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Abstract

Accurate branch-prediction is necessary to utilize deeply pipelined and
Very Long Instruction-Word (VLIW) architectures. For a set of program
traces we show the upper limits on branch predictability, and hence ma-
chine utilization, for important classes of branch-predictors using static
(compiletime) and dynamic (runtime) program information. A set of
optimal “superpredictors” is derived from these program traces. These
optimal predictors compare favorably with other proposed methods of
branch-prediction.

1 Motivation

The majority of modern high-speed computer architectures employ pipelining
as a speedup mechanism. Pipelining subdivides the work of an individual in-
struction into a sequence of stages, and overlaps the execution of successive in-
structions by executing different stages of different instructions simultaneously.
Future systems will use pipelining to larger and larger degrees.

Conditional branch instructions potentially interrupt the smooth execution
of a pipeline ~ the pipeline may be ready to process instructions from the desti-
nation of the conditional branch defore the condition has been evaluated. Null
instructions may be passed through the pipeline until the branch-condition is
resolved and instructions from the correct destination are ready to be fetched.
This sequence of null instructions is referred to as a dubble and inhibits pipeline
utilization by filling pipeline stages but performing no work.

An alternative to passing pipeline bubbles is branch-prediction, where the
result of a branch condition is guessed before it is fully evaluated. Instructions
from the assumed branch destination are processed immediately. Some repair
work is necessary if the guess was incorrect, to erase the effect of executing
the wrong sequence of instructions. It is interesting to note that fairly simple
schemes of guessing (“branch-prediction”) are reasonably accurate. Treatments
of pipelining and pipelined machines are found in [6] {10]. The specific problem
of branch-prediction is treated in [3] [4] [5).

The Very Long Instruction-Word (VLIW) architectures perform simultane-
ous instruction execution, and also benefit from branch-prediction. A program
is compiled into a number of instruction streams which execute in lock-step.
Analysis of the program at compiletime and in sample executions is used to
detect parallelism. Some program transformations are employed to improve
parallelism, notably the movement of instructions across conditional branches.
If a branch condition is deemed likely to hold, or likely to not hold, instructions
from the favored destination may be moved to execute before the condition is
evaluated. Instructions must be introduced at the alternate destination to erase
the effects when the condition did not behave as expected. The utilization of
the VLIW processor is inhibited if the condition tends to behave contrary to
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expectation, since operations are done and undone. Again, accurate branch-
prediction is necessary to achieve high utilization. Treatments of VLIW pro-
cessors are found in [1] [8]. The specific problem of analyzing and compiling
programs for VLIW architectures is treated in [2]

In this study we examine general classes of proposed branch-predictors, and
show their upper limits with respect to a set of program traces. The relationship
between prediction accuracy and machine utilization and speedup is studied. An
architect requiring a certain level of utilization will require a corresponding level
of prediction atcuracy, and may need to devise a new class of branch-predictor
to achieve this.

2 A Simplified Model of Pipeline Utilization

Consider a simple linear pipelined machine model, where instructions are issued
and retired in order at a rate of one per clock cycle. The pipeline is D stages long.
We define a block as a sequence of instructions executed between conditional
branches. For an idealized pipelined machine we have the following relationship:

# instructions

s = average blocksize = % branches
N = penalty for a wrong guess
p = proportion of correct guesses
.. # instructions

= utilization =

v uttization (# instructions) + N(# wrong guesses)
) 1
= (1)

- EE

The quantity N represents the size of the bubble introduced in the pipeline
upon an incorrect branch prediction. This assumes the penalty does not de-
pend upon which branch is being predicted. This model also ignores the initial
pipeline-fill and final pipeline-empty when the process is started and ended;
these are not significant if the length of the instruction stream is long with re-
spect to N and D. Similar effects are present in VLIW architectures, but are
not so easily modeled.

Average blocksize values 4 are presented in table 1, for a number of real
programs described in section 4. Figure 1 shows the distribution of blocksizes
across all cases (the last two values are represented as a scatter-plot). Figure 2
shows contours for fixed values of U, as a function of N/u and p. N/pu is used as
a normalized penalty value; the architect may treat N as a variable parameter,
but 4 is determined by the instruction set, the workload, and the compiler.

The speedup S due to pipelining is expressed as follows:

S = speedup = (pipeline depth)(pipeline utilization) = DU
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From figure 2 the speedup can be determined by reading the contours in
units of D. If we assume D = N, and let the pipeline depth go to infinity, we
find a strict upper bound on speedup which depends only on p; this relationship
is shown in figure 3.

3 Brahéh Predictors

The CPU can predict branches using information collected as the program exe-
cutes, or information provided by the compiler, or both. We will call these forms
of information dynamic information, stalic information, and static+dynamic in-
formation, respectively.

Here are three notable examples of branch-prediction using static informa-
tion: 1] the CPU assumes that a branch-condition always holds true. 2] The
CPU assumes that a branch-condition holds true if the destination is a previous
address (“backward branch”); this would be accurate for repeatedly-executed
loops. 3] Two conditional branch instructions are defined, “branch-probable”
and “branch-improbable”. The CPU guesses the branch-condition always holds
true in the first case, and always fails in the second. The static information as-
sociated with a conditional-branch instruction does not change as the program
executes.

There is no initial dynamic information before the program begins executing.
The CPU must guess each branch-condition using information it accumulates
as the program executes. In this study we restrict dynamic information to a
per address basis - the prediction of a conditional-branch instruction depends
on the past behavior of that instruction and no other. Here are two examples of
branch-predictors using dynamic information: 1} the CPU maintains a table of
addresses containing conditional-branch instructions. A bit indicates whether
or not the condition held on the last activation of the corresponding instruction;
on the next activation the CPU will guess that the branch-condition holds if
and only if it did previously. 2] Instead of associating a bit with each address,
a k-bit counter is associated with each conditional-branch address. Each time
the branch-condition holds, the associated counter is incremented, otherwise it
is decremented. The CPU guesses that the branch-condition holds if and only
if the counter has a 1 in the highest bit-position, indicating that the branch-
condition held in the majority of its recent activations.

These two forms of information can be coupled. Here is an example of
a predictor using static+dynamic information: we apply the strategy 2] for
dynamic information, using initial k-bit counters accumulated in a test run of
the program. The same initial information is used each time the program begins
executing.



4 The Test Data

We use 7 Vax Unix traces from Mike Shebanow’s original study [9]. Each is a
frequently used utility program. The larger traces were truncated to 1 million
instructions. Unconditional branch instructions are not considered here, since
they require no real guessing. Unfortunately there were no counts of context-
switch or other control-flow instructions available. Likewise, instructions with
multiple destinations or computed destinations were ignored. This may skew the
results somewhat, but the effective blocksize was small enough that we suspect
that few “exotic” branch operations occurred. The test cases are described as
follows, with statistics reported in table 1.

ccoml, ccom2: Executions of the Unix portable C compiler.

cppl, cpp2: Executions of the C preprocessor.

fgrep: A search in a dictionary for words stored in a small text file.

find: A file-search program using the command “find / -name ’*.0’ -print”.
Is: A directory listing using the command “Is -alsg /bin”.

Unix composite is the combination of all the other traces.

l Table 1 — Characteristics of the Test Data |

Program # Instructions | # Active Branch | # Branches | Mean Block
Name Executed Locations Executed Size
ccoml 1,000,000 1384 247,262 4.044
ccom2 1,000,000 511 215,871 4.632
cppl 249,708 326 75,657 3.300
cpp2 1,000,000 297 327,124 3.057
fgrep 1,000,000 131 394,546 2.535
find 1,000,000 164 220,167 4.542
Is 440,722 402 121,811 3.618
(UNIX composite) 5,690,430 3215 1,602,438 3.551

5 Upper Bounds Assuming Unboundked Infor-
mation

Now we will construct upper bounds on the predictability of the program traces.
We can draw some general bounds by restricting the type, but not the quantity
of information (deferred to section 6) the predictor is allowed to use.
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Central to our discussion is the notion of a branch-history string, which is
associated with the address of a branch instruction in the program. For example,

program address: 0010100
opcode: BRC
branch-history string: NTTHENNNTN

For the given execution, the branch-history string associated with the BRC
instruction at address 0010100 indicates that on the first activation of this in-
struction the branch-condition failed to hold (“N” for not-taken). On the second
activation, the branch-condition held (“I” for taken), and so on. Figure 4 shows
the distribution on the lengths of the branch-history strings accumulated from
our set of program traces. Figure 5 shows how they are distributed in terms of
the fraction of T’s they contain. '

The purpose of a branch-predictor is to try to guess whether the kth position
of the branch-history string will be an N or a T, using static information or
dynamic information accumulated up to the kth activation. We will explore
combinatorial properties of branch-history strings in order to make statements
about branch-predictors in general.

For predictors using static information, for each branch-history string the
predictor must make the same guess N or T throughout. The best the predictor
can do, then, is to have always predicted N if the string is densest with N’s,
and T if it is densest with T’s. For example, for the branch instruction with
associated history-string

TTRTTTTNITT

the optimal static predictor would have predicted

TITTTTTITIT

For our instruction traces, then, the optimal branch-predictor based on static
information will always guess T for branches with an associated branch-history
string densest with T’s, and N for branches with an associated branch-history
string densest with N’s. The results for the optimal assignment are in table 2
under Optimal Static Predictor. This value for the UNIX composite appears as
line situd (for static information-theoretic upper bound) in figures 2-3, showing
how this upper bound restricts the potential speedup and utilization under static
prediction.



| Table 2 — Upper Bounds on Prediction Accuracy !

Program Optlma.l Static Optimal Dynamic Predictor

Name Predictor Own Execution | Group Execution
ccoml 90.75% 99.46% 99.42%
ccom2 90.28% 99.77% 99.74%
cppl 90.49% 99.58% 99.50%
cpp2 93.49% 99.90% 09.38%
fgrep 93.85% 99.98% 99.97%
find ’ 95.24% 99.94% 99.93%
ls 90.68% 99.74% 99.69%
(UNIX composite) 92.61% 99.79% 99.79%

Suppose two branch locations have these associated branch-history strings:

TTRNTTNNT
TTNNTTNNN

Under our definitions, a predictor using dynamic information will base its pre-
diction solely on the past behavior of the given branch. The prefixes of these
two strings are identical; thus the predictor will make the same guess for the last
branch in each string. Any predictor based on dynamic information will guess
incorrectly for the last branch in one of these strings. By identifying all the
distinct prefixes of the branch-history strings from our traces, we can weigh the
number of cases branching each way after having generated a given prefix. No
dynamic predictor can do better than to guess whichever direction is observed
most frequently. From this “interference” property we can establish an upper
bound on the accuracy of dynamic predictors, for these test cases.

Such upper bounds are given in table 2 under Optimal Dynamic Predictor.
Own Ezecution is where we consider only the interference between the strings
from the given trace. Group Ezecution is where we consider interference between
the strings of the given trace and the combination of the remaining traces. Ties
occur when an equal number of cases branch N and T from a given prefix; ties
were broken to evenly divide the incorrect guesses between the test case and
the remaining cases. Since few ties occurred this had little effect on the results,
roughly 0.15% for the most significant case (cppl).

The dynamic upper bounds are quite high, decreasing only slightly as we
increase the set of test cases and thus the interference between strings. This up-
per bound for the UNIX composite is shown as ditub (for dynamic information-
theoretic upper bound) in figures 2-3. If a predictor could be constructed this
accurately, pipeline utilization would be determined more significantly by other
effects such as memory stalls or branch-target buffer misses.



We can only speculate where this bound should be for a real system workload;
it may possibly be even lower than the static upper bound. Table 3 shows
the interference of short prefixes of the history-strings. A significant number
of branches are accounted for by short prefixes, indicating that many branch
instructions fired few times. There is a strong interference between these short
strings. The upper bound grows fairly steadily as the lengths increase. This
occurs because the set of strings observed is relatively small compared to the
(exponential) number of strings possible for the given length. There is less
interference -because there are few strings to interfere with. Figure 4 illustrates
this.

I Table 3 - Dynamic Bounds Using Truncated Ilistory-Strings |

Maximum # Branches # Distinct # Distinct | Dynamic Predictor
String Length | Accounted For | Strings Possible | Strings Observed Upper Bound
1 3215 2 2 51.51%
2 5867 6 b} T1.48%
3 8298 14 9 79.08%
4 10,580 30 14 53.29%
5 12,776 62 20 85.93%
6 14,925 126 27 87.83%
7 17,028 254 35 39.13%
8 19,063 510 44 90.214%
9 21,065 1022 62 89.52%
10 23,001 2046 88 90.18%
20 40,607 2,097,150 846 93.36%
30 55,812 2,147,483,646 2626 94.88%
40 69,189 24 -2 5004 95.67%
50 81,880 - 271 -2 7721 96.23%
60 94,158 200 -2 10,629 96.67%
70 106,041 21 -2 13,680 97.01%
80 116,757 2%0 -2 16,704 97.27% |
90 126,918 298 -2 19,691 97.47%
~100 136,455 210023 22,656 97.64% |
84049 1,602,438 284050 _ 9 975,465 99.79%

For branch-predictors using static+dynamic information, the only upper
bound for unbounded information is exactly 100%. The “static information”
would be a table of addresses and associated branch-history strings; the “dy-
namic information” would be the number of times the branch at that address
was executed. To predict the branch-condition on the kth activation, the pre-
dictor simply finds the branch-history string associated with the address and
returns the kth entry:



address branch-history string

0000001 NNNKNRTNNKNNNTTTTTNNNN
0000010 TTTNTTIRTTTTTTTTNNNNTT
etc. etc.

Thus there is no “interference”, static or dynamic, to reduce the upper bound
from 100% correct. Such a table could not be realistically constructed; not only
is it large, but it would have to be the same across all program runs (this is
discussed in more detail in section 7.3). In order to make for more realistic
bounds, we now shift from a pure information-theory to an information-based
complexity-theory using restricted guantities of information.

6 Upper-Bounds Given Bounded Information

The three previous upper bounds depended upon the type of information used
by a branch-predictor; for dynamic and static+dynamic information these up-
per bounds were too high to significantly bound pipeline utilization or speedup.
Furthermore, for dynamic and static+dynamic information the optimal pre-
dictor would have to encode large tables of program trace information, which
should not be practical. By bounding the quantity of information used by the
predictor, we can reduce these upper bounds to more interesting ranges.

If a branch-predictor associates k bits of information with each conditional-
branch instruction, and predicts each branch based only on these k bits, we can
model the predictor as a Moore-machine with 2% states. Each state represents
a configuration of the k bits. The output from each state represents the guess
made from those k bits. The input represents the actual N or T result of the
branch-condition. The state-transitions represent transformations on the k bits
as the branch is executed. There is a designated initial-state if static information
is not used, so all branch instructions start with the same initial k bits. If static
information is used, different branch instructions can start at different initial
states. Examples of such Moore-machines are given in the appendices.

Now we can draw information-theoretic upper bounds on the quality of any
predictor using k bits, by deriving the optimal Moore-machine predictor with
2k states. This is done in table 4, for 0, 1, and 2 bits corresponding to 1,2 and
4 states. Unfortunately our optimization procedure was only effective for up to
2 bits. The optimal Moore-machines for the UNIX composite case are shown in
appendix I, which we dub superpredictors for outperforming any other predictor
of the same size.



Table 4 — Bounds for Finite-State Predictors

Test Designated Initial State | Nondeterministic Initial State

Case 0 bits 1 bit 2 bits 0 bits 1 bit 2 bits
ccoml 55.16% | 95.27% | 95.32% | 55.16% | 95.54% 05.86%
ccom?2 64.52% | 95.14% | 95.21% | 64.52% | 95.25% 95.57%
cppl 61.65% | 95.02% | 95.10% | 61.65% | 95.23% 95.41%
cpp2 72.06% { 96.11% | 96.19% | 72.06% | 96.16% 96.35%
fgrep : 55.98@ 93.90% | 93.94% | 55.98% | 93.91% 93.97%
find 55.95% | 95.19% | 95.22% | 55.95% | 95.25% 95.43%
Is 64.34‘26 94.39% | 94.43% | 64.34% | 94.55% 94.83%

UNIX composite) | 51.08% | 95.00% | 95.05% | 51.08% | 95.10% | 95.28%

For 0 bits of information there is no information, static or dynamic; the
guess must be uniformly N or T. The values for the UNIX composite case are
shown in figures 2-3 as ditud0, ditubl, ditud2 for the 0, 1, and 2-bit predictor
using dynamic information (designated initial state) and sditubl, sditub2 for
the 1 and 2-bit predictor using static+dynamic information (nondeterministic
initial state). There was little difference between them.

The accuracy of the finite-state predictors increases as we add states. In
fact we could encode the program execution traces directly into a machine of
sufficient size, achieving the information-theoretic upper bound for unbounded
information for these traces. The results are shown in table 5; inequalities are
used because the traces might be compressible into smaller machines.

| Table 5 — Optimal Large Machines Directly Encoding History Traces l

Same Initial State Nondeterministic Initial State
Test Case Max Accuracy | Necessary # Bits | Max Accuracy | Necessary # Bits
ccoml 99.46% <17 100% <18
ccom?2 99.77% <17 100% <18
cppl 99.58% <16 100% <17
cpp2 99.90% <18 100% <19
fgrep 99.98% <19 100% <19
find 99.94% <18 . 100% <18
Is 99.24% <17 100% <17
(UNIX composite) 99.79% <20 100% <21

10



7 How General are the Results?

So far we have shown concrete upper bounds on the predictability of branches
in a collection of traces, for various classes of predictors. So long as a given pre-
dictor falls into one of these classes, it will predict the traces no more accurately
than the upper bound dictates.

There are a number of side results, however, which are worth pursuing. Ve
constructed optimal static and dynamic predictors for the 7 traces; if these
traces are good indicators of general program behavior, then the optimized
predictors may be accurate for most programs. In particular, the finite-state
“superpredictors” constructed in section 6, and the technique of static prediction
based on one program run, seem quite practical.

7.1 Superpredictor Sensitivity Analysis

In section 6 we provided upper bounds on dynamic predictors using 2 bits of
information. This was done by deriving optimal predictors for the given trace.
If we were to use one of these superpredictors in a real machine, it would have
to demonstrate high prediction accuracy beyond the one design trace. To study
this, we will analyze the sensitivity of the predictor to the case it was designed
for, by comparing its accuracy across all cases. Interestingly enough, the test
cases ccoml, ccom?2, cppl, cpp2, fgrep, ls, and the UNIX composite all designed
the same 4-state superpredictor; find generated another. Table 6 compares the
two superpredictors across all test cases.

Note that the difference between them was at most 0.12%. Also the su-
perpredictor derived from find was not significantly better thamr the composite
superpredictor, which was uniformly better for all the other cases.

| Table 6 — Sensitivity of 4-Superpredictor Construction |

Design Case
ccoml, ccom?2, ¢ppl, cpp2,

Test Case fgrep, Is, (UNIX composite) find
ccoml 95.32% 95.30%
ccom2 95.21% 95.12%

eppl 95.10% 94.98%

cpp2 96.19% 96.11%

fgrep 93.94% 93.89%

find 95.21% 95.22%

Is 94.43% 94.35%

(UNIX composite) 95.05% 95.00%
11
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7.2 Comparison with Other Predictors

Three 4-state predictors were presented in Lee & Smith [3], which we show in
appendix II. Each exhibits an interesting symmetry, and is designed to capture
an intuitively plausible form of branch behavior. Table 7 compares them against
the composite 4-superpredictor. Since the start-states were not specified in the
reference, for each test case we chose the one start-state that minimized the
error for the trace.

Note that the 4-superpredictor was strictly superior to the other predictors
by a significant amount. Furthermore it was more stable, in that the range
of performance was narrower. The behavior of the other predictors is fairly
consistent with the results for the workloads used in Lee & Smith; unfortunately
their traces were not available for our study.

| Table 7 — Comparison of 4-State Predictors |

Test Case 4-Superpredictor | S-1 Proposal | Majority | 2-Branch History
ccoml 95.31% 93.11% 03.52% 93.33%
ccom? 95.21% 92.79% 93.21% 92.82%

cppl 95.10% 92.59% 93.04% 02.82%

cpp2 96.19% 94.14% 94.54% 94.39%

fgrep 93.94% 89.82% 90.33% 91.32%

find 95.21% 92.17% 92.64% 93.18%

Is 94.43% 91.16% 91.76% 91.93%

(UNIX composite) 95.05% 92.17% 92.62% 92.85%

The gap between the dynamic information-theoretic upper bound for 2 bits
and for unbounded information (=20 bits) was significant. Unfortunately we
could not generate superpredictors for 3 or more bits to see how quickly they
approach the upper bound. Other methods, however, may be able to utilize more
bits to achieve higher accuracy. There are two proposed ways of constructing
predictors to use any number of bits; we will see how these work w.r.t. our
bounds. . -

One obvious approach is to simply count the frequency of taken branches vs.
not-taken branches, and guess with whichever is higher. In table 8 we do this one
step better (for the UNIX composite case), which is to guess whichever direction
is more frequent upon observing that density. The counter is restricted to stay at
fixed maximum or minimum values instead of overflowing or underflowing. Note
that the performance is generally worse for more bits. The likely explanation
is that the behavior at a given activation is a good indicator of the behavior
at the next activation, and this pattern is obscured by the behavior of earlier

activations.

12



Lee & Smith used a method of identifying all branch-history substrings of
length k, and assigning the most frequently encountered next branch as the
guess for each. This constructs a predictor that encodes the results of the last
k activations, and branches with the most frequently encountered next result.
Upper-bounds on this approach are presented in table 8, for up to 16 bits. Note
that this upper bound is less than the 4-superpredictor performance all the
way up through 8 bits. The 16-bit performance is rather low considering the
fact that a 20-bit superpredictor can achieve the dynamic information-theoretic
upper bound of 99.79% for this trace.

[ Table 8 ~ Accuracy Upper Bounds for Two Families of Predictors ]

# bits | Counter Method History Substring Method
1 94.99% 95.00%
2 92.73% 95.00%
3 90.80% 95.00%
4 89.97% 95.00%
5 89.58% 95.00%
6 89.28% 95.00%
7 89.15% 95.00%
8 89.06% 95.00%
9 88.99% 95.85%

10 88.93% 95.85%
11 88.88% 95.85‘7_0
12 88.85% 95.85%
13 88.85% 95.85%
14 88.85% 95.86%
15 88.85% 95.87%
16 88.85% 95.94%

In bad cases the superpredictors and the Lee/Smith predictors require com-
plicated mappings, and hence significant amounts of logic. For 16 or more bits
the cost in logic and gate-delays could be prohibitive. Other ad hoc prediction
schemes might be easily designed to use large numbers of bits, but the structure
must be simple enough to allow an efficient implementation.

7.3 Consistency Between 2 Program Runs

Static information does not change during the execution of a program, or across
multiple executions of the same program. The usefulness of static information or
static information coupled with dynamic information depends on some uniform
behavior between program runs. Since we have traces for two runs each of the
C compiler and the C preprocessor, we can look for evidence of this uniformity.

13
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For example, our optimal static predictor in section 5 assigned a guess T to
each conditional branch with an associated branch-history string densest with
T’s, or N otherwise. Such a prediction scheme might be useful in practice, using
a test run of the program to determine the static prediction. Such a technique
is used in trace-scheduling compilers for VLIW architectures [2]. For this tech-
nique to work, between multiple runs of the same program the branch-history
strings associated with the location of a conditional-branch instruction should
be consistently denser with T’s or N’s. In table 9 we find this pattern holds
for our test cases; the few branch instructions reversing the density relationship
happened to perform few branches.

In table 10 we extend this to 2 bits of static+dynamic information: not only
is a predictor designed from the trace, but initial static information associates a
start-state with each branch address. For two runs of the same program we use
the same predictor (note that our optimization procedure independently derived
the same predictor for each), as well as the same start-state for the same branch
address each time. To test this, then, we derive the predictor and associate
the start-states using the design case, and evaluate it on the test case. The
performance for the test cases was always quite’good. Note, though, that if a
branch instruction was never activated in the design case, we use the test case
to select the optimal start-state, so these results are actually upper bounds.

In table 11 we go back to studying unbounded dynamic information. In
section 5 we studied the interference between history-string prefixes, to see
how predicting for the benefit of one branch would hurt another. The up-
per bound was reduced slightly if we measured the interference of one case with
all the remaining cases, rather than just itself. In table 11 we study the in-
terference between multiple runs of c¢pp and ccom, to see if there was enough
self-consistency between the two runs that no additional dynamic interference
occurred. Comparing against columns 3 and 4 of table 2 shows that there was
significant additional interference. In some cases the test case interfered more
with its other runs than it did with the UNIX composite case.

I Table 9 — (Static) Consistency Between 2 Runs of the Same Program |
# Active Branch Instructions ccoml: 1384

ccom2: 511

cppl: 326

cpp2: 297

# of Instructions Reversing Behavior | ccoml+ccom2: 18
cppl4cpp2: 2
ccoml+ccom2: 463,133
_ cppl+cpp2: 402,781

# Branches Lost ccoml+cecom?2: 205
cppl+cpp2: 276

# Branches Performed
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I Table 10 —~ Consistency in Start-State Selection for 4-Superpredictor |

Design Test Set

Set ccoml | ccom?2 ccoml + ccom?2
ccoml 95.86% | 95.50% 95.69%
ccom?2 95.47% | 95.57% 95.51%
ccoml + ccom2 | 95.85% | 95.55% 95.71%

cppl cpp2 cppl + cpp?

cppl 95.41% | 96.31% 96.14%
cpp2 95.34% | 96.35% 96.16%
cppl + cpp2 | 95.39% | 96.35% 96.17%

[ Table 11 - (Dynamic) Consistency Between 2 Runs of the Same Program B

% Correct Upper Bound

Design Set Test Set # Branches Performed | Individual | Composite
ccoml + ccom?2 ccoml 247,262 99.38% 99306V
” ccom2 215,871 99.75% 09.72'%
” ccoml + ccom?2 463,133 99.53% 99.53%
cppl + cpp2 cppl 75,657 99.53% 09.43%
” cpp2 327,124 99.90% 99.89%
g cppl + cpp2 402,781 99.81% 99.81%

8 Conclusions & Directions for Further Work

For our set of UNIX traces, the bounds on the accuracy of the best possible
branch-predictor using static information or < 2 bits of dynamic or static4+dynamic
information are enough to limit pipeline speedup and utilization by a signifi-
cant degree. For example, in a machine with a pipeline depth (and associated
misprediction penalty) of 4, the utilization will be no better than 92% under
static prediction, and 95% under dynamic or static+dynamic prediction with
2 bits. The speedup will be no better than 3.7x under static prediction and
3.8x% under dynamic or static+dynamic prediction with 2 bits. For a machine
with a pipeline depth (and associated misprediction penalty) of 8, the utiliza-
tion will be no better than 86% under static prediction, and 90% under dynamic
or static+-dynamic prediction with 2 bits. The speedup will be no better than
6.9x under static prediction and 7.2x under dynamic or static+dynamic pre-
diction with 2 bits. To achieve higher degrees of speedup and utilization for the
same pipeline depth and workload, the architect will need to design a branch-
predictor with more bits of dynamic or static+dynamic information, or devise
a new class of branch-prediction strategy.
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The 4-superpredictor, generated by an optimization procedure, appears to
be superior to any proposed method of branch-prediction using up to 8 bits of
information for each branch instruction. The results of such a study are only as
strong as the data used - these results look almost too good, and may be biased
by the nature of the test cases and/or the way the UNIX C compiler code-
generator manages control-flow. Extending these results to a greater number
of test cases is important if “superpredictors” are to be shown practical. Fur-
thermore, the information-theoretic upper bound on dynamic predictors might
be reduced enough to indicate that small superpredictors are near-optimal in
practice.

The problem of finding a superpredictor [7] appears to be intractable since
it is similar to an N"P-complete problem for finite-state transducers [11]. Brute
force case-by-case analysis was used to find the optimal predictor, and was effec-
tive for only 1 to 4 states. There may have been a large amount of redundancy
in the enumeration of cases. A more efficient enumeration scheme might provide
results for 8 or 16 state predictors, though a polynomial-time optimization algo-
rithm should allow solutions to arbitrary sizes. In the meantime, more mediocre
prediction schemes might outperform the 4-superpredictor simply by designing
predictors on larger numbers of states.

The amount of logic required to implement a superpredictor on 16 or more
bits would be prohibitive if it requires a complex boolean mapping. Again a
more mediocre prediction scheme may be able to perform well with less logic.
It might be more realistic to use a theory of circuit-complexity rather than
information-complexity with which to classify and optimize the predictors.

Some statistical methods might be used to study the information-theoretic
upper bound for unbounded dynamic information. The bound drawn had de-
pended on there being a small but significant number of branch-history strings
of long length. We might assume these strings were drawn randomly from a dis-
tribution; this underlying distribution would determine the actual information-
theoretic upper bound. o

The model of pipeline utilization made some gross assumptions regarding
the costs of operations and the penalty of a bad prediction. The model might
be extended, and considered in a revised optimization procedure; alternately
the sensitivity of the model to these assumptions could be studied empirically.

Our definition of predictors based on dynamic information was quite narrow
- prediction could only depend on the prefix of the branch-history string. More
exotic methods are possible, such as cross-correlating the behavior of different
conditional branches in the program. Such methods are not necessarily as lim-
ited as the ones treated here. We did not pursue these possibilities because a)
we have found no proposed methods falling outside our classification scheme,
and b) our analytic approaches did not allow us to make general statements
about other classes of predictors.
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Appendix I — Finite-State Superpredictors

Designated Start-State
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Accuracy:
Remarks:

Accuracy:
Remarks:

Accuracy:
Remarks:

51.08%
Always predict
“not taken."

95.00%
Always predict
previous input.

95.05%

Kludge on top
of 2-state
superpredictor.




Nondeterministic Start-states
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Accuracy:

Remarks:
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Accuracy:

Remarks:
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51.08%
Always predict
"not taken."
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Always predict
previous input.
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3 disconnected
components treat
3 kinds of
behavior.



Appendix IT — Miscellaneous Predictors
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Description: S-1 proposal
Accuracy: 92.16Y
Remarks: Requires 2 "takens"

or "not takens" in -

a row to change
guess.

Description: Majority

Accuracy: 92.62Y%

Remarks: Predicts more
frequent result
so far.

Description: 2-Branch History

Accuracy: 92.85Y%

Remarks: State encodes
last 2 branch
results.
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Figure 1: Distribution of instruction-block sizes
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Figure 2: Pipeline utilization contours
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Speedup for infinitely long pipeline

Figure 3
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Figure 4: Distribution of history-string lengths
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Figure 5: Distribution of taken-branch densities
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