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Abstract
Accurate branch-prediction is necessary to utilize deeply pipelined and 

Very Long Instruction-Word (VLIW) architectures. For a set of program 
traces we show the upper limits on branch predictability, and hence ma­
chine utilization, for important classes of branch-predictors using static 
(compiletime) and dynamic (runtime) program information. A set of 
optimal “superpredictors” is derived from these program traces. These 
optimal predictors compare favorably with other proposed methods of 
branchrprediction.

1 Motivation
The majority of modern high-speed computer architectures employ pipelining 
as a speedup mechanism. Pipelining subdivides the work of an individual in­
struction into a sequence of stages, and overlaps the execution of successive in­
structions by executing different stages of different instructions simultaneously. 
Future systems will use pipelining to larger and larger degrees.

Conditional branch instructions potentially interrupt the smooth execution 
of a pipeline - the pipeline may be ready to process instructions from the desti­
nation of the conditional branch before the condition has been evaluated. Null 
instructions may be passed through the pipeline until the branch-condition is 
resolved and instructions from the correct destination are ready to be fetched. 
This sequence of null instructions is referred to as a bubble and inhibits pipeline 
utilization by filling pipeline stages but performing no work.

An alternative to passing pipeline bubbles is branch-prediction, where the 
result of a branch condition is guessed before it is fully evaluated. Instructions 
from the assumed branch destination are processed immediately. Some repair 
work is necessary if the guess was incorrect, to erase the effect of executing 
the wrong sequence of instructions. It is interesting to note that fairly simple 
schemes of guessing (‘‘branch-prediction”) are reasonably accurate. Treatments 
of pipelining and pipelined machines are found in [6] [10]. The specific problem 
of branch-prediction is treated in [3] [4] [5].

The Very Long Instruction- Word (VLIW) architectures perform simultane­
ous instruction execution, and also benefit from branch-prediction. A program 
is compiled into a number of instruction streams which execute in lock-step. 
Analysis of the program at compiletime and in sample executions is used to 
detect parallelism. Some program transformations are employed to improve 
parallelism, notably the movement of instructions across conditional branches. 
If a branch condition is deemed likely to hold, or likely to not hold, instructions 
from the favored destination may be moved to execute before the condition is 
evaluated. Instructions must be introduced at the alternate destination to erase 
the effects when the condition did not behave as expected. The utilization of 
the VLIW processor is inhibited if the condition tends to behave contrary to
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expectation, since operations are done and undone. Again, accurate branch- 
prediction is necessary to achieve high utilization. Treatments of VLIW pro­
cessors are found in [1] [8]. The specific problem of analyzing and compiling 
programs for VLIW architectures is treated in [2]

In this study we examine general classes of proposed branch-predictors, and 
show their upper limits with respect to a set of program traces. The relationship 
between prediction accuracy and machine utilization and speedup is studied. An 
architect requiring a certain level of utilization will require a corresponding level 
of prediction accuracy, and may need to devise a new class of branch-predictor 
to achieve this.

2 A Simplified Model of Pipeline Utilization
Consider a simple linear pipelined machine model, where instructions are issued 
and retired in order at a rate of one per clock cycle. The pipeline is D stages long. 
We define a block as a sequence of instructions executed between conditional 
branches. For an idealized pipelined machine we have the following relationship:

H = 

N = 

P = 

U =

average blocksize =
# instructions
# branches 

penalty for a wrong guess 
proportion of correct guesses

# instructions
utilization =

(# instructions) + iV(# wrong guesses)

i + ^-pw
(1)

The quantity N represents the size of the bubble introduced in the pipeline 
upon an incorrect branch prediction. This assumes the penalty does not de­
pend upon which branch is being predicted. This model also ignores the initial 
pipeline-fill and final pipeline-empty when the process is started and ended; 
these are not significant if the length of the instruction stream is long with re­
spect to N and D. Similar effects are present in VLIW architectures, but are 
not so easily modeled.

Average blocksize values n are presented in table 1, for a number of real 
programs described in section 4. Figure 1 shows the distribution of blocksizes 
across all cases (the last two values are represented as a scatter-plot). Figure 2 
shows contours for fixed values of 17, as a function of N/n and p. N/p is used as 
a normalized penalty value; the architect may treat jV as a variable parameter, 
but p is determined by the instruction set, the workload, and the compiler.

The speedup S due to pipelining is expressed as follows:

S = speedup = (pipeline depth)(pipeline utilization) = DU
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D (2)
1 |

From figure 2 the speedup can be determined by reading the contours in 
units of D. If we assume D — N, and let the pipeline depth go to infinity, we 
find a strict upper bound on speedup which depends only on p; this relationship 
is shown in figure 3.

3 Branch Predictors
The CPU can predict branches using information collected as the program exe­
cutes, or information provided by the compiler, or both. We will call these forms 
of information dynamic information, static information, and static+dynamic in­
formation, respectively.

Here are three notable examples of branch-prediction using static informa­
tion: 1] the CPU assumes that a branch-condition always holds true. 2] The 
CPU assumes that a branch-condition holds true if the destination is a previous 
address ("backward branch”); this would be accurate for repeatedly-executed 
loops. 3] Two conditional branch instructions are defined, “branch-probable” 
and “branch-improbable”. The CPU guesses the branch-condition always holds 
true in the first case, and always fails in the second. The static information as­
sociated with a conditional-branch instruction does not change as the program 
executes.

There is no initial dynamic information before the program begins executing. 
The CPU must guess each branch-condition using information it accumulates 
as the program executes. In this study we restrict dynamic information to a 
per address basis - the prediction of a conditional-branch instruction depends 
on the past behavior of that instruction and no other. Here are two examples of 
branch-predictors using dynamic information: 1] the CPU maintains a table of 
addresses containing conditional-branch instructions. A bit indicates whether 
or not the condition held on the last activation of the corresponding instruction; 
on the next activation the CPU will guess that the branch-condition holds if 
and only if it did previously. 2] Instead of associating a bit with each address, 
a Jb-bit counter is associated with each conditional-branch address. Each time 
the branch-condition holds, the associated counter is incremented, otherwise it 
is decremented. The CPU guesses that the branch-condition holds if and only 
if the counter has a 1 in the highest bit-position, indicating that the branch- 
condition held in the majority of its recent activations.

These two forms of information can be coupled. Here is an example of 
a predictor using static+dynamic information: we apply the strategy 2] for 
dynamic information, using initial k-bit counters accumulated in a test run of 
the program. The same initial information is used each time the program begins 
executing.
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4 The Test Data
We use 7 Vax Unix traces from Mike Shebanow’s original study [9]. Each is a 
frequently used utility program. The larger traces were truncated to 1 million 
instructions. Unconditional branch instructions are not considered here, since 
they require no real guessing. Unfortunately there were no counts of context- 
switch or other control-flow instructions available. Likewise, instructions with 
multiple destinations or computed destinations were ignored. This may skew the 
results somewhat, but the effective blocksize was small enough that we suspect 
that few “exotic” branch operations occurred. The test cases are described as 
follows, with statistics reported in table 1.

ccoml, ccom2: Executions of the Unix portable C compiler.

cppl, cpp2: Executions of the C preprocessor.

fgrep: A search in a dictionary for words stored in a small text file.

find: A file-search program using the command “find / -name ’*.0’ -print”.

Is: A directory listing using the command “Is -alsg /bin”.

Unix composite is the combination of all the other traces.

Table 1 - Characteristics of the Test Data
Program # Instructions # Active Branch # Branches Mean Block
Name Executed Locations Executed Size
ccoml 1,000,000 1384 247,262 4.044
ccom2 1,000,000 511 215,871 4.632
cppl 249,708 326 75,657 3.300
cpp2 1,000,000 297 327,124 3.057
fgrep 1,000,000 131 394,546 2.535
find 1,000,000 164 220,167 4.542
Is 440,722 402 121,811 3.618
(UNIX composite) 5,690,430 3215 1,602,438 3.551

5 Upper Bounds Assuming Unbounded Infor­
mation

Now we will construct upper bounds on the predictability of the program traces. 
We can draw some general bounds by restricting the type, but not the quantity 
of information (deferred to section 6) the predictor is allowed to use.

5



Centred to our discussion is the notion of a branch-history string, which is 
associated with the address of a branch instruction in the program. For example,

program address: 0010100
opcode: BRC
branch-history string: NTTOTfNNTN

For the given execution, the branch-history string associated with the BRC 
instruction at address 0010100 indicates that on the first activation of this in­
struction the branch-condition failed to hold (“N” for not-taken). On the second 
activation, the branch-condition held (“T” for taken), and so on. Figure 4 shows 
the distribution on the lengths of the branch-history strings accumulated from 
our set of program traces. Figure 5 shows how they are distributed in terms of 
the fraction of T’s they contain.

The purpose of a branch-predictor is to try to guess whether the 1-th position 
of the branch-history string will be an N or a T, using static information or 
dynamic information accumulated up to the ith activation. We will explore 
combinatorial properties of branch-history strings in order to make statements 
about branch-predictors in general.

For predictors using static information, for each branch-history string the 
predictor must make the same guess N or T throughout. The best the predictor 
can do, then, is to have always predicted N if the string is densest with N’s, 
and T if it is densest with T’s. For example, for the branch instruction with 
associated history-string

TTHTTTTMTTT

the optimal static predictor would have predicted

TTTTTTTTTTT

For our instruction traces, then, the optimal branch-predictor based on static 
information will always guess T for branches with an associated branch-history 
string densest with T’s, and N for branches with an associated branch-history 
string densest with N’s. The results for the optimal assignment are in table 2 
under Optimal Static Predictor. This value for the UNIX composite appears as 
line situb (for static information-theoretic upper bound) in figures 2-3, showing 
how this upper bound restricts the potential speedup and utilization under static 
prediction.
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Table 2 - Upper Bounds on Prediction Accuracy
Program Optimal Static Optimal Dynamic Predictor

Name Predictor Own Execution Group Execution
ccoml 90.75% 99.46% 99.42%
ccom2 90.28% 99.77% 99.74%
cppl 90.49% 99.58% 99.50%
cpp2 93.49% 99.90% 99.88%
fgrep 93.85% 99.98% 99.97%
find 95.24% 99.94% 99.93%
Is 90.68% 99.74% 99.69%
(UNIX composite) 92.61% 99.79% 99.79%

Suppose two branch locations have these associated branch-history strings:

TTKHTTNNT
TTHNTTNNN

Under our definitions, a predictor using dynamic information will base its pre­
diction solely on the past behavior of the given branch. The prefixes of these 
two strings are identical; thus the predictor will make the same guess for the last 
branch in each string. Any predictor based on dynamic information will guess 
incorrectly for the last branch in one of these strings. By identifying all the 
distinct prefixes of the branch-history strings from our traces, we can weigh the 
number of cases branching each way after having generated a given prefix. No 
dynamic predictor can do better than to guess whichever direction is observed 
most frequently. From this “interference” property we can establish an upper 
bound on the accuracy of dynamic predictors, for these test cases.

Such upper bounds are given in table 2 under Optimal Dynamic Predictor. 
Own Execution is where we consider only the interference between the strings 
from the given trace. Group Execution is where we consider interference between 
the strings of the given trace and the combination of the remaining traces. Ties 
occur when an equal number of cases branch N and T from a given prefix; ties 
were broken to evenly divide the incorrect guesses between the test case and 
the remaining cases. Since few ties occurred this had little effect on the results, 
roughly 0.15% for the most significant case (cppl).

The dynamic upper bounds are quite high, decreasing only slightly as we 
increase the set of test cases and thus the interference between strings. This up­
per bound for the UNIX composite is shown as ditub (for dynamic information- 
theoretic upper bound) in figures 2-3. If a predictor could be constructed this 
accurately, pipeline utilization would be determined more significantly by other 
effects such as memory stalls or branch-target buffer misses.
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We can only speculate where this bound should be for a red system workload; 
it may possibly be even lower than the static upper bound. Table 3 shows 
the interference of short prefixes of the history-strings. A significant number 
of branches are accounted for by short prefixes, indicating that many branch 
instructions fired few times. There is a strong interference between these short 
strings. The upper bound grows fairly steadily as the lengths increase. This 
occurs because the set of strings observed is relatively small compared to the 
(exponential) number of strings possible for the given length. There is less 
interference-because there are few strings to interfere with. Figure 4 illustrates 
this.

Table 3 - Dynamic Bounds Using Truncated History-Strings
Maximum # Branches # Distinct # Distinct Dynamic Predictor

String Length Accounted For Strings Possible Strings Observed Upper Bound
1 3215 2 2 51.517c
2 5867 6 0 71.48%
3 8298 14 9 79.08%
4 10,580 30 14 83.29%
5 12,776 62 20 85.93%
6 14,925 126 27 87.83%
7 17,028 254 35 89.18%
8 19,063 510 44 90.24%
9 21,065 1022 62 89.82%

10 23,001 2046 88 90.18%
20 40,607 2,097,150 846 93.36%
30 55,812 2,147,483,646 2626 94.88%
40 69,189 2‘*1 — 2 5004 95.67%
50 81,880 2ai — 2 7721 96.23%
60 94,158

C
M1

OC
M 10,629 96.67%

70 106,041 2'1 - 2 13,680 97.01%
80 116,757 2S1 — 2 16,704 97.27%
90 126,918 2sl -2 19,691 97.47%

100 136,455 2ldl - 2 22,656 97.64%
84049 1,602,438 264050  2 975,465 99.79%

For branch-predictors using static+dynamic information, the only upper 
bound for unbounded information is exactly 100%. The “static information” 
would be a table of addresses and associated branch-history strings; the “dy­
namic information” would be the number of times the branch at that address 
was executed. To predict the branch-condition on the kth activation, the pre­
dictor simply finds the branch-history string associated with the address and 
returns the fcth entry:
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address branch-history string

0000001 NNNNNNTNNNNNHTTTTTNNNN
0000010 TTTNTTTNTTTTTTTTMKNHTT

etc. etc.

Thus there is no “interference”, static or dynamic, to reduce the upper bound 
from 100% correct. Such a table could not be realistically constructed; not only 
is it large, but it would have to be the same across all program runs (this is 
discussed in more detail in section 7.3). In order to make for more realistic 
bounds, we now shift from a pure information-theory to an information-based 
complexity-theory using restricted quantities of information.

6 Upper-Bounds Given Bounded Information
The three previous upper bounds depended upon the type of information used 
by a branch-predictor; for dynamic and static+dynamic information these up­
per bounds were too high to significantly bound pipeline utilization or speedup. 
Furthermore, for dynamic and static+dynamic information the optimal pre­
dictor would have to encode large tables of program trace information, which 
should not be practical. By bounding the quantity of information used by the 
predictor, we can reduce these upper bounds to more interesting ranges.

If a branch-predictor associates k bits of information with each conditional- 
branch instruction, and predicts each branch based only on these k bits, we can 
model the predictor as a Moore-machine with 2* states. Each state represents 
a configuration of the k bits. The output from each state represents the guess 
made from those k bits. The input represents the actual N or T result of the 
branch-condition. The state-transitions represent transformations on the k bits 
as the branch is executed. There is a designated initial-state if static information 
is not used, so all branch instructions start with the same initial k bits. If static 
information is used, different branch instructions can start at different initial 
states. Examples of such Moore-machines are given in the appendices.

Now we can draw information-theoretic upper bounds on the quality of any 
predictor using k bits, by deriving the optimal Moore-machine predictor with 
2* states. This is done in table 4, for 0,1, and 2 bits corresponding to 1,2 and 
4 states. Unfortunately our optimization procedure was only effective for up to 
2 bits. The optimal Moore-machines for the UNIX composite case are shown in 
appendix I, which we dub superpredictors for outperforming any other predictor 
of the same size.
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Table 4 - Bounds for Finite-State Predictors
Test Designated Initial State Nondeterministic Initial State
Case 0 bits 1 bit 2 bits 0 bits 1 bit 2 bits
ccoml 55.16% 95.27% 95.32% 55.16% 95.54% 95.86%
ccom2 64.52% 95.14% 95.21% 64.52% 95.25% 95.57%
cppl 61.65% 95.02% 95.10% 61.65% 95.23% 95.41%
cpp2 72.06% 96.11% 96.19% 72.06% 96.16% 96.35%
fgrep 55.98% 93.90% 93.94% 55.98% 93.91% 93.97%
find 55.95% 95.19% 95.22% 55.95% 95.25% 95.43%
Is 64.34% 94.39% 94.43% 64.34% 94.55% 94.83%
(UNIX composite) 51.08% 95.00% 95.05% 51.08% 95.10% 95.28%

For 0 bits of information there is no information, static or dynamic; the 
guess must be uniformly N or T. The values for the UNIX composite case are 
shown in figures 2-3 as ditubO, ditubl, ditubS for the 0, 1, and 2-bit predictor 
using dynamic information (designated initial state) and sditubl, sditub'2 for 
the 1 and 2-bit predictor using static+dynamic information (nondeterministic 
initial state). There was little difference between them.

The accuracy of the finite-state predictors increases as we add states. In 
fact we could encode the program execution traces directly into a machine of 
sufficient size, achieving the information-theoretic upper bound for unbounded 
information for these traces. The results are shown in table 5; inequalities are 
used because the traces might be compressible into smaller machines.

Table 5 - Optimal Large Machines Directly Encoding History Traces

Test Case
Same Ii

Max Accuracy
litial State

Necessary # Bits
Nondetermin; 

Max Accuracy
stic Initial State 

Necessary # Bits
ccoml 99.46% < 17 100% < 18
ccom2 99.77% < 17 100% < 18
cppl 99.58% < 16 100% < 17
cpp2 99.90% < 18 100% < 19
fgrep 99.98% < 19 100% < 19
find 99.94% < 18 100% < 18
Is 99.24% < 17 100% < 17
(UNIX composite) 99.79% < 20 100% <21
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7 How General are the Results?
So far we have shown concrete upper bounds on the predictability of branches 
in a collection of traces, for various classes of predictors. So long as a given pre­
dictor falls into one of these classes, it will predict the traces no more accurately 
than the upper bound dictates.

There are a number of side results, however, which are worth pursuing. We 
constructed optimal static and dynamic predictors for the 7 traces; if these 
traces are good indicators of general program behavior, then the optimized 
predictors may be accurate for most programs. In particular, the finite-state 
“superpredictors” constructed in section 6, and the technique of static prediction 
based on one program run, seem quite practical.

7.1 Superpredictor Sensitivity Analysis
In section 6 we provided upper bounds on dynamic predictors using 2 bits of 
information. This was done by deriving optimal predictors for the given trace. 
If we were to use one of these superpredictors in a real machine, it would have 
to demonstrate high prediction accuracy beyond the one design trace. To study 
this, we will analyze the sensitivity of the predictor to the case it was designed 
for, by comparing its accuracy across all cases. Interestingly enough, the test 
cases ccoml, ccomS, cppl, cpp2, fgrep, Is, and the UNIX composite all designed 
the same 4-state superpredictor; find generated another. Table 6 compares the 
two superpredictors across all test cases.

Note that the difference between them was at most 0.12%. Also the su­
perpredictor derived from find was not significantly better than- the composite 
superpredictor, which was uniformly better for all the other cases.

Table 6 - Sensitivity of 4-Superpredictor Construction

Test Case

Design Case
ccoml, ceom2, cppl, cpp2, 

fgrep, Is, (UNIX composite) find
ccoml 95.32% 95.30%
ccom2 95.21% 95.12%
cppl 95.10% 94.98%
cpp2 96.19% 96.11%
fgrep 93.94% 93.89%
find 95.21% 95.22%

Is 94.43% 94.35%
(UNIX composite) 95.05% 95.00%
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7.2 Comparison with Other Predictors
Three 4-state predictors were presented in Lee & Smith [3], which we show in 
appendix II. Each exhibits an interesting symmetry, and is designed to capture 
an intuitively plausible form of branch behavior. Table 7 compares them against 
the composite 4-superpredictor. Since the start-states were not specified in the 
reference, for each test case we chose the one start-state that minimized the 
error for the trace.

Note that the 4-superpredictor was strictly superior to the other predictors 
by a significant amount. Furthermore it was more stable, in that the range 
of performance was narrower. The behavior of the other predictors is fairly 
consistent with the results for the workloads used in Lee & Smith; unfortunately 
their traces were not available for our study.

Table 7 - Comparison of 4-State Predictors
Test Case 4-Superpredictor S-l Proposal Majority '2-Brancli History

ccoml 95.31% 93.11% 93.52% 93.33%
ccom2 95.21% 92.79% 93.21% 92.82%
cppl 95.10% 92.59% 93.04% 92.82%
cpp2 96.19% 94.14% 94.54% 94.39%
fgrep 93.94% 89.82% 90.33% 91.32%
find 95.21% 92.17% 92.64% 93.18%

Is 94.43% 91.16% 91.76% 91.93%
(UNIX composite) 95.05% 92.17% 92.62% 92.85%

The gap between the dynamic information-theoretic upper bound for 2 bits 
and for unbounded information (=20 bits) was significant. Unfortunately we 
could not generate superpredictors for 3 or more bits to see how quickly they 
approach the upper bound. Other methods, however, may be able to utilize more 
bits to achieve higher accuracy. There are two proposed ways of constructing 
predictors to use any number of bits; we will see how these work w.r.t. our 
bounds..

One obvious approach is to simply count the frequency of taken branches vs. 
not-taken branches, and guess with whichever is higher. In table 8 we do this one 
step better (for the UNIX composite case), which is to guess whichever direction 
is more frequent upon observing that density. The counter is restricted to stay at 
fixed maximum or minimum values instead of overflowing or underflowing. Note 
that the performance is generally worse for more bits. The likely explanation 
is that the behavior at a given activation is a good indicator of the behavior 
at the next activation, and this pattern is obscured by the behavior of earlier 
activations.
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Lee & Smith used a method of identifying all branch-history substrings of 
length k, and assigning the most frequently encountered next branch as the 
guess for each. This constructs a predictor that encodes the results of the last 
k activations, and branches with the most frequently encountered next result. 
Upper-bounds on this approach are presented in table 8, for up to 16 bits. Note 
that this upper bound is less than the 4-superpredictor performance all the 
way up through 8 bits. The 16-bit performance is rather low considering the 
fact that a 20-bit superpredictor can achieve the dynamic information-theoretic 
upper bound of 99.79% for this trace.

Table 8 - Accuracy Upper Bounds for Two Families of Predictors
# bits Counter Method History Substring Method

1 94.99% 95.00%
2 92.73% 95.00%
3 90.80% 95.00%
4 89.97% 95.00%
5 89.58% 95.00%
6 89.28% 95.00%
7 89.15% 95.00%
8 89.06% 95.00%
9 88.99% 95.85%

10 88.93% 95.85%
11 88.88% 95.85%
12 88.85% 95.85%
13 88.85% 95.85%
14 88.85% 95.86%
15 88.85% 95.87%
16 88.85% 95.94%

In bad cases the superpredictors and the Lee/Smith predictors require com­
plicated mappings, and hence significant amounts of logic. For 16 or more bits 
the cost in logic and gate-delays could be prohibitive. Other ad hoc prediction 
schemes might be easily designed to use large numbers of bits, but the structure 
must be simple enough to allow an efficient implementation.

7.3 Consistency Between 2 Program Runs
Static information does not change during the execution of a program, or across 
multiple executions of the same program. The usefulness of static information or 
static information coupled with dynamic information depends on some uniform 
behavior between program runs. Since we have traces for two runs each of the 
C compiler and the C preprocessor, we can look for evidence of this uniformity.
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For example, our optimal static predictor in section 5 assigned a guess T to 
each conditional branch with an associated branch-history string densest with 
T’s, or N otherwise. Such a prediction scheme might be useful in practice, using 
a test run of the program to determine the static prediction. Such a technique 
is used in trace-scheduling compilers for VLIW architectures [2]. For this tech­
nique to work, between multiple runs of the same program the branch-history 
strings associated with the location of a conditional-branch instruction should 
be consistently denser with T’s or N’s. In table 9 we find this pattern holds 
for our test cases; the few branch instructions reversing the density relationship 
happened to perform few branches.

In table 10 we extend this to 2 bits of static+dynamic information: not only 
is a predictor designed from the trace, but initial static information associates a 
start-state with each branch address. For two runs of the same program we use 
the same predictor (note that our optimization procedure independently derived 
the same predictor for each), as well as the same start-state for the same branch 
address each time. To test this, then, we derive the predictor and associate 
the start-states using the design case, and evaluate it on the test case. The 
performance for the test cases was always quite’good. Note, though, that if a 
branch instruction was never activated in the design case, we use the test case 
to select the optimal start-state, so these results are actually upper bounds.

In table 11 we go back to studying unbounded dynamic information. In 
section 5 we studied the interference between history-string prefixes, to see 
how predicting for the benefit of one branch would hurt another. The up­
per bound was reduced slightly if we measured the interference of one case with 
all the remaining cases, rather than just itself. In table 11 we study the in­
terference between multiple runs of cpp and ccom, to see if there was enough 
self-consistency between the two runs that no additional dynamic interference 
occurred. Comparing against columns 3 and 4 of table 2 shows that there was 
significant additional interference. In some cases the test case interfered more 
with its other runs than it did with the UNIX composite case.

Table 9 — (Static) Consistency Between 2 Runs of the Same Program
# Active Branch Instructions ccoml: 1384 

ccom2: 511 
cppl: 326 
cpp2: 297

# of Instructions Reversing Behavior ccoml+ccom2: 18 
cppl+cpp2: 2

# Branches Performed ccoml+ccom2: 463,133 
cppl+cpp2: 402,781

# Branches Lost ccoml+ccom2: 205 
cppl+cpp2: 276
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Table 10 - Consistency in Start-State Selection for 4-Superpredictor
Design Test Set

Set ccoml ccom2 ccoml + ccom2
ccoml 95.86% 95.50% 95.69%
ccom2 95.47% 95.57% 95.51%

ccoml + ccom2 95.85% 95.55% 95.71%
cppl cpp2 cppl + cpp2

cppl 95.41% 96.31% 96.14%
cpp2 95.34% 96.35% 96.16%

cppl + cpp2 95.39% 96.35% 96.17%

Table 11 - (Dynamic) Consistency Between 2 Runs of the Same Program

Design Set Test Set # Branches Performed
% Correct 
Individual

Jpper Bound 
Composite

ccoml + ccom2 ccoml 247,262 99.38% 99.36%
n ccom2 215,871 99.75% 99.72%
n ccoml + ccom2 463,133 99.53% 99.53%

cppl + cpp2 cppl 75,657 99.53% 99.48%
n cpp2 327,124 99.90% 99.89%
n cppl + cpp2 402,781 99.81% 99.81%

8 Conclusions & Directions for Further Work
For our set of UNIX traces, the bounds on the accuracy of the best possible 
branch-predictor using static information or < 2 bits of dynamic or static+dynamic 
information are enough to limit pipeline speedup and utilization by a signifi­
cant degree. For example, in a machine with a pipeline depth (and associated 
misprediction penalty) of 4, the utilization will be no better than 92% under 
static prediction, and 95% under dynamic or static+dynamic prediction with 
2 bits. The speedup will be no better than 3.7x under static prediction and 
3.8x under dynamic or static+dynamic prediction with 2 bits. For a machine 
with a pipeline depth (and associated misprediction penalty) of 8, the utiliza­
tion will be no better them 86% under static prediction, and 90% under dynamic 
or static+dynamic prediction with 2 bits. The speedup will be no better than 
6.9x under static prediction and 7.2x under dynamic or static+dynamic pre­
diction with 2 bits. To achieve higher degrees of speedup and utilization for the 
same pipeline depth and workload, the architect will need to design a branch- 
predictor with more bits of dynamic or static+dynamic information, or devise 
a new class of branch-prediction strategy.
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The 4-superpredictor, generated by an optimization procedure, appears to 
be superior to any proposed method of branch-prediction using up to 8 bits of 
information for each branch instruction. The results of such a study are only as 
strong as the data used - these results look almost too good, and may be biased 
by the nature of the test cases and/or the way the UNIX C compiler code­
generator manages control-flow. Extending these results to a greater number 
of test cases is important if “superpredictors” are to be shown practical. Fur­
thermore, the information-theoretic upper bound on dynamic predictors might 
be reduced enough to indicate that small superpredictors are near-optimal in 
practice.

The problem of finding a superpredictor [7] appears to be intractable since 
it is similar to an ^VP-complete problem for finite-state transducers [11]. Brute 
force case-by-case analysis was used to find the optimal predictor, and was effec­
tive for only 1 to 4 states. There may have been a large amount of redundancy 
in the enumeration of cases. A more efficient enumeration scheme might provide 
results for 8 or 16 state predictors, though a polynomial-time optimization algo­
rithm should allow solutions to arbitrary sizes. In the meantime, more mediocre 
prediction schemes might outperform the 4-superpredictor simply by designing 
predictors on larger numbers of states.

The amount of logic required to implement a superpredictor on 16 or more 
bits would be prohibitive if it requires a complex boolean mapping. Again a 
more mediocre prediction scheme may be able to perform well with less logic. 
It might be more realistic to use a theory of circuit-complexity rather than 
information-complexity with which to classify and optimize the predictors.

Some statistical methods might be used to study the information-theoretic 
upper bound for unbounded dynamic information. The bound drawn had de­
pended on there being a small but significant number of branch-history strings 
of long length. We might assume these strings were drawn randomly from a dis­
tribution; this underlying distribution would determine the actual information- 
theoretic upper bound.

The model of pipeline utilization made some gross assumptions regarding 
the costs of operations and the penalty of a bad prediction. The model might 
be extended, and considered in a revised optimization procedure; alternately 
the sensitivity of the model to these assumptions could be studied empirically.

Our definition of predictors based on dynamic information was quite narrow 
- prediction could only depend on the prefix of the branch-history string. More 
exotic methods are possible, such as cross-correlating the behavior of different 
conditional branches in the program. Such methods are not necessarily as lim­
ited as the ones treated here. We did not pursue these possibilities because a) 
we have found no proposed methods falling outside our classification scheme, 
and b) our analytic approaches did not allow us to make general statements 
about other classes of predictors.
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Appendix I — Finite-State Superpredictors
Designated Start-State

T N
Accuracy: 51.08'^
Remarks: Always predict

"not taken."

r M

M Accuracy: 95.00*/.
Remarks: Always predict

previous input.

GErr
Accuracy: 95,05'/.
Remarks: Kludge on top

oi 2-state 
superpredictor.
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Nondeterministic Start-states

Accuracy: 51.08'/.
Remarks: Always predict

"not taken."

N
Accuracy: 95.10'/,
Remarks: Always predict

previous input.

Accuracy: 95.28*/.
Remarks: 3 disconnected

components treat 
3 kinds of 
behavior.

OSD
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Appendix II — Miscellaneous Predictors

Description: S-l proposal 
Accuracy: 92.16*/.
Remarks: Requires 2 "takens"

or "not takens" in
a row to change 
guess.

t

» N
Description: Majority 
Accuracy: 92.62*/.
Remarks: Predicts more

frequent result 
so far.

Description: 2-Branch History 
Accuracy: 92.85%
Remarks: State encodes

last 2 branch 
results.
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Figure 1: Distribution of instruction-block sizes
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Figure 2: Pipeline utilization contours
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Figure 3: Speedup for infinitely long pipeline
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Figure 5: Distribution of taken-branch densities
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