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Convergence Properties of Iterative Algorithms

For Solving the Nodal Diffusion Equations
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CONVERGENCE PROPERTIES OF ITERATIVE ALGORITHMS
FOR SOLVING THE NODAL DIFFUSION EQUATIONS

Y. Y. Azmy and Bernadette L. Kirk
Oak Ridge National Laboratory
Oak Ridge, TN 37831-6363

ABSTRACT

We derive the five point form of the nodal diffusion equations in two-
dimensional Cartesian geometry and develop three iterative schemes to solve the
discrete-variable equations: the unaccelerated, partial Successive Over Relaxation
(SOR). and the full SOR methods. By decomposing the iteration error into its
Fourier modes. we determine the spectral radius of each method for infinite
medium. uniform model problems, and for the unaccelerated and partial SOR
methods for finite medium. uniform model problems. Also for the two variants of
the SOR method we determine the optimal relaxation factor that results in the
smallest number of iterations required for convergence. Our results indicate that
the number of iterations for the unacceierated and partial SOR methods is second
order in the number of nodes per dimension, while, for the full SOR this behavior
is first order, resulting in much faster convergence for very large problems. We
successfully verify the results of the spectrai analysis against those of numerical
experiments, and we show that for the full SOR method the linear dependence of
the number of iterations on the number of nodes per dimension is relatively

insensitive to the value of the relaxation parameter, and that it remains linear even
for heterogenous problems.

I. INTRODUCTION

Mostly all practical applications involving the solution of the neutron diffusion equations
require implementation of an iterative scheme which operates successively on an initial guess
until it converges to the solution. Occasionally, situations arise where such iterative algorithms
converge extremely slowly (or sometimes diverge altogether) in which case, the development
of effective acceleration methods can be crucial for the success of the calculation.

In Sect. II of this paper, we develop an iterative scheme (unaccelerated) for solving the
nodal diffusion equations in the five-point form, as well as a partial Successive Over Relaxation
(SOR), and full SOR methods. In Sect. III, we show via a spectral analysis of these methods
performed on an infinite medium, homogeneous, model problem that the first two require a
number of iterations that is second order in the number of nodes per dimension, while this
relation is first order for the full SOR. Repeating the analysis un a finite medium,
homogenous, model problem for the unaccelerated and partial SOR methods shows a reduction
in the number of iterations, but retains its second order dependence on the number of nodes
per dimensions. The spectral analysis also yields expressions for the optimal relaxation factor
for the two variants of the SOR method. Finally in Sect. IV, we present the results of several

numerical experiments performe with codes implementing the three iterative schemes, which
we use to verify the spectral ana’sis.



II. A FIVE-POINT NODAL INTEGRAL METHOD FOR THE
NEUTRON DIFFUSION EQUATION

The nodal integral method' has been developed for a wide class of PDEs. and has been
applied! to the neutron diffusion equation resulting in a weighted difference form for the noda]
balance equation that is much simpler than previous derivations of equivalent methods.™
However, the questions of evaluating the transverse-leakage terms and closing the system of
algebraic equations with the dppropnate continuity conditions in this formulation have not been
addressed until very recently,’ where a five-point scheme was derived via the nodal integral
method for the two-dimensional neutron diffusion equation. In this section, we briefly review
this derivation for fixed source. steady state. monoenergetic problems in two-dimensional
Cartesian geometry. Then we present the iterative methods used to solve these equations.™
which are analyzed in the remainder of this paper. Generalization of the five-point scheme
presented here to an analogous seven-point scheme in three-dimensional Cartesian geometry
is straightforward, and iterative procedures 10 solve them can be developed by direct analogy.
Multigroup and/or criticality (eigenvalue) problems can be solved using the standard inner/outer
iterative procedure through which the calculation is broken-up into a sequence of fixed source
calculations, updating the source every iteration. Hence the method presented here can be
viewed as the "kernel” for more general. production type calculations.

The continuum diffusion equation in the (x.y) plane is given by,

a -
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where D and o are the diffusion coefficient and the macroscopic removal cross section,
respectively, ¢ is the scalar flux, and S is the fixed, i.e. nonhomogeneous, source. .Equation (1)
is normally augmented with a set of boundary conditions specific to the physical problem being
solved, and in general represents a linear combination of the flux and net current on the edges
of the domain of the problem. The initial step in the nodal integral mcthod is to divide the
problem domain into IxJ rectangles of the form [x;;, x;] x ¥ %) i=1,.., L, and j=1, ..., J,
where x,=0=y,, and x;=X, y;=Y. The nuclear parameters D and o, and the source S are
considered to be constant over each computational cell, or "node," so that they are globally
piecewise constant.

The discrete-variables emploved in nodal diffusion methods are node-averaged quantities
and transverse-averaged, surface-evaluated quantities. It has been shown that these can be

fluxes, net, or partial currents, all resulting in mathematically equivalent methods.! Here we
use as discrete-variables the node-averaged flux, defined by,
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the x-averaged flux evaluated at the surface y; defined by,
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and an analogously defined y-averaged flux evaluated at the surface x; denoted by ¢i§\f The
nodal integral method prescriPtion for deriving the nodal diffusion equations from Eq. (1)
consists of the following steps.” First Eq. (1) is integrated over the volume of node 1.j. and we
apply the piecewise-constant property of D and o, to obtain the nodal balance equation relating
the node-averaged flux to the transverse-averaged net currents evaluated on the four surfaces
bounding node ij. Second, we transverse-average Eq. (1) once with respect to x, then replace
the x-leakage term by its average value over the node to obtain a second order ODE in the
x-averaged, y-dependent flux. These are solved exactly in terms of the eigenfunctions of the
one-dimensional diffusion operator, i.e. hyperbolic sines an_dxcosines__fgr subcritical systems, and
the arbitrary constants are expressed as combinations of ¢;;;; and ¢;. The resulting expression
is integrated once with respect to v to vield the node-averaged and x-averaged fluxes: then 1t
is differentiated once with respect 1o y and evaluated at y;;and y; to yield a relation between
the x-averaged fluxes and currents on the x=constant surfaces of the node. Analogous steps
are performed on Eq. (1) in the y-direction. All these expressions are combined to result in
an expression for each of the transverse-averaged net currents at the node surfaces in terms
of the node averaged flux and the transverse-averaged flux in the same direction. For example

the x-averaged y-currents evaluated within node ij, as y approaches the surfaces y; and y; ; have
the form,

dg* | = (X ' TX =Y
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respectively, where we have defined the piecewise constant parameters,

a tanh [y;(y; — yj-1)72]
v Yi(Yj = ¥;-0/2 ’ (5-2)

tanh?[y;(y; ~ ¥;-0/2]
ij =

, 5b
S (3.b)

and 1y =V ﬁi;?aij is the diffusion length.

Now the transverse-averaged net currents can be eliminated from the nodal balance
equation described above to yield,

Dij X 2
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Clearly, Eq. (6) is a weighted difference form of the original PDE, Eq. (1). Continuity of the

net currents across node boundaries (and possibly their discontinuity at internal surface sources
for example) is enforced through the condition,
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dg” |"_p ¢ i=1...L j=1...J-1 7
D; F [, =Py [ i=1...1 j=1...J-1, (7)

where the net currents are given by Eq. (4). An analogous condition in the other direction
guarantees the continuity of the x-current across x=constant node boundaries. Equations (6).
(7), and its analogue constitute (31J-I-J) linear equations each involving five unknown variables.
These are augmented by 21 and 2J general boundary conditions on the x and y=constant global
boundaries thus bringing the number of algebraic equations to (31J+I+1]), the same number of
unknown variables, @;. 4’11' and ¢u Direct methods can be used to solve this system. but for
most practical apphcauons iterative methods are essential due 10 memory size¢ and execution
time limitations. In the remainder of this ﬂectlon we present an iterative method previously
developed and implemented for solving this system,* * then we present a parnal Successive Over
Relaxation (SOR) scheme that has been used to accelerate convergence,” § and finally we
present a full SOR scheme which more effectively reduces the number of iterations. Stdblhty
of the three iterative methods will be analyzed and verified in the remainder of this paper.

IL1. The Iterative Method for Solving the Nodal Method Equations

A careful examination of the nodal integral method balance and current continuity
equations reveals a very loose coupling between the three sets of equations that has been
exploited into an iterative scheme to solve them.*® The current continuity conditions for each
row or column is completely uncoupled from those for other rows or columns, respectively;
however, they are coupled to those for other columns or rows, respectively and to the balance
equations via the node-averaged fluxes. Hence, if the latter quantities are iterated upon in the
balance equation, Eq. (6), each set of row or column current continuity equations will form a
tridiagonal system of equations that is completely uncoupled from the rest of the system. To
be more specific, let the left superscript n indicate the n-th iterate of the node- or transverse-
averaged flux. Then the iterative procedure is represented by,

-8 (1 = W))'Gh + (6] + Bl (0 + )Y
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and an analogous equation for the x-current, and
ns= _ S ¢ ¢ n¢x + ¢ x :
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wheré’ :T_zij is a specified initial guess; and
Y- :
ﬂij = Dij”Pi)jl (y; — Y1) (10.3)

= = PJ(1 - PY) (10.b)



with analogous deﬁnitions' for ,Bijxand J'tij).( Eq. (8) represents (J-1) equations for each column
of nodes which can be solved using an efficient tridiagonal solver routine, such as DGTSL of
LINPACK.” Similarly its x-currents analogue represents a tridiagonal system of order (I-1) for
each row of nodes that can be solved using DGTSL. Updating the nodal flux via Eq. (9) is
straightforward as it does not involve solving simultaneous equations.

1.2 The Partial SOR Iterative Method

Convergence of the iterative method presented above can be significantly accelerated by
applying the SOR technique. Initial development of this technique concentrated on relaxing
only the node-averaged fluxes.*® but not the transverse-averaged fluxes (hence the term
partial). This approach optimizes memory size requirements, as it avoids storage of any
additional arrays beyond the unaccelerated method. The partial SOR iterative procedure is

represented by the tridiagonal systems, Eq. (8) and its x-current analogue, and the balance
equations,

1 S ﬂ(;y + i’y
n= n-l= i .. (P' i1
C’ij=(1“-Q) Q ij+-Q ;T;:-i-‘ﬁfj 2 S 1.
(1)
n;z n-—-z
5+ 8 s
tri | [A+as + =), n 21,

where Q is the relaxation parameter, 0 < Q < 2. This iterative method has been previously
shown to result in a large reduction in the total number of iterations at no virtual cost to the

memory requirement or the CPU execution time per iteration;*® clearly the total execution
time is drastically reduced.

I1.3 The Full SOR Iterative Method

The motivation for developing the full SOR technique for the nodal diffusion method is
the experimentally observed 0(12) behavior of the number of iterations for a "square” (i.e. J=I)
test problem, which is contrary to the usual O(I) behavior for the SOR method.®® In this
method, the transverse-averaged fluxes are also relaxed with the same relaxation parameter as
that for the node-averaged flux. This method is represented by the tridiagonal systems,

— BY.(1 — Y. ﬂ—z- .‘ v v ' n-z n—zx
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y n—-1=
¢ G+Bl v, ¢ g+ (12)



and its x-current analogue for calculating the transverse-averaged fluxes, and Eq. (11) for.
updating the nodal flux. Clearly, this method would require storing the arrays of x-averaged
and y-averaged fluxes, which have sizes I(J+1) and J(I+1), respectively, between iterations.
However, this is a very mild price to pay compared to the tremendous reduction in the number
of iterations as shown in the following sections.

[II. SPECTRAL ANALYSIS OF THE ITERATIVE METHODS FOR SOLVING
THE NODAL EQUATIONS

Spectral, or Fourier mode, analysis methods have often been used to establish the stability
of iterative methods for solving linear systems of equations, and to determine the effectiveness
of acceleration methods in reducing the number of iterations required for convergence.®* Such
analysis has been used extensively in the nuclear field to evaluate the convergence properties
of several transport methods and Diffusion Synthetic Acceleration methods.”"**  For elliptic
systems, Fourier analysis has been used in studying the convergence of mostly all classical
iteration strategies,®® and several modern strategies™ for solving the discrete-variable form of
model elliptic PDEs. In this section, we evaluate the spectral radius for the three iterative
methods developed in Sect. II for solving the nodal diffusion equations. Due to similarity of
the analyses of the three methods we will first detail the analysis of the unaccelerated method,
then briefly outline the procedure for the partial and full SOR methods, stressing the

differences between the three derivations and presenting the final expressions for the spectral
radius.

III.1 Spectral Analysis of the Unaccelerated Method

The spectral analysis is concerned with estimating the smallest reduction per iteration of
the error in the variables iterated on; hence we define the node-averaged flux-difference,

n= n+l= n= 13
®ij = ¢ 4 - ?is (13)

and analogous definitions fernd;‘ij andndgij. Evaluating Egs. (8), its x-current analogue, and (9)
at iterations (n+1) and n, then subtracting the resulting expressions yields three corresponding
equations in which each ¢ is replaced by @, and S; is set to zero. Furthermore, the model
problem used in the analysis has a uniform material composition, and uniform x and y
dimensions of the computational cells, 22 and 2b respectively. Therefore, the node indices on
the parameters w and 7 are superfluous, so we suppress them, and the parameters j factor out
so that without loss of generality we set them to unity. The analysis is based on the ansatz that
the difference quantities are completely decomposable into their Fourier modes,

®i; = "eexpliAezi + Ayyi) (14.2)

n—zr

5 i = "(yexp [1Azz; + 1A,(y; + ), (14

n-y
@ = "eexplida(zi + a) + idyy;)], (14.0)



-where A, and 4, are the Fourier variables. Substituting Egs. (14) into the equations involving
the flux-difference quantities described above results in,

"Cy = "Teuvcos(Ayb)/ [w¥cos’(Ayh) + sin’(A,B)] | (15.a)

. . 9 15.b
e = "lewTcos(Aza)/ [w’cosz(/\za) + sm‘(/\za)] , (15.6)
"e = ["Cewicos(Aza) + "(yYeos(Ayd)] /(1 + w7 + %Y) . (15.¢)

. . - -] % -1 ta -1 —_ B N
It follows immediately from Egs. (15) that "7IL /"¢, = "1/, = "¢/™e = ¢, where ¢ is the

constant eigenvalue of the unaccelerated iterations; thus without loss of generality we set
n__ n
=& - o o .

Solving Egs. (15) simultaneously for the iteration eigenvalue we obtain,

wZw?cos?(Aza) . 7Yw¥cos?(A,b)

\ = ] 4
S22y w?cos?(Aza) + sin*(Aza) T w¥cos?(Ayb) + sin (A, b)

Examining Eq. (16) yields four important properties of the eigenvalue in the Fourier plane:

i - €, is periodic in 4, and }.y with periods zz/a and z/b, respectively;

il - €, is symmetric about the A, and 4, axes;

iii - €, is positive definite over the entire Fourier plane for all physically acceptable parameter
values;

iv - €, is monotonically decreasing over the rectangle [01/2a] x [0,7/2b] in the Fourier plane.

From these properties, the definition of the spectral radius of the unaccelerated method for the
infinite medium model! problem reduces to,

max eu(Az,Ay) = €i(0,0); a7
Pu = OSA:SW/:ZG.
0< A, <n/2b
that is,
Ny = log (E)/log (p,), (18)
In order to achieve convergence within E cf the iteration limit, therefore, requires,
Pu = (7" +7Y)/(1+ =% +x¥) . (19)

iterations, which is second order in the larger of 1/ya and 1/yb, similar to the results of spectral
analyses of conventional finite-difference approximations of elliptic equations.

This analysis can be refined by using a finite size model problem.3? In this case, only a
finite number of Fourier modes will be available, and the largest eigenvalue will correspond to
the mode closest to the origin in the Fourier plane, A, =x, A,=sx, by the periodic property of
€y In this case, the spectral radius for the finite medium model problem is



[ wint wYr?

Pu = w*® + tan?(7a) T w¥ +tan®(xb)

}/(1+'n‘+wy)<pu' . (20)

which requires fewer iterations than the infinite medium case: however, the number of
iterations is still quadratic in the largest of the number of nodes in the x or y directions.

1112 Spectral Analysis of the Partial SOR Method

Rewriting the equations for this method, Egs. (8), its x-current analogue, and Eq. (11) in
terms of the flux-difference quantities. then using the Fourier mode decomposition. Egs. (14)
vields the infinite medium, partial SOR. iteration eigenvalue,

(M2 Q) = 1=Q+Qe(Aeshy) - o1

Equation (21) shows that €, shares with €, the periodic. symmetry. and monotonic properties
mentioned before. The relaxation paramater. Q, is chosen so as to minimize the partial SOR
spectral radius,

(== +_m)/2)”

Q = |1 - (22)
? (L+rz+ay)]
whiéh yields the minimum spectral radius,
pr = (=% + 70/ 477 4 1Y) @)

In the limit of very fine meshes Q —»2, as previously observed in numerical tests,*> while the
number of partial SOR iterations required for convergence

3(a® + b?
Ny — Wlog (1/E), (24)

which is half the number of unaccelerated iteraiions, but still second order in I, where without
loss of generality we have assumed 12J.

Analysis of the finite medium model problem yields a relation between €, and €, that is
analogous to Eq. (21), which can be used to evaluate the optimum relaxation parameter and
spectral radius. As expected, the optimum spectral radius is smaller than for the infinite
medium partial SOR method case, but the number of iterations is similarly second order in 1.

In the special case I=J the resulting expressions for the optimum relaxation parameter and
spectral radius are,

s [1 Wi - - h (25)
= - 20
(1 + .‘277’) {w’ + tan?(7a) T + cotz(jra)}] ’

1 1
w® +tan?(ra)  wT + cot?(wa)

. (26)




[IL3 SPECTRAL ANALYSIS OF THE FULL SOR METHOD ‘

Repeating the same procedure for the full SOR method. Egs. (12), its x-current analogue,
and (11), produces a quadratic equation for the iteration eigenvalue,

(e +Q—1) = er(Qea) - @7)

Comparing the two branches of e, 4, Q) that satisfy Eq. (27) shows that the eigenvalue with
the largest magnitude is given by,

02, Q%e, .. -
max lef(en, D=1~ Q + _f + \/[T—.Q+ =P - (1-QpPL

2-2

K Z — €
fQg ————~,
€u

1
2-2y/1—c¢
=Q-1,ifQ> —M—M—=, (28)
€y

where €, (4,, 4,) is given by Eq. (16). This expression depends on A, and A, only through ¢,
therefore max|e;| is periodic, and symmetric like €, and is. monotonically decreasing with
increasing €,. Hence the slowest converging mode corresponds to 4,=4,=0, and its eigenvalue
is monotonically decreasing (increasing) with increasing €2 such that Q<[2-2v1-pg}jp, (Q>(2-
2V1p,)/p,) respectively. The optimal relaxation parameter therefore becomes,

0 = [2-2v/T=%] /o (29)

and the full SOR spectral radius is.

2--21-
pp = —N-T Py, (30)
Pu -
In the limit of very fine meshes, the number of full SOR iterations required for
convergence in the infinite medium case is, '

3(aZ + B2
Ne= =% ) 1og (1/E), (31)

which is first order in the number of computational cells in each direction, consistent with
classical results.3?

IV. NUMERICAL RESULTS

The three iterative methods developed in Sect. II and analyzed in Sect. IIT were
implemented in computer codes.*® In this section, we verify the spectral analysis results by
comparing actual numbers of iterations required for convergence to the solution of a
homogeneous problem by each method to those derived by the spectral analysis. Then we
consider an inhomogeneous problem and show that if the relaxation parameter is chosen close



to the value based on the longest diffusion length in the system, the number of iterations
retains its first order dependence on the number of unknowns per dimension even though it
is not optimal.

The homogeneous test problem is a unit square region dmded into IxI computational cells
(I even) each of dimension 2a x 2a, where a=1/21. Dirichlet boundary conditions are imposed
on all four external surfaces, and the fixed source is unity in the square [0..5] x [0..5] and zero
otherwise. The nuclear properties are represented by uniform y=10. and the number of
iterations required by each method to achieve convergence within E= 10 of the solution is
measured as a function of I. These results are plotted in Fig. 1 in comparison with the
analytical expressions derived in Sect. Il for the infinite and inite medium model problems.
For the partial and full SOR methods the theoretically predicted 0ptimal relaxation parameter
is used in the numerical e;\penmen The good =grzsmeni boiween (he Shserog and
theoretically predicted behavior is apparem from Fig. 1in pamcu]ar for the unaccelerated and
partial SOR methods. The discrepancy in the case of full SOR is due to the fact that the
relaxation factor used in the numerical experiments is not optimal since it is based on the
infinite medium analysis. thus resulting in a larger number of iterations than predicted by the
analysis. However, as clear from the results, the number of iterations remains linear in I, in
spite of the lack of optimality of the relaxation factor.

Finally, a heterogeneous test problem with the same geometry, external source, and
boundary conditions as above was solved using the full SOR method. The nuclear properties
of the four quadrants were chosen to be ¥=10 in two diagonally-opposite quadrants, and y=>3,
and 20 in the two other quadrants. The infinite medium model problem with uniform y=35 and
1=10, 20, 30, and 40 has optimal relaxation factors 1.82, 1.90, 1.93, and 1.95, respectively, by
Eq. (29), which when used in the code converges to the solution in 70, 129, 186, and 262
iterations, respectively, close to linear in I. Furthermore, for these four cases, the actual
optirnal relaxation factors were determined experimentally to be 1.70, 1.83, 1.88, and 1.91, and
the corresponding optimal number of iterations required for convergence were found to be 39,
78, 120, and 153, respectively.

We conclude that the full SOR method is very effective in reducing the number of
iterations necessary for solving the nodal diffusion equations at a very low additional CPU cost
per iteration and the storage of two additional arrays. The behavior of the number of
iterations as a function of the number of nodes per dimension was shown to be linear even
when the relaxation factor is not optimal, or the material composition is not uniform. Because
the additional computational cost expended in the acceleration is minuscule, the full SOR may
indeed require shorter CPU time to converge the nodal diffusion method equations than other
more sophisticated methods, such as multigrids.
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Fig. 1. Comparison of measured and theoretically predicted numbers of iterations requifed by

thf: l'hrec iterative methods to solve the uniform model problem, with 10™ convergence
critencn.



