0 0 4 1  
I S N  0 0 4 2  
I S N  0 0 4 4  
I S N  0 0 4 5  
I S N  OC46 
I S N  OC47 
I S N  0 0 4 8  
I S N  0 0 4 9  
I S N  0 0 1 0  
I S N  0 0 5 1  
I S N  0 0 5 3  
I S N  0 0 5 4  
I S N  0 0 5 6  
I S N  0 0 5 7  
I S N  0 0 5 8  
I S N  0 0 5 9  
I S M  0 0 6 0  
I S N  0 0 6 1  
I S N  PO62 
I S N  0 0 6 3  
I S N  GO64 
I S N  0065 
I S N  0 0 6 6  
I S N  0 0 6 7  
I S N  0 0 6 8  
1SN 0 0 6 9  
I S N  0 0 7 1  
I S N  OC73 
1SU 0 0 7 4  
I S N  0 0 7 5  
ISN n o 7 1  
I S N  0 0 7 7  
I S N  0 0 7 8  
I S M  OC79 
I S N  0 0 8 0  
I S N  0 0 8 1  
kSN UU82 
I S N  C 0 8 3  
I S N  0 0 8 4  
I S N  C 0 8 5  
I S N  U U B b  
I S N  0 0 8 7  
I S N  0 0 8 8  
I S N  FOBQ 

COMMON / I R U N /  INDEX 
COMMON / T I T L E /  AAA(35 .6 )  
L O G I C A L  C U T 1  .CUTSP.LOGS 
NTOTSO 
00- I [=I. I NOEX 
NTOT=NTOT+NTREES ( I) 
CONTINUE 
I F  (NTOT.EO.01 RETURN 
CUTT=.FALSE. 
NEw=O 
NFWZO 
KBEG- I 
KENO=O 
I F  (.NOT.LOGSl GO .TO 1 8  
P R I N T  1 5  
FORMAT (12X. 'OIAMETER L I M I T S  FOR L 
P R I N T  14 . (J .AL IMIT(  J ) . B L I M I T C J ) ~ J =  
FORMAT ( 1 2 X .  15.2(2X.P5.1) ) 
0 0  2 I = l . I N O E X  
I F  (NTREESt  I).EO.O) GO TO 2 
CUTSP=.C*LSe. 
KENO=KENO+NTREES( I ) 
DO 5 JJ=KBEG.KENO 
J=JJ 
I F  ( O B H ( J ) . L T . A L I M I T ( I ) . O R . O B H ~ J ~ .  
NTREES I E 9 (  11-1  
N C U T ~  1!=biS&ff)i1 
NFW=NFI+ I  
OBHCUT( NF V) = O W (  J) 
KKAGE(NFW)=IGES( J) 
I F  ( O B H ( J )  .GT.SPTMIN( I ) .ANODOBH(J)  
CUTT=.TRUE. 
CUTSP=.TRUE. 

..-- 
I F  (.NOT.LOGS) GO TO 6 5  
P R I N T  7 0 1 1 1  .NFW.(AAA(I.L) .L=l .6)  
FORMAT (IOX./.2X. 'SPEClESm.12.2X.I  
r.n rn  ta 

oen 

oen 

LOGS 

TREES 

CUT * / )  

BURNED*/ ) 

-- .- . - 
P R I N T  7 1 . 1 I . k F W . ( M A ( I . L ) . L ~ I . 6 1  
FORMAT ( / . IZXI *SPECIES ' .12r2X.13.  
P R l  NT 29. (OBHCUT( K l  .K= l  .NFW) 
FORMAT (20X.4F8.2)  
DO 8 0  K = I  .NFW - -  - -  

OBHCUT(K~=C. 
CONTINUE 
YFYtn  .-. - - - 
KBEG*KEND+l 
C O N T I  NUE 
I F  (CUTT.EO. 
I F  (NEW.EQ.0 
GO r n  a 

) )  G 
1 0  

i CUT 

-- .- - 
P R I N T  2 0  
FORMAT ( 5 X . *  
0 0  7 I * l * N C Y  
O B n t  1 )=ANEW( 
I C E  S f  I b=KAGE - -- 
CON 

F O R M A T - ~  ~ O X . / I O X .  ' A L L  izE:z BHlJ);iO.O J;1 ie700 

CONTINUE 

TREES WERE CUT ' 

RETURN-- 
CNO 



SUBROUTINE OUTPUT (OBH .NTREES) 
~ S N  0003 
I S N  0 0 0 4  
I S N  COO5 
I S N  0 0 0 6  
I S N  0 0 0 7  
I S N  0 0 0 8  

COMMON / T I T L E /  AAA(35.6)  
D IMENSION D B H ( ~ ~ O ) . ~ D H ( ~ ~ O ) ~ N T R E E S ( ~ ~ ~ ~ I D M ~ ~ O ~ ~ ~ ~ ~ ~ ~ ~ ~ ~  
COMMON / K I L O /  NDGRO(100) ~ D O B H ( 5 0 O ~ ~ K D E A 0 ~ 3 5 ) ~  AREA.KD 
COMMON /TR IG€ /  l G E S ( 7 0 0 ~ ~ I O G E ( 5 0 0 )  
COMMON /RUNNR/ NVR.INVR.KPNT.KAGE.KTIMESeKLAST 
COMMON /HOATA/ 8 2 ( 3 5 )  .83( 3 5 )  .PHI.SOILO*DEGO 
COMMON /]RUN/ INDEX I S N  0 0 0 9  

I S N  OClO 
I S N  0 0 1 1  

P R I N T  I 1  
I 1  FORMAT(// '  YEAR SPEC. 

ZSS' I 
P R I N T  21. INVR 

2 1  FORMAT( 1 5 )  
9 6  NDEAOsO 

NTOT=O 
0 0  1 I = l r I N D E X  
NDEAD=NDEAD+KOEAD(I) 

1 NTOTeNTOT + N T R E E S ( 0  
IF(NTOT.EO.0) GO TO I 

NAME 

~ S N  0 0 i S  
I S N  0 0 1 4  
I S N  0 0 1 5  
I S N  0 0 1 6  
I S N  0 0 1 7  
I S N  0 0 1 8  
I S N  0 0 1 9  
I S N  0 0 2 1  
I S N  0 0 2 2  
I S N  0 0 2 3  
I S N  0 0 2 4  
IJN 0025  
I S N  OC26 
I S N  0 0 2 7  
I S N  0 0 2 9  
I S N  0 0 3 0  
I S N  0 0 3 1  
I S N  0 0 3 2  
ISM 0 0 3 3  
ISN 0 0 3 4  
I S N  0 0 3 5  
I S N  0 0 3 6  
I S N  0 0 3 7  
I S N  0 0 3 8  
I S N  0 0 3 9  
I S N  0 0 4 0  
I S Y  OC41 
I S *  0 0 4 2  
I S N  0 0 4 4  
1SN 0 0 4 5  
I S N  0 0 4 6  
I S N  OC47 
I S N  0 0 4 8  
I S N  0 0 4 9  
I S N  0 0 5 0  

BDH( J )=DBH( ~ 2 )  
BAR( [  )=BAR( I )+. 1193*DBH(N2) * *2 .393  

97 CONTINUE - . - -. . . - . . - - 
TBAR=TBAR+BAR(I 
N2=MINO(12.N1) 
P R I N T  2. I . N T R E S ( I )  . ( A A A ( I . K ) . K = 1 . 6 ) . 8 A R ( I ) .  (BDH( 
IF(NI .GT.12)  PR INT  5 . (BDH(J) .J= l3 .N1)  

5 FORMAT(20X. 4F8. ~ . / ~ ~ O X . ~ F B . ~ . / . ~ O X . ~ F B B ~ I  
NaN+NTREES( I 

2 0  CONTI  NUE 
TBAR=TBAR*.012 

P R I N T  7. NTOT.TBAR.AREA 
7 FORMAT( IOX/lOX.I7.E12.3. @ METR!C TON<HA. LEAF  fREA 
2 FORMAT(/.SX.I5.* ' . I3 . *  .6A4. '.E9.3. 
Z(/./. ISX. 'OBH ' 3./. 20X.QF8.3./.20X. 4F8.3) I 

GO TO 2 0 0  
1 0 0  P R I N T  3.INVR 

3 FORMAT(lOX.'VEAR'.I5.' NO TREES L I V I N G m  ) 
THEENO=I8IO. 
I F  (OEGD .GT. THEEND) GO TO 2 9 6  

2 9 8  P R I N T  2 9 7  
2 9 7  FORMAT(lOX.*NONE CF THE SPECIES VOU ARE US ING CAN 

* I S  C L I M A T E * )  

I S N  0 0 5 1  
I S N  0 0 5 2  
I S N  OC53 
I S N  0 0 5 4  
I S N  OC55 
I S N  0 0 5 7  
I S N  OCS8 E X I S T  

I SN 
I SN 
I SN 
i SN 
I SN 
I S N  

- - -  .-- 
IF( NDEAO .EO.OI RETURN 
P R I N T  25)l 

2 0 1  FORMAT( DEAD TREES SINCE LAST  PRINTOUT* ) I SN 
I SN 
1 SN 
I SN 
I SN 
I S N  
I SN 
I SN 
I SN 
I S N  
I SN 

. .. 
I F (  KOEAOt I I .EO.O 
NN=WKDEAO( I I - I 
NI=KDEAO( 1 I 
0 0  9 8  J = l . N l  
N2= Je N-1 
BOH ( J )=DOBH( N2)  
!DM# J )=IDGE(NZ) 

9 8  CONTINUE 
N ~ = M I N O ( ~ I N I  8 
P R I N T  4. I.KDEAD( 
f F ( N 1  .GT.7) P R I N  

6 FORMAT(27X.F9.3. I 
* . I 4 1  

4 FORMAT(5X.15r I7 .1  
N=N+KDEAO( I ) 

9 9  CONTINUE 
DO 2 9 9  I= l . INDEX 
K D E A D ( I  )=O 

2 9 9  CONTINUE 
RETURN 
END 

. - 
I S N  
I SN 
I SN 

I S N  
I S N  
I SN 
I SN . - 
I S N  
I SN 
I SN 
I SN 



I S N  
I SN 
I S N  

S U B R O U T I N E  GROW( DBH.NTREES) 
O I M E N S I O N  D B H ( 7 O O ) ~ N T R E E S ~ 3 S ) ~ P R O F ( 1 O O O l  
COMMON / [ R U N /  I N D E X  
COMMON /TOATA/  G (  35) .C( 3 5  1 r I T V P E (  3 5 )  .AGEMX( 
COMMON / K I L O /  N O G ~ ( 1 O O l  r 0 0 8 H ( S O O ) ~ K O E A 0 ( 3 5  
COMMON / t iOATA/  B 2 ( 3 5 )  . 8 3 ( 3 5 ) . P H I . S O I L O * O E C O  
COMMON / C L I  MAT/ OMIN(  3 5 )  .OMAX( 3 5 )  
NTOT=O 
R E O U I R E S  E A C H  TREE T O  A 0 0  A 1.0 MY GROWTH R 
AlNC=O- 1 

3 5 ) .  
).AP 

I N G  

S O I M ( 3 5 )  
IEAeKO 

EACH VEAR 

i SN 
I SN 
I SN 
I S N  
I S N  

I SN 
I SN 
I S N  
I SN 
I SN 
I SN 
I SN 
I SN 
I SN 
I SN 
I SN 
I S N  
I SN 
I SN 
I SN 
I SN 
I SN 

C 

5 T H E  H E I G H T  P R O F I L E  I S  C A L C U L A T E D  I N  .I METER U N I T S  

c 
C Dfi'l'r. FUllll S U L L I N S  E T  AL PAGE 41.  S ~ U E O  TO 1 / 2 4  HA. 
C 

PROF(IHTI=PROF(IHT)+1~9283295E-4*OBH(KI**2~129 
7 C O N T I N U E  
8 N 2 = N 2 + N T R E E S ( L )  

B A R = B A R / I  0 0 0 0 .  
DO 9 9 9 7  MN=l .999  

M N I  = 1 0 0 0 - M N  
PROF(MN1 ) = P R O F ( M N l  ) + P R O F ( M N l + I I  

9 9 9 7  C O N T f  NUE 
N= l 

I SN 
I SN 
I SN 
I S N  
I SN 
I SN 
I S N  
I S N  
I S N  
I S N  
1 SN 
I S N  
I SN 
I SN 
I SN 
I SN 

M-1 
D O  1 0  I = I . I N O E %  
I F ( N T R E E S ( 1  ).EO.O) GO T O  1 0  
NN=N+NTREES( I )-I 
00 9 KK=N.NN 
J=KK 
H T = B 2 ( I ) * O B H ( J ) - B 3 (  I ) * D B H ( J ) * * 2  

C SAME S C A L E  F K T O R  AS ABOVE 
IHT=IFIX(HT/IO.+~.I 
SLA=PROF( r n T )  
A L = P H I * E X P ( - S U L . 2 5 1  
CC=( l37 .+0 .ZS*B2(  t)**2/83~1)~*(0.5*BZ(Il/B3~I)) 
O I N C = G ( I  ) *OBH(J)  * ( I  - 0 - (  137.O*OBH( J ) + 8 2 (  1 ) * 0 8 H ( J I * * 2 - 0 3 (  I ) * O W (  J 

* ) * * 3 ) / C C ) / ( 2 7 4 . + 3 . O * B 2 (  I l * O B n ( J )  
* -4.0+63I ! ) * O B I (  J ) * * 2 ) * (  1 ~ O - 8 A R / S O ~ L O ~ * S O l M ~  I ~*~~O*~OEGO-DMIN(  I 11, 
* ( O M A X 4 1  1 - D E G D ) / ( O M A X ~  1 1 - D M I N ( I l l * * 2  

I F  (I T V P E C I  l.EQ.3) DINt=2~24*(1~O-EXP~-1~136*(AL-0~08)I)*OI~ 
C I F ( I T V P E (  I) .EO.2) OINC=.~*OINC*(~.~~*(~LO-EXP(-~L 1 3 6 * ( A L - . O 6 ) )  I +  
C * ( l .O-EXP( -4 .64* (U- .05)1  I )  

t F (  I T V P E ( I )  .EO.I I D I N C o (  1 . O - E X P ( - ~ . ~ ~ * ~ A L - L O ~ I ~ I * O I N C  
I F ( D I N C .  1 4 I N C I  0INCsO.O 
I F t D I W . k T . 5 . O I  P R I N T  6 ~ J . I . O M ( J ) : D I N C  

6 F O R M A T ( * , O I  NC I S  -61. 5 .0  F O R  TREE . IS.*  S P E C I E S * . I 3 . *  OBH'sF6 .  
*I.' D I N C  eF8.3) 

IF (OINC.NE.O.0)  GO T O  9 1  
NOGRO(M)=J  
LlSLI+I 

9 1  OBH( .8 )=08H(  J ) + O I N C  
9 C O N T I N U E  

l o  N=N+NTREES( I 1 
R E T U R N  
E NO 

I SN 
I SN 
I S N  
I S N  
I SN 

I S N  
I SN 
1 ST4 
I SN 

I SN 
I S N  
1 9 N  
I SN 



i5H o o o Z  
I S N  0 0 0 4  
I S N  COOS 
I S N  0 0 0 6  
I S N  0 0 0 7  
I S N  0 0 0 8  

OIMENSION K T I Y (  3 5 1  
COMMON /FOATA/ FAFOAY(SOOI  . A L I M I T ( ~ S )  .BLIM' IT(35) .  IMVR 
COMMON /RUNNR/ NVR. I N V R r  KPNT .KAGE .KT I YES, ((LAST 
rnuunu /LOGBLU SWITCH.KT IME.S ,rZTuEci . . ~ . 

D IMENSION NTREES(35 l  .ANEW (TOO1 . O B H ~ ~ O O I  .NACE(~OOI  
D IMENSION NEW(351 
COMMON /TRACE/ I G E S ( 7 0 0 1 .  IDGE(S00  I 
COMMON /noATA/  ~ 2 ~ 3 s )  . e 3 ( 3 ~ 1  . P ~ ~ . s O I L Q . O E G ~  

C SMALLEST TREE I S  1.27 CM OR .S INCHES . . 

I S N  0 0 0 9  
I S N  0 0 1 0  
I S N  0 0 1  1 
I S N  0 0 1 2  

I S N  0 0 1 3  
I S N  0 0 1 4  
ISY  0 0 1 s  
I S N  0 0 1 6  
I S N  O C l 7  
I S N  0 0 1 8  

SIZE=1.27 
CALL  RANDOM(1X.R) 
CALL  RANDOM( IX.RATl 

MMMM=3. *A+ 1. 
DO 7 7 7  MMMMMPI.MMLUI 
wEIGHT=o .O 
NU= 1 
DO 2 3 0  LL=I . IH)EX 

I S N  0 0 1 9  
I S N  0 0 2 0  
I S N  0 0 2 1  
ISM OF22 - - . . . - - 
I S N  0 0 2 4  
I S N  0 0 2 5  
I S N  0 0 2 6  
I S N  0 0 2 7  
I S N  0 0 2 8  

- - - . . - - - - - - - . - - - - 

2 2 0  YE IGHTaUE I G H T * B I  OM 
C EOUATIONS FOR LEAF MASS FROM S O L L I N ' S  

2 3 C  NU=NU+NTREES(L) I S N  OC29 
I S N  0 0 3 0  
I S N  0 0 3 1  
I S N  0 0 3 2  
I S N  0 0 3 3  

DO 4 4  J K L Z I  s 5  
SWI TCH( JKLl=.TRUE. 
SWITCH I SETS LOWER L I M I T  FOR PLANTS NEEDING L I T T E R  
I F (  WE IGHT.GE. .I I SWITCH( 1 )=.FALSE. 
SWITCH 2 SETS UPPER L I M I T  FOR TREES NEEDING MINERAL 
I F (  WE IGHT.LE. -2.AH). IMVR.LE.100) SWITCH(2l=.FALSE. 
SWITCH 3 E L I  MINATES DROUGHT SENSIT. IVE SPECIES 
IF(DEGD.LE.8700.01 SWITCH(3l=.FALSE. 

I S N  0 0 3 4  

I S N  OC36 

I S N  0 0 3 8  
I S N  0 0 4 0  CALL RANDOM( 1X.R) 

swmcn s REOWES SEEDING RATE OF DESIRABLE MAST 
I F (  ReGC. - 5 1  SYITCH(Sl=.FALSE. 
CALL  RANDOM( 1X.R I 
SWITCH 4 EL IM INATES DEER EATEN S P E C I E S  
IF(RAT.GT..SI SWITCH(k)=.FALSE. 
DO 2 0 5  LL=I. I W E X  

I S N  0 0 4 1  
I S N  0 0 4 3  

I S N  0 0 4 4  
I S N  0 0 4 6  
I S N  0 0 4 7  
I S N  0 0 4 8  
I S N  0 0 4 9  

L=LL 
DO 4 4 4  JKL=I.S 
I F (  S ( L L e J K L 1  .AND.SW ITCH(  J K L I  I GO TO 2 0 5  
T H I S  SECTION RESTRICTS THE PLANTING 0 F . C E R T A I N  TREE SPECIES  

THAT TVPICALLV ARE ASSOCIATED WITH OLO F I n 0  SUCCESSION. 
K T I M E ( I 1  I S  W E  LAST VEAR S INCE A CLEARING THAT THE I T H  
SPECIES  CAN BE EXPECTED TO SEED IN.  S I N C E  TME L I M I T I N G  FACTOR 
I S  POSTULATED TO BE A SEED SOURCE PROBLEM. WE ALLOW SEEDING I N  
I F  THERE I S  A PARENT TREE ON THE PLOT. 

I F  ( (  I M V R ~ G T . ~ I . M E ( L L I ~ . A N O O ~ N T Q E E S ( L L ) . L E . I  1 GO TO 2 0 5  I S Y  0 0 5 1  
I S N  0 0 5 3  
I S N  0 0 5 4  
1 N 0 0 5 5  
I &  0 0 5 6  

N I X = N I X + l  
NEW(N IX l=L  

CS CONTINUE 
I f  ( N I X  sE0.01 GO TO 74 
DO 2 J=l .KENO 
NAG€( J I = I G E S (  Jl 
ANEW( J l=DBH(  J) 

2 CONTINUE 
C C L b  ObNOOMI I X m R t -  

VALUE OF 5.0 ASSUMES AN AVEW 

isr obse 
I S N  0 0 5 9  
I S N  0 0 6 0  
I S N  0 0 6 1  
I s i d  0 0 6 C  

I S N  0 0 6 3  
1SN 0 0 6 4  

P=8.O +R 
CALL  RANDOM( 1X.R 1 
N IX=NIX*R+ l .O  
N=NEW(NI X I  
KsuM=o  
DO 5 1  I = l . N  

5 1  K3UU*KEUM+blT~€ES( I I 
0 0  7 0  J= l .M 
KSUM=KSUM+l 
NTREES(N)=NTAEES(N l+ l  
WAGE(KSUMl=O 
C A L L  RANDOM( 1X.R) 
ANEW(KSUMlsSIP*O.3* (  1.0-R)**3 
KENOnKEND+l 
K IsKSUM* I 
DO 6 0  I I S K I  .KENO 

~ S N  0 0 6 5  
I S 4  OC66 
I S N  0 0 6 7  
I S N  0 0 6 8  
ISM UUbY 
I S N  CO7O 
I S N  0 0 7  1 
I S Y  CC72 
I S N  COT3 
I S N  OC74 
I S N  COTS 
I S N  0 0 7 6  
I S N  0 0 7 7  
I S N  OC78 
I S N  0 0 7 9  
I S N  0 0 8 0  
I S N  0 0 8 1  
I S N  C 0 8 2  
1SN 0 0 8 3  
I S N  0 0 8 5  
I S N  OC86 
ISM 0 0 8 7  
I SY 0 0 8 8  

IDI 
ANEW( I )=Dan(  1-11 
NAG€( I l = I G E S (  I-I 
CONTINUE 
IF(  KENO .L l . 701 )  
P R I N T  9 8  
<Trio 

6 1  E o ~ l l N U E  
9 8  FORMAT ( 8  c c c c c c c c c c c c ~ ~ ~ ~  OUT VME N r R c e s  VECTOR COT TOO BIG>>> 

*>>>'. 1 3 I 4 / *  C<<CC<<<<C<CTRV CONPAT I B L E  SPECIES  AND CL IMATE>>>>>>* I 



I S N  0 0 8 9  
I S N  C 0 9 0  
I S N  0 0 9 1  
I S N  0 0 9 2  
I S N  0 0 9 3  
1SN CC94 
I S N  0 0 9 5  
I S Y  0 0 9 6  
ISN ccse 
I S N  0 0 9 9  
I S N  OIOO 
I S N  0 1 0 1  
I S N  0 1 0 2  
I S Y  0 1 0 3  

I SN 
I SN 
1SN 
I S M  
ISN 
I SN 
I SN 
I SN 
I S Y  
I S N  
I SN 
I SN 

ISN ociz 
I S N  0 0 2 3  
I S N  0 0 2 4  

I S N  @ 0 2 5  

I S N  CC26 
1SN 0 9 2 7  

DO 6 5  l = l r K E N O  
I C E S (  I I = N A G E (  I 1  

65 O B H ( l ) = A N E W ( I I  
7 C C O N T I N U E  , 

N=o 
74  CONTINUE 

C A L L  SPROUT( IX.NTREES.DBbI) 
IF(  b€IGHT.LT.0.21 GO TO 2 1 0  " 
DO 1 0 0  I= l .KEH)  
I C E S (  l ) = l G E S (  I ) + l  

1 0 0  CONTINUE 
7 7 7  CONTINUE 

RETURN 
E ND 

s u e ~ o u r i  NE DATA 
COMMON / T I T L E / .  AAA(S5.6 I ' 

L ~ ~ P I C A L  L i i  I C W S I  .s135.51 
D I M E N S I I I N  K T I W 1 3 5 1  
COMMON /LOGBLW SWITCHIKTIME.S 
OOMYIO14 #SOATAX K ? L C I 1 V (  551 i 5 l  eNUI 39) . S P T Y I N (  35) . ~ P ~ M A x ( ~ s )  
COMMON / IRUN/  INDEX 
COMMON /TDATA/ G( 3 5 1  . C ( 3 S l  r l TVPE(  3 5 1  ~ A G E M X ( 3 5 I ~ S O l M ( 3 5 )  
COMMON /RUNNR/ NVR. 1NVR.KPNT .KAGE.KTI WESr KLAST 
COMYON /HDATA/ 8 2 ( 3 5 )  .B3 (35 )  r P H I ~ S O I L O ~ O E G 0  
COMMON /CL IMbT /  OMIN(3S I rDMAX(  351. 
1NDEX=33 . 
I X = 7 6 1 2 3  
K T 1  MES=l 
K L A S T z 3  . ,  
NVR=SOO 
KPNT= SO 
KAGES-1 
P n I = l  .o 
SO1 LO=3.83 
DEGD'BTOO. 

VALUE FOR S O I L 0  FROM MAX VALUE C I T E D  BY D ICK  WILLIAMS.  W FORESTER 
D O  2 3  Jol  I NOEX 

A S L I  .14.F3.1) 
30 RETURN 

E NO 



I S N  0 0 C 2  
ISM 0 0 0 3  
I S N  0 0 0 4  
I S N  0 0 0 5  

I S N  0 0 0 2  
I S N  0 0 0 3  
I S N  OC04 
I S M  0 0 0 5  
I S N  OCO6 
I S N  OOC7 
I S N  0 0 0 8  
I S N  0 0 0 9  

SUBROUTINE RAPOOM(IX .9 )  
P=FLTRN(  I X) 
RETURN 
END 

SUBROUTINE GAUSS t 1X.S .AY.OEGO) 



1SN 0 0 C 2  
I S N  0 0 0 3  
I S Y  o o c 4  
I S N  O C 0 5  
I S U  F C C 6  
I S N  9 0 0 7  
I S N  0 0 0 8  
I S N  O C 0 9  
I S N  0 0 1 0  
I S N  O C l l  
I S N  C P 1 2  
I S M  C C 1 3  
1 S N  O C I 4  
I S N  O C 1 S  
I S N  0 0 1 6  
I S N  O O l R  
I S N  0 0 1 9  
I S N  0 0 2 0  
I S N  0 0 2 1  
I S N  0 0 2 2  
I S N  0 0 2 3  
I S N  O C 2 b  
I S N  0 0 2 5  
I S N  O C 2 6  
I S N  C 0 2 T  
1 S N  0028 
1 6 ~  9 C 2 8  

I S N  COO2 
I S M  c c o 3  
1 S N  000.  
isN O C O S  
I S N  0 0 0 6  
I S N  0 0 0 7  
1SN 0 0 0 8  
I s r  COCO 
I S N  O C I C  
I S N  O C l l  
1SY 0 0 1 2  
I 5 N  0 0 1 3  
I S N  C C l 4  
1 9 N  O O l T  
i s H  0016 
1SN O C I T  
I S N  OC.18 

S W R  
COYY 
D I M E  
COMM 
COYY 
CONY 
00 1 
OOBM 
I O G E  
C O N 1  
00 1 
NOG R 
D O  1 
K SPR 

I U T I N E  I N I T (  0 M . N T R E E  
I N  / [RUN/  I N O E X  
I S I O N  O B H ( 1 )  .N lREES(  I 
IN / S O I T A /  K S P R T ( 3 5 ) .  
I N  / K I L O /  N O G R O ( I C 0 ) .  
I N  /TRACE/  I GES( 7 0 0 ) .  
I J = 1 . 5 9 0  
J)=o.o 
J)=o 
NUE 

J = 1 . 1 0 0  
I( J ) = F  
! 4=1  . INDEX 
( J l= l  - - 

I F  (J~-.GT.I) GO 
00 2 J = I . I N O E X  

2 N V R E E K ~  J)=NTREES( 
00 3 K 9 1 . 1 0 0  

3  O B n K ( K ) = O B H ( K )  
R E T U R N  

I C O N T I N V E  
00 4 Jol.  I N O E X  

4  N T R E E S (  J) =NTREEK( 
00 5 K t l .  1 0 0  

5 O B H ( K ) = O B H K ( K )  
R F T L B N  
E NO 

.SPTYAX( 3 5 )  
AREA-KO 

S U B R O U T I N E  P C O T l N ( I P L O T . O B ~ ~ N l R E E S )  
COMMON /TRACE/  I G E S ( 7 0 0 ) .  I O G E ( S 0 0 )  
COMMON / K I L O /  NOGRO( 1 0 0 ) .  O D B n ( 5 3 0 )  .KOEA0(35) .  4REA.KD 
O I M E N S I O N  O B H ( 7 0 O ) . N T R E E S ( 3 5 )  
00 I >=I - 3 5  
K o E A o ( J ) = C )  
O B H t  J )SO .0 
I G E  St J) =O 

I N T R E E S ( J ) = O  
00 2  J o 3 6 . 7 0 0  
I C E S (  J )=O 

2 OBM(Jt=C.O 
I P L O l = I P L O T + 1  
P R I G T  i a i i ~ h o ~  

1 3  FORMAT ( / w e  R O T  NUMBER '.I*) 
R E T U R N  
END 



I S M  0 0 0 2  
I S M  0 0 0 3  
I S M  OC04 
I S N  OOF5 
I S M  CCO6 
I S M  COO7 
I S M  OCO8 
I S N  COO9 
I S M  C O l O  
I S N  C O l l  
I S M  0 0 1 2  
I S M  O P 1 3  
I S M  0 0 1 4  
I S M  0 0 1 5  
I S M  0 0 1 6  
I S M  0 0 1 7  
TSN C 0 1 9  
I S N  0 0 2 0  
I S M  COP1 
I S M  O C 2 2  
I S N  0 0 2 3  
I S M  0 0 2 4  
I S M  0 0 2 6  
I S N  0 0 2 8  
I S N  O C 2 9  
I S M  0 0 3 0  
I S Y  0 0 3 2  
I S N  0 0 3 4  
I S N  0 0 3 5 '  
1SY OC36. 
I S N  0 0 3 7  
I S M  0 0 3 9  
I S N  O C 4 1  
I S N  0 0 4 2  
I S N  0 0 4 3  
I S Y  CO44 
I S N  O C 4 6  
I S M  0 0 4 7  
I S N  0 0 4 8  
I S M  C C 4 9  
I S N  OC51 
I S N  O C 5 2  
I S N  C 0 5 3  
I S M  0 0 5 4  
I S Y  0 0 5 5  
1SN 0 0 5 6  
I S M  C 0 5 7  
1SN O C 5 8  
I S M ,  0 0 5 9  

I S M  0 0 6 0  
I S N  O C 6 1  

ISN O C 6 2  . - . . . - - 
I S Y  OC64 
I S N  0 0 6 5  
I S N  0 0 6 6  
I S M  0 0 6 7  
I S N  0 0 6 8  
I S #  0 0 0 9  
I S N  0 0 7 0  

i s i  c 0 7 7  
I S M  0 0 7 8  
I S M  C C 7 9  
I S N  OC8O 

SUBROUTINE K I L L (  0BH.NTRFFS. I X B  
D I M E N s ~ o N - o ~ u ~ ~ o o T , ~ R E E < ~ ~ ~ ~ ~ ~  
COMMON /FOATA/ ~ ~ ~ 0 ~ ~ 1 5 0 0 )  ~ A L I M I T ~ . ~ s ) ' . ~ ~ L I M I T ( ~ s ) ' .  IMYR 
COMMON / [ R U N /  I N D E X  
COMMON /SOATA/  K S P R T I  3 5 1  .STEN01 3 5 1  . S P T M I N ( 3 5 )  .SPTMAX( 3 5 )  
COMMON /TOATA/ G ( 3 5 ) . C 1 3 5 ) .  I T V P E l 3 5 ~ ~ A G E M X l 3 5 ~ ~ S O I M l 3 5 ~  
COMMON / K I L O /  NOGRO( I CO) . 0 0 8 H l 5 0 O l  vKOEAO135) .  AREAeKD 
COMMON /TRAGE/ I C E S (  7 0 0  1 .  I O G E ( 5 0 0  1 - - - - . . . . - 
COMMON /RUNNR/ N Y R . I N Y R . K P N T . K A G E . K T I M E S w K L A S T  
I 0  = I 

06 i o o  ~= i .  ~ N E X  
NB=NB+KOEAOI J l  
I F I N T R E E S I J ) . E O . O )  GO TO LOO 
N A = N + l  
N N  = N T R E E S I J )  N 
00 8 0  l I = N A . N N  
I=I I 
C A L L  RANOOM(IX.RI 
I F  IFAROAM( IOFI .EO.1)  GO TO 4 2  
I F I R I  . L E . l 4 . 6 0 5 / A G E M X l J ) l )  GO TO 5 0  . 
GO TO 46 

iF. (R i ; i i . . 2751  GO TO 50 
I F 1  NOGROI IO).EO. I) GO T O  
GO TO 8 0  ' 

I o = l o  t I 
C A L L  RANDOM1 I X v R 2 )  
I F 1  R2.GT.0.36B) GO TO A 0  
I F (  KAGE.LT.0) GO TO 7 0  
K O E A O I  J l = K O E A O ( J ) + l  
uF\=uC(*a 

K=KK 
I J=KO-K+ I 
I F (  I J  .GT.560) GO TO 9 9  
OOBH( I J l = O O B H l I J - I )  
I D G E I  I J l ~ I O G E ( I J - 1 )  

5 5  C O N T I N U E  
5 6  O D B H I  NB)=OBH( 1) 

I O G E I N B ) = I G E S I I I  
KO=KO+ 1 
GO TO 7 0  

99 P R l  N T  9 8  
9 8  FORMAT1 * DEAD TREES VECTOR F I L L E D .  RERUN W I T H  SMALLER P E R I O D  

*T  UE E N  P R I N T O U T S  I UPNT * ) 
KAGE=- I  

7 0  N T R E E S I  J l  =NTREES( J) -I 
T n l s  IS T n E  SUI TCH TO STUMP SPROUT TREES. 
I F ( D B H 1  I I . G T . S P T M I N 1  J l .  ANOoOBU( I ) . L T T S P T M A X  J K S P R T I  J)=-I 

oan( I I= -1. o 
8C C O N T I N U E  

N = N N  
I C O  C O N T I N U E  

DO 2 0 0  l l = l . 7 0 0  
1-1 l 
I F I O B H I  I l .EO.O.0) RETURN 
I F l O B H ( 0  .GT. 6.0) GO TO 2 0 0  

I I C  00 1 2 0  UK = 1 .699  
K = K K  
D B ~ K )  e B H I K * l )  
I G E  ( K )  I E S  K + l l  

1 2 0  C O N T I N U E  
D B H 1 7 O O )  = 0.0 
r F c o e n c l ) . L r . o . o )  ,GO TO 1 1 0  

2 0 0  C O N T I N U E  



I S N  0 0 0 2  
I S N  CC03 
I S N  OC04 
I S N  0 0 0 5  
ISM CC06 
1SN 0 0 0 7  

I S N  0 0 0 8  
ISY 0 0 0 9  
I S N  0 0 1 1  
I S N  0 0 1 2  
I S N  0 0 1 3  
ISN 0 0 1 4  
I S N  OC15 
I S N  0 0 1 6  
I S N  0 0 1 7  
I S N  0 0 1 8  
I S N  0 0 1 9  
I S N  C021  
I S N  OC22 
I S N  0 0 2 3  
I S N  0 0 2 4  
I S N  OC25 

I S N  0 0 2 6  .- 
I S N  0 2 7  
1 5 ~  8 6 2 8  
I S N  0 0 2 9  
I S N  0 0 3 0  
I S N  OC31 
I S N  0 0 3 2  
I S N  0833 
I S N  0 0 3 4  
~ S N  0035  
1SN 0 0 3 6  
I S N  0 0 3 7  
I S N  0 0 3 8  , 

I S N  OC39 
ISN 0 0 4 0  
I S N  PO41 
I S N  0 0 4 2  
1SN 0 0 4 3  
I S N  0 0 4 4  
I S N  0 0 4 5  
I S N  C046  
I S N  OC07 
I S N  OC48 
I S N  0 0 5 0  

. I S N  0 0 5 1  
1SN OC52 
I S N  0 0 5 3  
I S N  OC54 
I S N  OC55 
1SN C ' 1 ' 5 6  
1SN OC57 
I S N  CC58 
ISN 0 0 5 9  

SUBROUTINE F I R E  (DBH.NTREES) 
DIMENSION DBH#TOOI.NTPFFS1341 -. - -  - - ---.--. 
COMMON /FOATA/ FAT)[)hM(SOO) . A L I Y I T ( 3 5 )  .BL IMIT (35 ) .  IMVR 
COMMON /SOATA/ KSPRT( 35 )  *STEND( 3 5 )  .SPTMIN(35) .SPTMAX( 3 5 )  
COMMON /(RUN/ INOEX 
LOGlCAL LOGS 
R=O. 
LOGS=.FALSE. 
I F  (R.GE..828) GO TO 20 
P R I N T  1 2  

1 2  FORMAT (5X. 'LIGHT F I R E @ / )  
DO 1 5  J = l r I N D E X  
A L I  WIT(  J)=O. 
B L I M I T ( J ) = 1 2 . 7  

15  CONTINUE 
CALL  CUT (0BH.NTREES .LOGS ) 
RETURN 

2 0  I F  (R-GE. - 9 4 6 )  GO TO 30 
P R I N T  21  

2 1  FORMAT (5X.S MEDIUM F I R E * /  
0 0  2 5  J=l .INDEX 
A L I  MIT (J )=O.  
GO TO (22r22.23.23.22.22.23 

A.22.24.24.22.23.23.23~23.24 
2 2  B L I  M I T i  J)=500.  

r.n m 2s 
2 3  BLI ~ 1 ~ l j ) - e ~ . 4  

GO TO 2 5  
2 4  B L I  M I T (  J)=1.7.8 
2 5  CONTINUE 

CALL  CUT (DBH.NTQEES.LOGS) 
#=d 

I J=IJ+l 
FAROAM( 1Jl1J.l 

35 CONTINUE 

4 2  CONTINUE 
I Y V P E C  

OBH( J)=O. 
CONTINUE 
PRINT 38 
FORMAT (SX. 'SEVERE F I  RE--ALL 
RETURN 
F Nn 

TREES 'RE 



Appendix A-4 

Sampl@ Output o f  Program FORAR 



R O T  NUMBER I 

NAME 

NO T R E E S  L I . V I N G  

B I O M A S S  VEAR SPEC. NU*. 
0 

VEAR 0 

NAME B I O M A S S  

O.674E 0 0  CARVA L A C l N I O S A  

1 . 2 7 0  1 3 6 4  1 .271  

CARVA OVATA 

9 . 2 6 0  1 4 7  l me09 

CORNUS F L O R I D A  

1 . 3 8 3  I . 2 7 C  1 . 2 7 6  
1.362 l e e 5 1  

F P A  X I  N U S  AMERICANA 

I L E X  OPACA 

0 . 1 1 8  0 . 1 7 2  0 .106  

L I O U I O A M B A R  S T V R A C I R U A  

MORUS RUBRA 

6 . 2 6 5  

PINUS TAEDA 

PRUNUS S E R O T I N A  

25 3 

D B H  

2 6  1 7  

O B H  

OLERCUS ALBA 

1.430 i .eva I . z r o  
OClERC U S  F A L C A  TA 

3 I 8 

O B H  

S A S S A F R A S  A L B  I OW 



U M U S  A L A T A  0 . 6 2 8 E  0 3  

U M U S  AMERICANA 0 .560E 0 2  

0.124E 0 3  M E T R I C  T O N M A .  L E A F  AREA 7 . 1 7 1  

YEAR SPEC. 
1 0 0  

I C  

NAME B I O M A S S  

C E L T 1  S L A E V I G A T A  0 . 7 7 3 E  0 0  

1 . 2 7 1  1 . 3 6 8  1.487 

L I Q U I D A M B A R  S T V W C I F L U A  O.46OE 0 0  

1 . 2 7 1  1 . 3 5 9  

OSTRVA V I R G I  N I A N I  0 . 1 9 1 E  0 1  

1.316 1'.272 1 . 2 8 7  ' 1 . 3 9 2  
1.519 1 . 2 8 1  1 . 2 9 9  1 . 3 0 5  

P l N U S  TAEOA O . l l 7 E  0 5  

O E R C U S  F A L C A T A  0 . 5 7 5 E  0 3  

OClERC U S  M A R I L A N D I C A  0 . 5 5 3 E  0 0  

1.517 1 . 3 1 6  . 

U M U S  A L A T A  0 . 2 1 1 E  0 0  

1 . 2 7 0  

0 .148E 0 3  M E T R I C  T O N M A .  L E A F  AREA = 6 .904  

NAME B I O M A S S  YEAR SPEC. 
1 5 0  

2 1 

D B n  

1 

usn 

1 

D e n  

3 

DBH 

3 

DOH 

6 

D a n  

C A R P I  NUS C A R Q C I N t A N A  0 . 3 2 3 E  0 0  

1.516 

CAeVA L A C 1  N l f l S A  0 . 2 3 1 E  0 6  

i 6 3 1 7  

. L I O U I  OAMBAR S T V R A C I F L U A  0 - 2 1 4 E  0 0  

1 . 2 7 6  

OSTRVA V I R G I N 1  AN4 0 . 7 6 8 E  0 0  

P I N U S  TAEDA 0 . 1 3 0 E  0 5  

1 0 2 . 1 9 5  5 8 . 6 7 9  7 1  - 7 2 3  

O E R C U S  A L B A  0 . 1 5 2 E  0 1  

1 . 2 7 5  1 . 4 0 9  1.308 1 . 4 3 6  
1 .492  1 . 2 7 0  

O E R C U S  F A L C A T A  O.391E 0 3  

U M U S  A L A T A  0 . 1 4 2 E  0 1  

' U M U S  A M E R I C A N A  0 . 4 7 2 E  0 0  

1 . 3 6 7  1 . 2 9 2  

0 . 1 6 l E  0 3  M E T R I C  T O N M A .  L E A F  AREA r 6 . 7 7 4  



*EAR SPEC. 
200 

2 

NUM. NAME BIOMASS 

CARPI NUS CAROLINIAN& 0.534E 0 0  

1.502 1.286 

CARVA TEXANA 0.442E 0 0  

1.316 1.270 

CELT1 S LAEVIGATA O.168E 3 1  

1 .270  1.327 1.280 1 .a66 
1.289 1.439 1.270 

OSTRVA VIRGINIAN* 0.264E 00  

1.394 

' PINUS TAEOA 

125.903 69.541 

OWRCUS FALCATA 

0.197E 0 3  METRIC TONAiA. LEAF AREA n 7.786 

NAME B10MASS 

CARYA OVATA O.832E 0 1  

3 .490  3 .159  3.153 3.142 
I .hnn 

CARIA TOMENTOSA 0.260E 0 1  

.1.503 1 .562  1.574 1.650 
1 .598  1.AnA 1.535 

C E L T 1  5 1 AFVIGATA 0 . ~ 7 6 ~  31  

CWNUS FLORIDA 6 . 8 6 5 ~  0 1  

3.344 3.124 3.418 3.124 

ILEX OPACA O.148E 02  

L I O U I  DAMBAR STVRAC IFLUA 0 -355E 01 

OSTRVA V I R S i n i r r w  U.SJZE 0 1  

2.615 2.700 2.030 , 2.090 ' 

2.034 2.273 

QWRCUS FALCATA 0.147E 04 

51 .207  4.339 



I S  

OBH 

QUERCUS MARILANOICA 0.985E 0 1  

I 

0 en 
6 

OBH 

QUERCUS STELLATA 0.377E 01 

0. I88E 0 2  METRIC TONMA. LEAF AREA = 0.954 

V E M  SPEC. 
300 

2 

NAME B I  OMASS 

CARPI NUS CAROLINIANA O.lO3C 01 4 

DBH 

CARVA LACINIOSA 0.692E .00 

1.376 1.279 1.293 

CARVA OVATA 3.283E 0 3  

CARVA TEXAN* 0.493E 00  

1.431 1.271 

CARVA TOYENTOSA 0.229E 0 3  

15.015 14.841 8.482 8 .763  
7.965 7 .749  1.270 1.345 
1.270 1.352 

CELTI S LAEVIGATA 0.216E 0 3  I 1  

OBH 

CORNUS CLORIOA 0.54OE 0 2  

7 .389  7 .159  7.297 4 .481  
4.555 1.480 2.127 1.918 
1 .606  . 1.4Rn 1.902 1.588 
$,a486 1.486 

FAGUS GRANOIFOLIA 0.218E 0 0  

1.288 

ILEX OPACA 0.260E 0 3  

15.932 13.160 12.649 12.019 
7 . 6  0.102 

I I 

OBH 

L IOU1 OAMBAR STVRAC I FLUA 

OSTRVA VIRGlNI A M  

0.101 1.417 

QUERCUS ALBA 

11.629 11.258 2.438 
1.477 

2 

0Bn 

. 5  

OBH 

OLLRCUS FALCATA 3 4  

OBH 



OUERCUS M A R I L A N D I C  A 0 . 6 5 9 E  0 2  

9.811 8 . 8 9 1  7 . 6 2 8  

QCERC US S T E L L A T A  O.799E 0 3  

U M U S  A L A T A  0 . 4 4 6 E  0 3  

U L Y U S  AMERICANA 0 . 2 2 4 6  0 0  

1 . 3 0 0  

0 . 9 3 1 E  0 2  M E T R I C  TON/HA. L E A F  AREA = 5 . 1 2 5  

VEAR SPEC. NUM. 
3 5 0  

2 2 

- D B H  

5 1 

D en 
6 16 

D e n  

NAME B I O M A S S  

CARPI NUS CAROL~NI ANA n . o 3 n ~  0 0  

1 . 2 8 0  1 . 2 7 8  

CARVA L A C I N I O S A  , 0 . 2 2 3 E  0 0  

1 . 2 9 9  

CARYA OVATA 91792E 03 

CAWYA TEXANA 

1 . 2 8 4  1 . 3 0 6  1 .320  

CARVA TOMENTOSA 

2 8 . 0 4 0  1 .464  1.452 
1 . 3 6 6  11'270 1 m 4 9 7  

C E L T 1  S L A E V I G A T A  

1 9 . 8 0 6  2 0 . 0 0 4  1 6 - 1 4 8  

CORNUS F L O R I D A  

l . L B 8  L. JIY 1 .521  

I L L X  OPACA 

1 . 5 5 3  

L I O U I  DAMBAR STYRAC I R U A  

OSTRYA V I R G I  N I A N A  

O E R C U S  F A L C A T A  

OVERC US MAR 1 I..aNUICA 

1 . 3 3 2  1 . 2 7 4  

OUERCUS S T E L L A T A  

ULMUS A L A T A  

3 4 . 3 4 7  



VEAR SPEC. NUM. NAME BIOMASS 
400 

5 3 CARVA LACINIOSA 0.641E 00  

DBn 1.270 1 .281  1.276 

6 2 CARVA OVATA 0.263E 0 3  

DBH 24.955 1.271 

7 4 CARVA TEXAN* 0.113E 0 1  

0 8 ~  1 .408  1.491 1.271 1.553 , 

4 CARVA TOYENTOSA 0.902E 00  

0884 1.270 1.270 1.326 1.350 

5 CELT1 S LAEVIGATA 0.239E 0 3  

DOH 23.952 1.283 1.280 1.285 
1.532 

1 

D8H 

12  

DBH 

5 

DBH 

VEAR SPEC. NUM. 
450 

2 3 

Den 

6 I 

DBH 

7 I 

DBH 

8 4 

DOH 

FAGUS GRANDIFOLIA 0.216E 00  

1.282 

OUZRCUS FALCATA 0.823E 04 

48.937 47 .770  50.093 48.447 
37.638 30.663 30.143 29.821 
27.980 24.674 23.138 22.998 

OlERCUS MARILANDICA 0.132E 0 1  

1.271 1.392 1.510 1.473 
1 .296  

OUERCUS STELLATA 0.732E 03  

38.240 0.101 1 3 0 6  1.386 
1.314 1.273 1.477 

UMUS ALATA 9.218E 0 0  

1 .287  

0.114E 0 3  METRIC TONMA. LEAF AREA = 5.819 

NAME BIOMASS 

C A ~ F I  HUE C A ~ O L I  WI ~ 1 4 4  0 . 7 6 ~  00  

1.422 1.271 1.418 

CARYA OVATA 0.63SE 0 3  

36.0 62  

CARYA TEXANA 0'31SE 00  

1.278 

CARVA TOYENTOSA 0.911E 00  

1.275 1.285 1.382 1.294 

10 1 CELTIS LAEVIGATA 0.500E 0 3  

DBH 32.643 

15 2 ILEXOPACA 0 .466E 00  

OBH 1.325 1.319 

25 6 PUERCUS ALBA O.15bE 0 1  



V E M  SPEC. 
500 

2 

Nu*. 

1 

D B H  

1 

Den 

3 

DRH 

2 

OBH 

3 

OBH 

8 

OBH 

Q E R C U S  FALCATA 0.799E 04 

QllERCUS MAR I L A N O I C A  0.754E 00 

1 .415  1 .270  1.338 

U M U S  ALATA 0.793E 00 . 

1.384 1.305 1.486 

C.lIOE 0 3  M E T R I C  T O N m 4 .  L E A F  AREA = 5.177 

NAME BIOMASS 

C A R P I  NUS C A R O L I N I A N A  0.22TE 00  

1.309 

CARVA OVATA 

47.232 

CARVA TEXANA 

!.2?1 1.361 

C U T 1  S  L A E V I G A T A  

41.266 , 1.278 

FAGUS G R A N D I F O L I A  

1.540 1.271 

I L E X  OPACA 

1.272 1.565 
1.285 1.270 

OSTRVA V I R G I  N I A W  O.99OE 00 

1.511 1.274 1.349 1.272 

OUERCUS FALCATA 0.119E 05  

f l l . 3 1 6  R l ! ? Z Q  SP.191 

UMUS ACCTA OclQPE 01 

1.288 1.429 1.335 1.519 
1.374 1.559 1.293 

0.167E 0 3  M E T R I C  T O N m A .  I.S.AF AREA = 7.284 
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